[go: up one dir, main page]

EP2907841A1 - Composition de polypropylène - Google Patents

Composition de polypropylène Download PDF

Info

Publication number
EP2907841A1
EP2907841A1 EP14155222.4A EP14155222A EP2907841A1 EP 2907841 A1 EP2907841 A1 EP 2907841A1 EP 14155222 A EP14155222 A EP 14155222A EP 2907841 A1 EP2907841 A1 EP 2907841A1
Authority
EP
European Patent Office
Prior art keywords
fiber reinforced
reinforced composition
group
groups
raco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14155222.4A
Other languages
German (de)
English (en)
Inventor
Luca Boragno
Cornelia Tranninger
Markus Gahleitner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Borealis AG
Original Assignee
Borealis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borealis AG filed Critical Borealis AG
Priority to EP14155222.4A priority Critical patent/EP2907841A1/fr
Priority to US15/115,929 priority patent/US10030109B2/en
Priority to CA2938228A priority patent/CA2938228C/fr
Priority to KR1020167024399A priority patent/KR101759857B1/ko
Priority to PCT/EP2015/052476 priority patent/WO2015121160A1/fr
Priority to MX2016009938A priority patent/MX352067B/es
Priority to EA201600565A priority patent/EA031496B1/ru
Priority to EP15702795.4A priority patent/EP3105287B1/fr
Priority to JP2016550557A priority patent/JP2017509742A/ja
Priority to ES15702795.4T priority patent/ES2674238T3/es
Priority to CN201580006592.0A priority patent/CN106255718B/zh
Priority to BR112016017887-4A priority patent/BR112016017887B1/pt
Publication of EP2907841A1 publication Critical patent/EP2907841A1/fr
Priority to ZA2016/04861A priority patent/ZA201604861B/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Definitions

