[go: up one dir, main page]

EP2582854B1 - Nickel based alloy - Google Patents

Nickel based alloy Download PDF

Info

Publication number
EP2582854B1
EP2582854B1 EP11755241.4A EP11755241A EP2582854B1 EP 2582854 B1 EP2582854 B1 EP 2582854B1 EP 11755241 A EP11755241 A EP 11755241A EP 2582854 B1 EP2582854 B1 EP 2582854B1
Authority
EP
European Patent Office
Prior art keywords
max
content
mass
alloy
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11755241.4A
Other languages
German (de)
French (fr)
Other versions
EP2582854A2 (en
Inventor
Heike Hattendorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VDM Metals GmbH
Original Assignee
VDM Metals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VDM Metals GmbH filed Critical VDM Metals GmbH
Publication of EP2582854A2 publication Critical patent/EP2582854A2/en
Application granted granted Critical
Publication of EP2582854B1 publication Critical patent/EP2582854B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W

Definitions

  • the invention relates to a nickel-based alloy.
  • Nickel-base alloys are used inter alia to produce electrodes of ignition elements for internal combustion engines. These electrons are exposed to temperatures between 400 ° C and 950 ° C. In addition, the atmosphere changes between reducing and oxidizing conditions. This produces a material destruction or loss due to high-temperature corrosion in the surface region of the electrodes. The generation of the spark leads to a further load (spark erosion). Temperatures of several 1000 ° C occur at the base of the spark, and currents of up to 100 A flow in the first nanoseconds during a breakthrough. With each flashover, a limited volume of material in the electrodes is melted and partially vaporized, producing a loss of material.
  • nickel alloys have a good potential to fulfill this property spectrum. They are inexpensive compared to precious metals, show no phase transformations to the melting point, such as cobalt or iron, are relatively insensitive to carburizing and Nitriding, have good heat resistance, good corrosion resistance and are easy to form and weld.
  • Wear by high temperature corrosion can be determined by mass change measurements as well as by metallographic analysis after aging at given test temperatures.
  • a generic nickel alloy consisting of about 0.2 to 3% Si, about 0.5% or less Mn, at least two metals selected from the group consisting of about 0.2 to 3% Cr, about 0.2 up to 3% Al and about 0.01 to 1% Y, balance nickel.
  • a nickel-based alloy which comprises 1.8 to 2.2% silicon, 0.05 to 0.1% yttrium and / or hafnium and / or zirconium, 2 to 2.4% aluminum, balance nickel.
  • Such alloys can be processed only in difficult conditions with respect to the high aluminum and silicon contents and are therefore not very suitable for large-scale industrial use.
  • a nickel-base alloy comprising 1.5 to 2.5% silicon, 1.5 to 3% aluminum, 0 to 0.5% manganese, 0.5 to 0.2% titanium is proposed in combination with 0.1 to 0.3% zirconium, wherein the zirconium can be replaced in whole or in part by the double mass hafnium.
  • a nickel-base alloy comprising 1.2 to 2.0% aluminum, 1.2 to 1.8% silicon, 0.001 to 0.1% carbon, 0.001 to 0.1% sulfur, and 0.1% or less chromium , maximum 0.01% manganese, maximum 0.1% Cu, maximum 0.2% iron, 0.005 to 0.06% magnesium, maximum 0.005% lead 0.05 to 0.15% Y and 0.05 to 0, 10% hafnium or lanthanum or 0.05 to 0.10% each hafnium and lanthanum, balance nickel and manufacturing-related impurities.
  • T1 has a negative mass change from the beginning. Ie. Parts of the oxide that formed during the oxidation have flaked off the sample, so that the mass loss due to oxide spalling is greater than the mass increase due to oxidation. This is unfavorable since the protective layer formation at the chipped areas must always start again. The behavior of T1 is more favorable. There, the first 192 hours outweigh the mass increase by oxidation. Only then is the mass increase due to spalling greater than the mass increase due to oxidation, with the mass loss of T2 being significantly lower than that of T1. Ie.
  • the aim of the subject invention is to provide a nickel-based alloy, which leads to an increase in the life of components made therefrom, which by raising the spark erosion and corrosion resistance at the same time good formability and weldability (workability) can be brought.
  • the alloy may further include calcium at levels between 0.0002 and 0.06%.
  • the alloy may be added zirconium at a content of 0.03 to 0.15.
  • cerium with a content of 0.03 to 0.15 is possible.
  • lanthanum may be added at a level of 0.03 to 0.15%.
  • the alloy can contain Ti up to max. 0.15% included.
  • the copper content is limited to max. 0.50% limited, preferably it is max. 0.20%
  • the nickel-based alloy according to the invention is preferably usable as a material for electrodes of ignition elements of internal combustion engines, in particular of spark plugs for gasoline engines.
  • Table 1 shows alloy compositions belonging to the prior art.
  • Table 2 shows examples of non-inventive nickel alloys with 1% aluminum and various oxygen-affinity elements: L1 contains 0.13% Y, L2 0.18% Hf, L3 0.12% Y and 0.20 Hf, L4 0 , 13% Zr, L5 0.043% Mg and L6 0.12% Sc. In addition, these batches contain different oxygen contents in the range of 0.001% to 0.004% and Si contents ⁇ 0.01%.
  • Table 3 shows examples of nickel alloys according to the invention with about 1% silicon and different oxygen-affine elements: E1 and E2 each contain about 0.1% Y, E3, E4 and E5 each contain about 0.20% Hf, E6 and E7 each contain about 0.12% Y and 0.14 and 0.22 Hf respectively, E8 and E9 each contain about 0.10% Zr, E10 0.037% Mg, E11 contains 0.18% Hf and 0.055% Mg, E12 contains 0.1% Y and 0.065% Mg and E13 0.11% Y and 0.19% Hf and 0.059% Mg. In addition, these lots contain varying levels of oxygen in the range of 0.002% to 0.007% and Al -Contained between 0.003 and 0.035%.
  • Figure 3 shows that the 1% Al-containing alloys all have a greater mass increase by oxidation than the 1% Si-containing alloys from Table 3. Therefore, the aluminum content is inventively limited to max. 0.10% limited. Too low an Al content increases costs. The Al content is therefore greater than or equal to 0.001%.
  • the NiSi alloys with Mg show a particularly low mass increase, ie a particularly good one Oxidation resistance.
  • Mg improves the oxidation resistance of the Si-containing melts.
  • none of the Si-containing alloys in Figure 3 show flaking.
  • Y, Hf and Zr if added in sufficient amounts, also improve the oxidation resistance, albeit in part with a slightly higher oxidation rate compared to Mg.
  • the Al-containing alloys also show Y, Hf and / or Zr additions to the Sc-containing alloy LB2174 no flaking, but only an increased oxidation rate compared to the Si-containing alloys.
  • Aluminum deteriorates the oxidation resistance when added in the range of 1%. Therefore the aluminum content is reduced to max. 0.10% limited. Too low an Al content increases costs. The Al content is therefore set equal to or greater than 0.001%.
  • Iron is limited to 0.20% because this element reduces the oxidation resistance. Too little Fe content increases the cost of producing the alloy. The Fe content is therefore greater than or equal to 0.01%.
  • the carbon content should be less than 0.10% to ensure processability. Too small C contents cause increased costs in the production of the alloy. The carbon content should therefore be greater than 0.001%.
  • Nitrogen is limited to 0.10% as this element reduces the oxidation resistance. Too small N contents cause increased costs in the production of the alloy. The nitrogen content should therefore be greater than 0.0005%.
  • the NiSi alloy with Mg (E10) has a particularly small increase in mass, i. a particularly good oxidation resistance, so that a Mg content is favorable. Even very low Mg contents improve the processing, by the setting of sulfur, whereby the occurrence of low-melting NiS eutectics is avoided. For Mg, therefore, a minimum content of 0.0001% is required. Excessively high levels can lead to intermetallic Ni-Mg phases, which significantly impair processability. The Mg content is therefore limited to 0.08%.
  • the oxygen content must be less than 0.010% to ensure the manufacturability of the alloy. Too small oxygen levels cause increased costs. The oxygen content should therefore be greater than 0.0001%.
  • Manganese is limited to 0.1% as this element reduces oxidation resistance.
  • Chromium is limited to 0.10% because this element, as the example of T1 in Figure 1 shows, is not beneficial.
  • Copper is limited to 0.50% because this element reduces oxidation resistance.
  • the levels of sulfur should be kept as low as possible, since this surfactant affects the oxidation resistance. It will therefore max. 0.008% S set.
  • a minimum content of 0.03% Y is necessary to obtain the oxidation resistance enhancing effect of Y.
  • the upper limit is set at 0.20% for cost reasons.
  • a minimum content of 0.03% Hf is required to obtain the oxidation resistance enhancing effect of Hf.
  • the upper limit is set at 0.25% Hf for cost reasons.
  • a minimum content of 0.03% Zr is necessary to obtain the oxidation resistance enhancing effect of Zr.
  • the upper limit is set at 0.15% Zr for cost reasons.
  • the alloy can contain up to 0.15% Ti without degrading its properties.
  • Cobalt is reduced to max. 0.50% because this element reduces the oxidation resistance.
  • Molybdenum is reduced to max. 0.10% limited because this element reduces the oxidation resistance. The same applies to tungsten and vanadium.
  • the content of phosphorus should be less than 0.020%, since this surfactant affects the oxidation resistance.
  • the content of boron should be kept as low as possible because this surfactant affects the oxidation resistance. It will therefore max. 0.005% B is set.
  • Pb is set to max. 0.005% limited because this element reduces the oxidation resistance.
  • Table 1 Composition of prior art alloys NiCr2MnSi - 2.4146 DE 2936312 charge T1 T2 element Ni rest rest Si 0.5 1.0 al - 1.0 Y - 0.17 Ti 12:01 - C 0,003 - Co 0.04 - Cu 0.01 0.01 Cr 1.6 0.01 Mn 1.5 0.02 Fe 0.08 0.13 material NiAlY NiAlHf NiAlYHf NiAlZr NiAlMg NiAlSc charge L1 L2 L3 L4 L5 L6 C 0,003 0,002 0,002 0,002 0,002 0,003 S ⁇ 0.0006 ⁇ 0.0005 0.0005 0.0005 0.0009 0.0005 N 0,002 0,002 ⁇ 0.001 0,003 ⁇ 0.001 ⁇ 0.002 Cr 12:01 12:01 0.01 0.01 ⁇ 00:01 0.01 Ni (remainder) 98.5 98.6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spark Plugs (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Soft Magnetic Materials (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

