EP2582854B1 - Nickel based alloy - Google Patents
Nickel based alloy Download PDFInfo
- Publication number
- EP2582854B1 EP2582854B1 EP11755241.4A EP11755241A EP2582854B1 EP 2582854 B1 EP2582854 B1 EP 2582854B1 EP 11755241 A EP11755241 A EP 11755241A EP 2582854 B1 EP2582854 B1 EP 2582854B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- max
- content
- mass
- alloy
- alloy according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 59
- 239000000956 alloy Substances 0.000 title claims description 59
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims description 29
- 229910052759 nickel Inorganic materials 0.000 title claims description 14
- 229910052727 yttrium Inorganic materials 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 17
- 229910052735 hafnium Inorganic materials 0.000 claims description 16
- 229910052726 zirconium Inorganic materials 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910052746 lanthanum Inorganic materials 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 239000007772 electrode material Substances 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 description 34
- 238000007254 oxidation reaction Methods 0.000 description 34
- 229910052710 silicon Inorganic materials 0.000 description 18
- 239000011777 magnesium Substances 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 239000011651 chromium Substances 0.000 description 13
- 239000011572 manganese Substances 0.000 description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000011575 calcium Substances 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910000990 Ni alloy Inorganic materials 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 238000009760 electrical discharge machining Methods 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 241001295925 Gegenes Species 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910005883 NiSi Inorganic materials 0.000 description 2
- 238000005255 carburizing Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004901 spalling Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910018107 Ni—Ca Inorganic materials 0.000 description 1
- 229910018505 Ni—Mg Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- -1 wolftram Chemical compound 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/20—Sparking plugs characterised by features of the electrodes or insulation
- H01T13/39—Selection of materials for electrodes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/057—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/058—Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
Definitions
- the invention relates to a nickel-based alloy.
- Nickel-base alloys are used inter alia to produce electrodes of ignition elements for internal combustion engines. These electrons are exposed to temperatures between 400 ° C and 950 ° C. In addition, the atmosphere changes between reducing and oxidizing conditions. This produces a material destruction or loss due to high-temperature corrosion in the surface region of the electrodes. The generation of the spark leads to a further load (spark erosion). Temperatures of several 1000 ° C occur at the base of the spark, and currents of up to 100 A flow in the first nanoseconds during a breakthrough. With each flashover, a limited volume of material in the electrodes is melted and partially vaporized, producing a loss of material.
- nickel alloys have a good potential to fulfill this property spectrum. They are inexpensive compared to precious metals, show no phase transformations to the melting point, such as cobalt or iron, are relatively insensitive to carburizing and Nitriding, have good heat resistance, good corrosion resistance and are easy to form and weld.
- Wear by high temperature corrosion can be determined by mass change measurements as well as by metallographic analysis after aging at given test temperatures.
- a generic nickel alloy consisting of about 0.2 to 3% Si, about 0.5% or less Mn, at least two metals selected from the group consisting of about 0.2 to 3% Cr, about 0.2 up to 3% Al and about 0.01 to 1% Y, balance nickel.
- a nickel-based alloy which comprises 1.8 to 2.2% silicon, 0.05 to 0.1% yttrium and / or hafnium and / or zirconium, 2 to 2.4% aluminum, balance nickel.
- Such alloys can be processed only in difficult conditions with respect to the high aluminum and silicon contents and are therefore not very suitable for large-scale industrial use.
- a nickel-base alloy comprising 1.5 to 2.5% silicon, 1.5 to 3% aluminum, 0 to 0.5% manganese, 0.5 to 0.2% titanium is proposed in combination with 0.1 to 0.3% zirconium, wherein the zirconium can be replaced in whole or in part by the double mass hafnium.
- a nickel-base alloy comprising 1.2 to 2.0% aluminum, 1.2 to 1.8% silicon, 0.001 to 0.1% carbon, 0.001 to 0.1% sulfur, and 0.1% or less chromium , maximum 0.01% manganese, maximum 0.1% Cu, maximum 0.2% iron, 0.005 to 0.06% magnesium, maximum 0.005% lead 0.05 to 0.15% Y and 0.05 to 0, 10% hafnium or lanthanum or 0.05 to 0.10% each hafnium and lanthanum, balance nickel and manufacturing-related impurities.
- T1 has a negative mass change from the beginning. Ie. Parts of the oxide that formed during the oxidation have flaked off the sample, so that the mass loss due to oxide spalling is greater than the mass increase due to oxidation. This is unfavorable since the protective layer formation at the chipped areas must always start again. The behavior of T1 is more favorable. There, the first 192 hours outweigh the mass increase by oxidation. Only then is the mass increase due to spalling greater than the mass increase due to oxidation, with the mass loss of T2 being significantly lower than that of T1. Ie.
- the aim of the subject invention is to provide a nickel-based alloy, which leads to an increase in the life of components made therefrom, which by raising the spark erosion and corrosion resistance at the same time good formability and weldability (workability) can be brought.
- the alloy may further include calcium at levels between 0.0002 and 0.06%.
- the alloy may be added zirconium at a content of 0.03 to 0.15.
- cerium with a content of 0.03 to 0.15 is possible.
- lanthanum may be added at a level of 0.03 to 0.15%.
- the alloy can contain Ti up to max. 0.15% included.
- the copper content is limited to max. 0.50% limited, preferably it is max. 0.20%
- the nickel-based alloy according to the invention is preferably usable as a material for electrodes of ignition elements of internal combustion engines, in particular of spark plugs for gasoline engines.
- Table 1 shows alloy compositions belonging to the prior art.
- Table 2 shows examples of non-inventive nickel alloys with 1% aluminum and various oxygen-affinity elements: L1 contains 0.13% Y, L2 0.18% Hf, L3 0.12% Y and 0.20 Hf, L4 0 , 13% Zr, L5 0.043% Mg and L6 0.12% Sc. In addition, these batches contain different oxygen contents in the range of 0.001% to 0.004% and Si contents ⁇ 0.01%.
- Table 3 shows examples of nickel alloys according to the invention with about 1% silicon and different oxygen-affine elements: E1 and E2 each contain about 0.1% Y, E3, E4 and E5 each contain about 0.20% Hf, E6 and E7 each contain about 0.12% Y and 0.14 and 0.22 Hf respectively, E8 and E9 each contain about 0.10% Zr, E10 0.037% Mg, E11 contains 0.18% Hf and 0.055% Mg, E12 contains 0.1% Y and 0.065% Mg and E13 0.11% Y and 0.19% Hf and 0.059% Mg. In addition, these lots contain varying levels of oxygen in the range of 0.002% to 0.007% and Al -Contained between 0.003 and 0.035%.