  • the present invention is directed to a fiber reinforced polypropylene composition with excellent impact/stiffness balance and reduced emissions as well as to its preparation and use.
  • Polypropylene is a material used in a wide variety of technical fields, and reinforced polypropylenes have in particular gained relevance in fields previously exclusively relying on non-polymeric materials, in particular metals.
  • reinforced polypropylenes are glass fiber reinforced polypropylenes. Such materials enable a tailoring of the properties of the composition by selecting the type of polypropylene, the amount of glass fiber and sometimes by selecting the type of coupling agent used. Accordingly, nowadays glass-fiber reinforced polypropylene is a well-established material for applications requiring high stiffness, heat deflection resistance and resistance to both impact and dynamic fracture loading (examples include automotive components with a load-bearing function in the engine compartment, support parts for polymer body panels, washing machine and dishwasher components).
  • GF glass fiber
  • PP polypropylene
  • polymer processors desire material with low emissions to fulfil the consistently rising demands of regulatory authorities as well as consumers.
  • WO 98/16359 A1 describes rod-shaped PP pellets containing glass and PP fibers, the fibers having the length of the pellets.
  • the core contains a mixture of GF with PP fibers, the fibers being a PP homopolymer or a random copolymer with ⁇ 10 wt.% C 2 or C 4 -C 10 as comonomer, while the sheath comprises a PP homopolymer and/or a random copolymer with ⁇ 10 wt.% C 2 or C 4 -C 10 as comonomer and/or a PP impact copolymer with ⁇ 27 wt.% C 2 or C 4 -C 10 as comonomer.
  • Long glass fibers (LGF) as used in this case are generally more difficult to process and deliver parts with a very high degree of orientation and mechanical anisotropy.
  • EP 2062936 A1 describes PP glass fiber compositions with > 15 wt.% glass fibers and a heterophasic PP composition comprising a matrix phase and at least two disperse elastomer components with a total comonomer content of ⁇ 12 wt.% and a comonomer content in the elastomer phase of ⁇ 20 wt.%. While demonstrating good impact strength, the described compositions still show a very limited strain at break.
  • EP 2308923 B1 describes fiber reinforced compositions comprising (a) an EP-heterophasic copolymer, (b) a PP homo-or copolymer with MFR ⁇ 500, and (c) fibers having good flowability.
  • the described compositions show a very limited strain at break.
  • the object of the present invention is to provide a fiber reinforced composition with excellent elongation at break. It is further an object of the present invention to obtain an improved balance of mechanical properties, like flexural modulus, impact strength and elongation at break and at the same time reduced emissions.
  • the finding of the present invention is that a fibrous reinforced material with excellent impact/stiffness balance and reduced emissions can be obtained with fibers embedded in a monophasic alpha-olefin propylene random copolymer, whereby the alpha-olefin propylene random copolymer is produced in the presence of a metallocene catalyst.
  • the polypropylene random copolymer comprising ethylene and/or C 4 to C 8 ⁇ -olefin (PP-RACO) has a melt flow rate MFR 2 (230 °C) measured according to ISO 1133 in the range of at least 2.5 g/10min up to 15.0 g/10min, preferably in the range of 3.0 g/10min to 12.0 g/10min and more preferably in the range of 5.0 g/10min to 10.0 g/10min.
  • PP-RACO polypropylene random copolymer comprising ethylene and/or C 4 to C 8 ⁇ -olefin
  • PP-RACO polypropylene random copolymer comprising ethylene and/or C 4 to C 8 ⁇ -olefin
  • the polypropylene random copolymer comprises, preferably consists of, propylene and a comonomer selected from ethylene and/or at least one C 4 to C 8 ⁇ -olefin, preferably at least one comonomer selected from the group consisting of ethylene, 1-butene, 1-pentene, 1-hexene and 1-octene, more preferably ethylene and/or 1-butene and most preferably ethylene.
  • the propylene random copolymer (PP-RACO) according to this invention comprises units derivable from ethylene and propylene only.
  • the comonomer content of the polypropylene random copolymer is within the range of 1.0 to 10.0 wt.% of ethylene and/or C 4 to C 8 ⁇ -olefin comonomer.
  • the comonomer content is in the range of 2.0 to 9.8 wt.%, more preferably in the range of 2.2 to 9.5 wt.% and still more preferably in the range of 2.5 to 9.0 wt.%.
  • polypropylene random copolymer has a xylene cold soluble content (XCS) in the range of 10.0 to 25.0 wt.%, preferably in the range of 10.5 to 23.0 wt.% and more preferably in the range of 11.0 to 20.0 wt.%.
  • XCS xylene cold soluble content
  • propylene random copolymer has a melting temperature measured according to ISO 11357-3 of at least 135 °C, preferably of at least 140°C and more preferably of at least 142°C.
  • the melting temperature will normally not be higher than 160°C.
  • propylene random copolymer is preferably characterized by a relatively narrow molecular weight distribution as determined by size exclusion chromatography (SEC).
  • SEC size exclusion chromatography
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw/Mn polydispersity
  • the propylene random copolymer is preferably characterized by its monophasic nature, meaning the absence of a separated elastomer phase otherwise typical for the high impact polypropylene compositions as described in the above cited documents EP 2062936 A1 and EP 2308923 B1 .
  • the presence or absence of such a separated elastomer phase can for example be detected in high resolution microscopy, like electron microscopy or atomic force microscopy, or by dynamic mechanical thermal analysis (DMTA).
  • DMTA dynamic mechanical thermal analysis
  • the presence of a monophase structure can be identified by the presence of only one distinct glass transition temperature (Tg).
  • Tg glass transition temperature
  • Tg will normally be in the range of -12 to +2°C. More preferably, the PP-RACO will not have a Tg below -20°C.
  • a suitable propylene random copolymer (PP-RACO) according to this invention is preferably produced in a sequential polymerization process in the presence of a metallocene catalyst, more preferably in the presence of a catalyst (system) as defined below.
  • the term “sequential polymerization process” indicates that the propylene random copolymer (PP-RACO) is produced in at least two reactors, preferably in two or three reactors, connected in series. Accordingly the present process comprises at least a first reactor (R1) and a second reactor (R2), as well as optionally a third reactor (R3).
  • the term “polymerization reactor” shall indicate that the main polymerization takes place. Thus in case the process consists of two polymerization reactors, this definition does not exclude the option that the overall process comprises for instance a pre-polymerization step in a pre-polymerization reactor.
  • the term “consist of” is only a closing formulation in view of the main polymerization reactors.
  • the first reactor (R1) is preferably a slurry reactor (SR) and can be any continuous or simple stirred batch tank reactor or loop reactor operating in bulk or slurry.
  • Bulk means a polymerization in a reaction medium that comprises of at least 60 % (w/w) monomer.
  • the slurry reactor (SR) is preferably a (bulk) loop reactor (LR).
  • the second reactor (R2) is preferably a gas phase reactor (GPR).
  • GPR gas phase reactor
  • Such gas phase reactor (GPR) can be any mechanically mixed or fluid bed reactor.
  • the gas phase reactor (GPR) can be a mechanically agitated fluid bed reactor with gas velocities of at least 0.2 m/sec.
  • the gas phase reactor is a fluidized bed type reactor, optionally with a mechanical stirrer.
  • a third reactor being a second gas phase reactor (GPR2), connected in series with the first gas phase reactor (GPR), is used.
  • the first reactor (R1) is a slurry reactor (SR), like a loop reactor (LR), whereas the second reactor (R2) is a gas phase reactor (GPR), optionally connected in series with a second gas phase reactor (GPR2).
  • SR slurry reactor
  • GPR gas phase reactor
  • GPR2 optionally connected in series with a second gas phase reactor
  • a preferred multistage process is a "loop-gas phase"-process, such as developed by Borealis A/S, Denmark (known as BORSTAR® technology) described e.g. in patent literature, such as in EP 0 887 379 , WO 92/12182 WO 2004/000899 , WO 2004/111095 , WO 99/24478 , WO 99/24479 or in WO 00/68315 .
  • a further suitable slurry-gas phase process is the Spheripol ® process of Basell described e.g.in figure 20 of the paper by Galli and Vecello, Prog.Polym.Sci. 26 (2001) 1287-1336 .
  • the conditions for the first reactor (R1) i.e. the slurry reactor (SR), like a loop reactor (LR), of step (a) may be as follows:
  • reaction mixture from step (a) is transferred to the second reactor (R2), i.e. gas phase reactor (GPR) and optionally subsequently to the second gas phase reactor (GPR2), whereby the conditions are preferably as follows:
  • the residence time can vary in the reaction zones identified above.
  • the residence time the first reactor (R1) i.e. the slurry reactor (SR), like a loop reactor (LR)
  • the residence time in the gas phase reactor(s) (GPR and optional GPR2) will generally be 0.2 to 6.0 hours, like 0.5 to 4.0 hours.
  • the polymerization may be effected in a known manner under supercritical conditions in the first reactor (R1), i.e. in the slurry reactor (SR), like in the loop reactor (LR), and/or as a condensed mode in the gas phase reactor(s) (GPR and optional GPR2).
  • R1 first reactor
  • SR slurry reactor
  • LR loop reactor
  • GPR and optional GPR2 gas phase reactor
  • the process comprises also a prepolymerization with the chosen catalyst system, as described in detail below.
  • the prepolymerization is conducted as bulk slurry polymerization in liquid propylene, i.e. the liquid phase mainly comprises propylene, with minor amount of other reactants and optionally inert components dissolved therein.
  • the prepolymerization reaction is typically conducted at a temperature of 0 to 50 °C, preferably from 10 to 40 °C, and more preferably from 10 to 23 °C.
  • the pressure in the prepolymerization reactor is not critical but must be sufficiently high to maintain the reaction mixture in liquid phase.
  • the pressure may be from 20 to 100 bar, for example 30 to 70 bar.
  • the catalyst components are preferably all introduced to the prepolymerization step.
  • the solid catalyst component (i) and the cocatalyst (ii) can be fed separately it is possible that only a part of the cocatalyst is introduced into the prepolymerization stage and the remaining part into subsequent polymerization stages. Also in such cases it is necessary to introduce so much cocatalyst into the prepolymerization stage that a sufficient polymerization reaction is obtained therein.
  • hydrogen may be added into the prepolymerization stage to control the molecular weight of the prepolymer as is known in the art.
  • antistatic additive may be used to prevent the particles from adhering to each other or to the walls of the reactor.
  • the polymerization takes place in the presence of a metallocene catalyst system, said metallocene catalyst system, comprises
  • the catalyst must comprise an asymmetrical complex. Additionally the catalyst may comprise a cocatalyst.
  • the molar-ratio of cocatalyst (Co) to the metal (M) of the complex is below 500, more preferably in the range of more than 100 to below 500, still more preferably in the range of 150 to 450, yet more preferably in the range of 200 to 450.
  • the metallocene complex especially the complexes defined by the formulas specified in the present invention, used for manufacture of the polypropylene random copolymer (PP-RACO) are asymmetrical. That means that the two indenyl ligands forming the metallocene complex are different, that is, each indenyl ligand bears a set of substituents that are either chemically different, or located in different positions with respect to the other indenyl ligand. More precisely, they are chiral, racemic bridged bisindenyl metallocene complexes. Whilst the complexes of the invention may be in their syn-configuration, ideally they are in their anti-configuration.
  • racemic-anti means that the two indenyl ligands are oriented in opposite directions with respect to the cyclopentadienyl-metal-cyclopentadienyl plane
  • racemic-syn means that the two indenyl ligands are oriented in the same direction with respect to the cyclopentadienyl-metal-cyclopentadienyl plane, as shown in the Figure below.
  • Formula (I) is intended to cover both syn- and anti-configurations, preferably anti. It is required in addition, that the group R 5' is not hydrogen where the 5-position in the other ligand carries a hydrogen.
  • the metallocene complexes of use in the invention are C 1 -symmetric but they maintain a pseudo- C 2 -symmetry since they maintain C 2 -symmetry in close proximity of the metal center, although not at the ligand periphery.
  • the use of two different indenyl ligands as described in this invention allows for a much finer structural variation, hence a more precise tuning of the catalyst performance, compared to the typical C 2 -symmetric catalysts.
  • both anti and syn enantiomer pairs are formed during the synthesis of the complexes.
  • separation of the preferred anti isomers from the syn isomers is straightforward.
  • the metallocene complexes of the invention are employed as the rac anti isomer. Ideally therefore at least 95% mol, such as at least 98% mol, especially at least 99% mol of the metallocene catalyst is in the racemic anti isomeric form.
  • each X is independently a hydrogen atom, a halogen atom, C 1-6 alkoxy group or an R group, e.g. preferably a C 1-6 alkyl, phenyl or benzyl group. Most preferably X is chlorine or a methyl radical. Preferably both X groups are the same.
  • L is preferably an alkylene linker or a bridge comprising a heteroatom, such as silicon or germanium, e.g. -SiR 3 2 -, wherein each R 8 is independently C 1-20 alkyl, C 3-10 cycloakyl, C 6-20 aryl or tri(C 1-20 alkyl)silyl, such as trimethylsilyl. More preferably R 8 is C 1-6 alkyl, especially methyl or C 3-7 cycloalkyl, such as cyclohexyl. Most preferably, L is a dimethylsilyl or a methylcyclohexylsilyl bridge (i.e. Me-Si-cyclohexyl). It may also be an ethylene bridge.
  • R 2 and R 2' can be different but they are preferably the same.
  • R 2 and R 2' are preferably a C 1-10 hydrocarbyl group such as C 1-6 hydrocarbyl group. More preferably it is a linear or branched C 1-10 alkyl group. More preferably it is a linear or branched C 1-6 alkyl group, especially linear C 1-6 alkyl group such as methyl or ethyl.
  • the R 2 and R 2' groups can be interrupted by one or more heteroatoms, such as 1 or 2 heteroatoms, e.g. one heteroatom, selected from groups 14 to 16 of the periodic table.
  • a heteroatom is preferably O, N or S, especially O. More preferably however the R 2 and R 2' groups are free from heteroatoms. Most especially R 2 and R 2' are methyl, especially both methyl.
  • the two Ar groups Ar and Ar' can be the same or different.
  • the Ar' group may be unsubstituted.
  • the Ar' is preferably a phenyl based group optionally substituted by groups R 1 , especially an unsubstituted phenyl group.
  • the Ar group is preferably a C 6-20 aryl group such as a phenyl group or naphthyl group. Whilst the Ar group can be a heteroaryl group, such as carbazolyl, it is preferable that Ar is not a heteroaryl group.
  • the Ar group can be unsubstituted or substituted by one or more groups R 1 , more preferably by one or two R 1 groups, especially in position 4 of the aryl ring bound to the indenyl ligand or in the 3, 5-positions.
  • both Ar and Ar' are unsubstituted. In another embodiment Ar' is unsubstituted and Ar is substituted by one or two groups R 1 .
  • R 1 is preferably a C 1-20 hydrocarbyl group, such as a C 1-20 alkyl group.
  • R 1 groups can be the same or different, preferably the same. More preferably, R 1 is a C 2-10 alkyl group such as C 3-8 alkyl group. Highly preferred groups are tert butyl or isopropyl groups. It is preferred if the group R 1 is bulky, i.e. is branched. Branching might be alpha or beta to the ring. Branched C 3-8 alkyl groups are also favoured therefore.
  • two R 1 groups on adjacent carbon atoms taken together can form a fused 5 or 6 membered non aromatic ring with the Ar group, said ring being itself optionally substituted with one or more groups R 4 .
  • Such a ring might form a tetrahydroindenyl group with the Ar ring or a tetrahydronaphthyl group.
  • R 4 group there is preferably only 1 such group. It is preferably a C 1-10 alkyl group.
  • R 1 groups there is one or two R 1 groups present on the Ar group. Where there is one R 1 group present, the group is preferably para to the indenyl ring (4-position). Where two R 1 groups are present these are preferably at the 3 and 5 positions.
  • R 5' is preferably a C 1-20 hydrocarbyl group containing one or more heteroatoms from groups 14-16 and optionally substituted by one or more halo atoms or R 5' is a C 1-10 alkyl group, such as methyl but most preferably it is a group Z'R 3' .
  • R 6 and R 6' may be the same or different.
  • one of R 6 and R 6' is hydrogen, especially R 6 . It is preferred if R 6 and R 6' are not both hydrogen. If not hydrogen, it is preferred if each R 6 and R 6' is preferably a C 1-20 hydrocarbyl group, such as a C 1-20 alkyl group or C 6-10 aryl group. More preferably, R 6 and R 6' are a C 2-10 alkyl group such as C 3-8 alkyl group. Highly preferred groups are tert-butyl groups. It is preferred if R 6 and R 6' are bulky, i.e. are branched. Branching might be alpha or beta to the ring. Branched C 3-8 alkyl groups are also favoured therefore.
  • R 7 and R 7' groups can be the same or different.
  • Each R 7 and R 7' group is preferably hydrogen, a C 1-6 alkyl group or is a group ZR 3 . It is preferred if R 7' is hydrogen. It is preferred if R 7 is hydrogen, C 1-6 alkyl or ZR 3 . The combination of both R 7 and R 7' being hydrogen is most preferred. It is also preferred if ZR 3 represents OC 1-6 alkyl, such as methoxy. It is also preferred is R 7 represents C 1-6 alkyl such as methyl.
  • Z and Z' are O or S, preferably O.
  • R 3 is preferably a C 1-10 hydrocarbyl group, especially a C 1-10 alkyl group, or aryl group optionally substituted by one or more halo groups. Most especially R 3 is a C 1-6 alkyl group, such as a linear C 1-6 alkyl group, e.g. methyl or ethyl.
  • R 3' is preferably a C 1-10 hydrocarbyl group, especially a C 1-10 alkyl group, or aryl group optionally substituted by one or more halo groups. Most especially R 3' is a C 1-6 alkyl group, such as a linear C 1-6 alkyl group, e.g. methyl or ethyl or it is a phenyl based radical optionally substituted with one or more halo groups such as Ph or C 6 F 5 .
  • Particular compounds of the invention include:
  • the complex is rac-anti-Me 2 Si(2-Me-4-(p- t BuPh)-Ind)(2-Me-4-Ph-5-OMe-6- t Bu-Ind)ZrCl 2 .
  • Cocatalysts comprising one or more compounds of Group 13 metals, like organoaluminium compounds or borates used to activate metallocene catalysts are suitable for use in this invention.
  • the catalyst according to this invention comprises (i) a complex as defined above and (ii) a cocatalyst, like an aluminium alkyl compound (or other appropriate cocatalyst), or the reaction product thereof.
  • a cocatalyst like an aluminium alkyl compound (or other appropriate cocatalyst), or the reaction product thereof.
  • the cocatalyst is preferably an alumoxane, like MAO or an alumoxane other than MAO.
  • Borate cocatalysts can also be employed. It will be appreciated by the skilled man that where boron based cocatalysts are employed, it is normal to preactivate the complex by reaction thereof with an aluminium alkyl compound, such as TIBA. This procedure is well known and any suitable aluminium alkyl, e.g. Al(C 1-6 -alkyl) 3 , can be used.
  • Boron based cocatalysts of interest include those of formula BY 3 wherein Y is the same or different and is a hydrogen atom, an alkyl group of from 1 to about 20 carbon atoms, an aryl group of from 6 to about 15 carbon atoms, alkylaryl, arylalkyl, haloalkyl or haloaryl each having from 1 to 10 carbon atoms in the alkyl radical and from 6-20 carbon atoms in the aryl radical or fluorine, chlorine, bromine or iodine.
  • Preferred examples for Y are trifluoromethyl, p-fluorophenyl, 3,5- difluorophenyl, pentafluorophenyl, 3,4,5-trifluorophenyl and 3,5- di(trifluoromethyl)phenyl.
  • Preferred options are trifluoroborane, tris(4-fluorophenyl)borane, tris(3,5-difluorophenyl)borane, tris(4-fluoromethylphenyl)borane, tris(2,4,6-trifluorophenyl)borane, tris(penta-fluorophenyl)borane, tris(3,5-difluorophenyl)borane and/or tris (3,4,5-trifluorophenyl)borane.
  • borates are used, i.e. compounds of general formula [C] + [BX4] - .
  • Such ionic cocatalysts contain a non-coordinating anion [BX4] - such as tetrakis(pentafluorophenyl)borate.
  • Suitable counterions [C] + are protonated amine or aniline derivatives such as methylammonium, anilinium, dimethylammonium, diethylammonium, N-methylanilinium, diphenylammonium, N,N-dimethylanilinium, trimethylammonium, triethylammonium, tri-n-butylammonium, methyldiphenylammonium, pyridinium, p-bromo-N,N- dimethylanilinium or p-nitro-N,N-dimethylanilinium.
  • Preferred ionic compounds which can be used according to the present invention include:
