EP2652099A1 - Schmierfettzusammensetzung - Google Patents
SchmierfettzusammensetzungInfo
- Publication number
- EP2652099A1 EP2652099A1 EP11805228.1A EP11805228A EP2652099A1 EP 2652099 A1 EP2652099 A1 EP 2652099A1 EP 11805228 A EP11805228 A EP 11805228A EP 2652099 A1 EP2652099 A1 EP 2652099A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition according
- ppm
- grease composition
- graphite
- grease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 103
- 239000004519 grease Substances 0.000 title claims abstract description 68
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 48
- 239000010439 graphite Substances 0.000 claims abstract description 48
- 239000000344 soap Substances 0.000 claims abstract description 38
- 239000002562 thickening agent Substances 0.000 claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 23
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 21
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 19
- 239000000194 fatty acid Substances 0.000 claims abstract description 19
- 229930195729 fatty acid Natural products 0.000 claims abstract description 19
- KHYKFSXXGRUKRE-UHFFFAOYSA-J molybdenum(4+) tetracarbamodithioate Chemical compound C(N)([S-])=S.[Mo+4].C(N)([S-])=S.C(N)([S-])=S.C(N)([S-])=S KHYKFSXXGRUKRE-UHFFFAOYSA-J 0.000 claims abstract description 11
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 10
- 239000011707 mineral Substances 0.000 claims abstract description 10
- 230000005540 biological transmission Effects 0.000 claims abstract description 6
- 239000002199 base oil Substances 0.000 claims description 31
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 29
- 229910052750 molybdenum Inorganic materials 0.000 claims description 29
- 239000011733 molybdenum Substances 0.000 claims description 29
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 23
- 229910052744 lithium Inorganic materials 0.000 claims description 23
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 20
- 239000011574 phosphorus Substances 0.000 claims description 20
- 229910052698 phosphorus Inorganic materials 0.000 claims description 20
- 229920002367 Polyisobutene Polymers 0.000 claims description 16
- 229920013639 polyalphaolefin Polymers 0.000 claims description 16
- 239000000314 lubricant Substances 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 13
- -1 polytetrafluoroethylene Polymers 0.000 claims description 11
- 229920000642 polymer Polymers 0.000 claims description 10
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical class [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 claims description 10
- 239000007866 anti-wear additive Substances 0.000 claims description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- 239000011575 calcium Substances 0.000 claims description 7
- 229910052791 calcium Inorganic materials 0.000 claims description 7
- 229920000193 polymethacrylate Polymers 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- 239000005069 Extreme pressure additive Substances 0.000 claims description 6
- 229920001577 copolymer Polymers 0.000 claims description 6
- BTHAQRDGBHUQMR-UHFFFAOYSA-N [S]P(=O)=O Chemical compound [S]P(=O)=O BTHAQRDGBHUQMR-UHFFFAOYSA-N 0.000 claims description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000003925 fat Substances 0.000 description 32
- 239000000654 additive Substances 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 229920002396 Polyurea Polymers 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 235000019198 oils Nutrition 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 5
- 150000004668 long chain fatty acids Chemical class 0.000 description 5
- 230000001050 lubricating effect Effects 0.000 description 5
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 5
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 230000008719 thickening Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- UAQJVNPFHGOEAH-UHFFFAOYSA-N oxido-oxo-phosphosulfanylphosphanium Chemical compound O=P(=O)SP(=O)=O UAQJVNPFHGOEAH-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 235000019482 Palm oil Nutrition 0.000 description 2
- 235000019484 Rapeseed oil Nutrition 0.000 description 2
- 235000019486 Sunflower oil Nutrition 0.000 description 2
- QCJQWJKKTGJDCM-UHFFFAOYSA-N [P].[S] Chemical compound [P].[S] QCJQWJKKTGJDCM-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000012990 dithiocarbamate Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000002540 palm oil Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N squalane Chemical compound CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 239000002600 sunflower oil Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 231100000925 very toxic Toxicity 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- 229940114072 12-hydroxystearic acid Drugs 0.000 description 1
- KIHBGTRZFAVZRV-UHFFFAOYSA-N 2-Hydroxyoctadecanoic acid Natural products CCCCCCCCCCCCCCCCC(O)C(O)=O KIHBGTRZFAVZRV-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical compound OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical class C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical class CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- ZKZAYPCZGZAZAG-UHFFFAOYSA-J n,n-dibutylcarbamodithioate;molybdenum(4+) Chemical compound [Mo+4].CCCCN(C([S-])=S)CCCC.CCCCN(C([S-])=S)CCCC.CCCCN(C([S-])=S)CCCC.CCCCN(C([S-])=S)CCCC ZKZAYPCZGZAZAG-UHFFFAOYSA-J 0.000 description 1