- Figure 3 shows that the 1% Al-containing alloys all have a greater mass increase by oxidation than the 1% Si-containing alloys from Table 3. Therefore, the aluminum content is inventively limited to max. 0.10% limited. Too low an Al content increases costs. The Al content is therefore greater than or equal to 0.001%.
- the NiSi alloys with Mg show a particularly low mass increase, ie a particularly good one Oxidation resistance.
- Mg improves the oxidation resistance of the Si-containing melts.
- none of the Si-containing alloys in Figure 3 show flaking.
- Y, Hf and Zr if added in sufficient amounts, also improve the oxidation resistance, albeit in part with a slightly higher oxidation rate compared to Mg.
- the Al-containing alloys also show Y, Hf and / or Zr additions to the Sc-containing alloy LB2174 no flaking, but only an increased oxidation rate compared to the Si-containing alloys.
- Aluminum deteriorates the oxidation resistance when added in the range of 1%. Therefore the aluminum content is reduced to max. 0.10% limited. Too low an Al content increases costs. The Al content is therefore set equal to or greater than 0.001%.
- Iron is limited to 0.20% because this element reduces the oxidation resistance. Too little Fe content increases the cost of producing the alloy. The Fe content is therefore greater than or equal to 0.01%.
- the carbon content should be less than 0.10% to ensure processability. Too small C contents cause increased costs in the production of the alloy. The carbon content should therefore be greater than 0.001%.
- Nitrogen is limited to 0.10% as this element reduces the oxidation resistance. Too small N contents cause increased costs in the production of the alloy. The nitrogen content should therefore be greater than 0.0005%.
- the NiSi alloy with Mg (E10) has a particularly small increase in mass, i. a particularly good oxidation resistance, so that a Mg content is favorable. Even very low Mg contents improve the processing, by the setting of sulfur, whereby the occurrence of low-melting NiS eutectics is avoided. For Mg, therefore, a minimum content of 0.0001% is required. Excessively high levels can lead to intermetallic Ni-Mg phases, which significantly impair processability. The Mg content is therefore limited to 0.08%.
- the oxygen content must be less than 0.010% to ensure the manufacturability of the alloy. Too small oxygen levels cause increased costs. The oxygen content should therefore be greater than 0.0001%.
- Manganese is limited to 0.1% as this element reduces oxidation resistance.
- Chromium is limited to 0.10% because this element, as the example of T1 in Figure 1 shows, is not beneficial.
- Copper is limited to 0.50% because this element reduces oxidation resistance.
- the levels of sulfur should be kept as low as possible, since this surfactant affects the oxidation resistance. It will therefore max. 0.008% S set.
- a minimum content of 0.03% Y is necessary to obtain the oxidation resistance enhancing effect of Y.
- the upper limit is set at 0.20% for cost reasons.
- a minimum content of 0.03% Hf is required to obtain the oxidation resistance enhancing effect of Hf.
- the upper limit is set at 0.25% Hf for cost reasons.
- a minimum content of 0.03% Zr is necessary to obtain the oxidation resistance enhancing effect of Zr.
- the upper limit is set at 0.15% Zr for cost reasons.
- the alloy can contain up to 0.15% Ti without degrading its properties.
- Cobalt is reduced to max. 0.50% because this element reduces the oxidation resistance.
- Molybdenum is reduced to max. 0.10% limited because this element reduces the oxidation resistance. The same applies to tungsten and vanadium.
- the content of phosphorus should be less than 0.020%, since this surfactant affects the oxidation resistance.
- the content of boron should be kept as low as possible because this surfactant affects the oxidation resistance. It will therefore max. 0.005% B is set.
- Pb is set to max. 0.005% limited because this element reduces the oxidation resistance.
- Table 1 Composition of prior art alloys NiCr2MnSi - 2.4146 DE 2936312 charge T1 T2 element Ni rest rest Si 0.5 1.0 al - 1.0 Y - 0.17 Ti 12:01 - C 0,003 - Co 0.04 - Cu 0.01 0.01 Cr 1.6 0.01 Mn 1.5 0.02 Fe 0.08 0.13 material NiAlY NiAlHf NiAlYHf NiAlZr NiAlMg NiAlSc charge L1 L2 L3 L4 L5 L6 C 0,003 0,002 0,002 0,002 0,002 0,003 S ⁇ 0.0006 ⁇ 0.0005 0.0005 0.0005 0.0009 0.0005 N 0,002 0,002 ⁇ 0.001 0,003 ⁇ 0.001 ⁇ 0.002 Cr 12:01 12:01 0.01 0.01 ⁇ 00:01 0.01 Ni (remainder) 98.5 98.6
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Spark Plugs (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Soft Magnetic Materials (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Electrodes For Cathode-Ray Tubes (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
Die Erfindung betrifft eine Nickelbasislegierung.The invention relates to a nickel-based alloy.
Nickelbasislegierungen werden unter anderem dazu eingesetzt, Elektroden von Zündelementen für Verbrennungskraftmaschinen zu erzeugen. Diese Elektronen sind Temperaturen zwischen 400°C und 950°C ausgesetzt. Zusätzlich wechselt die Atmosphäre zwischen reduzierenden und oxidierenden Bedingungen. Dies erzeugt eine Materialzerstörung bzw. einen Materialverlust durch Hochtemperaturkorrosion im Oberflächenbereich der Elektroden. Die Erzeugung des Zündfunkens führt zu einer weiteren Belastung (Funkenerosion). Am Fußpunkt des Zündfunkens entstehen Temperaturen von mehreren 1000°C und bei einem Durchbruch fließen in den ersten Nanosekunden Ströme von bis zu 100 A. Bei jedem Funkenüberschlag wird ein begrenztes Materialvolumen in den Elektroden geschmolzen und teilweise verdampft, was einen Materialverlust erzeugt.Nickel-base alloys are used inter alia to produce electrodes of ignition elements for internal combustion engines. These electrons are exposed to temperatures between 400 ° C and 950 ° C. In addition, the atmosphere changes between reducing and oxidizing conditions. This produces a material destruction or loss due to high-temperature corrosion in the surface region of the electrodes. The generation of the spark leads to a further load (spark erosion). Temperatures of several 1000 ° C occur at the base of the spark, and currents of up to 100 A flow in the first nanoseconds during a breakthrough. With each flashover, a limited volume of material in the electrodes is melted and partially vaporized, producing a loss of material.
Zusätzlich erhöhen Schwingungen vom Motor die mechanischen Belastungen.In addition, vibrations from the engine increase the mechanical loads.