  • the metallocene complex used in the present invention can be used in combination with a suitable cocatalyst as a catalyst e.g. in a solvent such as toluene or an aliphatic hydrocarbon, (i.e. for polymerization in solution), as it is well known in the art.
  • a suitable cocatalyst as a catalyst e.g. in a solvent such as toluene or an aliphatic hydrocarbon, (i.e. for polymerization in solution), as it is well known in the art.
  • the catalyst used in the invention can be used in supported or unsupported form.
  • the particulate support material used is preferably an organic or inorganic material, such as silica, alumina or zirconia or a mixed oxide such as silica-alumina, in particular silica, alumina or silica-alumina.
  • the use of a silica support is preferred. The skilled man is aware of the procedures required to support a metallocene catalyst.
  • the support is a porous material so that the complex may be loaded into the pores of the support, e.g. using a process analogous to those described in WO94/14856 (Mobil), WO95/12622 (Borealis) and WO2006/097497 .
  • the particle size is not critical but is preferably in the range 5 to 200 ⁇ m, more preferably 20 to 80 ⁇ m. The use of these supports is routine in the art.
  • a catalyst can be prepared in solution, for example in an aromatic solvent like toluene, by contacting the metallocene (as a solid or as a solution) with the cocatalyst, for example methylaluminoxane or a borane or a borate salt, or can be prepared by sequentially adding the catalyst components to the polymerization medium.
  • the metallocene as a solid or as a solution
  • the cocatalyst for example methylaluminoxane or a borane or a borate salt
  • the metallocene (when X differs from alkyl or hydrogen) is prereacted with an aluminum alkyl, in a ratio metal/aluminum of from 1:1 up to 1:500, preferably from 1:1 up to 1:250, and then combined with the borane or borate cocatalyst, either in a separate vessel or directly into the polymerization reactor.
  • Preferred metal/boron ratios are between 1:1 and 1:100, more preferably 1:1 to 1:10.
  • no external carrier is used but the catalyst is still presented in solid particulate form.
  • no external support material such as inert organic or inorganic carrier, such as for example silica, as described above, is employed.
  • a liquid/liquid emulsion system is used.
  • the process involves forming dispersing catalyst components (i) and (ii), i.e. the complex and the cocatalyst, in a solvent, and solidifying said dispersed droplets to form solid particles.
  • present invention is preferably directed to fiber reinforced compositions in which the polymer phase forms a continuous phase being the matrix for the fibers.
  • the polymer forming the matrix for the fibers in the composition is preferably monophasic.
  • the polymer matrix does not contain elastomeric (co)polymers forming inclusions as a second phase for improving mechanical properties of the composite, such as elongation at break.
  • a polymer phase containing elastomeric (co)polymers as insertions of a second phase would by contrast be called heterophasic and is not part of this preferred embodiment.
  • the desired mechanical properties of the fiber reinforced composite are hence preferably controlled by the polypropylene random copolymer comprising ethylene and/or C 4 to C 8 ⁇ -olefin (PP-RACO) in combination with the adhesion promoter (AP) improving the adhesion an insertion of the fibers. It is believed that the polymer of such composite forms a continuous phase. Further insertions of second or more elastomer phases aiming to improve the same mechanical properties are preferably excluded.
  • the second essential component of the present fiber reinforced composition are the glass fibers (GF).
  • the glass fibers are cut glass fibers, also known as short fibers or chopped strands.
  • the cut or short glass fibers used in the fiber reinforced composition preferably have an average length of from 1 to 10 mm, more preferably from 1 to 7 mm, for example 3 to 5 mm, or 4 mm.
  • the cut or short glass fibers used in the fiber reinforced composition preferably have an average diameter of from 8 to 20 ⁇ m, more preferably from 9 to 16 ⁇ m, for example 10 to 15 ⁇ m.
  • the fibers (GF) have an aspect ratio of 125 to 650, preferably of 150 to 450, more preferably 200 to 400, still more preferably 250 to 350.
  • the aspect ratio is the relation between average length and average diameter of the fibers.
  • Adhesion promoter (AP) Adhesion promoter
  • the fiber reinforced composition also comprises an adhesion promoter (AP).
  • AP adhesion promoter
  • the adhesion promoter (AP) preferably comprises a modified (functionalized) polymer and optionally a low molecular weight compound having reactive polar groups.
  • Modified ⁇ -olefin polymers in particular propylene homopolymers and copolymers, like copolymers of ethylene and propylene with each other or with other ⁇ -olefins, are most preferred, as they are highly compatible with the polymers of the fiber reinforced composition.
  • Modified polyethylene can be used as well.
  • the modified polymers are preferably selected from graft or block copolymers.
  • modified polymers containing groups deriving from polar compounds in particular selected from the group consisting of acid anhydrides, carboxylic acids, carboxylic acid derivatives, primary and secondary amines, hydroxyl compounds, oxazoline and epoxides, and also ionic compounds.
  • the said polar compounds are unsaturated cyclic anhydrides and their aliphatic diesters, and the diacid derivatives.
  • the modified polymer i.e. the adhesion promoter (AP)
  • AP adhesion promoter
  • the modified polymer i.e. the adhesion promoter (AP)
  • the amounts of groups deriving from polar compounds in the modified polymer, i.e. the adhesion promoter (AP), are from 0.5 to 5.0 wt.%, preferably from 0.5 to 4.0 wt.%, and more preferably from 0.5 to 3.0 wt.%.
  • melt flow rate MFR 2 (230 °C) for the modified polymer i.e. for the adhesion promoter (AP) are from 1.0 to 500 g/10 min.
  • the instant composition may additionally contain typical other additives useful for instance in the automobile sector, like carbon black, other pigments, antioxidants, UV stabilizers, nucleating agents, antistatic agents and slip agents, in amounts usual in the art.
  • Additives in this meaning are for example carbon black, other pigments, antioxidants, UV stabilizers, nucleating agents, antistatic agents and slip agents.
  • masterbatch means polymer-bound additives, for instance color and additive concentrates physically or chemically bound onto or into polymers. It is appreciated that such masterbatches contain as less polymer as possible.
  • the additives as stated above are added to the polypropylene random copolymer (PP-RACO), which is collected from the final reactor of the polymer production process.
  • these additives are mixed into the polypropylene random copolymer (PP-RACO) or during the extrusion process in a one-step compounding process.
  • a master batch may be formulated, wherein the polypropylene random copolymer (PP-RACO) is first mixed with only some of the additives.
  • the properties of the polypropylene random copolymer comprising ethylene and/or C 4 to C 8 ⁇ -olefin (PP-RACO), produced with the above-outlined process may be adjusted and controlled with the process conditions as known to the skilled person, for example by one or more of the following process parameters: temperature, hydrogen feed, comonomer feed, propylene feed, catalyst, type and amount of external donor, split between two or more components of a multimodal polymer.
  • a conventional compounding or blending apparatus e.g. a Banbury mixer, a 2-roll rubber mill, Buss-co-kneader or a twin screw extruder may be used.
  • mixing is accomplished in a co-rotating twin screw extruder.
  • the polymer materials recovered from the extruder are usually in the form of pellets. These pellets are then preferably further processed, e.g. by injection molding to generate articles and products of the inventive fiber reinforced composition.
  • the fiber reinforced composite according to the invention has the following properties:
  • the overall tensile modulus i.e. the tensile modulus measured at 23°C according to ISO 527-2 (cross head speed 1 mm/min) of the fiber reinforced composite, is at least 2,500 MPa, preferably at least 3,000 MPa and more preferably at least 3,500 MPa.
  • the upper limit of the tensile modulus of the fiber reinforced composite may be 10,000 MPa, preferably 9,000 MPa, and more preferably in the range of 8,000 MPa.
  • the tensile strain at break measured at 23°C according to ISO 527-2 is at least 4.0%, preferably at least 4.5% and more preferably at least 4.8%.
  • the tensile stress at break measured at 23°C according to ISO 527-2 is at least 50 MPa, preferably at least 60 MPa and more preferably at least 65 MPa.
  • VOC is the amount of volatile organic compounds (VOC) [in ppm].
  • FOG is the amount of fogging compounds (FOG) [in ppm].
  • HDT heat distortion temperature
  • the fiber reinforced polypropylene composites show an excellent impact/stiffness balance and have very low emissions.
  • the fiber reinforced composition according to the invention may be pelletized and compounded using any of the variety of compounding and blending methods well known and commonly used in the resin compounding art.
  • composition of the present fiber reinforced composition can be used for the production of molded articles, preferably injection molded articles as well as foamed articles. Even more preferred is the use for the production of parts of washing machines or dishwashers as well as automotive articles, especially of car interiors and exteriors, like instrumental carriers, shrouds, structural carriers, bumpers, side trims, step assists, body panels, spoilers, dashboards, interior trims and the like.
  • the article is a foamed article comprising the fiber reinforced composition described above.
  • the present invention further relates to automotive articles comprising the fiber reinforced composition as defined above.
  • the present invention also relates to a process for the preparation of the fiber reinforced composition as described above, comprising the steps of adding (a)polypropylene random copolymer (PP-RACO),
  • MFR 2 (230 °C) is measured according to ISO 1133 (230 °C, 2.16 kg load).
  • NMR nuclear-magnetic resonance
  • the NMR tube was further heated in a rotatory oven for at least 1 hour. Upon insertion into the magnet the tube was spun at 10 Hz.
  • This setup was chosen primarily for the high resolution and quantitatively needed for accurate ethylene content quantification. Standard single-pulse excitation was employed without NOE, using an optimised tip angle, 1 s recycle delay and a bi-level WALTZ16 decoupling scheme as described in Z. Zhou, R. Kuemmerle, X. Qiu, D. Redwine, R. Cong, A. Taha, D. Baugh, B. Winniford, J. Mag. Reson. 187 (2007) 225 and V. Busico, P.
  • the comonomer fraction was quantified using the method of W-J. Wang and S. Zhu, Macromolecules 2000, 33 1157 , through integration of multiple signals across the whole spectral region in the 13 C ⁇ 1 H ⁇ spectra. This method was chosen for its robust nature and ability to account for the presence of regio-defects when needed. Integral regions were slightly adjusted to increase applicability across the whole range of encountered comonomer contents.
  • the mole percent comonomer incorporation was calculated from the mole fraction.
  • the weight percent comonomer incorporation was calculated from the mole fraction.
  • xylene solubles (XCS, wt.-%): Content of xylene cold solubles (XCS) is determined at 25 °C according ISO 16152; first edition; 2005.
  • T m melting temperature measured with a TA Instrument Q200-differential scanning calorimetry (DSC) on 5 to 7 mg samples.
  • DSC TA Instrument Q200-differential scanning calorimetry
  • Size exclusion chromatography Number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity (Mw/Mn) are determined by size exclusion chromatography (SEC) using Waters Alliance GPCV 2000 instrument with online viscometer. The oven temperature is 140 °C. Trichlorobenzene is used as a solvent (ISO 16014: 2003).
  • the tensile modulus, the tensile strain at break and the tensile stress at break were measured at 23 °C according to ISO 527-2 (cross head speed 1 mm/min for tensile modulus, 50 mm/min for others) using injection moulded specimens moulded at 230 °C according to ISO 527-2(1B), produced according to EN ISO 1873-2 (dog 10 bone shape, 4 mm thickness).
  • Charpy impact test The Charpy impact strength (IS) was measured according to ISO 179-1 eU: 2000 at +23 °C and the Charpy notched impact strength (NIS) was measured according to ISO 179-1eA:2000 at +23 °C, using injection-molded bar test specimens of 80x10x4 mm 3 prepared in accordance with ISO 1873-2:2007.
  • Heat distortion temperature was determined according to ISO 75-2 Method A (1.80 MPa surface stress) using injection molded test specimens of 80x10x4 mm 3 produced as described in EN ISO 1873-2 (80 x 10 x 4 mm).
  • the total emission of the polymers was determined by using multiple head space extraction according to VDA 277:1995 using a gas chromatograph and a headspace method.
  • the equipment was a Hewlett Packard gas chromatograph with a WCOT-capillary column (wax type) of 30 m length and 0.25 mm x 2.5 ⁇ m inner diameter (0.25 ⁇ m film thickness).
  • a flame ionisation detector was used with hydrogen as a fuel gas.
  • the GC settings were as follows: 3 minutes isothermal at 50 °C, heat up to 200 °C at 12
  • the emission potential was measured on the basis of the sum of all values provided by the emitted substances after gas chromatography analysis and flame ionization detection with acetone as the calibration standard.
  • Sample introduction (pellets, about 1 gram) was by headspace analysis (10 ml head space vial) after conditioning at 120°C for 5 hours prior to the measurement.
  • the unit is ⁇ gC/g ( ⁇ g carbon per g of sample), respectively ppm.
  • VOC/FOG emission was measured according to VDA 278:2002 on the granulated compounds.
  • the volatile organic compounds are measured in toluene equivalents per gram sample ( ⁇ gTE/g).
  • the fogging is measured in hexadecane equivalents per gram sample ( ⁇ gHD/g).
  • the measurements were carried out with a TDSA supplied by Gerstel using helium 5.0 as carrier gas and a column HP Ultra 2 of 50 m length and 0.32 mm diameter and 0.52 ⁇ m coating of 5 % Phenyl-Methyl-Siloxane.
  • the VOC-Analysis was done according to device setting 1 listed in the standard using following main parameters: flow mode splitless, final temperature 90 °C; final time 30 min, rate 60K/min.
  • the cooling trap was purged with a flow-mode split 1:30 in a temperature range from -150 °C to + 280 °C with a heating rate of 12 K/sec and a final time of 5 min.
  • the following GC settings were used for analysis: 2 min isothermal at 40 °C. heating at 3 K/min up to 92 °C, then at 5 K/min up to 160 °C, and then at 10 K/min up to 280 °C, 10 minutes isothermal; flow 1,3 ml/min.
  • the FOG analysis was done according to device setting 1 listed in the standard using following main parameters: flow-mode splitless, rate 60K/min; final temperature 120 °C; final time 60 min.
  • the cooling trap was purged with a flow-mode split 1:30 in a temperature range from -150 °C to + 280 °C with a heating rate of 12 K/sec.
  • the following GC-settings were used for analysis: isothermal at 50 °C for 2 min, heating at 25 K/min up to 160 °C, then at 10 K/min up to 280 °C, 30 minutes isothermal; flow 1,3 ml/min.
  • the catalyst used in the Inventive Examples IE1 to IE4 has been prepared following the procedure described in WO 2013/007650 A1 for catalyst E2, by adjusting the metallocene and MAO amounts in order to achieve the Al/Zr ratios indicated in table 1.
  • the catalyst has been off-line prepolymerized with propylene, following the procedure described in WO 2013/007650 A1 for catalyst E2P.
  • the complex used was rac-anti-Me 2 Si(2-Me-4-(p- t BuPh)-Ind)(2-Me-4-Ph-5-OMe-6- t Bu-Ind)ZrCl 2 .
  • Metallocene complex content of off-line prepolymerized catalyst 0.696 wt.%
  • the catalyst used in the polymerization process of the base polymer for CE5 has been produced as follows: First, 0.1 mol of MgCl 2 x 3 EtOH was suspended under inert conditions in 250 ml of decane in a reactor at atmospheric pressure. The solution was cooled to the temperature of -15°C and 300 ml of cold TiCl 4 was added while maintaining the temperature at said level. Then, the temperature of the slurry was increased slowly to 20 °C. At this temperature, 0.02 mol of dioctylphthalate (DOP) was added to the slurry. After the addition of the phthalate, the temperature was raised to 135 °C during 90 minutes and the slurry was allowed to stand for 60 minutes.
  • DOP dioctylphthalate
  • the catalyst was prepolymerized with vinyl cyclohexane in an amount to achieve a concentration of 200 ppm poly(vinyl cyclohexane) (PVCH) in the final polymer.
  • PVCH poly(vinyl cyclohexane)
  • the base polymers for IE1 to IE 4 and the base polymer of CE1 and CE2 have been prepared in a Borstar® PP pilot plant with a prepolymerization reactor, a loop reactor and 2 gas phase reactors (GPR1 and GPR2) connected in series.
  • Table 1 Preparation of base polymers for IE1 to IE 4 and for CE1 and CE2
  • the base polymers (BP1) for IE1 and IE 2 are the same, the base polymers for IE3 and IE4 (BP2) are the same and the base polymers for CE1 and CE2 (BP3) are the same unit IE1/IE2 (BP1) IE3/IE4 (BP2) CE1/CE2 (BP3)
  • Prepolymerization Amount of cat g/kg C 3 0.079 0.085 0.110 Temperature °C 20 20 20 Residence time h 0.45 0.43 0.47 Loop Temperature °C 80 80 80 80 Split % 49 43 46 H 2 /C 3 ratio mol/kmol 0.26 0.18 0.31 C 2 content % 0 0 0 MFR 2 g/10min 6.3 3.3 8.2 XS % 0.9 0.8 1.8 GPR1 Temperature °C 80 80 80 Split % 51 49 54 Pressure kPa 1800 2109 3000 H 2 /C 3 ratio mol/k
  • Base polymer (BP4) for CE3 is a mixture of 79.2 wt.% of HF700SA, being a PP homopolymer commercially available from Borealis AG, Austria, having an MFR (230°C/2.16kg) of 21 g/10min, a density of 905 kg/m 3 and a melting point (DSC) of 165°C and 20.8 wt.% of BE50, being a PP homopolymer commercially available from Borealis AG, Austria, having an MFR (230°C/2.16kg) of 0.3 g/10min, a density of 905 kg/m 3 and a melting point (DSC) of 165°C.
  • Base polymer (BP5) for CE4 is a mixture of of 79.1 wt.% of HF700SA, being a PP homopolymer commercially available from Borealis AG, Austria, having an MFR (230°C/2.16kg) of 21 g/10min, a density of 905 kg/m 3 and a melting point (DSC) of 165°C and 20.9 wt.% of BE50, being a PP homopolymer commercially available from Borealis AG, Austria, having an MFR (230°C/2.16kg) of 0.3 g/10min, a density of 905 kg/m 3 and a melting point (DSC) of 165°C.
  • Base polymer (BP7) for CE6 is the commercial polypropylene random copolymer (PP-RACO) "RF366MO" of Borealis AG with an MFR 2 of 20 g/10 min, a melting temperature of 151 °C, an ethylene content of 3.3 wt.-%, a XCS content of 6.0 wt.%, a density of 905 kg/m 3 , and a tensile modulus of 1,200 MPa;
  • inventive examples IE1 to IE4 and comparative examples CE1 to CE6 were prepared by compounding on a co-rotating twin-screw extruder with a screw configuration typical for glass fiber mixing using a temperature range between 200 and 240°C.
  • AP-1 is the commercial maleic anhydride functionalized polypropylene "Exxelor PO1020" of Exxon Mobil with a density 0.9 g/cm 3 , an MFR 2 of 430 g/10min and an MAH content of 1.0 mol.-%;
  • AP-2 is the commercial maleic anhydride functionalized polypropylene "Scona TPPP 2112FA” of Kometra GmbH, Germany with a density of 0.9 g/cm 3 , having an MFR 2 of 5 g/10min and an MAH content of 1.2 mol.-%.
  • DSTDP is the heat stabilizer Di-stearyl-thio-di-propionate (CAS No. 693-36-7) commercially available as Irganox PS-802 FL from BASF AG, Germany
  • A03 is the primary antioxidant Bis-(3,3-bis-(4-'-hydroxy-3'-tert. butylphenyl)butanic acid)-glycolester (CAS No. 32509-66-3) commercially available as Hostanox 03 from Clariant SE, Switzerland
  • P168 is the secondary antioxidant Tris (2,4-di-t-butylphenyl) phosphite (CAS No. 31570-04-4) commercially available as Irgafos 168 from BASF AG, Germany
  • MB-1 is the commercial carbon black masterbatch "Plasblak PE4103" of Cabot Corporation, Germany
  • GF are the commercial glass fibers "Thermo Flow ® Chopped Strand 636 for PP" of Johns Manville, which are E-glass fibers coated with a silane based sizing, a length of 4 mm, and an average diameter of 13 ⁇ m
  • compositions have the following properties Parameter unit IE1 IE2 IE3 IE4 CE1 CE2 CE3 CE4 CE5 CE6 MFR 2 g/10min 4 3 3 2 4 3 3 2 4.2 6.2 CV ppm 3 2 1 1 7 6 30 23 33 35 VOC ppm 28 25 33 25 44 43 104 93 122 134 FOG ppm 74 74 95 93 138 147 254 239 266 287 TM MPa 3807 5486 3958 5756 4767 6814 5087 6982 7060 6158 Bstress MPa 66 82 66 83 82 102 85 104 108 95 Bstrain % 5.59 5.26 5.05 4.93 3.9 3.7 3.58 3.36 3.4 4.2 IS kJ/m 2 11.48 14.8 12.6 15.2 9.7 12.2 9.2 11.6 n.d n.d NIS kJ/m 2 7.2 9.3 8.5 10.4 7.5 9.6 7.4 9.6 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.
  • compositions of the Inventive Examples show much better impact/stiffness balance as the compositions of the Comparative Examples CE1 to CE4.
  • compositions of the Inventive Examples have clearly lower emissions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Reinforced Plastic Materials (AREA)
EP14155222.4A 2014-02-14 2014-02-14 Composition de polypropylène Withdrawn EP2907841A1 (fr)