Die Erfindung betrifft eine Nickelbasislegierung.The invention relates to a nickel-based alloy.

Nickelbasislegierungen werden unter anderem dazu eingesetzt, Elektroden von Zündelementen für Verbrennungskraftmaschinen zu erzeugen. Diese Elektronen sind Temperaturen zwischen 400°C und 950°C ausgesetzt. Zusätzlich wechselt die Atmosphäre zwischen reduzierenden und oxidierenden Bedingungen. Dies erzeugt eine Materialzerstörung bzw. einen Materialverlust durch Hochtemperaturkorrosion im Oberflächenbereich der Elektroden. Die Erzeugung des Zündfunkens führt zu einer weiteren Belastung (Funkenerosion). Am Fußpunkt des Zündfunkens entstehen Temperaturen von mehreren 1000°C und bei einem Durchbruch fließen in den ersten Nanosekunden Ströme von bis zu 100 A. Bei jedem Funkenüberschlag wird ein begrenztes Materialvolumen in den Elektroden geschmolzen und teilweise verdampft, was einen Materialverlust erzeugt.Nickel-base alloys are used inter alia to produce electrodes of ignition elements for internal combustion engines. These electrons are exposed to temperatures between 400 ° C and 950 ° C. In addition, the atmosphere changes between reducing and oxidizing conditions. This produces a material destruction or loss due to high-temperature corrosion in the surface region of the electrodes. The generation of the spark leads to a further load (spark erosion). Temperatures of several 1000 ° C occur at the base of the spark, and currents of up to 100 A flow in the first nanoseconds during a breakthrough. With each flashover, a limited volume of material in the electrodes is melted and partially vaporized, producing a loss of material.

Zusätzlich erhöhen Schwingungen vom Motor die mechanischen Belastungen.In addition, vibrations from the engine increase the mechanical loads.

Ein Elektrodenwerkstoff sollte die folgenden Eigenschaften haben:

  • eine gute Beständigkeit gegen Hochtemperaturkorrosion, insbesondere Oxidation, aber auch Sulfidierung, Aufkohlung und Nitrierung;
  • eine Beständigkeit gegen die durch den Zündfunken entstehende Erosion;
  • der Werkstoff sollte nicht empfindlich gegen Thermoschocks und warmfest sein;
  • der Werkstoff soll eine gute Wärmeleitfähigkeit, eine gute elektrische Leitfähigkeit und einen ausreichend hohen Schmelzpunkt haben;
  • der Werkstoff sollte sich gut verarbeiten lassen und preisgünstig sein.
An electrode material should have the following properties:
  • a good resistance to high-temperature corrosion, in particular oxidation, but also sulfidation, carburizing and nitriding;
  • a resistance to the erosion caused by the spark;
  • the material should not be sensitive to thermal shocks and heat-resistant;
  • the material should have a good thermal conductivity, a good electrical conductivity and a sufficiently high melting point;
  • The material should be easy to process and be inexpensive.

Insbesondere haben Nickellegierungen ein gutes Potenzial dieses Eigenschaftsspektrum zu erfüllen. Sie sind im Vergleich zu Edelmetallen preisgünstig, zeigen keine Phasenumwandlungen bis zum Schmelzpunkt, wie Kobalt oder Eisen, sind vergleichweise unempfindlich gegen Aufkohlung und Nitrierung, haben eine gute Warmfestigkeit, eine gute Korrosionsbeständigkeit und sind gut umformbar sowie schweißbar.In particular, nickel alloys have a good potential to fulfill this property spectrum. They are inexpensive compared to precious metals, show no phase transformations to the melting point, such as cobalt or iron, are relatively insensitive to carburizing and Nitriding, have good heat resistance, good corrosion resistance and are easy to form and weld.

Der Verschleiß durch Hochtemperaturkorrosion lässt sich durch Masseänderungsmessungen sowie durch metallographische Untersuchungen nach Auslagerung bei vorgegebenen Prüftemperaturen bestimmen.Wear by high temperature corrosion can be determined by mass change measurements as well as by metallographic analysis after aging at given test temperatures.

Für beide Schadensmechanismen, der Hochtemperaturkorrosion und der Funkenerosion, ist die Art der Oxidschichtausbildung von besonderer Bedeutung.For both damage mechanisms, high-temperature corrosion and spark erosion, the type of oxide layer formation is of particular importance.

Um eine optimale Oxidschichtausbildung für den konkreten Anwendungsfall zu erreichen, sind bei Nickelbasislegierungen verschiedene Legierungselemente bekannt.In order to achieve an optimum oxide layer formation for the specific application, various alloying elements are known in nickel-based alloys.

Im Folgenden sind alle Konzentrationsangeben in Masse-%, wenn nicht ausdrücklich anders vermerkt.In the following, all concentrations are in mass%, unless expressly stated otherwise.

Durch die DE 29 36 312 ist eine gattungsbildende Nickellegierung bekannt geworden, bestehend aus etwa 0,2 bis 3 % Si, etwa 0,5 % oder weniger Mn, wenigstens zwei Metallen, ausgewählt aus der Gruppe bestehend aus etwa 0,2 bis 3 % Cr, etwa 0,2 bis 3 % Al und etwa 0,01 bis 1 % Y, Rest Nickel.By the DE 29 36 312 For instance, a generic nickel alloy has been disclosed consisting of about 0.2 to 3% Si, about 0.5% or less Mn, at least two metals selected from the group consisting of about 0.2 to 3% Cr, about 0.2 up to 3% Al and about 0.01 to 1% Y, balance nickel.

In der DE-A 102 24 891 A1 wird eine Legierung auf Nickelbasis vorgeschlagen, welche 1,8 bis 2,2 % Silizium, 0,05 bis 0,1 % Yttrium und/oder Hafnium und/oder Zirkonium, 2 bis 2,4 % Aluminium, Rest Nickel aufweist. Derartige Legierungen lassen sich bezüglich der hohen Aluminium- und Siliziumgehalte nur unter schwierigen Bedingungen bearbeiten und sind somit für den technischen Großeinsatz wenig geeignet.In the DE-A 102 24 891 A1, a nickel-based alloy is proposed which comprises 1.8 to 2.2% silicon, 0.05 to 0.1% yttrium and / or hafnium and / or zirconium, 2 to 2.4% aluminum, balance nickel. Such alloys can be processed only in difficult conditions with respect to the high aluminum and silicon contents and are therefore not very suitable for large-scale industrial use.

In der EP 1 867 739 A1 wird eine Legierung auf Nickelbasis vorgeschlagen, die 1,5 bis 2,5 % Silizium, 1,5 bis 3 % Aluminium, 0 bis 0,5 % Mangan, 0,5 bis 0,2 % Titan in Kombination mit 0,1 bis 0,3 % Zirkon beinhaltet, wobei das Zirkon ganz oder teilweise durch die doppelte Masse Hafnium ersetzt werden kann.In the EP 1 867 739 A1 For example, a nickel-base alloy comprising 1.5 to 2.5% silicon, 1.5 to 3% aluminum, 0 to 0.5% manganese, 0.5 to 0.2% titanium is proposed in combination with 0.1 to 0.3% zirconium, wherein the zirconium can be replaced in whole or in part by the double mass hafnium.