Ein Elektrodenwerkstoff sollte die folgenden Eigenschaften haben:
- eine gute Beständigkeit gegen Hochtemperaturkorrosion, insbesondere Oxidation, aber auch Sulfidierung, Aufkohlung und Nitrierung;
- eine Beständigkeit gegen die durch den Zündfunken entstehende Erosion;
- der Werkstoff sollte nicht empfindlich gegen Thermoschocks und warmfest sein;
- der Werkstoff soll eine gute Wärmeleitfähigkeit, eine gute elektrische Leitfähigkeit und einen ausreichend hohen Schmelzpunkt haben;
- der Werkstoff sollte sich gut verarbeiten lassen und preisgünstig sein.
- a good resistance to high-temperature corrosion, in particular oxidation, but also sulfidation, carburizing and nitriding;
- a resistance to the erosion caused by the spark;
- the material should not be sensitive to thermal shocks and heat-resistant;
- the material should have a good thermal conductivity, a good electrical conductivity and a sufficiently high melting point;
- The material should be easy to process and be inexpensive.
Insbesondere haben Nickellegierungen ein gutes Potenzial dieses Eigenschaftsspektrum zu erfüllen. Sie sind im Vergleich zu Edelmetallen preisgünstig, zeigen keine Phasenumwandlungen bis zum Schmelzpunkt, wie Kobalt oder Eisen, sind vergleichweise unempfindlich gegen Aufkohlung und Nitrierung, haben eine gute Warmfestigkeit, eine gute Korrosionsbeständigkeit und sind gut umformbar sowie schweißbar.In particular, nickel alloys have a good potential to fulfill this property spectrum. They are inexpensive compared to precious metals, show no phase transformations to the melting point, such as cobalt or iron, are relatively insensitive to carburizing and Nitriding, have good heat resistance, good corrosion resistance and are easy to form and weld.
Der Verschleiß durch Hochtemperaturkorrosion lässt sich durch Masseänderungsmessungen sowie durch metallographische Untersuchungen nach Auslagerung bei vorgegebenen Prüftemperaturen bestimmen.Wear by high temperature corrosion can be determined by mass change measurements as well as by metallographic analysis after aging at given test temperatures.
Für beide Schadensmechanismen, der Hochtemperaturkorrosion und der Funkenerosion, ist die Art der Oxidschichtausbildung von besonderer Bedeutung.For both damage mechanisms, high-temperature corrosion and spark erosion, the type of oxide layer formation is of particular importance.
Um eine optimale Oxidschichtausbildung für den konkreten Anwendungsfall zu erreichen, sind bei Nickelbasislegierungen verschiedene Legierungselemente bekannt.In order to achieve an optimum oxide layer formation for the specific application, various alloying elements are known in nickel-based alloys.
Im Folgenden sind alle Konzentrationsangeben in Masse-%, wenn nicht ausdrücklich anders vermerkt.In the following, all concentrations are in mass%, unless expressly stated otherwise.
Durch die
In der
In der
In der
In der Broschüre "Drähte von ThyssenKrupp VDM Automobilindustrie" Ausgabe wird auf Seite 18 eine Legierung nach dem Stand der Technik - NiCr2MnSi mit 1,4 bis 1,8 % Cr, max. 0,3 % Fe, max. 0,5 % C, 1,3 bis 1,8 % Mn, 0,4 bis 0,65 % Si, max. 0,15% Cu und max. 0,15 % Ti beschrieben. Beispielhaft ist in Tabelle 1 eine Charge T1 dieser Legierung angegeben. Weiterhin ist in Tabelle 1 die Charge T2 angegeben, die nach
Das Ziel des Erfindungsgegenstandes wird erreicht durch eine Nickelbasislegierung, beinhaltend (in Masse-%)
- Si
- 0,8 - 2,0 %
- Al
- 0,001 bis 0,1 %
- Fe
- 0,01 bis 0,2 %
- C
- 0,001 - 0,10 %
- N
- 0,0005 - 0,10 %
- Mg
- 0,0001 - 0,08 %
- O
- 0,0001 bis 0,010%
- Mn
0,10 %max - Cr
- max. 0,10 %
- Cu
- max. 0,50 %
- S
- max. 0,008 %
- Ca
- 0,0002 - 0,06 %
- Y
- 0,03 - 0,20 %
- Hf
- 0,03 - 0,25 %
- Zr
- 0,03 - 0,15 %
- Ce
- 0, 03 - 0,15 %
- La
- 0,03 - 0,15 %
- Ti
- max. 0,15 %
- Co
- max. 0,50 %
- W
- max. 0,10 %
- Mo
- max. 0,10 %
- V
- max.0,10
- P
- max. 0,020 %
- B
- max. 0,005 %
- Pb
- max. 0,005 %
- Zn
- max. 0,005 %
- Ni
- Rest und den üblichen herstellungsbedingten Verunreinigungen.
- Si
- 0.8 - 2.0%
- al
- 0.001 to 0.1%
- Fe
- 0.01 to 0.2%
- C
- 0.001 - 0.10%
- N
- 0,0005 - 0,10%
- mg
- 0.0001 - 0.08%
- O
- 0.0001 to 0.010%
- Mn
- max 0.10%
- Cr
- Max. 0.10%
- Cu
- Max. 0.50%
- S
- Max. 0.008%
- Ca
- 0.0002 - 0.06%
- Y
- 0.03 - 0.20%
- Hf
- 0.03 - 0.25%
- Zr
- 0.03 - 0.15%
- Ce
- 0, 03 - 0.15%
- La
- 0.03 - 0.15%
- Ti
- Max. 0.15%
- Co
- Max. 0.50%
- W
- Max. 0.10%
- Not a word
- Max. 0.10%
- V
- max.0,10
- P
- Max. 0.020%
- B
- Max. 0.005%
- pb
- Max. 0.005%
- Zn
- Max. 0.005%
- Ni
- Remainder and the usual production-related impurities.
Bevorzugte Ausgestaltungen des Erfindungsgegenstandes sind den Unteransprüchen zu entnehmen.Preferred embodiments of the subject invention are set forth in the dependent claims.
Überraschenderweise hat es sich herausgestellt, dass die Zugabe von Silizium günstiger für die Funkenerosions- und Korrosionsbeständigkeit ist, als die Zugabe von Aluminium.Surprisingly, it has been found that the addition of silicon is more favorable for spark erosion and corrosion resistance than the addition of aluminum.