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- TYQTYRXEMJXFJG-UHFFFAOYSA-N phosphorothious acid Chemical compound OP(O)S TYQTYRXEMJXFJG-UHFFFAOYSA-N 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000021391 short chain fatty acids Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229940032094 squalane Drugs 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000010698 whale oil Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/02—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic oxygen-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M121/00—Lubricating compositions characterised by the thickener being a compound of unknown or incompletely defined constitution
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M125/00—Lubricating compositions characterised by the additive being an inorganic material
- C10M125/06—Sulfur
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/06—Mixtures of thickeners and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/04—Elements
- C10M2201/041—Carbon; Graphite; Carbon black
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/04—Elements
- C10M2201/041—Carbon; Graphite; Carbon black
- C10M2201/0416—Carbon; Graphite; Carbon black used as thickening agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
- C10M2205/0285—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
- C10M2207/126—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
- C10M2207/1265—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic used as thickening agent
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/086—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
- C10M2219/068—Thiocarbamate metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/08—Groups 4 or 14
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/046—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
Definitions
- the present invention relates to grease compositions for use in the homokinetic joints of transmission lines of motor vehicles, or other gear mechanisms for which low friction greases are desired.
- a transmission joint or mechanical coupling is a mechanical system composed of several moving parts relative to each other, or deformable, which allows the mutual training of two rotating parts whose axes of rotation occupy variable relative positions during the operation.
- it is a link which makes it possible to transmit the rotation of an axis to another axis which is the first one. If the speed of rotation of the two shafts is equal at any given moment, the speed of rotation of the two shafts is constant.
- the greases used in the constant velocity joints must have an anti-wear effect, and preferably a low coefficient of friction to reduce or prevent noise, vibration and jolts.
- known constant velocity joint greases frequently contain anti-wear additives, which are for example phosphorus or phosphorus compounds, and frictio n modifiers, for example molybdenum-containing organic compounds, which may have effects on one or both of these properties, or both. It is also known to use, as friction modifiers, solid lubricants such as molybdenum disulfide (MoS2) or tungsten (WS2), or graphite.
- anti-wear additives which are for example phosphorus or phosphorus compounds
- frictio n modifiers for example molybdenum-containing organic compounds, which may have effects on one or both of these properties, or both.
- Frictio n modifiers for example molybdenum-containing organic compounds
- the application FR 2 723 747 discloses high temperature greases for homokinetic joints comprising mineral and / or synthetic base oils, polyurea thickeners and MoS 2 as solid lubricant, as well as graphite and at least one organic molybdenum compound, preferentially molybdenum dithiocarbamate.
- Graphite solid lubricants, MoDTC, PTFE allow to lower the MoS 2 expensive solid lubricant content, but it is necessary to completely replace it.
- MoS 2 solid lubricants have a high price and introduce a high content of meta l in the formulas, which is undesirable for environmental reasons. None in this application suggests lowering the metal (Mo) content of the fat by completely substituting other MoS 2 solid lubricants.
- the molybdenum content of the disclosed compounds is in the order of 5000 ppm.
- Fats thickened with polyureas are more technically complicated to manufacture, in particular because the components used in their manufacture, such as isocyanates and amines, are very toxic and have little storage stability. The precautions to be taken make the manufacturing processes more complex and more expensive. The availability of raw materials is also lower compared to those of greases thickened with metallic soaps, in particular Lithium and Lithium complex.
- the polyureas are superior in thermal behavior, but their thixiotropic character also poses problems of destructuring under mechanical control and storage hardening. It will therefore be preferred, for formulating greases for homokinetic joint technically easier, and more economical to manufacture, from non-toxic and non-hazardous materials, use metal soaps of fatty acids as thickeners.