In der DE 10 2006 035 111 A1 wird eine Legierung auf Nickelbasis vorgeschlagen, die 1,2 bis 2,0 % Aluminium,1,2 bis 1,8 % Silizium, 0,001 bis 0,1 % Kohlenstoff, 0,001 bis 0,1 % Schwefel, maximal 0,1 % Chrom, maximal 0,01 % Mangan, maximal 0,1 % Cu, maximal 0,2 % Eisen, 0,005 bis 0,06 % Magnesium, maximal 0,005% Blei 0,05 bis 0,15 % Y und 0,05 bis 0,10% Hafnium oder Lanthan oder jeweils 0,05 bis 0,10% Hafnium und Lanthan, Rest Nickel und herstellungsbedingte Verunreinigungen enthält.In the DE 10 2006 035 111 A1 For example, there is proposed a nickel-base alloy comprising 1.2 to 2.0% aluminum, 1.2 to 1.8% silicon, 0.001 to 0.1% carbon, 0.001 to 0.1% sulfur, and 0.1% or less chromium , maximum 0.01% manganese, maximum 0.1% Cu, maximum 0.2% iron, 0.005 to 0.06% magnesium, maximum 0.005% lead 0.05 to 0.15% Y and 0.05 to 0, 10% hafnium or lanthanum or 0.05 to 0.10% each hafnium and lanthanum, balance nickel and manufacturing-related impurities.

In der Broschüre "Drähte von ThyssenKrupp VDM Automobilindustrie" Ausgabe wird auf Seite 18 eine Legierung nach dem Stand der Technik - NiCr2MnSi mit 1,4 bis 1,8 % Cr, max. 0,3 % Fe, max. 0,5 % C, 1,3 bis 1,8 % Mn, 0,4 bis 0,65 % Si, max. 0,15% Cu und max. 0,15 % Ti beschrieben. Beispielhaft ist in Tabelle 1 eine Charge T1 dieser Legierung angegeben. Weiterhin ist in Tabelle 1 die Charge T2 angegeben, die nach DE 2936312 mit 1 % Si, 1 % Al und 0,17 % Y erschmolzen worden ist. An diesen Legierungen wurde ein Oxidationstest bei 900°C an Luft durchgeführt, wobei der Versuch alle 96 Stunden unterbrochen und die Massenänderung der Proben durch die Oxidation bestimmt wurde (Nettomassenänderung). Bild 1 zeigt, dass T1 von Anfang an eine negative Massenänderung hat. D. h. Teile des Oxids, das sich bei der Oxidation gebildet hat, sind von der Probe abgeplatzt, so dass der Masseverlust durch Abplatzungen von Oxid größer ist, als die Massenzunahme durch Oxidation. Dies ist unvorteilhaft, da die Schutzschichtbildung an den abgeplatzten Stellen immer wieder erneut beginnen muss. Das Verhalten von T1 ist günstiger. Dort überwiegt die ersten 192 Stunden die Massenzunahme durch Oxidation. Erst danach ist die Massenzunahme durch Abplatzungen größer als die Massenzunahme durch Oxidation, wobei der Massenverlust von T2 deutlich geringer ist als der von T1. D. h. eine Nickellegierung mit ca. 1 % Si, ca. 1% Al und 0,17 % Y verhält sich deutlich günstiger als eine Nickellegierungen mit 1,6 % Cr, 1,5 % Mn und 0, 5% Si. Ziel des Erfindungsgegenstandes ist es, eine Nickelbasislegierung bereitzustellen, die zu einer Erhöhung der Lebensdauer von daraus hergestellten Bauteilen führt, was durch Erhöhung der Funkenerosions- und Korrosionsbeständigkeit bei gleichzeitig guter Umformbarkeit und Schweißbarkeit (Verarbeitbarkeit) herbeiführbar ist.In the brochure "Wires of ThyssenKrupp VDM Automobilindustrie" issue, on page 18, a state-of-the-art alloy - NiCr2MnSi with 1.4 to 1.8% Cr, max. 0.3% Fe, max. 0.5% C, 1.3 to 1.8% Mn, 0.4 to 0.65% Si, max. 0.15% Cu and max. 0.15% Ti described. By way of example, a charge T1 of this alloy is given in Table 1. Furthermore, in Table 1, the charge T2 is given after DE 2936312 with 1% Si, 1% Al and 0.17% Y has been melted. An oxidation test was carried out on these alloys at 900 ° C. in air, the test being interrupted every 96 hours and the mass change of the samples determined by the oxidation (net mass change). Figure 1 shows that T1 has a negative mass change from the beginning. Ie. Parts of the oxide that formed during the oxidation have flaked off the sample, so that the mass loss due to oxide spalling is greater than the mass increase due to oxidation. This is unfavorable since the protective layer formation at the chipped areas must always start again. The behavior of T1 is more favorable. There, the first 192 hours outweigh the mass increase by oxidation. Only then is the mass increase due to spalling greater than the mass increase due to oxidation, with the mass loss of T2 being significantly lower than that of T1. Ie. a nickel alloy with about 1% Si, about 1% Al and 0.17% Y behaves significantly cheaper than a nickel alloys with 1.6% Cr, 1.5% Mn and 0, 5% Si. The aim of the subject invention is to provide a nickel-based alloy, which leads to an increase in the life of components made therefrom, which by raising the spark erosion and corrosion resistance at the same time good formability and weldability (workability) can be brought.

Das Ziel des Erfindungsgegenstandes wird erreicht durch eine Nickelbasislegierung, beinhaltend (in Masse-%)

Si
0,8 - 2,0 %
Al
0,001 bis 0,1 %
Fe
0,01 bis 0,2 %
C
0,001 - 0,10 %
N
0,0005 - 0,10 %
Mg
0,0001 - 0,08 %
O
0,0001 bis 0,010%
Mn
max 0,10 %
Cr
max. 0,10 %
Cu
max. 0,50 %
S
max. 0,008 %
wahlweise mit folgenden Elementen
Ca
0,0002 - 0,06 %
Y
0,03 - 0,20 %
Hf
0,03 - 0,25 %
Zr
0,03 - 0,15 %
Ce
0, 03 - 0,15 %
La
0,03 - 0,15 %
Ti
max. 0,15 %
Co
max. 0,50 %
W
max. 0,10 %
Mo
max. 0,10 %
V
max.0,10
P
max. 0,020 %
B
max. 0,005 %
Pb
max. 0,005 %
Zn
max. 0,005 %
Ni
Rest und den üblichen herstellungsbedingten Verunreinigungen.
The object of the subject invention is achieved by a nickel base alloy comprising (in mass%)
Si
0.8 - 2.0%
al
0.001 to 0.1%
Fe
0.01 to 0.2%
C
0.001 - 0.10%
N
0,0005 - 0,10%
mg
0.0001 - 0.08%
O
0.0001 to 0.010%
Mn
max 0.10%
Cr
Max. 0.10%
Cu
Max. 0.50%
S
Max. 0.008%
optionally with the following elements
Ca
0.0002 - 0.06%
Y
0.03 - 0.20%
Hf
0.03 - 0.25%
Zr
0.03 - 0.15%
Ce
0, 03 - 0.15%
La
0.03 - 0.15%
Ti
Max. 0.15%
Co
Max. 0.50%
W
Max. 0.10%
Not a word
Max. 0.10%
V
max.0,10
P
Max. 0.020%
B
Max. 0.005%
pb
Max. 0.005%
Zn
Max. 0.005%
Ni
Remainder and the usual production-related impurities.

Bevorzugte Ausgestaltungen des Erfindungsgegenstandes sind den Unteransprüchen zu entnehmen.Preferred embodiments of the subject invention are set forth in the dependent claims.

Überraschenderweise hat es sich herausgestellt, dass die Zugabe von Silizium günstiger für die Funkenerosions- und Korrosionsbeständigkeit ist, als die Zugabe von Aluminium.Surprisingly, it has been found that the addition of silicon is more favorable for spark erosion and corrosion resistance than the addition of aluminum.

Der Siliziumgehalt liegt zwischen 0,8 und 2,0 %, wobei bevorzugt definierte Gehalte innerhalb der Spreizungsbereiche eingestellt werden können:

  • 0,8 bis 1,5 % oder
  • 0,8 bis 1,2 %
The silicon content is between 0.8 and 2.0%, wherein preferably defined contents can be set within the spreading ranges:
  • 0.8 to 1.5% or
  • 0.8 to 1.2%

Dies gilt in gleicher Weise für das Element Aluminium, das in Gehalten zwischen 0,001 bis 0,10 % eingestellt wird. Bevorzugte Gehalte können wie folgt gegeben sein:

  • 0,001 bis 0,05 %
This applies equally to the element aluminum, which is set at levels between 0.001 to 0.10%. Preferred contents can be given as follows:
  • 0.001 to 0.05%

Ebenso gilt das für das Element Eisen, das in Gehalten zwischen 0,01 bis 0,20 % eingestellt wird. Bevorzugte Gehalte können wie folgt gegeben sein:

  • 0,01 bis 0,10 % oder
  • 0,01 bis 0,05 %
This also applies to the element iron, which is adjusted in contents between 0.01 to 0.20%. Preferred contents can be given as follows:
  • 0.01 to 0.10% or
  • 0.01 to 0.05%

Kohlenstoff wird in der Legierung in gleicher Weise eingestellt, und zwar in Gehalten zwischen 0,001 - 0,10 %. Bevorzugt können Gehalte wie folgt in der Legierung eingestellt werden.