Der Siliziumgehalt liegt zwischen 0,8 und 2,0 %, wobei bevorzugt definierte Gehalte innerhalb der Spreizungsbereiche eingestellt werden können:
- 0,8
1,5 % oderbis - 0,8
1,2 %bis
- 0.8 to 1.5% or
- 0.8 to 1.2%
Dies gilt in gleicher Weise für das Element Aluminium, das in Gehalten zwischen 0,001 bis 0,10 % eingestellt wird. Bevorzugte Gehalte können wie folgt gegeben sein:
- 0,001
bis 0,05 %
- 0.001 to 0.05%
Ebenso gilt das für das Element Eisen, das in Gehalten zwischen 0,01 bis 0,20 % eingestellt wird. Bevorzugte Gehalte können wie folgt gegeben sein:
- 0,01
0,10 % oderbis - 0,01
bis 0,05 %
- 0.01 to 0.10% or
- 0.01 to 0.05%
Kohlenstoff wird in der Legierung in gleicher Weise eingestellt, und zwar in Gehalten zwischen 0,001 - 0,10 %. Bevorzugt können Gehalte wie folgt in der Legierung eingestellt werden.
- 0,001
bis 0,05 %
- 0.001 to 0.05%
Ebenso wird Stickstoff in der Legierung eingestellt, und zwar in Gehalten zwischen 0,0005 - 0,10 %. bevorzugt können Gehalte wie folgt in der Legierung eingestellt werden:
- 0,001
bis 0,05 %
- 0.001 to 0.05%
Magnesium wird in Gehalten 0,0001 bis 0,08 % eingestellt. Bevorzugt besteht die Möglichkeit, dieses Element wie folgt in der Legierung einzustellen:
- 0,005
bis 0,08 %
- 0.005 to 0.08%
Die Legierung kann des weiteren Kalzium in Gehalten zwischen 0,0002 und 0,06 % beinhalten.The alloy may further include calcium at levels between 0.0002 and 0.06%.
Der Sauerstoffgehalt wird in der Legierung mit einem Gehalt von 0,0001 bis 0,010% eingestellt. Bevorzugt kann der folgende Gehalt an Sauerstoff eingestellt werden:
- 0,0001 bis 0,008 %
- 0.0001 to 0.008%
Die Elemente Mn und Cr können in der Legierung wie folgt gegeben sein:
- Mn
- max. 0,10 %
- Cr
- max. 0,10 %.
wobei bevorzugt die folgenden Bereiche gegeben sind:
Mn > 0 bis max. 0,05 %
Cr > 0 bis max. 0,05 %.
- Mn
- Max. 0.10%
- Cr
- Max. 0.10%.
preferably the following ranges are given:
Mn> 0 to max. 0.05%
Cr> 0 to max. 0.05%.
Des Weiteren ist es günstig, der Legierung Yttrium mit einem Gehalt von 0,03 % bis 0,20 % zuzugeben, wobei ein bevorzugter Bereich ist:
- 0,05
0,15 %bis
- 0.05 to 0.15%
Eine weitere Möglichkeit ist es, der Legierung Hafnium mit einem Gehalt von 0,03 % bis 0,25 % zuzugeben, wobei ein bevorzugter Bereich ist:
- 0,03
0,15 %bis
- 0.03 to 0.15%
Ebenso kann der Legierung Zirkon mit einem Gehalt von 0,03 bis 0,15 zugegeben werden.Likewise, the alloy may be added zirconium at a content of 0.03 to 0.15.
Auch die Zugabe von Cer mit einem Gehalt von 0,03 bis 0,15 ist möglich.The addition of cerium with a content of 0.03 to 0.15 is possible.
Des Weiteren kann Lanthan mit einem Gehalt von 0,03 bis 0,15 % zugegeben werden.Furthermore, lanthanum may be added at a level of 0.03 to 0.15%.
Die Legierung kann Ti mit einem Gehalt bis zu max. 0,15% enthalten.The alloy can contain Ti up to max. 0.15% included.
Der Kupfer-Gehalt ist auf max. 0,50 % beschränkt, bevorzugt liegt er bei max. 0,20%The copper content is limited to max. 0.50% limited, preferably it is max. 0.20%
Schließlich können an Verunreinigungen noch die Elemente Kobalt, Wolftram, Molybdän und Blei in Gehalten wie folgt gegeben sein:
- Co
- max.0,50 %
- W
0,10 %max - Mo
0,10 %max - Pb
- max. 0,005 %
- Zn
- max. 0,005 %
- Co
- max.0,50%
- W
- max 0.10%
- Not a word
- max 0.10%
- pb
- Max. 0.005%
- Zn
- Max. 0.005%
Die erfindungsgemäße Nickelbasislegierung ist bevorzugt einsetzbar als Werkstoff für Elektroden von Zündelementen von Verbrennungskraftmaschinen, insbesondere von Zündkerzen für Benzinmotoren.The nickel-based alloy according to the invention is preferably usable as a material for electrodes of ignition elements of internal combustion engines, in particular of spark plugs for gasoline engines.
Anhand der nachfolgenden Beispiele wird der Erfindungsgegenstand näher erläutert.Based on the following examples, the subject invention will be explained in more detail.
Tabelle 1 zeigt Legierungszusammensetzungen, die dem Stand der Technik zugehörig sind.Table 1 shows alloy compositions belonging to the prior art.
In Tabelle 2 sind Beispiele von nicht erfindungsgemäßen Nickellegierungen mit 1 % Aluminium und verschiedenen Gehalten an sauerstoffaffinen Elementen dargestellt: L1 enthält 0,13% Y, L2 0,18 % Hf, L3 0,12 % Y und 0,20 Hf, L4 0,13% Zr, L5 0,043 % Mg und L6 0,12% Sc. Außerdem enthalten diese Chargen unterschiedliche Sauerstoffgehalte im Bereich von 0,001 % bis 0,004 % und Si-Gehalte < 0,01 %.Table 2 shows examples of non-inventive nickel alloys with 1% aluminum and various oxygen-affinity elements: L1 contains 0.13% Y, L2 0.18% Hf, L3 0.12% Y and 0.20 Hf,
In Tabelle 3 sind Beispiele von erfindungsgemäßen Nickellegierungen mit ca. 1 % Silizium und verschiedenen Gehalten an sauerstoffaffinen Elementen dargestellt: E1 und E2 enthalten jeweils ca. 0,1 % Y, E3, E4 und E5 enthalten jeweils ca. 0,20 % Hf, E6 und E7 enthalten jeweils ca. 0,12 % Y und 0,14 bzw. 0,22 Hf, E8 und E9 enthalten jeweils ca. 0,10 % Zr, E10 0,037 % Mg, E11 enthält 0,18 % Hf und 0,055 % Mg, E12 enthält 0,1 % Y und 0,065 % Mg und E13 0,11 % Y und 0,19 % Hf und 0,059 % Mg. Außerdem enthalten diese Chargen unterschiedliche Sauerstoffgehalte im Bereich von 0,002 % bis 0,007 % und Al-Gehalte zwischen 0,003 und 0,035 %.Table 3 shows examples of nickel alloys according to the invention with about 1% silicon and different oxygen-affine elements: E1 and E2 each contain about 0.1% Y, E3, E4 and E5 each contain about 0.20% Hf, E6 and E7 each contain about 0.12% Y and 0.14 and 0.22 Hf respectively, E8 and E9 each contain about 0.10% Zr, E10 0.037% Mg, E11 contains 0.18% Hf and 0.055% Mg, E12 contains 0.1% Y and 0.065% Mg and E13 0.11% Y and 0.19% Hf and 0.059% Mg. In addition, these lots contain varying levels of oxygen in the range of 0.002% to 0.007% and Al -Contained between 0.003 and 0.035%.