Priority Applications (13)

Application Number Priority Date Filing Date Title
EP14155222.4A EP2907841A1 (fr) 2014-02-14 2014-02-14 Composition de polypropylène
EP15702795.4A EP3105287B1 (fr) 2014-02-14 2015-02-06 Composition de polypropylène
JP2016550557A JP2017509742A (ja) 2014-02-14 2015-02-06 ポリプロピレン複合材料
KR1020167024399A KR101759857B1 (ko) 2014-02-14 2015-02-06 폴리프로필렌 복합재
PCT/EP2015/052476 WO2015121160A1 (fr) 2014-02-14 2015-02-06 Composite en polypropylène
MX2016009938A MX352067B (es) 2014-02-14 2015-02-06 Material compuesto de polipropileno.
EA201600565A EA031496B1 (ru) 2014-02-14 2015-02-06 Композиция полипропилена, усиленная волокном, способ ее получения и содержащие ее изделия
US15/115,929 US10030109B2 (en) 2014-02-14 2015-02-06 Polypropylene composite
CA2938228A CA2938228C (fr) 2014-02-14 2015-02-06 Composite en polypropylene
ES15702795.4T ES2674238T3 (es) 2014-02-14 2015-02-06 Material compuesto de polipropileno
CN201580006592.0A CN106255718B (zh) 2014-02-14 2015-02-06 聚丙烯复合物
BR112016017887-4A BR112016017887B1 (pt) 2014-02-14 2015-02-06 composição reforçada com fibra, processo para preparação de uma composição reforçada com fibra, artigo automotivo, e, artigo de espuma
ZA2016/04861A ZA201604861B (en) 2014-02-14 2016-07-14 Polypropylene composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14155222.4A EP2907841A1 (fr) 2014-02-14 2014-02-14 Composition de polypropylène

Publications (1)

Publication Number Publication Date
EP2907841A1 true EP2907841A1 (fr) 2015-08-19

Family

ID=50101784

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14155222.4A Withdrawn EP2907841A1 (fr) 2014-02-14 2014-02-14 Composition de polypropylène
EP15702795.4A Active EP3105287B1 (fr) 2014-02-14 2015-02-06 Composition de polypropylène

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15702795.4A Active EP3105287B1 (fr) 2014-02-14 2015-02-06 Composition de polypropylène

Country Status (12)

Country Link
US (1) US10030109B2 (fr)
EP (2) EP2907841A1 (fr)
JP (1) JP2017509742A (fr)
KR (1) KR101759857B1 (fr)
CN (1) CN106255718B (fr)
BR (1) BR112016017887B1 (fr)
CA (1) CA2938228C (fr)
EA (1) EA031496B1 (fr)
ES (1) ES2674238T3 (fr)
MX (1) MX352067B (fr)
WO (1) WO2015121160A1 (fr)
ZA (1) ZA201604861B (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195623A (zh) * 2018-11-15 2021-07-30 博里利斯股份公司 组合物
CN114746595A (zh) * 2019-12-04 2022-07-12 博里利斯股份公司 具有改善的阻隔性能的轻质熔喷网
CN115605537A (zh) * 2020-05-22 2023-01-13 北欧化工公司(At) 玻璃纤维复合材料
CN116075544A (zh) * 2020-09-11 2023-05-05 博里利斯股份公司 具有增加的表面张力保留率的聚丙烯基制品