  • 0,001 bis 0,05 %
Carbon is similarly adjusted in the alloy at levels between 0.001-0.10%. Preferably, contents can be adjusted in the alloy as follows.
  • 0.001 to 0.05%

Ebenso wird Stickstoff in der Legierung eingestellt, und zwar in Gehalten zwischen 0,0005 - 0,10 %. bevorzugt können Gehalte wie folgt in der Legierung eingestellt werden:

  • 0,001 bis 0,05 %
Similarly, nitrogen is set in the alloy at levels between 0.0005-0.10%. Preferably, levels can be adjusted in the alloy as follows:
  • 0.001 to 0.05%

Magnesium wird in Gehalten 0,0001 bis 0,08 % eingestellt. Bevorzugt besteht die Möglichkeit, dieses Element wie folgt in der Legierung einzustellen:

  • 0,005 bis 0,08 %
Magnesium is set at levels of 0.0001 to 0.08%. It is preferably possible to adjust this element in the alloy as follows:
  • 0.005 to 0.08%

Die Legierung kann des weiteren Kalzium in Gehalten zwischen 0,0002 und 0,06 % beinhalten.The alloy may further include calcium at levels between 0.0002 and 0.06%.

Der Sauerstoffgehalt wird in der Legierung mit einem Gehalt von 0,0001 bis 0,010% eingestellt. Bevorzugt kann der folgende Gehalt an Sauerstoff eingestellt werden:

  • 0,0001 bis 0,008 %
The oxygen content is set in the alloy at a content of 0.0001 to 0.010%. Preferably, the following content of oxygen can be adjusted:
  • 0.0001 to 0.008%

Die Elemente Mn und Cr können in der Legierung wie folgt gegeben sein:

Mn
max. 0,10 %
Cr
max. 0,10 %.
wobei bevorzugt die folgenden Bereiche gegeben sind:
Mn > 0 bis max. 0,05 %
Cr > 0 bis max. 0,05 %.
The elements Mn and Cr can be given in the alloy as follows:
Mn
Max. 0.10%
Cr
Max. 0.10%.
preferably the following ranges are given:
Mn> 0 to max. 0.05%
Cr> 0 to max. 0.05%.

Des Weiteren ist es günstig, der Legierung Yttrium mit einem Gehalt von 0,03 % bis 0,20 % zuzugeben, wobei ein bevorzugter Bereich ist:

  • 0,05 bis 0,15 %
Furthermore, it is favorable to add to the alloy yttrium with a content of 0.03% to 0.20%, a preferred range being:
  • 0.05 to 0.15%

Eine weitere Möglichkeit ist es, der Legierung Hafnium mit einem Gehalt von 0,03 % bis 0,25 % zuzugeben, wobei ein bevorzugter Bereich ist:

  • 0,03 bis 0,15 %
Another possibility is to add to the alloy hafnium with a content of 0.03% to 0.25%, a preferred range being:
  • 0.03 to 0.15%

Ebenso kann der Legierung Zirkon mit einem Gehalt von 0,03 bis 0,15 zugegeben werden.Likewise, the alloy may be added zirconium at a content of 0.03 to 0.15.

Auch die Zugabe von Cer mit einem Gehalt von 0,03 bis 0,15 ist möglich.The addition of cerium with a content of 0.03 to 0.15 is possible.

Des Weiteren kann Lanthan mit einem Gehalt von 0,03 bis 0,15 % zugegeben werden.Furthermore, lanthanum may be added at a level of 0.03 to 0.15%.

Die Legierung kann Ti mit einem Gehalt bis zu max. 0,15% enthalten.The alloy can contain Ti up to max. 0.15% included.

Der Kupfer-Gehalt ist auf max. 0,50 % beschränkt, bevorzugt liegt er bei max. 0,20%The copper content is limited to max. 0.50% limited, preferably it is max. 0.20%

Schließlich können an Verunreinigungen noch die Elemente Kobalt, Wolftram, Molybdän und Blei in Gehalten wie folgt gegeben sein:

Co
max.0,50 %
W
max 0,10 %
Mo
max 0,10 %
Pb
max. 0,005 %
Zn
max. 0,005 %
Finally, impurities may still contain the elements cobalt, wolftram, molybdenum and lead in amounts as follows:
Co
max.0,50%
W
max 0.10%
Not a word
max 0.10%
pb
Max. 0.005%
Zn
Max. 0.005%

Die erfindungsgemäße Nickelbasislegierung ist bevorzugt einsetzbar als Werkstoff für Elektroden von Zündelementen von Verbrennungskraftmaschinen, insbesondere von Zündkerzen für Benzinmotoren.The nickel-based alloy according to the invention is preferably usable as a material for electrodes of ignition elements of internal combustion engines, in particular of spark plugs for gasoline engines.

Anhand der nachfolgenden Beispiele wird der Erfindungsgegenstand näher erläutert.Based on the following examples, the subject invention will be explained in more detail.

Beispiele:Examples:

Tabelle 1 zeigt Legierungszusammensetzungen, die dem Stand der Technik zugehörig sind.Table 1 shows alloy compositions belonging to the prior art.

In Tabelle 2 sind Beispiele von nicht erfindungsgemäßen Nickellegierungen mit 1 % Aluminium und verschiedenen Gehalten an sauerstoffaffinen Elementen dargestellt: L1 enthält 0,13% Y, L2 0,18 % Hf, L3 0,12 % Y und 0,20 Hf, L4 0,13% Zr, L5 0,043 % Mg und L6 0,12% Sc. Außerdem enthalten diese Chargen unterschiedliche Sauerstoffgehalte im Bereich von 0,001 % bis 0,004 % und Si-Gehalte < 0,01 %.Table 2 shows examples of non-inventive nickel alloys with 1% aluminum and various oxygen-affinity elements: L1 contains 0.13% Y, L2 0.18% Hf, L3 0.12% Y and 0.20 Hf, L4 0 , 13% Zr, L5 0.043% Mg and L6 0.12% Sc. In addition, these batches contain different oxygen contents in the range of 0.001% to 0.004% and Si contents <0.01%.

In Tabelle 3 sind Beispiele von erfindungsgemäßen Nickellegierungen mit ca. 1 % Silizium und verschiedenen Gehalten an sauerstoffaffinen Elementen dargestellt: E1 und E2 enthalten jeweils ca. 0,1 % Y, E3, E4 und E5 enthalten jeweils ca. 0,20 % Hf, E6 und E7 enthalten jeweils ca. 0,12 % Y und 0,14 bzw. 0,22 Hf, E8 und E9 enthalten jeweils ca. 0,10 % Zr, E10 0,037 % Mg, E11 enthält 0,18 % Hf und 0,055 % Mg, E12 enthält 0,1 % Y und 0,065 % Mg und E13 0,11 % Y und 0,19 % Hf und 0,059 % Mg. Außerdem enthalten diese Chargen unterschiedliche Sauerstoffgehalte im Bereich von 0,002 % bis 0,007 % und Al-Gehalte zwischen 0,003 und 0,035 %.Table 3 shows examples of nickel alloys according to the invention with about 1% silicon and different oxygen-affine elements: E1 and E2 each contain about 0.1% Y, E3, E4 and E5 each contain about 0.20% Hf, E6 and E7 each contain about 0.12% Y and 0.14 and 0.22 Hf respectively, E8 and E9 each contain about 0.10% Zr, E10 0.037% Mg, E11 contains 0.18% Hf and 0.055% Mg, E12 contains 0.1% Y and 0.065% Mg and E13 0.11% Y and 0.19% Hf and 0.059% Mg. In addition, these lots contain varying levels of oxygen in the range of 0.002% to 0.007% and Al -Contained between 0.003 and 0.035%.