An diesen Legierungen wurde, wie an den Legierungen in Tabelle 1, ein Oxidationstest bei 900°C an Luft durchgeführt, wobei der Versuch alle 24 Stunden unterbrochen und die Massenänderung der Proben durch die Oxidation bestimmt wurde (Nettomassenänderung mN). Bei diesen Versuchen befanden sich die Proben in Keramiktiegeln, so dass eventuell abgeplatzte Oxide aufgefangen wurden. Durch Wiegen der Tiegel vor dem Versuch (mT) und Wiegen von Tiegel mit den aufgefangenen Abplatzungen und der Probe (mG) jeweils bei der Versuchsunterbrechung lässt sich zusammen mit der Nettomassenänderung die Menge der abgeplatzten Oxide (mA) bestimmen
Dabei hat es sich gezeigt, dass alle Chargen aus Tabelle 2 und 3 bis auf die Sc-haltige Charge L6 keine Abplatzungen zeigen (Bild 2). Dies ist eine deutliche Verbesserung gegenüber den Chargen nach dem Stand der Technik aus Tabelle 1 und Bild 1. Bild 3 zeigt die Nettomassenänderung für alle Chargen aus den Tabellen 2 und 3, wobei für Charge L6 noch zusätzlich die Massenänderung durch Abplatzungen eingetragen wurde.It has been shown that all batches from Tables 2 and 3 show no flaking apart from the L6 batch (Figure 2). This is a significant improvement over the prior art batches from Table 1 and Figure 1. Figure 3 shows the net mass change for all batches from Tables 2 and 3, where for batch L6 the mass change by flakes was additionally entered.
Bild 3 zeigt, dass die 1 % Al haltigen Legierungen alle eine größere Massenzunahme durch Oxidation haben als die 1% Si haltigen Legierungen aus Tabelle 3. Deshalb wird der Aluminiumgehalt erfindungsgemäß auf max. 0,10 % beschränkt. Ein zu niedriger Al-Gehalt erhöht die Kosten. Der Al-Gehalt ist deshalb größer gleich 0,001 %.Figure 3 shows that the 1% Al-containing alloys all have a greater mass increase by oxidation than the 1% Si-containing alloys from Table 3. Therefore, the aluminum content is inventively limited to max. 0.10% limited. Too low an Al content increases costs. The Al content is therefore greater than or equal to 0.001%.
Wie in Bild 3 zu sehen ist, zeigen die NiSi-Legierungen mit Mg (E10) eine besonders geringe Massenzunahme, d.h. eine besonders gute Oxidationsbeständigkeit. D. h. Mg verbessert die Oxidationsbeständigkeit bei den Si-haltigen Schmelzen. Weiterhin zeigt keine der Si-haltigen Legierungen in Bild 3 im Unterschied zu den Legierungen in Bild 1 Abplatzungen. Dies bedeutet auch, dass auch Y, Hf und Zr, sofern sie in ausreichenden Mengen zugegeben werden, die Oxidationsbeständigkeit verbessern, wenn auch teilweise mit etwas erhöhter Oxidationsrate im Vergleich zum Mg. Auch die Al-haltigen Legierungen zeigen auf Grund der Y, Hf und/oder Zr Zugaben bis auf die Sc-haltige Legierung LB2174 keine Abplatzungen, sondern nur eine erhöhte Oxidationsrate im Vergleich zu den Si-haltigen Legierungen.As can be seen in Figure 3, the NiSi alloys with Mg (E10) show a particularly low mass increase, ie a particularly good one Oxidation resistance. Ie. Mg improves the oxidation resistance of the Si-containing melts. Furthermore, unlike the alloys in Figure 1, none of the Si-containing alloys in Figure 3 show flaking. This also means that Y, Hf and Zr, if added in sufficient amounts, also improve the oxidation resistance, albeit in part with a slightly higher oxidation rate compared to Mg. The Al-containing alloys also show Y, Hf and / or Zr additions to the Sc-containing alloy LB2174 no flaking, but only an increased oxidation rate compared to the Si-containing alloys.
Die beanspruchten Grenzen für die Legierung lassen sich daher im Einzelnen wie folgt begründen:
- Es ist
ein Mindestgehalt von 0,8 % Si notwendig, um die Oxidationsbeständigkeit und die steigernde Wirkung des Si zu erhalten. Bei größeren Si-Gehalten verschlechtert sich die Verarbeitbarkeit. Die Obergrenze wird deshalb auf 2,0 Gew.-% Si gelegt.
- A minimum content of 0.8% Si is necessary to obtain the oxidation resistance and the increasing effect of Si. At higher Si contents, the processability deteriorates. The upper limit is therefore set to 2.0 wt% Si.
Aluminium verschlechtert die Oxidationsbeständigkeit bei Zugabe im Bereich von 1%. Deshalb wird der Aluminiumgehalt auf max. 0,10 % beschränkt. Ein zu niedriger Al-Gehalt erhöht die Kosten. Der Al-Gehalt ist deshalb größer gleich 0,001 % festgesetzt.Aluminum deteriorates the oxidation resistance when added in the range of 1%. Therefore the aluminum content is reduced to max. 0.10% limited. Too low an Al content increases costs. The Al content is therefore set equal to or greater than 0.001%.
Eisen wird auf 0,20 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Ein zu geringer Fe-Gehalt erhöht die Kosten bei der Herstellung der Legierung. Der Fe-Gehalt ist deshalb größer oder gleich 0,01 %.Iron is limited to 0.20% because this element reduces the oxidation resistance. Too little Fe content increases the cost of producing the alloy. The Fe content is therefore greater than or equal to 0.01%.
Der Kohlenstoffgehalt sollte kleiner 0,10 % sein um die Verarbeitbarkeit zu gewährleisten. Zu kleine C-Gehalte verursachen erhöhte Kosten bei der Herstellung der Legierung. Der Kohlenstoffgehalt sollte deshalb größer 0,001 % sein.The carbon content should be less than 0.10% to ensure processability. Too small C contents cause increased costs in the production of the alloy. The carbon content should therefore be greater than 0.001%.