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6216887B2 (ja) 2013-08-14 2017-10-18 ボレアリス・アクチェンゲゼルシャフトBorealis Ag 低温における耐衝撃性が改善されたプロピレン組成物
EA031054B1 (ru) 2013-08-21 2018-11-30 Бореалис Аг Композиция полиолефина с высокой текучестью, жесткостью и ударной вязкостью
KR101805396B1 (ko) 2013-08-21 2017-12-06 보레알리스 아게 높은 강성 및 인성을 갖는 고유동 폴리올레핀 조성물
ES2587781T3 (es) 2013-09-27 2016-10-26 Borealis Ag Películas adecuadas para procesamiento BOPP de polímeros con altos XS y alta Tm
ES2568615T3 (es) 2013-10-11 2016-05-03 Borealis Ag Película para etiquetas orientada en la dirección de la máquina
CN105612188B (zh) 2013-10-24 2018-09-28 北欧化工公司 具有高含量的区域错误和高分子量的低熔点pp均聚物
BR112016011829B1 (pt) 2013-12-04 2022-01-18 Borealis Ag Composição de polipropileno, fibra e trama soprada em fusão, artigo e uso da composição de polipropileno
WO2015091839A1 (fr) 2013-12-18 2015-06-25 Borealis Ag Film bopp présentant un meilleur équilibre rigidité/résistance
US10227427B2 (en) 2014-01-17 2019-03-12 Borealis Ag Process for preparing propylene/1-butene copolymers
US10100186B2 (en) 2014-02-06 2018-10-16 Borealis Ag Soft and transparent impact copolymers
WO2015117958A1 (fr) 2014-02-06 2015-08-13 Borealis Ag Copolymères souples à haute résistance aux chocs
EP2907841A1 (fr) 2014-02-14 2015-08-19 Borealis AG Composition de polypropylène
EP3140329B1 (fr) 2014-05-06 2019-07-24 Basell Poliolefine Italia S.r.l. Copolymères de propylène-éthylène aléatoire et leur procédé de préparation
ES2659731T3 (es) 2014-05-20 2018-03-19 Borealis Ag Composición de polipropileno para aplicaciones en interiores de automóviles
US10479849B2 (en) 2015-11-02 2019-11-19 Braskem America, Inc. Low emission propylene-based polymer resins
PL3309211T3 (pl) * 2016-10-17 2019-05-31 Borealis Ag Kompozyt polipropylenowy wzmocniony włóknem
CN110291139A (zh) 2017-01-10 2019-09-27 国际人造丝公司 用于薄零件的长纤维增强的丙烯组合物
CN110291140A (zh) * 2017-01-10 2019-09-27 国际人造丝公司 具有低排放的高流动纤维增强的丙烯组合物
EP3489297B1 (fr) 2017-11-28 2021-08-04 Borealis AG Composition polymère présentant une meilleure adhérence de la peinture
ES2890961T3 (es) 2017-11-28 2022-01-25 Borealis Ag Composición de polímero con adherencia de la pintura mejorada
EP3495421B2 (fr) * 2017-12-05 2024-03-13 Borealis AG Composition polymère renforcée par des fibres
PL3495422T3 (pl) 2017-12-05 2021-05-31 Borealis Ag Kompozycja polipropylenowa wzmocniona włóknami
ES2874060T3 (es) 2017-12-05 2021-11-04 Borealis Ag Artículo que comprende una composición de polipropileno reforzada con fibra
PT3502177T (pt) 2017-12-20 2020-03-17 Borealis Ag Composição de polipropileno
IL257637B (en) 2018-02-20 2021-10-31 Carmel Olefins Ltd Impact strength polypropylene copolymers with low volatile emissions
EP3781397A1 (fr) 2018-04-16 2021-02-24 Borealis AG Elément multicouche
CN110498973B (zh) 2018-05-16 2023-09-01 北欧化工公司 发泡聚丙烯组合物
EP3584089A1 (fr) 2018-06-19 2019-12-25 Borealis AG Composition de polyoléfine fournissant un contraste amélioré de marques au laser
US12043687B2 (en) 2018-08-02 2024-07-23 Borealis Ag Process for polymerizing ethylene in a multi-stage polymerization process
US11827777B2 (en) 2018-09-26 2023-11-28 Borealis Ag Propylene copolymer with excellent optical properties
US12006426B2 (en) 2018-09-26 2024-06-11 Borealis Ag Propylene random copolymer for use in film applications
SG11202101137YA (en) 2018-10-02 2021-03-30 Borealis Ag Low speed cross-linking catalyst for silane-grafted plastomers
WO2020069951A1 (fr) 2018-10-02 2020-04-09 Borealis Ag Réticulation à grande vitesse de plastomères greffés
CN113195605A (zh) 2018-12-20 2021-07-30 博里利斯股份公司 具有改善的击穿强度的双轴取向聚丙烯膜
CN113166486B (zh) * 2018-12-20 2023-04-11 博禄塑料(上海)有限公司 用于车辆轻量外部部件的聚丙烯组合物
WO2021001175A1 (fr) 2019-07-04 2021-01-07 Borealis Ag Composition de polymère de propylène ramifié à chaîne longue
EP3763777B1 (fr) 2019-07-08 2022-03-16 Borealis AG Procédé de réduction de la teneur en aldéhyde et polyoléfine recyclée à faible teneur en aldéhyde
WO2022157234A1 (fr) 2021-01-22 2022-07-28 Borealis Ag Composition de polypropylène renforcée de fibres
EP4299668A1 (fr) * 2022-07-01 2024-01-03 Borealis AG Composition de polypropylène renforcé par fibres de verre

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491566A2 (fr) 1990-12-19 1992-06-24 Borealis A/S Procédé de modification de catalyseurs de polymérisation d'oléfines
WO1992012182A1 (fr) 1990-12-28 1992-07-23 Neste Oy Procede de production de polyethylene en plusieurs etapes
EP0572028A1 (fr) 1992-05-29 1993-12-01 Montell North America Inc. Concentrés utilisables pour la préparation de polyoléfines modifiées et procédé de modification utilisant ces concentrés
EP0586390A1 (fr) 1991-05-09 1994-03-16 Neste Oy Polyolefine a gros grains, production de cette polyolefine et procatalyseur contenant un produit de transesterification entre un alcool inferieur et du dioctylphtalate utilise a cet effet.
EP0591224A1 (fr) 1991-05-09 1994-04-13 Borealis A/S Procatalyseur pour la polymerisation d'olefines contenant un produit de transesterification entre un alcool inferieur et un ester d'acide phtalique
WO1994014856A1 (fr) 1992-12-28 1994-07-07 Mobil Oil Corporation Procede de production d'un materiau porteur
WO1995012622A1 (fr) 1993-11-05 1995-05-11 Borealis Holding A/S Catalyseur de polymerisation d'olefines sur support, sa preparation et son utilisation
WO1998016359A1 (fr) 1996-10-14 1998-04-23 Dsm N.V. Granules cylindriques
EP0887379A1 (fr) 1997-06-24 1998-12-30 Borealis A/S Procédé et dispositif pour la préparation d'homopolymères ou de copolymères de propylène
WO1999024479A1 (fr) 1997-11-07 1999-05-20 Borealis A/S Nouveaux polymeres de propylene et produits derives
WO1999024478A1 (fr) 1997-11-07 1999-05-20 Borealis A/S Procede de preparation de polypropylene
WO2000068315A1 (fr) 1999-05-07 2000-11-16 Borealis Technology Oy Polymeres de propylene de haute rigidite et leur obtention
WO2004000899A1 (fr) 2002-06-25 2003-12-31 Borealis Technology Oy Polyolefine presentant une meilleure resistance aux eraflures et son procede de fabrication
WO2004111095A1 (fr) 2003-06-06 2004-12-23 Borealis Technology Oy Procede de polymerisation catalytique d'olefines, systeme de reacteur, utilisation de celui-ci dans ledit procede, polyolefines obtenues et utilisation de celles-ci
WO2006069733A1 (fr) 2004-12-31 2006-07-06 Borealis Technology Oy Procede
WO2006097497A1 (fr) 2005-03-18 2006-09-21 Basell Polyolefine Gmbh Composes de type metallocene
WO2008074713A1 (fr) * 2006-12-20 2008-06-26 Basell Poliolefine Italia S.R.L. Compositions polyoléfiniques chargées
EP2062936A1 (fr) 2007-11-20 2009-05-27 Borealis Technology OY Polypropylène amélioré renforcé aux fibres de verre
WO2010052260A1 (fr) 2008-11-07 2010-05-14 Borealis Ag Composition de catalyseur solide
WO2011144703A1 (fr) * 2010-05-21 2011-11-24 Borealis Ag Composition
EP2308923B1 (fr) 2009-10-09 2012-05-16 Borealis AG Composite en fibres de verre de traitement amélioré
WO2013007650A1 (fr) 2011-07-08 2013-01-17 Borealis Ag Catalyseurs