An diesen Legierungen wurde, wie an den Legierungen in Tabelle 1, ein Oxidationstest bei 900°C an Luft durchgeführt, wobei der Versuch alle 24 Stunden unterbrochen und die Massenänderung der Proben durch die Oxidation bestimmt wurde (Nettomassenänderung mN). Bei diesen Versuchen befanden sich die Proben in Keramiktiegeln, so dass eventuell abgeplatzte Oxide aufgefangen wurden. Durch Wiegen der Tiegel vor dem Versuch (mT) und Wiegen von Tiegel mit den aufgefangenen Abplatzungen und der Probe (mG) jeweils bei der Versuchsunterbrechung lässt sich zusammen mit der Nettomassenänderung die Menge der abgeplatzten Oxide (mA) bestimmen m A = m G - m T - m N

Figure imgb0001
On these alloys, as with the alloys in Table 1, an oxidation test was carried out at 900 ° C. in air, the test being interrupted every 24 hours and the mass change of the samples determined by the oxidation (net mass change m N ). In these experiments, the samples were in ceramic crucibles, so that possibly chipped oxides were collected. By weighing the crucibles before the experiment (m T ) and weighing crucibles with the collected flakes and the sample (m G ) each at the experimental interruption, the amount of chipped oxides (m A ) can be determined together with the net mass change m A = m G - m T - m N
Figure imgb0001

Dabei hat es sich gezeigt, dass alle Chargen aus Tabelle 2 und 3 bis auf die Sc-haltige Charge L6 keine Abplatzungen zeigen (Bild 2). Dies ist eine deutliche Verbesserung gegenüber den Chargen nach dem Stand der Technik aus Tabelle 1 und Bild 1. Bild 3 zeigt die Nettomassenänderung für alle Chargen aus den Tabellen 2 und 3, wobei für Charge L6 noch zusätzlich die Massenänderung durch Abplatzungen eingetragen wurde.It has been shown that all batches from Tables 2 and 3 show no flaking apart from the L6 batch (Figure 2). This is a significant improvement over the prior art batches from Table 1 and Figure 1. Figure 3 shows the net mass change for all batches from Tables 2 and 3, where for batch L6 the mass change by flakes was additionally entered.

Bild 3 zeigt, dass die 1 % Al haltigen Legierungen alle eine größere Massenzunahme durch Oxidation haben als die 1% Si haltigen Legierungen aus Tabelle 3. Deshalb wird der Aluminiumgehalt erfindungsgemäß auf max. 0,10 % beschränkt. Ein zu niedriger Al-Gehalt erhöht die Kosten. Der Al-Gehalt ist deshalb größer gleich 0,001 %.Figure 3 shows that the 1% Al-containing alloys all have a greater mass increase by oxidation than the 1% Si-containing alloys from Table 3. Therefore, the aluminum content is inventively limited to max. 0.10% limited. Too low an Al content increases costs. The Al content is therefore greater than or equal to 0.001%.

Wie in Bild 3 zu sehen ist, zeigen die NiSi-Legierungen mit Mg (E10) eine besonders geringe Massenzunahme, d.h. eine besonders gute Oxidationsbeständigkeit. D. h. Mg verbessert die Oxidationsbeständigkeit bei den Si-haltigen Schmelzen. Weiterhin zeigt keine der Si-haltigen Legierungen in Bild 3 im Unterschied zu den Legierungen in Bild 1 Abplatzungen. Dies bedeutet auch, dass auch Y, Hf und Zr, sofern sie in ausreichenden Mengen zugegeben werden, die Oxidationsbeständigkeit verbessern, wenn auch teilweise mit etwas erhöhter Oxidationsrate im Vergleich zum Mg. Auch die Al-haltigen Legierungen zeigen auf Grund der Y, Hf und/oder Zr Zugaben bis auf die Sc-haltige Legierung LB2174 keine Abplatzungen, sondern nur eine erhöhte Oxidationsrate im Vergleich zu den Si-haltigen Legierungen.As can be seen in Figure 3, the NiSi alloys with Mg (E10) show a particularly low mass increase, ie a particularly good one Oxidation resistance. Ie. Mg improves the oxidation resistance of the Si-containing melts. Furthermore, unlike the alloys in Figure 1, none of the Si-containing alloys in Figure 3 show flaking. This also means that Y, Hf and Zr, if added in sufficient amounts, also improve the oxidation resistance, albeit in part with a slightly higher oxidation rate compared to Mg. The Al-containing alloys also show Y, Hf and / or Zr additions to the Sc-containing alloy LB2174 no flaking, but only an increased oxidation rate compared to the Si-containing alloys.

Die beanspruchten Grenzen für die Legierung lassen sich daher im Einzelnen wie folgt begründen:

  • Es ist ein Mindestgehalt von 0,8 % Si notwendig, um die Oxidationsbeständigkeit und die steigernde Wirkung des Si zu erhalten. Bei größeren Si-Gehalten verschlechtert sich die Verarbeitbarkeit. Die Obergrenze wird deshalb auf 2,0 Gew.-% Si gelegt.
The claimed limits for the alloy can therefore be explained in detail as follows:
  • A minimum content of 0.8% Si is necessary to obtain the oxidation resistance and the increasing effect of Si. At higher Si contents, the processability deteriorates. The upper limit is therefore set to 2.0 wt% Si.

Aluminium verschlechtert die Oxidationsbeständigkeit bei Zugabe im Bereich von 1%. Deshalb wird der Aluminiumgehalt auf max. 0,10 % beschränkt. Ein zu niedriger Al-Gehalt erhöht die Kosten. Der Al-Gehalt ist deshalb größer gleich 0,001 % festgesetzt.Aluminum deteriorates the oxidation resistance when added in the range of 1%. Therefore the aluminum content is reduced to max. 0.10% limited. Too low an Al content increases costs. The Al content is therefore set equal to or greater than 0.001%.

Eisen wird auf 0,20 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Ein zu geringer Fe-Gehalt erhöht die Kosten bei der Herstellung der Legierung. Der Fe-Gehalt ist deshalb größer oder gleich 0,01 %.Iron is limited to 0.20% because this element reduces the oxidation resistance. Too little Fe content increases the cost of producing the alloy. The Fe content is therefore greater than or equal to 0.01%.

Der Kohlenstoffgehalt sollte kleiner 0,10 % sein um die Verarbeitbarkeit zu gewährleisten. Zu kleine C-Gehalte verursachen erhöhte Kosten bei der Herstellung der Legierung. Der Kohlenstoffgehalt sollte deshalb größer 0,001 % sein.The carbon content should be less than 0.10% to ensure processability. Too small C contents cause increased costs in the production of the alloy. The carbon content should therefore be greater than 0.001%.

Stickstoff wird auf 0,10 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert Zu kleine N-Gehalte verursachen erhöhte Kosten bei der Herstellung der Legierung. Der Stickstoffgehalt sollte deshalb größer 0,0005 % sein.Nitrogen is limited to 0.10% as this element reduces the oxidation resistance. Too small N contents cause increased costs in the production of the alloy. The nitrogen content should therefore be greater than 0.0005%.

Wie Bild 3 zeigt, hat die NiSi-Legierung mit Mg (E10) eine besonders geringe Massenzunahme, d.h. eine besonders gute Oxidationsbeständigkeit, so dass ein Mg-Gehalt günstig ist. Auch verbessern schon sehr geringe Mg-Gehalte die Verarbeitung, durch das Abbinden von Schwefel, wodurch das Auftreten von niedrig schmelzenden NiS-Eutektika vermieden wird. Für Mg ist deshalb ein Mindestgehalt von 0,0001 % erforderlich. Bei zu hohen Gehalten können intermetallische Ni-Mg-Phasen auftreten, die die Verarbeitbarkeit wieder deutlich verschlechtern. Der Mg-Gehalt wird deshalb auf 0,08 % begrenzt.As Figure 3 shows, the NiSi alloy with Mg (E10) has a particularly small increase in mass, i. a particularly good oxidation resistance, so that a Mg content is favorable. Even very low Mg contents improve the processing, by the setting of sulfur, whereby the occurrence of low-melting NiS eutectics is avoided. For Mg, therefore, a minimum content of 0.0001% is required. Excessively high levels can lead to intermetallic Ni-Mg phases, which significantly impair processability. The Mg content is therefore limited to 0.08%.

Der Sauerstoffgehalt muss kleiner 0,010 % sein, um die Herstellbarkeit der Legierung zu gewährleisten. Zu kleine Sauerstoff-Gehalte verursachen erhöhte Kosten. Der Sauerstoffgehalt sollte deshalb größer 0,0001 % sein.The oxygen content must be less than 0.010% to ensure the manufacturability of the alloy. Too small oxygen levels cause increased costs. The oxygen content should therefore be greater than 0.0001%.

Mangan wird auf 0,1 % begrenzt, da dieses Element, die Oxidationsbeständigkeit reduziert.Manganese is limited to 0.1% as this element reduces oxidation resistance.

Chrom wird auf 0,10 % begrenzt, da dieses Element, wie das Beispiele von T1 in Bild 1 zeigt, nicht vorteilhaft ist.Chromium is limited to 0.10% because this element, as the example of T1 in Figure 1 shows, is not beneficial.

Kupfer wird auf 0,50 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert.Copper is limited to 0.50% because this element reduces oxidation resistance.

Die Gehalte an Schwefel sollten so gering wie möglich gehalten werden, da dieses grenzflächenaktive Element die Oxidationsbeständigkeit beeinträchtigt. Es werden deshalb max. 0,008 % S festgelegt.The levels of sulfur should be kept as low as possible, since this surfactant affects the oxidation resistance. It will therefore max. 0.008% S set.