Stickstoff wird auf 0,10 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert Zu kleine N-Gehalte verursachen erhöhte Kosten bei der Herstellung der Legierung. Der Stickstoffgehalt sollte deshalb größer 0,0005 % sein.Nitrogen is limited to 0.10% as this element reduces the oxidation resistance. Too small N contents cause increased costs in the production of the alloy. The nitrogen content should therefore be greater than 0.0005%.
Wie Bild 3 zeigt, hat die NiSi-Legierung mit Mg (E10) eine besonders geringe Massenzunahme, d.h. eine besonders gute Oxidationsbeständigkeit, so dass ein Mg-Gehalt günstig ist. Auch verbessern schon sehr geringe Mg-Gehalte die Verarbeitung, durch das Abbinden von Schwefel, wodurch das Auftreten von niedrig schmelzenden NiS-Eutektika vermieden wird. Für Mg ist deshalb ein Mindestgehalt von 0,0001 % erforderlich. Bei zu hohen Gehalten können intermetallische Ni-Mg-Phasen auftreten, die die Verarbeitbarkeit wieder deutlich verschlechtern. Der Mg-Gehalt wird deshalb auf 0,08 % begrenzt.As Figure 3 shows, the NiSi alloy with Mg (E10) has a particularly small increase in mass, i. a particularly good oxidation resistance, so that a Mg content is favorable. Even very low Mg contents improve the processing, by the setting of sulfur, whereby the occurrence of low-melting NiS eutectics is avoided. For Mg, therefore, a minimum content of 0.0001% is required. Excessively high levels can lead to intermetallic Ni-Mg phases, which significantly impair processability. The Mg content is therefore limited to 0.08%.
Der Sauerstoffgehalt muss kleiner 0,010 % sein, um die Herstellbarkeit der Legierung zu gewährleisten. Zu kleine Sauerstoff-Gehalte verursachen erhöhte Kosten. Der Sauerstoffgehalt sollte deshalb größer 0,0001 % sein.The oxygen content must be less than 0.010% to ensure the manufacturability of the alloy. Too small oxygen levels cause increased costs. The oxygen content should therefore be greater than 0.0001%.
Mangan wird auf 0,1 % begrenzt, da dieses Element, die Oxidationsbeständigkeit reduziert.Manganese is limited to 0.1% as this element reduces oxidation resistance.
Chrom wird auf 0,10 % begrenzt, da dieses Element, wie das Beispiele von T1 in Bild 1 zeigt, nicht vorteilhaft ist.Chromium is limited to 0.10% because this element, as the example of T1 in Figure 1 shows, is not beneficial.
Kupfer wird auf 0,50 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert.Copper is limited to 0.50% because this element reduces oxidation resistance.
Die Gehalte an Schwefel sollten so gering wie möglich gehalten werden, da dieses grenzflächenaktive Element die Oxidationsbeständigkeit beeinträchtigt. Es werden deshalb max. 0,008 % S festgelegt.The levels of sulfur should be kept as low as possible, since this surfactant affects the oxidation resistance. It will therefore max. 0.008% S set.
Genauso wir Mg verbessern auch schon sehr geringe Ca-Gehalte die Verarbeitung, durch das Abbinden von Schwefel, wodurch das Auftreten von niedrig schmelzenden NiS-Eutektika vermieden wird. Für Ca ist deshalb ein Mindestgehalt von 0,0002 % erforderlich. Bei zu hohen Gehalten können intermetallische Ni-Ca-Phasen auftreten, die die Verarbeitbarkeit wieder deutlich verschlechtern. Der Ca-Gehalt wird deshalb auf 0,06 % begrenzt.Just as we Mg even very small Ca contents improve the processing, by the setting of sulfur, whereby the occurrence of low-melting NiS eutectic is avoided. For Ca, therefore, a minimum content of 0.0002% is required. If the contents are too high, intermetallic Ni-Ca phases can occur, which again significantly impair processability. The Ca content is therefore limited to 0.06%.
Es ist ein Mindestgehalt von 0,03 % Y notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Y zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,20 % gelegt.A minimum content of 0.03% Y is necessary to obtain the oxidation resistance enhancing effect of Y. The upper limit is set at 0.20% for cost reasons.
Es ist ein Mindestgehalt von 0,03 % Hf notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Hf zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,25 % Hf gelegt.A minimum content of 0.03% Hf is required to obtain the oxidation resistance enhancing effect of Hf. The upper limit is set at 0.25% Hf for cost reasons.
Es ist ein Mindestgehalt von 0,03 % Zr notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Zr zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,15 % Zr gelegt.A minimum content of 0.03% Zr is necessary to obtain the oxidation resistance enhancing effect of Zr. The upper limit is set at 0.15% Zr for cost reasons.
Es ist ein Mindestgehalt von 0,03 % Ce notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Ce zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,15 % Ce gelegt.It is a minimum content of 0.03% Ce necessary to obtain the oxidation resistance increasing effect of Ce. The upper limit is set at 0.15% Ce for cost reasons.
Es ist ein Mindestgehalt von 0,03 % La notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des La zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,15 % La gelegtIt is a minimum content of 0.03% La necessary to obtain the oxidation resistance enhancing effect of La. The upper limit is set at 0.15% La for cost reasons
Die Legierung kann bis zu 0,15 % Ti enthalten, ohne dass deren Eigenschaften verschlechtert werden.The alloy can contain up to 0.15% Ti without degrading its properties.
Kobalt wird auf max. 0,50 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert.Cobalt is reduced to max. 0.50% because this element reduces the oxidation resistance.
Molybdän wird auf max. 0,10 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Das Gleiche gilt für Wolfram und auch für Vanadium.Molybdenum is reduced to max. 0.10% limited because this element reduces the oxidation resistance. The same applies to tungsten and vanadium.
Der Gehalt an Phosphor sollte kleiner 0,020 % sein, da dieses grenzflächenaktive Element die Oxidationsbeständigkeit beeinträchtigt.The content of phosphorus should be less than 0.020%, since this surfactant affects the oxidation resistance.
Der Gehalt an Bor sollten so gering wie möglich gehalten werden, da dieses grenzflächenaktive Element die Oxidationsbeständigkeit beeinträchtigt. Es werden deshalb max. 0,005 % B festgelegt.The content of boron should be kept as low as possible because this surfactant affects the oxidation resistance. It will therefore max. 0.005% B is set.
Pb wird auf max. 0,005 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Das Gleiche gilt für Zn.