Family Cites Families (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226963A (en) 1971-06-25 1980-10-07 Montedison S.P.A. Process for the stereoregular polymerization of alpha-olephins
US4107414A (en) 1971-06-25 1978-08-15 Montecatini Edison S.P.A. Process for the stereoregular polymerization of alpha olefins
US4186107A (en) 1978-04-14 1980-01-29 Hercules Incorporated Solid catalyst component for olefin polymerization
US4347160A (en) 1980-06-27 1982-08-31 Stauffer Chemical Company Titanium halide catalyst system
IT1209255B (it) 1980-08-13 1989-07-16 Montedison Spa Catalizzatori per la polimerizzazione di olefine.
JPS57153005A (en) 1981-03-19 1982-09-21 Ube Ind Ltd Polymerization of alpha-olefin
US4530912A (en) 1981-06-04 1985-07-23 Chemplex Company Polymerization catalyst and method
ATE20239T1 (de) 1981-08-07 1986-06-15 Ici Plc Uebergangsmetallzusammensetzung auf einem traeger aufgebracht.
US4382019A (en) 1981-09-10 1983-05-03 Stauffer Chemical Company Purified catalyst support
IT1190683B (it) 1982-02-12 1988-02-24 Montedison Spa Componenti e catalizzatori per la polimerizzazione di olefine
IT1190681B (it) 1982-02-12 1988-02-24 Montedison Spa Componenti e catalizzatori per la polimerizzazione di olefine
IT1190682B (it) 1982-02-12 1988-02-24 Montedison Spa Catalizzatori per la polimerizzazione di olefine
US4532313A (en) 1982-10-13 1985-07-30 Himont Incorporated Method for preparing an improved catalyst support, Ziegler-Natta catalyst utilizing said support and polymerization of 1-olefins utilizing said catalyst
US4560671A (en) 1983-07-01 1985-12-24 Union Carbide Corporation Olefin polymerization catalysts adapted for gas phase processes
US4657882A (en) 1984-11-26 1987-04-14 Amoco Corporation Supported olefin polymerization catalyst produced from a magnesium alkyl/organophosphoryl complex
US4581342A (en) 1984-11-26 1986-04-08 Standard Oil Company (Indiana) Supported olefin polymerization catalyst
US4665208A (en) 1985-07-11 1987-05-12 Exxon Chemical Patents Inc. Process for the preparation of alumoxanes
FI80055C (fi) 1986-06-09 1990-04-10 Neste Oy Foerfarande foer framstaellning av katalytkomponenter foer polymerisation av olefiner.
US5077255A (en) 1986-09-09 1991-12-31 Exxon Chemical Patents Inc. New supported polymerization catalyst
EP0406912B1 (fr) 1986-09-24 1994-11-30 Mitsui Petrochemical Industries, Ltd. Procédé de polymérisation d'oléfines
JPH0780933B2 (ja) 1986-11-20 1995-08-30 三井石油化学工業株式会社 オレフインの重合方法
JPH0742301B2 (ja) 1987-02-14 1995-05-10 三井石油化学工業株式会社 微粒子状アルミノオキサン、その製法およびその用途
JP2538588B2 (ja) 1987-04-03 1996-09-25 三井石油化学工業株式会社 オレフイン重合用固体触媒の製法
US5206199A (en) 1987-04-20 1993-04-27 Mitsui Petrochemical Industries, Ltd. Catalyst for polymerizing an olefin and process for polymerizing an olefin
US5091352A (en) 1988-09-14 1992-02-25 Mitsui Petrochemical Industries, Ltd. Olefin polymerization catalyst component, olefin polymerization catalyst and process for the polymerization of olefins
IT1227260B (it) 1988-09-30 1991-03-28 Himont Inc Dieteri utilizzabili nella preparazione di catalizzatori ziegler-natta
US4908463A (en) 1988-12-05 1990-03-13 Ethyl Corporation Aluminoxane process
US5103031A (en) 1989-02-21 1992-04-07 Ethyl Corporation Falling film aluminoxane process
US4968827A (en) 1989-06-06 1990-11-06 Ethyl Corporation Alkylaluminoxane process
US4924018A (en) 1989-06-26 1990-05-08 Ethyl Corporation Alkylaluminoxane process
US5036034A (en) 1989-10-10 1991-07-30 Fina Technology, Inc. Catalyst for producing hemiisotactic polypropylene
JPH0813826B2 (ja) 1990-11-29 1996-02-14 信越化学工業株式会社 テキシルトリアルコキシシラン
SE467825B (sv) 1991-01-22 1992-09-21 Neste Oy Saett att vid plastmaterial eliminera luktande/smakande aemnen
FI88049C (fi) 1991-05-09 1993-03-25 Neste Oy Polyolefin med stora porer, foerfarande foer dess framstaellning och en i foerfarandet anvaend katalysator
FI90247C (fi) 1991-05-31 1994-01-10 Borealis As Menetelmä polymerointikatalyytin aktiivisten ja tasakokoisten kantajahiukkasten valmistamiseksi
US5308815A (en) 1991-07-26 1994-05-03 Ethyl Corporation Heterogeneous methylaluminoxane catalyst system
US5235081A (en) 1992-03-18 1993-08-10 Ethyl Corporation Method of removing gel forming materials from methylaluminoxanes
US5157137A (en) 1991-07-26 1992-10-20 Ethyl Corporation Method of making gel free alkylaluminoxane solutions
US5416228A (en) 1991-10-07 1995-05-16 Fina Technology, Inc. Process and catalyst for producing isotactic polyolefins
FI90248C (fi) 1991-11-29 1994-01-10 Borealis As Menetelmä hiukkasmaisen kantajan valmistamiseksi olefiinipolymerointikatalyyttiä varten
FI91967C (fi) 1991-11-29 1994-09-12 Borealis Polymers Oy Menetelmä olefiinipolymerointikatalyyttien valmistamiseksi
US5329032A (en) 1992-03-18 1994-07-12 Akzo Chemicals Inc. Polymethylaluminoxane of enhanced solution stability
FI95715C (fi) 1992-03-24 1996-03-11 Neste Oy Suihkukiteyttämällä valmistetun polymerointikatalyyttikantajan valmistus
US5248801A (en) 1992-08-27 1993-09-28 Ethyl Corporation Preparation of methylaluminoxanes
US5391793A (en) 1992-11-02 1995-02-21 Akzo Nobel N.V. Aryloxyaluminoxanes
US5939346A (en) 1992-11-02 1999-08-17 Akzo Nobel N.V. Catalyst system comprising an aryloxyaluminoxane containing an electron withdrawing group
EP0841371B1 (fr) 1993-01-11 2002-11-20 Mitsui Chemicals, Inc. Composition polymère de propylène
US5391529A (en) 1993-02-01 1995-02-21 Albemarle Corporation Siloxy-aluminoxane compositions, and catalysts which include such compositions with a metallocene
CA2121721C (fr) 1993-04-29 2004-11-23 Giampiero Morini Polypropylenes cristallins a taux de fluage eleve et a plage de poids moleculaire etroite
DE69434709T2 (de) 1993-06-07 2006-10-19 Mitsui Chemicals, Inc. Propylenelastomere
DE4337251A1 (de) 1993-09-27 1995-03-30 Hoechst Ag Biaxial orientierte Polypropylenfolie mit verbesserten Eigenschaften hinsichtlich Mechanik und Barriere
FI96214C (fi) 1994-05-31 1996-05-27 Borealis As Olefiinien polymerointiin tarkoitettu stereospesifinen katalyyttisysteemi
US5529850A (en) 1994-07-05 1996-06-25 Montell North America Inc. Fibers produced from crystalline propylene polymers having high melt flow rate values and a narrow molecular weight distribution
US6322883B1 (en) 1994-07-15 2001-11-27 Exxonmobil Oil Corporation Uniaxially shrinkable biaxially oriented polypropylene film with HDPE skin
IL117114A (en) 1995-02-21 2000-02-17 Montell North America Inc Components and catalysts for the polymerization ofolefins
US5731253A (en) 1995-07-27 1998-03-24 Albemarle Corporation Hydrocarbylsilloxy - aluminoxane compositions
US6403772B1 (en) 1995-09-11 2002-06-11 Montell Technology Company, Bv Open-pentadienyl metallocenes, precursors thereof and polymerization catalysts therefrom
US5922631A (en) 1995-10-19 1999-07-13 Albemarle Corporation Liquid clathrate aluminoxane compositions as co-catalysts with transition metal catalyst compounds
US5670682A (en) 1995-10-19 1997-09-23 Albemarle Corporation Liquid clathrate aluminoxane compositions
US5693838A (en) 1995-11-13 1997-12-02 Albemarle Corporation Aluminoxane process and product
FI104826B (fi) 1996-01-30 2000-04-14 Borealis As Heteroatomilla substituoituja metalloseeniyhdisteitä olefiinipolymerointikatalyytti-systeemejä varten ja menetelmä niiden valmistamiseksi
JPH09268248A (ja) * 1996-03-29 1997-10-14 Tonen Chem Corp 熱可塑性樹脂組成物
FI102070B (fi) 1996-03-29 1998-10-15 Borealis As Uusi kompleksiyhdiste, sen valmistus ja käyttö
US5731451A (en) 1996-07-12 1998-03-24 Akzo Nobel Nv Modified polyalkylauminoxane composition formed using reagent containing aluminum trialkyl siloxide
FI963707A0 (fi) 1996-09-19 1996-09-19 Borealis Polymers Oy Foerfarande foer polymerisering av alfa-olefiner, vid polymerisering anvaendbar katalysator och foerfarande foer framstaellning av densamma
US5744656A (en) 1996-10-25 1998-04-28 Boulder Scientific Company Conversion of hexafluorobenzene to bromopentafluorobenzene
FI971565A (fi) 1997-04-14 1998-10-15 Borealis As Olefiinien polymerointiin tarkoitettujen katalysaattorisysteemien substituoituja metalloseeniyhdisteitä, niiden välituotteet ja valmistusmenetelmä
KR100553633B1 (ko) 1997-03-07 2006-02-22 타고르 게엠베하 치환된 인다논의 제조 방법
GB9708487D0 (en) 1997-04-25 1997-06-18 Bp Chem Int Ltd Novel catalysts for olefin polymerisation
DE59805425D1 (de) 1997-06-10 2002-10-10 Peroxid Chemie Gmbh & Co Kg Neue katalysatorsysteme für (co-)polymerisationsreaktionen, metallocenamidhalogenide und ihre verwendung
WO1998058976A1 (fr) 1997-06-24 1998-12-30 Borealis A/S Procede permettant de preparer des polymeres de propylene
FI111845B (fi) 1997-06-24 2003-09-30 Borealis Tech Oy Menetelmä propeenin homopolymeerien ja iskulujuudeltaan modifioitujen polymeerien valmistamiseksi
FI111846B (fi) 1997-06-24 2003-09-30 Borealis Tech Oy Menetelmä ja laitteisto polypropeeniseosten valmistamiseksi
FI111847B (fi) 1997-06-24 2003-09-30 Borealis Tech Oy Menetelmä propeenin kopolymeerien valmistamiseksi
FI104824B (fi) 1997-06-24 2000-04-14 Borealis As Menetelmä propeenin terpolymeerien aikaansaamiseksi
FI973451A0 (fi) 1997-08-22 1997-08-22 Borealis As Ny organometalfoerening och metod foer polymerisation av olefiner med hjaelp av en katalytkomposition som innehaoller denna organometalfoerening
PT1015501E (pt) 1997-09-05 2002-11-29 Bp Chem Int Ltd Catalisadores de polimerizacao
GB9721559D0 (en) 1997-10-11 1997-12-10 Bp Chem Int Ltd Novel polymerisation catalysts
EP1042330B1 (fr) 1997-12-23 2003-03-12 Borealis Technology Oy Produit contenant du magnesium, de l'halogene et de l'alcoxy
CA2321419A1 (fr) 1998-02-12 1999-08-19 Woo-Kyu Kim Composes de catalyseur avec ligands anioniques beta-diiminate, et procedes de polymerisation d'olefines
GB9826874D0 (en) 1998-12-07 1999-01-27 Borealis As Process
US7342078B2 (en) 1999-12-23 2008-03-11 Basell Polyolefine Gmbh Transition metal compound, ligand system, catalyst system and the use of the latter for polymerisation and copolymerisation of olefins
US6492465B1 (en) 2000-02-08 2002-12-10 Exxonmobil Chemical Patents, Inc. Propylene impact copolymers
GB0007002D0 (en) 2000-03-22 2000-05-10 Borealis Polymers Oy Catalysts
DE60112307T8 (de) 2000-06-30 2007-02-15 Exxonmobil Chemical Patents Inc., Baytown Metallocenverbindungen mit einem verbrückten 4-phenylindenyl-ligandsystem zur polymerisation von olefinen
US6586528B1 (en) 2000-11-15 2003-07-01 Polypropylene Belgium (Naamlose Vennootshap) Composition based on propylene polymers and process for obtaining same
US6642317B1 (en) 2000-11-15 2003-11-04 Polypropylene Belgium Naamlose Vennootschap Composition based on propylene polymers and process for obtaining same
TWI238169B (en) 2000-12-22 2005-08-21 Basell Technology Co Bv Bioriented polypropylene films
RU2278130C2 (ru) 2000-12-22 2006-06-20 Базелль Полиолефин Италия С.П.А. Полиолефиновый лист для термоформования
ATE328015T1 (de) 2001-06-20 2006-06-15 Borealis Polymers Oy Herstellung eines katalysatorbestandteils zur olefinpolymerisation
PT1273595E (pt) 2001-06-20 2006-10-31 Borealis Tech Oy Preparacao de um componente catalisador para polimerizacao de olefina
EP1270627B1 (fr) 2001-06-27 2005-01-12 Borealis Technology Oy Resine de polymere de propylene presentant des proprietes ameliorees
JP2003128854A (ja) 2001-10-19 2003-05-08 Grand Polymer Co Ltd ポリプロピレン系樹脂組成物、その製造方法およびその発泡体
WO2003046021A1 (fr) 2001-11-27 2003-06-05 Basell Poliolefine Italia S.P.A. Compositions de polymere de propylene claires et flexibles
MY136330A (en) 2001-12-12 2008-09-30 Basell Poliolefine Spa Process for the polymerization of olefins
EP1323747A1 (fr) 2001-12-19 2003-07-02 Borealis Technology Oy Procédé pour la préparation des catalyseurs pour la polymérisation oléfinique
ATE287420T1 (de) 2002-02-04 2005-02-15 Borealis Tech Oy Film mit hoher schlagfestigkeit
WO2003082879A1 (fr) 2002-03-28 2003-10-09 Albemarle Corporation Compositions d'aluminoxanates ioniques et utilisation de ces compositions dans une catalyse
AU2003247735B2 (en) 2002-06-26 2010-03-11 Avery Dennison Corporation Oriented films comprising polypropylene / olefin elastomer blends
US7112642B2 (en) 2002-08-01 2006-09-26 Basell Poliolefine Italia S.P.A. Highly stereoregular polypropylene with improved properties
US7807769B2 (en) 2002-09-20 2010-10-05 Exxonmobil Chemical Patents Inc. Isotactic polypropylene produced from supercritical polymerization process
EP1403292B1 (fr) 2002-09-30 2016-04-13 Borealis Polymers Oy Procédé pour la préparation d'un catalyseur pour la polymérisation d'olefins avec une amélioration d'activité à haute temperature
EP1452630A1 (fr) 2003-02-26 2004-09-01 Borealis Technology OY Fibres de polypropylène
DE10359366A1 (de) 2003-12-18 2005-07-21 Nordenia Deutschland Gronau Gmbh Etikettenfolien-Laminat
EP1697445A1 (fr) 2003-12-24 2006-09-06 Petroquimica Cuyo S.A.I.C. Compositions de resine utiles comme couches de scellement
US20050187367A1 (en) 2004-02-19 2005-08-25 Sumitomo Chemical Company, Limited Biaxially oriented polypropylene film
US20050200046A1 (en) 2004-03-10 2005-09-15 Breese D. R. Machine-direction oriented multilayer films
US7285608B2 (en) 2004-04-21 2007-10-23 Novolen Technology Holdings C.V. Metallocene ligands, metallocene compounds and metallocene catalysts, their synthesis and their use for the polymerization of olefins
PL1632529T3 (pl) 2004-09-02 2013-04-30 Borealis Tech Oy Polimerowa rura bezciśnieniowa, kompozycja polimeru i sposób jej wytwarzania
CN100363417C (zh) 2005-01-28 2008-01-23 中国石油化工股份有限公司 丙烯聚合物组合物和由其制备的双向拉伸薄膜
US20060177641A1 (en) 2005-02-09 2006-08-10 Breese D R Multilayer polyethylene thin films
US20060211801A1 (en) 2005-03-16 2006-09-21 Fina Technology, Inc. Polyolefin film and production thereof
EP1726602A1 (fr) 2005-05-27 2006-11-29 Borealis Technology Oy Polymère de propylene a haute cristallinité
EP1741725B1 (fr) 2005-07-08 2014-04-09 Borealis Technology Oy Composition à base de polypropylène
EP1788023A1 (fr) 2005-11-21 2007-05-23 Borealis Technology Oy Composition de polypropylène multimodal
EP1803743B1 (fr) 2005-12-30 2016-08-10 Borealis Technology Oy Catalyseur particulé
ATE526337T1 (de) 2006-03-17 2011-10-15 Basell Polyolefine Gmbh Metallocenverbindungen
US20070235896A1 (en) 2006-04-06 2007-10-11 Fina Technology, Inc. High shrink high modulus biaxially oriented films
US7834205B2 (en) 2006-04-12 2010-11-16 Basell Polyolifine GmbH Metallocene compounds
WO2007122239A1 (fr) 2006-04-24 2007-11-01 Total Petrochemicals Research Feluy Utilisation d'un catalyseur ziegler-natta pour production d'un homopolymèreou un copolymère statistique présentant un indice de fluidité élevé
EP1862481B1 (fr) 2006-05-31 2016-08-31 Borealis Technology Oy Catalyseur avec un composant d'al-alkoxy
DE602006004987D1 (de) 2006-07-10 2009-03-12 Borealis Tech Oy Elektrischer Isolierfilm
US7977435B2 (en) 2006-07-12 2011-07-12 Lin Chon-Yie Propylene polymer compositions and processes for making the same
EP1967547A1 (fr) 2006-08-25 2008-09-10 Borealis Technology OY Substrat couche par extrusion
EP1902837A1 (fr) 2006-09-22 2008-03-26 Borealis Technology OY Film moulticouche
EP1923200A1 (fr) 2006-11-20 2008-05-21 Borealis Technology Oy article
DE602006007028D1 (de) 2006-12-18 2009-07-09 Borealis Tech Oy Terpolymer mit hohem Schmelzpunkt
US8309659B2 (en) * 2006-12-20 2012-11-13 Basell Poliolefine Italia S.R.L. Filled polyolefin compositions
DE602006009412D1 (de) 2006-12-21 2009-11-05 Borealis Tech Oy Film
EP1947143A1 (fr) 2007-01-19 2008-07-23 Borealis Technology Oy Composition de résine de polypropylène et article moulé à partir de ladite composition
EP1950241A1 (fr) 2007-01-25 2008-07-30 Borealis Technology Oy Compositions de polyéthylène multimodal
EP1950233A1 (fr) 2007-01-25 2008-07-30 Borealis Technology Oy polymère
CN101687951B (zh) 2007-04-27 2012-03-14 巴塞尔聚烯烃意大利有限责任公司 丁烯-1三元共聚物和它们的制备方法
ATE438666T1 (de) 2007-05-08 2009-08-15 Borealis Tech Oy Folie zur elektrischen isolierung
EP2014714A1 (fr) 2007-07-11 2009-01-14 Borealis Technology Oy Composition de polyoléfine hétérophasique
WO2009019169A1 (fr) 2007-08-03 2009-02-12 Basell Poliolefine Italia S.R.L. Procédé de production de terpolymères de propylène
US8067510B2 (en) 2007-08-24 2011-11-29 Union Carbide Chemicals & Plastics Technology Llc High melt flow propylene impact copolymer and method
EP2215129A2 (fr) 2007-08-27 2010-08-11 Borealis Technology OY Catalyseurs
KR20100101092A (ko) 2007-10-25 2010-09-16 루머스 노보렌 테크놀로지 게엠베하 메탈로센 화합물, 이를 포함하는 촉매, 이 촉매를 사용한 올레핀 폴리머생산방법, 및 올레핀 호모- 및 코폴리머
JPWO2009063819A1 (ja) 2007-11-13 2011-03-31 株式会社プライムポリマー 延伸シート用プロピレン系樹脂組成物、並びに該組成物を含む延伸シートおよび熱成形体
ES2378481T3 (es) 2007-11-30 2012-04-13 Borealis Technology Oy Proceso para la fabricación de copolímeros aleatorios de propileno
EP2075284B1 (fr) 2007-12-17 2013-05-29 Borealis Technology OY Polypropylène hétérophasique doté de propriétés de grande aptitude à l'écoulement et une résistance aux chocs à basse température
BRPI0820737B1 (pt) 2007-12-18 2018-06-19 Basell Poliolefine Italia S.R.L. Copolímeros de propileno com hexeno-1 e películas tubulares obtidas a partir destes, bem como processo de polimerização para a preparração do polímero e processo da película tubular
EP2147939A1 (fr) 2008-07-22 2010-01-27 Borealis AG Composition de polypropylène avec optiques améliorées pour films et applications de moulage
ES2431369T3 (es) 2008-10-01 2013-11-26 Braskem America, Inc. Copolímero aleatorio con contenido aumentado de etileno
US20100081760A1 (en) 2008-10-01 2010-04-01 Sunoco, Inc. (R&M) Film comprising a random copolymer with enhanced ethylene content
ES2546114T5 (es) 2008-10-07 2019-01-10 Borealis Ag Polipropileno heterofásico altamente fluido
WO2010053644A1 (fr) 2008-11-04 2010-05-14 Exxonmobil Chemical Patents Inc. Polymérisation de propylène homogène en super solution et polypropylènes associés
EP2251361B1 (fr) 2009-05-04 2013-10-02 Borealis AG Préparation de catalyseurs ZN PP précipités dotés d'une structure de pores internes utilisant des nanoparticules
EP2275476A1 (fr) 2009-06-09 2011-01-19 Borealis AG Matériau automobile doté d'une excellente fluidité, d'une grande rigidité, d'une excellente ductilité et d'un CLTE faible
US20110031645A1 (en) 2009-08-07 2011-02-10 Dow Global Technologies Inc. Polypropylene for use in bopp applications
EP2470600B1 (fr) 2009-08-28 2013-07-17 Borealis AG Composite de polypropylène et de talc dont la mauvaise odeur est diminuée
EP2305723A1 (fr) 2009-10-01 2011-04-06 Total Petrochemicals Research Feluy Polymère de propylène avec une aptitude améliorée au traitement par thermoformage
JP5441778B2 (ja) 2010-03-18 2014-03-12 三井化学株式会社 プロピレン系樹脂組成物およびこれらから得られる成形体
EP2386602B1 (fr) 2010-04-20 2012-08-29 Borealis AG Composé pour intérieur d'automobile
EP2386604B1 (fr) 2010-04-20 2018-11-28 Borealis AG Bouteilles de polypropylène
WO2011135004A2 (fr) 2010-04-28 2011-11-03 Borealis Ag Catalyseurs
CN103025767B (zh) 2010-04-28 2015-01-14 博瑞立斯有限公司 包含桥连的茂金属的固体颗粒催化剂
ES2564189T3 (es) 2010-05-07 2016-03-18 Borealis Ag Preparación de un sistema de catalizador sólido
EP2386583A1 (fr) 2010-05-07 2011-11-16 Borealis AG Préparation d'un système catalytique solide
MX337954B (es) 2010-05-12 2016-03-29 Borealis Ag Polipropileno con contenido especifico de estearato de calcio para capacitores especiales.
EP2585499B1 (fr) 2010-06-24 2019-02-27 Basell Poliolefine Italia S.r.l. Système catalytique pour la polymérisation d'oléfines
EP2402353B1 (fr) 2010-07-01 2018-04-25 Borealis AG Métallocènes des métaux de groupe 4 comme catalyseurs pour la polymérisation d'oléfines
EP2415790B1 (fr) 2010-07-13 2014-09-24 Borealis AG Composant de catalyseur
EP2410007B1 (fr) 2010-07-22 2014-06-11 Borealis AG Composition de polypropylène/talc ayant un comportement aux impacts amélioré
EP2415831A1 (fr) 2010-08-06 2012-02-08 Borealis AG Copolymère hétérophasique de propylène doté d'un excellent équilibre impact/rigidité
EP2423257B1 (fr) 2010-08-27 2012-10-24 Borealis AG Composition de polypropylène rigide doté d'une excellente élongation à la rupture
CN103298874B (zh) 2011-01-03 2016-03-09 博里利斯股份公司 具有改进的光学性能的聚丙烯密封材料
EP2479025B1 (fr) 2011-01-25 2019-03-06 Mondi Gronau GmbH Film à étiquettes
EP2532687A3 (fr) 2011-06-10 2013-04-10 Borealis AG Catalyseurs à base de metallocènes pontés
BR112013032817B1 (pt) 2011-07-01 2020-03-03 Basell Poliolefine Italia S.R.L. Filme biaxialmente orientado e artigo laminado multicamadas
ES2628836T3 (es) 2011-07-15 2017-08-04 Borealis Ag Película no orientada
KR101614228B1 (ko) 2011-07-15 2016-04-20 보레알리스 아게 낮은 수축 및 clte 를 갖는 고흐름 폴리올레핀 조성물
ES2626661T3 (es) 2011-07-27 2017-07-25 Borealis Ag Resina de polipropileno ligero con características superficiales superiores para uso en aplicaciones interiores de automóviles
EP2565221B2 (fr) 2011-08-30 2018-08-08 Borealis AG Procédé de fabrication d'un film de condensateur
ES2628011T3 (es) 2011-09-21 2017-08-01 Borealis Ag Composición de moldeo
EP2578395A1 (fr) 2011-10-04 2013-04-10 Rkw Se Construction de film d'étiquette multicouche pour étiquettes sensibles à la pression
EP2589623A1 (fr) * 2011-11-02 2013-05-08 Basell Poliolefine Italia S.r.l. Composition de polypropylène pour le moussage
EP2592112A1 (fr) 2011-11-11 2013-05-15 Basell Poliolefine Italia S.r.l. Composition de polymère pour pare-chocs et intérieurs et précurseur de résine à base de polyéthylène
WO2013092615A1 (fr) 2011-12-23 2013-06-27 Borealis Ag Procédé de préparation d'un copolymère hétérophasique de propylène
EA025789B1 (ru) 2011-12-23 2017-01-30 Бореалис Аг Сополимер пропилена для инжекционного литья изделий и пленок
ES2665889T3 (es) 2011-12-30 2018-04-30 Borealis Ag Componente catalítico
EP2610270B1 (fr) 2011-12-30 2015-10-07 Borealis AG Composant de catalyseur
EP2610271B1 (fr) 2011-12-30 2019-03-20 Borealis AG Préparation de catalyseurs ZN PP sans phthalate
EP2610272B1 (fr) 2011-12-30 2017-05-10 Borealis AG Composant de catalyseur
WO2013127707A1 (fr) 2012-02-27 2013-09-06 Borealis Ag Procédé de préparation d'un polypropylène à faible teneur en cendres
EP2666818B1 (fr) 2012-05-21 2016-10-26 Borealis AG Polypropylène à flux élevé ayant d'excellentes propriétés mécaniques
CA2878998C (fr) 2012-08-07 2016-09-27 Borealis Ag Procede pour la preparation de polypropylene a productivite amelioree
JP6027240B2 (ja) 2012-08-07 2016-11-16 ボレアリス・アクチェンゲゼルシャフトBorealis Ag 生産性を高めたポリプロピレンの製造方法
JP6216887B2 (ja) 2013-08-14 2017-10-18 ボレアリス・アクチェンゲゼルシャフトBorealis Ag 低温における耐衝撃性が改善されたプロピレン組成物
EA031054B1 (ru) 2013-08-21 2018-11-30 Бореалис Аг Композиция полиолефина с высокой текучестью, жесткостью и ударной вязкостью
KR101805396B1 (ko) 2013-08-21 2017-12-06 보레알리스 아게 높은 강성 및 인성을 갖는 고유동 폴리올레핀 조성물
ES2587781T3 (es) 2013-09-27 2016-10-26 Borealis Ag Películas adecuadas para procesamiento BOPP de polímeros con altos XS y alta Tm
ES2568615T3 (es) 2013-10-11 2016-05-03 Borealis Ag Película para etiquetas orientada en la dirección de la máquina
CN105612188B (zh) 2013-10-24 2018-09-28 北欧化工公司 具有高含量的区域错误和高分子量的低熔点pp均聚物
PL2865713T3 (pl) 2013-10-24 2016-10-31 Wyrób formowany z rozdmuchiwaniem na bazie dwumodalnego bezładnego kopolimeru
CN105722869B (zh) 2013-10-29 2017-09-12 北欧化工公司 具有高聚合活性的固体单点催化剂
CN105722872B (zh) 2013-11-22 2017-10-13 博里利斯股份公司 具有高熔体流动的低排放丙烯均聚物
BR112016011829B1 (pt) 2013-12-04 2022-01-18 Borealis Ag Composição de polipropileno, fibra e trama soprada em fusão, artigo e uso da composição de polipropileno
WO2015091839A1 (fr) 2013-12-18 2015-06-25 Borealis Ag Film bopp présentant un meilleur équilibre rigidité/résistance
WO2015091829A1 (fr) 2013-12-18 2015-06-25 Borealis Ag Film bopp à faible retrait.
EP2886600B1 (fr) 2013-12-19 2018-05-30 Abu Dhabi Polymers Co. Ltd (Borouge) LLC. Polypropylène multimodal par rapport à un taux de comonomères
WO2015101593A1 (fr) 2013-12-31 2015-07-09 Borealis Ag Procédé de production de terpolymère de propylène
US10227427B2 (en) 2014-01-17 2019-03-12 Borealis Ag Process for preparing propylene/1-butene copolymers
ES2571587T3 (es) 2014-01-29 2016-05-26 Borealis Ag Composición de poliolefina de alta fluidez con rigidez y resistencia a la perforación elevadas
WO2015117958A1 (fr) 2014-02-06 2015-08-13 Borealis Ag Copolymères souples à haute résistance aux chocs
US10100186B2 (en) 2014-02-06 2018-10-16 Borealis Ag Soft and transparent impact copolymers
EP2907841A1 (fr) 2014-02-14 2015-08-19 Borealis AG Composition de polypropylène
ES2659731T3 (es) 2014-05-20 2018-03-19 Borealis Ag Composición de polipropileno para aplicaciones en interiores de automóviles
EP3006472A1 (fr) 2014-10-07 2016-04-13 Borealis AG Procédé pour la préparation d'un polypropylène nucléé alpha