Genauso wir Mg verbessern auch schon sehr geringe Ca-Gehalte die Verarbeitung, durch das Abbinden von Schwefel, wodurch das Auftreten von niedrig schmelzenden NiS-Eutektika vermieden wird. Für Ca ist deshalb ein Mindestgehalt von 0,0002 % erforderlich. Bei zu hohen Gehalten können intermetallische Ni-Ca-Phasen auftreten, die die Verarbeitbarkeit wieder deutlich verschlechtern. Der Ca-Gehalt wird deshalb auf 0,06 % begrenzt.Just as we Mg even very small Ca contents improve the processing, by the setting of sulfur, whereby the occurrence of low-melting NiS eutectic is avoided. For Ca, therefore, a minimum content of 0.0002% is required. If the contents are too high, intermetallic Ni-Ca phases can occur, which again significantly impair processability. The Ca content is therefore limited to 0.06%.

Es ist ein Mindestgehalt von 0,03 % Y notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Y zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,20 % gelegt.A minimum content of 0.03% Y is necessary to obtain the oxidation resistance enhancing effect of Y. The upper limit is set at 0.20% for cost reasons.

Es ist ein Mindestgehalt von 0,03 % Hf notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Hf zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,25 % Hf gelegt.A minimum content of 0.03% Hf is required to obtain the oxidation resistance enhancing effect of Hf. The upper limit is set at 0.25% Hf for cost reasons.

Es ist ein Mindestgehalt von 0,03 % Zr notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Zr zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,15 % Zr gelegt.A minimum content of 0.03% Zr is necessary to obtain the oxidation resistance enhancing effect of Zr. The upper limit is set at 0.15% Zr for cost reasons.

Es ist ein Mindestgehalt von 0,03 % Ce notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Ce zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,15 % Ce gelegt.It is a minimum content of 0.03% Ce necessary to obtain the oxidation resistance increasing effect of Ce. The upper limit is set at 0.15% Ce for cost reasons.

Es ist ein Mindestgehalt von 0,03 % La notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des La zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,15 % La gelegtIt is a minimum content of 0.03% La necessary to obtain the oxidation resistance enhancing effect of La. The upper limit is set at 0.15% La for cost reasons

Die Legierung kann bis zu 0,15 % Ti enthalten, ohne dass deren Eigenschaften verschlechtert werden.The alloy can contain up to 0.15% Ti without degrading its properties.

Kobalt wird auf max. 0,50 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert.Cobalt is reduced to max. 0.50% because this element reduces the oxidation resistance.

Molybdän wird auf max. 0,10 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Das Gleiche gilt für Wolfram und auch für Vanadium.Molybdenum is reduced to max. 0.10% limited because this element reduces the oxidation resistance. The same applies to tungsten and vanadium.

Der Gehalt an Phosphor sollte kleiner 0,020 % sein, da dieses grenzflächenaktive Element die Oxidationsbeständigkeit beeinträchtigt.The content of phosphorus should be less than 0.020%, since this surfactant affects the oxidation resistance.

Der Gehalt an Bor sollten so gering wie möglich gehalten werden, da dieses grenzflächenaktive Element die Oxidationsbeständigkeit beeinträchtigt. Es werden deshalb max. 0,005 % B festgelegt.The content of boron should be kept as low as possible because this surfactant affects the oxidation resistance. It will therefore max. 0.005% B is set.