Claims (15)
- A nickel based alloy composed of (in % by mass)Si 0.8 - 2.0 %Al 0.001 to 0.1 %Fe 0.01 to 0.2 %C 0.001 - 0.10 %N 0.0005 - 0.10 %Mg 0.0001 - 0.08 %O 0.0001 to 0.010 %Mn max. 0.10 %Cr max. 0.10 %Cu max. 0.50 %S max. 0.008 %optionally comprising the following elements :Ca 0.0002 - 0.06 %Y 0.03 - 0.20 %Hf 0.03 - 0.25 %Zr 0.03 - 0.15 %Ce 0.03 - 0.15 %La 0.03 - 0.15 %Ti max. 0.15 %Co max. 0.50 %W max. 0.10 %Mo max. 0.10 %V max. 0.10 %P max. 0.020 %B max. 0.005 %Pb max. 0.005 %Zn max. 0.005 %Ni rest and the usual production-related impurities.
- An alloy according to claim 1, comprising a Si content (in % by mass) of 0.8 to 1.5 %.
- An alloy according to claim 1 or 2, comprising a Si content (in % by mass) of 0.8 to 1.2 %.
- An alloy according to one or more of the claims 1 through 3, comprising an Al content (in % by mass) of 0.001 to 0.05 %.
- An alloy according to one or more of the claims 1 through 4, comprising a Fe content (in % by mass) of 0.01 to 0.10 %.
- An alloy according to one or more of the claims 1 through 5, comprising a Fe content (in % by mass) of 0.01 to 0.05 %.
- An alloy according to one or more of the claims 1 through 6, comprising a C content (in % by mass) of 0.001 to 0.5 % and a N content (in % by mass) of 0.001 to 0.05 %.
- An alloy according to one or more of the claims 1 through 7, comprising a Mg content (in % by mass) of 0.005 to 0.08 %.
- An alloy according to one or more of the claims 1 through 8, comprising an O content (in % by mass) of 0.0001 to 0.008 %.
- An alloy according to one or more of the claims 1 through 9, comprising a Mn content (in % by mass) of max. 0.05 % and a Cr content (in % by mass) of max. 0.05 %.
- An alloy according to one or more of the claims 1 through 10, comprising a Y content (in % by mass) of 0.05 to 0.15 %.
- An alloy according to one or more of the claims 1 through 11, comprising a Hf content (in % by mass) of 0.03 to 0.15 %.
- An alloy according to one or more of the claims 1 through 12, comprising a Cu content (in % by mass) of max. 0.20 %.
- A use of the nickel based alloy according to one or more of the claims 1 through 13 as electrode material for ignition elements of internal combustion engines.
- A use according to claim 14 as electrode material for spark plugs of petrol motors.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201010024488 DE102010024488B4 (en) | 2010-06-21 | 2010-06-21 | Nickel-based alloy |
PCT/DE2011/001174 WO2011160617A2 (en) | 2010-06-21 | 2011-06-08 | Nickel-based alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2582854A2 EP2582854A2 (en) | 2013-04-24 |
EP2582854B1 true EP2582854B1 (en) | 2014-08-06 |
Family
ID=44645409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11755241.4A Active EP2582854B1 (en) | 2010-06-21 | 2011-06-08 | Nickel based alloy |
Country Status (9)
Country | Link |
---|---|
US (1) | US8784730B2 (en) |
EP (1) | EP2582854B1 (en) |
JP (1) | JP5680192B2 (en) |
CN (1) | CN102947474B (en) |
BR (1) | BR112012032829B1 (en) |
DE (1) | DE102010024488B4 (en) |
MX (1) | MX2012013578A (en) |
RU (1) | RU2518814C1 (en) |
WO (1) | WO2011160617A2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5697484B2 (en) * | 2011-02-25 | 2015-04-08 | 株式会社デンソー | Spark plug electrode material |
DE102011007532A1 (en) * | 2011-04-15 | 2012-10-18 | Robert Bosch Gmbh | A spark plug electrode material and spark plug, and a method of manufacturing the spark plug electrode material |
JP6155575B2 (en) * | 2012-02-03 | 2017-07-05 | 住友電気工業株式会社 | Electrode material, spark plug electrode, and spark plug |
DE102013004365B4 (en) * | 2013-03-14 | 2015-09-24 | VDM Metals GmbH | Nickel-based alloy with silicon, aluminum and chrome |
CN104404309A (en) * | 2014-12-02 | 2015-03-11 | 常熟市良益金属材料有限公司 | High-temperature resistant nickel alloy |
CN104532064A (en) * | 2014-12-25 | 2015-04-22 | 春焱电子科技(苏州)有限公司 | Alloy for electronic material |
TWI518183B (en) * | 2015-02-04 | 2016-01-21 | China Steel Corp | Corrosion resistant high nickel alloy and its manufacturing method |
CN105950917A (en) * | 2016-05-26 | 2016-09-21 | 张日龙 | Heat-resistant alloy and preparing method thereof |
CN109844148B (en) * | 2016-10-07 | 2021-03-09 | 日本制铁株式会社 | Nickel material and method for producing nickel material |
CN108220688B (en) * | 2017-11-29 | 2020-05-12 | 重庆材料研究院有限公司 | Thermocouple cathode material with high nuclear radiation resistance for nuclear field temperature measurement and preparation method thereof |
CN108486418B (en) * | 2018-04-25 | 2020-08-11 | 常州市潞城慧热电子厂 | Alloy wire for thermoelectric generator and preparation process thereof |
JP6944429B2 (en) * | 2018-11-09 | 2021-10-06 | 日本特殊陶業株式会社 | Spark plug |
CN111719057A (en) * | 2019-03-20 | 2020-09-29 | 沈阳人和机械制造有限公司 | Falling film tube and manufacturing process thereof |
JP7448799B2 (en) | 2020-04-07 | 2024-03-13 | 日本製鉄株式会社 | Nickel material and its manufacturing method |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB943141A (en) * | 1961-01-24 | 1963-11-27 | Rolls Royce | Method of heat treating nickel alloys |
SU172087A1 (en) * | 1964-03-25 | 1965-06-22 | Государственный научно исследовательский , проектный икстит | thermocouples |
DE1608116A1 (en) * | 1967-12-14 | 1970-12-10 | Schmid Geb Reiniger Dipl Ing S | Chromium-based alloys for electrodes, especially spark plug electrodes |
JPS6043897B2 (en) * | 1978-09-07 | 1985-10-01 | 日本特殊陶業株式会社 | Nickel alloy for spark plug electrodes |
US5059257A (en) * | 1989-06-09 | 1991-10-22 | Carpenter Technology Corporation | Heat treatment of precipitation hardenable nickel and nickel-iron alloys |
ZA931230B (en) * | 1992-03-02 | 1993-09-16 | Haynes Int Inc | Nickel-molybdenum alloys. |
JP2002235137A (en) * | 2001-02-05 | 2002-08-23 | Mitsubishi Materials Corp | Spark plug electrode material having excellent spark consumption resistance |
DE10224891A1 (en) * | 2002-06-04 | 2003-12-18 | Bosch Gmbh Robert | Nickel alloy suitable for internal combustion engine spark plug electrodes, contains silicon and aluminum with yttrium, hafnium or zirconium |
JP4699867B2 (en) * | 2004-11-04 | 2011-06-15 | 日立金属株式会社 | Spark plug electrode material |
JP4706441B2 (en) * | 2004-11-04 | 2011-06-22 | 日立金属株式会社 | Spark plug electrode material |
JP4735963B2 (en) * | 2005-09-29 | 2011-07-27 | 日立金属株式会社 | Spark plug electrode material |