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491566A2 (fr) 1990-12-19 1992-06-24 Borealis A/S Procédé de modification de catalyseurs de polymérisation d'oléfines
WO1992012182A1 (fr) 1990-12-28 1992-07-23 Neste Oy Procede de production de polyethylene en plusieurs etapes
EP0586390A1 (fr) 1991-05-09 1994-03-16 Neste Oy Polyolefine a gros grains, production de cette polyolefine et procatalyseur contenant un produit de transesterification entre un alcool inferieur et du dioctylphtalate utilise a cet effet.
EP0591224A1 (fr) 1991-05-09 1994-04-13 Borealis A/S Procatalyseur pour la polymerisation d'olefines contenant un produit de transesterification entre un alcool inferieur et un ester d'acide phtalique
EP0572028A1 (fr) 1992-05-29 1993-12-01 Montell North America Inc. Concentrés utilisables pour la préparation de polyoléfines modifiées et procédé de modification utilisant ces concentrés
WO1994014856A1 (fr) 1992-12-28 1994-07-07 Mobil Oil Corporation Procede de production d'un materiau porteur
WO1995012622A1 (fr) 1993-11-05 1995-05-11 Borealis Holding A/S Catalyseur de polymerisation d'olefines sur support, sa preparation et son utilisation
WO1998016359A1 (fr) 1996-10-14 1998-04-23 Dsm N.V. Granules cylindriques
EP0887379A1 (fr) 1997-06-24 1998-12-30 Borealis A/S Procédé et dispositif pour la préparation d'homopolymères ou de copolymères de propylène
WO1999024479A1 (fr) 1997-11-07 1999-05-20 Borealis A/S Nouveaux polymeres de propylene et produits derives
WO1999024478A1 (fr) 1997-11-07 1999-05-20 Borealis A/S Procede de preparation de polypropylene
EP1028984A1 (fr) 1997-11-07 2000-08-23 Borealis A/S Procede de preparation de polypropylene
WO2000068315A1 (fr) 1999-05-07 2000-11-16 Borealis Technology Oy Polymeres de propylene de haute rigidite et leur obtention
EP1183307A1 (fr) 1999-05-07 2002-03-06 Borealis Technology Oy Polymeres de propylene de haute rigidite et leur obtention
WO2004000899A1 (fr) 2002-06-25 2003-12-31 Borealis Technology Oy Polyolefine presentant une meilleure resistance aux eraflures et son procede de fabrication
WO2004111095A1 (fr) 2003-06-06 2004-12-23 Borealis Technology Oy Procede de polymerisation catalytique d'olefines, systeme de reacteur, utilisation de celui-ci dans ledit procede, polyolefines obtenues et utilisation de celles-ci
WO2006069733A1 (fr) 2004-12-31 2006-07-06 Borealis Technology Oy Procede
WO2006097497A1 (fr) 2005-03-18 2006-09-21 Basell Polyolefine Gmbh Composes de type metallocene
WO2008074713A1 (fr) * 2006-12-20 2008-06-26 Basell Poliolefine Italia S.R.L. Compositions polyoléfiniques chargées
EP2062936A1 (fr) 2007-11-20 2009-05-27 Borealis Technology OY Polypropylène amélioré renforcé aux fibres de verre
WO2010052260A1 (fr) 2008-11-07 2010-05-14 Borealis Ag Composition de catalyseur solide
EP2308923B1 (fr) 2009-10-09 2012-05-16 Borealis AG Composite en fibres de verre de traitement amélioré
WO2011144703A1 (fr) * 2010-05-21 2011-11-24 Borealis Ag Composition
WO2013007650A1 (fr) 2011-07-08 2013-01-17 Borealis Ag Catalyseurs