Pb wird auf max. 0,005 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Das Gleiche gilt für Zn. Tabelle 1: Zusammensetzung von Legierungen nach dem Stand der Technik NiCr2MnSi - 2.4146 DE 2936312 Charge T1 T2 Element Ni Rest Rest Si 0,5 1,0 Al - 1,0 Y - 0,17 Ti 0.01 - C 0,003 - Co 0,04 - Cu 0,01 0,01 Cr 1,6 0,01 Mn 1,5 0,02 Fe 0,08 0,13 Tabelle 2: Analysen der ca. 1 % Al enthaltenden Chargen (nicht erfindungsgemäße Chargen) Material NiAlY NiAlHf NiAlYHf NiAlZr NiAlMg NiAlSc Charge L1 L2 L3 L4 L5 L6 C 0,003 0,002 0,002 0,002 0,002 0,003 S <0,0006 <0.0005 0.0005 0,0005 0,0009 0,0005 N 0,002 0,002 <0,001 0,003 <0,001 <0,002 Cr 0.01 0.01 0,01 0,01 <0.01 0,01 Ni (Rest) 98,5 98,6 98,5 98,5 98,7 98,7 Mn <0,01 0.01 <0,01 <0.01 <0,01 <0.01 Si <0,01 <0.01 <0,01 <0,01 <0,01 <0,02 Mo <0,01 <0,01 <0,01 0,01 <0,01 <0,01 Ti <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 Nb <0,01 <0.01 <0,01 <0,01 <0,01 <0,01 Cu <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 Fe 0,02 0,02 0,02 0,05 0,03 0,02 P 0,002 0,004 0,003 0,002 <0,002 <0,005 Al 0,94 0,94 0,95 0,94 0,96 1,13 Mg 0,0004 0,0007 0,0005 0,0004 0,043 0,0001 Pb <0,001 0,001 <0,001 <0,001 <0,001 O 0,0030 0,0030 0,0020 0,0010 0,0040 0,0020 Ca 0,0002 0,0002 0,0020 0,0004 0, 0002 0,0003 C 0,0002 0,0002 0,0002 0,0004 0,0002 0,0003 V <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 W <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 Zr 0,004 0,016 0,012 0,13 0,009 <0,001 Co 0,01 0.01 0,01 0,01 0,01 0,01 Y 0,13 <0,001 0,12 <0,001 <0,001 <0,001 B 0,001 0,001 <0.001 0,001 <0,001 0,001 Hf 0,002 0,18 0,20 0,001 0,001 <0,001 Ce <0,001 Sc <0,001 <0,001 <0,001 <0,001 <0,001 0,12 Tabelle 3: Analysen der ca. 1 % Si und < 0,05 % Al enthaltenden Chargen (erfindungsgemäße Chargen) Material NiSiY NiSiY NiSiHf NiSiHf NiSiHf NiSiYHf NiSiYHf NiSiZr NiSiZr NiSiMg NiSiHfMg NiSiYMg NiSiYHfMg Charge E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 C 0,004 0,002 0,006 0,0016 0,008 0,004 0,002 0,002 0,0015 0,003 0,005 0,002 0,0019 S 0,0011 0,0005 0,0008 <0,0005 <0,0005 0,0006 0,0006 0,0015 0,0005 0,0014 0,0024 0,0008 <0,0005 N 0,001 <0,002 <0,001 <0,002 0,002 0,002 0,002 0.001 <0,002 0,001 <0,001 <0,001 <0,001 Cr <0.01 <0,01 <0,01 0.01 0,01 0,01 0,01 0,01 0,01 0.01 <0,01 0,01 <0,01 Ni 98,76R 98,67R 98,85R 98,76R 98,75R 98,74R 98,67R 98,73R 98,61R 98,83R 98,70R 98,54R 98,55R Mn <0,01 <0,01 <0,01 <0.01 0,01 <0,01 0,01 <0,01 <0,01 <0,01 <0,01 0,01 <0,01 Si 0,98 1,08 1,07 1,09 1,00 0,98 1,1 1,02 1,11 1,00 0,98 1,04 1,03 Mo <0,01 <0,01 <0,01 <0,01 0,01 <0,01 0,01 0,01 0,01 <0,01 <0,01 <0,01 <0,01 Ti <0,01 <0,01 0,01 <0,01 0,01 0,01 <0,01 0,01 0,01 0,01 0,01 <0,01 <0,01 Nb <0,01 <0,01 <0,01 <0,01 0,01 <0,01 <0,01 <0,01 <0,01 <0,01 0,01 <0,01 <0,01 Cu <0,01 <0,01 <0,01 <0,01 0,01 <0,01 0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 Fe 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,04 0,05 0,02 0,03 0,03 0,03 P <0,002 0,002 <0,002 <0,002 0,002 <0,002 0,002 <0,002 <0,002 <0,002 0,002 <0,002 <0,002 Al 0,035 0,025 0,021 0,003 0,005 0,04 0,027 0,01 0,005 0,009 0,008 0,029 0,032 Mg 0,0003 0,0015 0,0003 0,0003 0,0001 0,0005 0,0017 0,0002 0,0001 0,037 0,055 0,065 0,059 Pb <0,0018 <0,001 <0,001 <0,001 0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 0,001 O 0,0070 0,0030 0,0060 0,0070 0,0020 0,0060 0,0020 0,0040 0,0060 0,0040 0,0020 0,0020 0,0020 Ca 0,0007 0,0003 0,0004 0,0003 0,0006 0,0005 0,0003 0,0008 0,0002 0,0004 0,0002 0,0007 0,0006 C 0,0007 0,0003 0,0004 0,0003 0,0002 0,0005 0,0003 0,0008 0,0002 0,0004 0,0002 0,0007 0,0006 V <0,01 <0,01 <0,01 <0,01 0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 W <0,01 <0,01 <0,01 0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 Zr <0,001 0,001 0,004 0,003 0,004 0,003 0,004 0,10 0,11 0,001 0,005 0,002 0,004 Co 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 Y 0,11 0,092 <0,001 <0,001 <0,001 0,12 0,12 <0,001 <0,01 <0,001 <0,001 0,10 0,11 B 0,001 <0,001 <0,001 <0,001 0,001 <0,001 <0,001 <0,001 0,001 <0,001 <0,001 <0,001 0,001 Hf <0,001 <0,001 0,19 0,19 0,20 0,14 0,22 <0,001 <0,001 <0,001 0,18 0,19 Ce <0,001 <0,001 <0,001 <0,001 <0,001 Sc <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 Pb is set to max. 0.005% limited because this element reduces the oxidation resistance. The same applies to Zn. Table 1: Composition of prior art alloys NiCr2MnSi - 2.4146 DE 2936312 charge T1 T2 element Ni rest rest Si 0.5 1.0 al - 1.0 Y - 0.17 Ti 12:01 - C 0,003 - Co 0.04 - Cu 0.01 0.01 Cr 1.6 0.01 Mn 1.5 0.02 Fe 0.08 0.13 material NiAlY NiAlHf NiAlYHf NiAlZr NiAlMg NiAlSc charge L1 L2 L3 L4 L5 L6 C 0,003 0,002 0,002 0,002 0,002 0,003 S <0.0006 <0.0005 0.0005 0.0005 0.0009 0.0005 N 0,002 0,002 <0.001 0,003 <0.001 <0.002 Cr 12:01 12:01 0.01 0.01 <00:01 0.01 Ni (remainder) 98.5 98.6 98.5 98.5 98.7 98.7 Mn <0.01 12:01 <0.01 <00:01 <0.01 <00:01 Si <0.01 <00:01 <0.01 <0.01 <0.01 <0.02 Not a word <0.01 <0.01 <0.01 0.01 <0.01 <0.01 Ti <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Nb <0.01 <00:01 <0.01 <0.01 <0.01 <0.01 Cu <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Fe 0.02 0.02 0.02 0.05 0.03 0.02 P 0,002 0,004 0,003 0,002 <0.002 <0.005 al 0.94 0.94 0.95 0.94 0.96 1.13 mg 0.0004 0.0007 0.0005 0.0004 0.043 0.0001 pb <0.001 0.001 <0.001 <0.001 <0.001 O 0.0030 0.0030 0.0020 0.0010 0.0040 0.0020 Ca 0.0002 0.0002 0.0020 0.0004 0, 0002 0.0003 C 0.0002 0.0002 0.0002 0.0004 0.0002 0.0003 V <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 W <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Zr 0,004 0.016 0,012 0.13 0.009 <0.001 Co 0.01 12:01 0.01 0.01 0.01 0.01 Y 0.13 <0.001 0.12 <0.001 <0.001 <0.001 B 0.001 0.001 <0001 0.001 <0.001 0.001 Hf 0,002 0.18 0.20 0.001 0.001 <0.001 Ce <0.001 sc <0.001 <0.001 <0.001 <0.001 <0.001 0.12 material NiSiY NiSiY NiSiHf NiSiHf NiSiHf NiSiYHf NiSiYHf NiSiZr NiSiZr NiSiMg NiSiHfMg NiSiYMg NiSiYHfMg charge E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 C 0,004 0,002 0,006 0.0016 0,008 0,004 0,002 0,002 0.0015 0,003 0.005 0,002 0.0019 S 0.0011 0.0005 0.0008 <0.0005 <0.0005 0.0006 0.0006 0.0015 0.0005 0.0014 0.0024 0.0008 <0.0005 N 0.001 <0.002 <0.001 <0.002 0,002 0,002 0,002 0001 <0.002 0.001 <0.001 <0.001 <0.001 Cr <00:01 <0.01 <0.01 12:01 0.01 0.01 0.01 0.01 0.01 12:01 <0.01 0.01 <0.01 Ni 98,76R 98,67R 98,85R 98,76R 98,75R 98,74R 98,67R 98,73R 98,61R 98,83R 98,70R 98,54R 98,55R Mn <0.01 <0.01 <0.01 <00:01 0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 Si 0.98 1.08 1.07 1.09 1.00 0.98 1.1 1.02 1.11 1.00 0.98 1.04 1.03 Not a word <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 Ti <0.01 <0.01 0.01 <0.01 0.01 0.01 <0.01 0.01 0.01 0.01 0.01 <0.01 <0.01 Nb <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 Cu <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Fe 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.05 0.02 0.03 0.03 0.03 P <0.002 0,002 <0.002 <0.002 0,002 <0.002 0,002 <0.002 <0.002 <0.002 0,002 <0.002 <0.002 al 0,035 0,025 0,021 0,003 0.005 0.04 0.027 0.01 0.005 0.009 0,008 0,029 0.032 mg 0.0003 0.0015 0.0003 0.0003 0.0001 0.0005 0.0017 0.0002 0.0001 0.037 0,055 0,065 0.059 pb <0.0018 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 O 0.0070 0.0030 0.0060 0.0070 0.0020 0.0060 0.0020 0.0040 0.0060 0.0040 0.0020 0.0020 0.0020 Ca 0.0007 0.0003 0.0004 0.0003 0.0006 0.0005 0.0003 0.0008 0.0002 0.0004 0.0002 0.0007 0.0006 C 0.0007 0.0003 0.0004 0.0003 0.0002 0.0005 0.0003 0.0008 0.0002 0.0004 0.0002 0.0007 0.0006 V <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 W <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Zr <0.001 0.001 0,004 0,003 0,004 0,003 0,004 0.10 0.11 0.001 0.005 0,002 0,004 Co 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Y 0.11 0.092 <0.001 <0.001 <0.001 0.12 0.12 <0.001 <0.01 <0.001 <0.001 0.10 0.11 B 0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 0.001 Hf <0.001 <0.001 0.19 0.19 0.20 0.14 0.22 <0.001 <0.001 <0.001 0.18 0.19 Ce <0.001 <0.001 <0.001 <0.001 <0.001 sc <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Claims (15)

  1. A nickel based alloy composed of (in % by mass)
    Si 0.8 - 2.0 %
    Al 0.001 to 0.1 %
    Fe 0.01 to 0.2 %
    C 0.001 - 0.10 %
    N 0.0005 - 0.10 %
    Mg 0.0001 - 0.08 %
    O 0.0001 to 0.010 %
    Mn max. 0.10 %
    Cr max. 0.10 %
    Cu max. 0.50 %
    S max. 0.008 %
    optionally comprising the following elements :
    Ca 0.0002 - 0.06 %
    Y 0.03 - 0.20 %
    Hf 0.03 - 0.25 %
    Zr 0.03 - 0.15 %
    Ce 0.03 - 0.15 %
    La 0.03 - 0.15 %
    Ti max. 0.15 %
    Co max. 0.50 %
    W max. 0.10 %
    Mo max. 0.10 %
    V max. 0.10 %
    P max. 0.020 %
    B max. 0.005 %
    Pb max. 0.005 %
    Zn max. 0.005 %
    Ni rest and the usual production-related impurities.
  2. An alloy according to claim 1, comprising a Si content (in % by mass) of 0.8 to 1.5 %.
  3. An alloy according to claim 1 or 2, comprising a Si content (in % by mass) of 0.8 to 1.2 %.
  4. An alloy according to one or more of the claims 1 through 3, comprising an Al content (in % by mass) of 0.001 to 0.05 %.
  5. An alloy according to one or more of the claims 1 through 4, comprising a Fe content (in % by mass) of 0.01 to 0.10 %.
  6. An alloy according to one or more of the claims 1 through 5, comprising a Fe content (in % by mass) of 0.01 to 0.05 %.
  7. An alloy according to one or more of the claims 1 through 6, comprising a C content (in % by mass) of 0.001 to 0.5 % and a N content (in % by mass) of 0.001 to 0.05 %.
  8. An alloy according to one or more of the claims 1 through 7, comprising a Mg content (in % by mass) of 0.005 to 0.08 %.
  9. An alloy according to one or more of the claims 1 through 8, comprising an O content (in % by mass) of 0.0001 to 0.008 %.
  10. An alloy according to one or more of the claims 1 through 9, comprising a Mn content (in % by mass) of max. 0.05 % and a Cr content (in % by mass) of max. 0.05 %.
  11. An alloy according to one or more of the claims 1 through 10, comprising a Y content (in % by mass) of 0.05 to 0.15 %.
  12. An alloy according to one or more of the claims 1 through 11, comprising a Hf content (in % by mass) of 0.03 to 0.15 %.
  13. An alloy according to one or more of the claims 1 through 12, comprising a Cu content (in % by mass) of max. 0.20 %.
  14. A use of the nickel based alloy according to one or more of the claims 1 through 13 as electrode material for ignition elements of internal combustion engines.
  15. A use according to claim 14 as electrode material for spark plugs of petrol motors.
EP11755241.4A 2010-06-21 2011-06-08 Nickel based alloy Active EP2582854B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010024488 DE102010024488B4 (en) 2010-06-21 2010-06-21 Nickel-based alloy
PCT/DE2011/001174 WO2011160617A2 (en) 2010-06-21 2011-06-08 Nickel-based alloy