- Some commercial greases for constant velocity joints are, for example, formulated from mineral and / or synthetic base oils, lithium or complex lithium thickeners, and MoS 2 molybdenum disulfide, at about 3% by weight, which represents a content of approximately 18,000 ppm Mo. Below this MoS 2 content, the wear and friction performances are insufficient.
- EP 0708 172 discloses a low-friction grease for homokinetic joints comprising a base oil, a simple or complex lithium soap thickener, one or more organic components containing molybdenum, such as MoDTC or MoDTP, at least one dithiophosphate. zinc, a phosphor sulfur extreme pressure agent, a metal salt of oxidized wax, petroleum sulphonate or aromatic alkyl sulphonates.
- molybdenum such as MoDTC or MoDTP
- zinc a phosphor sulfur extreme pressure agent
- a metal salt of oxidized wax petroleum sulphonate or aromatic alkyl sulphonates.
- Examples of compositions disclosed have either a high molybdenum content (about 8500 ppm) and / or a high phosphorus content (about 2000 ppm phosphorus), which poses environmental problems.
- WO 2007/085643 discloses polyurethane-thickened homokinetic joint grease compositions comprising from 0.1 to 5% by weight of WS2, and from 0.1 to 5% by weight of zinc dithiophosphate and / or dithiocarbamate. molybdenum. This application also discloses the possibility of using as an additive in greases graphite or MoS 2 . However, the use of graphite (or MoS 2 ) in combination with MoDTC is disadvised because this combination has, according to this application, an adverse effect on the anti-wear properties and the coefficient of friction of the greases.
- the demand is reflected in the fact that the thickened homokinetic properties are added to the metal fatty acid soaps and include graphite in combination with molybdenum dithiocarbamate meet the need outlined above.
- the present invention relates to grease compositions comprising
- the grease compositions according to the invention have a molybdenum content of between 1000 and 2800 ppm, preferably between 1500 and 2500 ppm, preferentially between 1700 and 2300, preferably between 2000 and 2200 ppm.
- the grease compositions according to the invention comprise between 0.5 and 3.0% by weight of graphite, preferably between 0.7 and 2.0%.
- the grading compositions according to the invention have an Mo / [graphite] ratio between the molybdenum content in ppm and the mass percentage of graphite in said compositions, inclusive. between 1250 and 1550, preferably between 1300 and 1500.
- the grease compositions according to the invention comprise phosphorus at a content of less than 1500 ppm, preferably less than 1200 ppm.
- the grease compositions according to the invention comprise zinc at a content of less than 1500 ppm.
- the grease compositions according to the invention are free of MoS 2 solid lubricant. According to another preferred embodiment, the grease compositions according to the invention are free of polytetrafluoroethylene solid lubricant.
- the grease compositions according to the invention comprise exclusively one or more simple metal or complex fatty acid soaps as a thickener.
- the grease compositions according to the invention comprise at least one simple soap or complex of lithium, sodium, calcium, barium, or titanium, alone or as a mixture, as a thickener.
- the grease compositions according to the invention comprise one or more single or complex lithium soaps as thickeners.
- the grease compositions according to the invention comprise a mineral base oil (a), and a synthetic base oil (a), preferably chosen from polyalphaolefins.
- the grease compositions according to the invention further comprise a polymer (e) preferably chosen from polyisobutenes, olefin copolymers, polymethacrylates, polyalphaolefins, preferably polyisobutenes.
- a polymer (e) preferably chosen from polyisobutenes, olefin copolymers, polymethacrylates, polyalphaolefins, preferably polyisobutenes.
- the grease compositions according to the invention may furthermore comprise one or more anti-wear and / or extreme pressure phosphosulfide (f) additives, preferentially chosen from zinc dithiophosphates.
- f extreme pressure phosphosulfide
- the grease compositions according to the invention have a phosphorus content of between 300 and 1200 ppm, preferably between 400 and 1000 ppm, preferably between 500 and 900 ppm.
- compositions according to the invention have a zinc content of between 500 and 1400 ppm, preferably between 600 and 1300 ppm, preferably between 800 and 1000 ppm.
- the grease compositions according to the invention comprise:
- the grease compositions according to the invention comprise: • From 70 to 94% of base oils (a),
- the optional residue consisting of one or more polymers (e) selected from polyisobutenes, olefins copolymers, polymethacrylates, polyalphaolefins, preferably polyisobutenes.