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHENG, H. N., MACROMOLECULES, vol. 17, 1984, pages 1950
FUJIYAMA M.; KIMURA S.: "Effect of Molecular Parameters on the Shrinkage of Injection-Molded Polypropylene", J.APPI.POLYM.SCI., vol. 22, 1978, pages 1225 - 1241
G. SINGH; A. KOTHARI; V. GUPTA, POLYMER TESTING, vol. 28, no. 5, 2009, pages 475
GALLI; VECELLO, PROG.POLYM.SCI., vol. 26, 2001, pages 1287 - 1336
L. RESCONI; L. CAVALLO; A. FAIT; F. PIEMONTESI, CHEM. REV., vol. 100, no. 4, 2000, pages 1253
V. BUSICO; P. CARBONNIERE; R. CIPULLO; C. PELLECCHIA; J. SEVERN; G. TALARICO, MACROMOL. RAPID COMMUN., vol. 28, 2007, pages 1128
W-J. WANG; S. ZHU, MACROMOLECULES, vol. 33, 2000, pages 1157
Z. ZHOU; R. KUEMMERLE; X. QIU; D. REDWINE; R. CONG; A. TAHA; D. BAUGH; B. WINNIFORD, J. MAG. RESON., vol. 187, 2007, pages 225

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195623A (zh) * 2018-11-15 2021-07-30 博里利斯股份公司 组合物
CN113195623B (zh) * 2018-11-15 2024-02-06 博里利斯股份公司 组合物
CN114746595A (zh) * 2019-12-04 2022-07-12 博里利斯股份公司 具有改善的阻隔性能的轻质熔喷网
CN114746595B (zh) * 2019-12-04 2023-09-08 博里利斯股份公司 具有改善的阻隔性能的轻质熔喷网
CN115605537A (zh) * 2020-05-22 2023-01-13 北欧化工公司(At) 玻璃纤维复合材料
CN115605537B (zh) * 2020-05-22 2024-04-05 北欧化工公司 玻璃纤维复合材料
CN116075544A (zh) * 2020-09-11 2023-05-05 博里利斯股份公司 具有增加的表面张力保留率的聚丙烯基制品

Also Published As

Publication number Publication date
CA2938228A1 (fr) 2015-08-20
MX352067B (es) 2017-11-08
US20170166711A1 (en) 2017-06-15
US10030109B2 (en) 2018-07-24
CN106255718B (zh) 2018-09-21
JP2017509742A (ja) 2017-04-06
EP3105287A1 (fr) 2016-12-21
ES2674238T3 (es) 2018-06-28
BR112016017887B1 (pt) 2021-05-04
CN106255718A (zh) 2016-12-21
WO2015121160A1 (fr) 2015-08-20
EA031496B1 (ru) 2019-01-31
EP3105287B1 (fr) 2018-04-04
KR20160110526A (ko) 2016-09-21
MX2016009938A (es) 2016-10-31
ZA201604861B (en) 2017-08-30
CA2938228C (fr) 2018-01-02
KR101759857B1 (ko) 2017-07-19
EA201600565A1 (ru) 2016-12-30

Similar Documents

Publication Publication Date Title
EP3105287B1 (fr) Composition de polypropylène
EP3495423B1 (fr) Article comprenant une composition de polypropylène renforcée par des fibres
EP3095820B1 (fr) Composition polymère renforcée par des fibres
US12084567B2 (en) Polypropylene based composition with improved paintability
US12084564B2 (en) Foamable polypropylene composition
EP4153678B1 (fr) Composite de fibre de verre
KR102779063B1 (ko) 개선된 기계적 특성을 갖는 발포를 위한 프로필렌 조성물
US11396593B2 (en) Foamable polypropylene compositions
US20230174759A1 (en) Glass fiber reinforced composite with narrow mwd polypropylene
CN119173574A (zh) 玻璃纤维复合材料
CN118076654A (zh) 具有高熔体流动速率的用于发泡的丙烯组合物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160220