DE102006023374A1 (en) * | 2006-05-16 | 2007-11-22 | Beru Ag | Nickel-based alloy containing Si Al Si, Mn, and Ti and Zr where the Zr can be replaced completely or partially by Hf useful for production of sparking plug electrodes has decreased burning off liability |
DE102006035111B4 (en) * | 2006-07-29 | 2010-01-14 | Thyssenkrupp Vdm Gmbh | Nickel-based alloy |
US20080308057A1 (en) * | 2007-06-18 | 2008-12-18 | Lykowski James D | Electrode for an Ignition Device |
JP5521490B2 (en) * | 2009-11-02 | 2014-06-11 | 日立金属株式会社 | Spark plug electrode material |
JP5697484B2 (en) * | 2011-02-25 | 2015-04-08 | 株式会社デンソー | Spark plug electrode material |
-
2010
- 2010-06-21 DE DE201010024488 patent/DE102010024488B4/en not_active Expired - Fee Related
-
2011
- 2011-06-08 US US13/700,776 patent/US8784730B2/en active Active
- 2011-06-08 WO PCT/DE2011/001174 patent/WO2011160617A2/en active Application Filing
- 2011-06-08 JP JP2013515691A patent/JP5680192B2/en active Active
- 2011-06-08 MX MX2012013578A patent/MX2012013578A/en active IP Right Grant
- 2011-06-08 CN CN201180029661.1A patent/CN102947474B/en active Active
- 2011-06-08 BR BR112012032829A patent/BR112012032829B1/en active IP Right Grant
- 2011-06-08 RU RU2013102493/02A patent/RU2518814C1/en active
- 2011-06-08 EP EP11755241.4A patent/EP2582854B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP2582854A2 (en) | 2013-04-24 |
RU2518814C1 (en) | 2014-06-10 |
CN102947474B (en) | 2015-07-29 |
DE102010024488B4 (en) | 2012-04-26 |
US8784730B2 (en) | 2014-07-22 |
BR112012032829A2 (en) | 2016-11-08 |
MX2012013578A (en) | 2013-01-24 |
DE102010024488A1 (en) | 2011-12-22 |
US20130078136A1 (en) | 2013-03-28 |
WO2011160617A2 (en) | 2011-12-29 |
JP5680192B2 (en) | 2015-03-04 |
JP2013531132A (en) | 2013-08-01 |
WO2011160617A3 (en) | 2012-04-05 |
BR112012032829B1 (en) | 2018-09-11 |
CN102947474A (en) | 2013-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2582854B1 (en) | Nickel based alloy | |
EP2971204B1 (en) | Nickel-based alloy with silicon, aluminum, and chromium | |
EP2855723B1 (en) | Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance | |
EP2855724B1 (en) | Nickel-chromium alloy with good formability, creep strength and corrosion resistance | |
DE69620998T2 (en) | OXIDATION RESISTANT MOLYBENE ALLOY | |
EP3102710B1 (en) | Nickel-chromium-cobalt-titanium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability | |
DE102012015828B4 (en) | Use of a nickel-chromium-iron-aluminum alloy with good processability | |
DE68915095T2 (en) | Nickel-based alloy and process for its manufacture. | |
EP3102711B1 (en) | Nickel-chromium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability | |
DE602005002866T2 (en) | Process for producing a low thermal expansion Ni-base superalloy | |
EP2283167B1 (en) | Durable iron-chromium-aluminum alloy showing minor changes in heat resistance | |
EP1340825B1 (en) | Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring | |
DE2415074C2 (en) | Use of a nickel-based superalloy to manufacture gas turbine parts | |
EP2678458B1 (en) | Nickel-chromium-iron-aluminum alloy having good processability | |
EP2115179B1 (en) | Iron-nickel-chromium- silicon alloy | |
EP3775308B1 (en) | Use of a nickel-chromium-iron-aluminium alloy | |
DE112016005830B4 (en) | Metal gasket and process for its manufacture | |
DE2244311A1 (en) | HIGH TEMPERATURE-RESISTANT NICKEL ALLOY | |
DE1921359C3 (en) | Process for increasing the ductility at high temperatures of cast nickel-based alloys | |
DE69007201T2 (en) | Heat-resistant steel can be used for valves of internal combustion engines. | |
EP2478988B1 (en) | Filler material for welding based on iron | |
DE69501344T2 (en) | Heat resistant steel | |
DE69110913T2 (en) | Car engine parts made of heat-resistant ferritic cast steel with excellent resistance to fatigue from heat. | |
JPH03243741A (en) | Ti-al series sintered body and its manufacture | |
DE112019001491T5 (en) | Ni-BASED ALLOY AND HEAT RESISTANT PLATE MATERIAL OBTAINED USING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121205 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OUTOKUMPU VDM GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140411 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VDM METALS GMBH |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 681131 Country of ref document: AT Kind code of ref document: T Effective date: 20140815 Ref country code: CH Ref legal event code: EP |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: VDM METALS GMBH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011003977 Country of ref document: DE Effective date: 20140918 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502011003977 Country of ref document: DE Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE Ref country code: DE Ref legal event code: R081 Ref document number: 502011003977 Country of ref document: DE Owner name: VDM METALS INTERNATIONAL GMBH, DE Free format text: FORMER OWNER: VDM METALS GMBH, 58332 SCHWELM, DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140806 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141106 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141209 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141107 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141206 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011003977 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
26N | No opposition filed |
Effective date: 20150507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150608 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150608 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502011003977 Country of ref document: DE Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE Ref country code: DE Ref legal event code: R081 Ref document number: 502011003977 Country of ref document: DE Owner name: VDM METALS INTERNATIONAL GMBH, DE Free format text: FORMER OWNER: VDM METALS GMBH, 58791 WERDOHL, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110608 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502011003977 Country of ref document: DE Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240620 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240628 Year of fee payment: 14 |