Publications (2)

Publication Number Publication Date
EP2582854A2 EP2582854A2 (en) 2013-04-24
EP2582854B1 true EP2582854B1 (en) 2014-08-06

Family

ID=44645409

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11755241.4A Active EP2582854B1 (en) 2010-06-21 2011-06-08 Nickel based alloy

Country Status (9)

Country Link
US (1) US8784730B2 (en)
EP (1) EP2582854B1 (en)
JP (1) JP5680192B2 (en)
CN (1) CN102947474B (en)
BR (1) BR112012032829B1 (en)
DE (1) DE102010024488B4 (en)
MX (1) MX2012013578A (en)
RU (1) RU2518814C1 (en)
WO (1) WO2011160617A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5697484B2 (en) * 2011-02-25 2015-04-08 株式会社デンソー Spark plug electrode material
DE102011007532A1 (en) * 2011-04-15 2012-10-18 Robert Bosch Gmbh A spark plug electrode material and spark plug, and a method of manufacturing the spark plug electrode material
JP6155575B2 (en) * 2012-02-03 2017-07-05 住友電気工業株式会社 Electrode material, spark plug electrode, and spark plug
DE102013004365B4 (en) * 2013-03-14 2015-09-24 VDM Metals GmbH Nickel-based alloy with silicon, aluminum and chrome
CN104404309A (en) * 2014-12-02 2015-03-11 常熟市良益金属材料有限公司 High-temperature resistant nickel alloy
CN104532064A (en) * 2014-12-25 2015-04-22 春焱电子科技(苏州)有限公司 Alloy for electronic material
TWI518183B (en) * 2015-02-04 2016-01-21 China Steel Corp Corrosion resistant high nickel alloy and its manufacturing method
CN105950917A (en) * 2016-05-26 2016-09-21 张日龙 Heat-resistant alloy and preparing method thereof
CN109844148B (en) * 2016-10-07 2021-03-09 日本制铁株式会社 Nickel material and method for producing nickel material
CN108220688B (en) * 2017-11-29 2020-05-12 重庆材料研究院有限公司 Thermocouple cathode material with high nuclear radiation resistance for nuclear field temperature measurement and preparation method thereof
CN108486418B (en) * 2018-04-25 2020-08-11 常州市潞城慧热电子厂 Alloy wire for thermoelectric generator and preparation process thereof
JP6944429B2 (en) * 2018-11-09 2021-10-06 日本特殊陶業株式会社 Spark plug
CN111719057A (en) * 2019-03-20 2020-09-29 沈阳人和机械制造有限公司 Falling film tube and manufacturing process thereof
JP7448799B2 (en) 2020-04-07 2024-03-13 日本製鉄株式会社 Nickel material and its manufacturing method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB943141A (en) * 1961-01-24 1963-11-27 Rolls Royce Method of heat treating nickel alloys
SU172087A1 (en) * 1964-03-25 1965-06-22 Государственный научно исследовательский , проектный икстит thermocouples
DE1608116A1 (en) * 1967-12-14 1970-12-10 Schmid Geb Reiniger Dipl Ing S Chromium-based alloys for electrodes, especially spark plug electrodes
JPS6043897B2 (en) * 1978-09-07 1985-10-01 日本特殊陶業株式会社 Nickel alloy for spark plug electrodes
US5059257A (en) * 1989-06-09 1991-10-22 Carpenter Technology Corporation Heat treatment of precipitation hardenable nickel and nickel-iron alloys
ZA931230B (en) * 1992-03-02 1993-09-16 Haynes Int Inc Nickel-molybdenum alloys.
JP2002235137A (en) * 2001-02-05 2002-08-23 Mitsubishi Materials Corp Spark plug electrode material having excellent spark consumption resistance
DE10224891A1 (en) * 2002-06-04 2003-12-18 Bosch Gmbh Robert Nickel alloy suitable for internal combustion engine spark plug electrodes, contains silicon and aluminum with yttrium, hafnium or zirconium
JP4699867B2 (en) * 2004-11-04 2011-06-15 日立金属株式会社 Spark plug electrode material
JP4706441B2 (en) * 2004-11-04 2011-06-22 日立金属株式会社 Spark plug electrode material
JP4735963B2 (en) * 2005-09-29 2011-07-27 日立金属株式会社 Spark plug electrode material
DE102006023374A1 (en) * 2006-05-16 2007-11-22 Beru Ag Nickel-based alloy containing Si Al Si, Mn, and Ti and Zr where the Zr can be replaced completely or partially by Hf useful for production of sparking plug electrodes has decreased burning off liability
DE102006035111B4 (en) * 2006-07-29 2010-01-14 Thyssenkrupp Vdm Gmbh Nickel-based alloy
US20080308057A1 (en) * 2007-06-18 2008-12-18 Lykowski James D Electrode for an Ignition Device
JP5521490B2 (en) * 2009-11-02 2014-06-11 日立金属株式会社 Spark plug electrode material
JP5697484B2 (en) * 2011-02-25 2015-04-08 株式会社デンソー Spark plug electrode material

Also Published As

Publication number Publication date
EP2582854A2 (en) 2013-04-24
RU2518814C1 (en) 2014-06-10
CN102947474B (en) 2015-07-29
DE102010024488B4 (en) 2012-04-26
US8784730B2 (en) 2014-07-22
BR112012032829A2 (en) 2016-11-08
MX2012013578A (en) 2013-01-24
DE102010024488A1 (en) 2011-12-22
US20130078136A1 (en) 2013-03-28
WO2011160617A2 (en) 2011-12-29
JP5680192B2 (en) 2015-03-04
JP2013531132A (en) 2013-08-01
WO2011160617A3 (en) 2012-04-05
BR112012032829B1 (en) 2018-09-11
CN102947474A (en) 2013-02-27

Similar Documents

Publication Publication Date Title
EP2582854B1 (en) Nickel based alloy
EP2971204B1 (en) Nickel-based alloy with silicon, aluminum, and chromium
EP2855723B1 (en) Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance
EP2855724B1 (en) Nickel-chromium alloy with good formability, creep strength and corrosion resistance
DE69620998T2 (en) OXIDATION RESISTANT MOLYBENE ALLOY
EP3102710B1 (en) Nickel-chromium-cobalt-titanium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability
DE102012015828B4 (en) Use of a nickel-chromium-iron-aluminum alloy with good processability
DE68915095T2 (en) Nickel-based alloy and process for its manufacture.
EP3102711B1 (en) Nickel-chromium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability
DE602005002866T2 (en) Process for producing a low thermal expansion Ni-base superalloy
EP2283167B1 (en) Durable iron-chromium-aluminum alloy showing minor changes in heat resistance
EP1340825B1 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
DE2415074C2 (en) Use of a nickel-based superalloy to manufacture gas turbine parts
EP2678458B1 (en) Nickel-chromium-iron-aluminum alloy having good processability
EP2115179B1 (en) Iron-nickel-chromium- silicon alloy
EP3775308B1 (en) Use of a nickel-chromium-iron-aluminium alloy
DE112016005830B4 (en) Metal gasket and process for its manufacture
DE2244311A1 (en) HIGH TEMPERATURE-RESISTANT NICKEL ALLOY
DE1921359C3 (en) Process for increasing the ductility at high temperatures of cast nickel-based alloys
DE69007201T2 (en) Heat-resistant steel can be used for valves of internal combustion engines.
EP2478988B1 (en) Filler material for welding based on iron
DE69501344T2 (en) Heat resistant steel
DE69110913T2 (en) Car engine parts made of heat-resistant ferritic cast steel with excellent resistance to fatigue from heat.
JPH03243741A (en) Ti-al series sintered body and its manufacture
DE112019001491T5 (en) Ni-BASED ALLOY AND HEAT RESISTANT PLATE MATERIAL OBTAINED USING THE SAME

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121205

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OUTOKUMPU VDM GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140411

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VDM METALS GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 681131

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VDM METALS GMBH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011003977

Country of ref document: DE

Effective date: 20140918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011003977

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011003977

Country of ref document: DE

Owner name: VDM METALS INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: VDM METALS GMBH, 58332 SCHWELM, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140806

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141206

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003977

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

26N No opposition filed

Effective date: 20150507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150608

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150608

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011003977

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011003977

Country of ref document: DE

Owner name: VDM METALS INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: VDM METALS GMBH, 58791 WERDOHL, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110608

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011003977

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240620

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240628

Year of fee payment: 14