- the grease compositions according to the invention comprise:
- phosphosulfur anti-wear and / or extreme pressure additives preferably chosen from zinc dithiophosphates.
- the grease compositions according to the invention comprise:
- phosphorus or phosphosulfur anti-wear additives preferably chosen from zinc dithiophosphates.
- the optional residue consisting of one or more polymers (e) selected from polyisobutenes, olefins copolymers, polymethacrylates, polyalphaolefins, preferably polyisobutenes.
- the present invention also relates to the use of grease compositions as described above as greases for homokinetic joints of motor vehicle transmissions.
- the present invention also relates to one of the homokinetic joints filled with grease compositions as described above.
- DETAILED DESCRIPTION
- the other base oil (s) used in the compositions according to the present invention may be oils of mineral or synthetic origin of groups I to V according to the classes defined in the API classification (American Petroleum Institute).
- the mineral base oils according to the invention include all types of bases obtained by atmospheric and vacuum distillation of crude oil, followed by refining operations such as solvent extraction, desalphating, solvent dewaxing, hydrotreatment, hydrocracking and hydroisomerization, hydrofinishing.
- the base oils of the grease compositions according to the present invention may also be synthetic oils, such as esters, silicones, polyalkylene glycols, polyols, polyolefins (PAOs), alkylbenzene, and the like. , alkylnaphthalene.
- synthetic oils such as esters, silicones, polyalkylene glycols, polyols, polyolefins (PAOs), alkylbenzene, and the like. , alkylnaphthalene.
- the base oils may also be oils of natural origin, for example esters of alcohol and carboxylic acids, obtainable from natural resources such as sunflower oil, rapeseed oil, palm oil. ...
- synthetic polyolepipeldefin (PAO) hulls are present in combination with mineral oils.
- the polyalphaolefins are for example obtained from monomers having from 4 to 32 carbon atoms (for example octene, decene). Their weight average molecular weight is typically between 250 and 3000.
- the base oil mixture is set so that its viscosity at 40 ° C according to ASTM D 445 is between 30 and 140 cSt, preferably between 50 and 100 cSt.
- a wide range of light polyalphaolefins can be used, such as PAO 6 (31 cSt at 40 ° C), PAO 8 (48 cSt at 40 ° C), or heavy, such as PAO 40 (400 cSt at 40 ° C), or PAO 100 (1000 cSt at 40 ° C).
- the greases according to the present invention are thickened with metal fatty acid soaps.
- Metallic fatty acid soaps can be prepared separately, or in situ during the manufacture of the fat (in the latter case, the fatty acid (s) are dissolved in the base oil, and then the metal hydroxide is added. appropriate).
- These thickeners are commonly used products in the field of fats, readily available and inexpensive. They present the best technical compromise, by combining both good mechanical properties, good thermal resistance, and good water resistance.
- Long-chain fatty acids typically comprising from 10 to 28 carbon atoms, saturated or unsaturated, optionally hydroxylated, are preferably used.
- Long-chain fatty acids are, for example, capric, lauric, myristic, palmitic, stearic, arachidic, behenic, oleic, linoleic and erucic acids, and their hydroxylated derivatives.
- Hydroxystearic acid 12 is the best known derivative of this class, and preferred.
- These long-chain fatty acids generally come from vegetable oils, for example palm oil, castor oil, rapeseed oil, sunflower oil, ... or animal fats (tallow, whale oil, etc.).
- So-called simple soaps can be formed using one or more long-chain fatty acids.
- So-called complex soaps can also be formed by using one or more long-chain fatty acids in combination with one or more short-chain hydrocarbon carboxylic acids having at most 8 carbon atoms.
- the saponification agent used to make the soap may be a monomeric compound of lithium, sodium, calcium, aluminum, lithium, luminium, preferably lithium and calcium, and preferably a hydroxide oxide or a carbonate of these metals.
- Metal soaps in particular Lithium, Sodium, Calcium, Barium, Titanium, form a fibrous structure, with the exception of simple or complex aluminum soaps, which have a spherical gel structure.
- One or more metal compounds may be used in the greases according to the invention. It is thus possible to associate lithium soaps, combined with calcium soaps to a lesser extent. This has the advantage of improving the water resistance of greases.
- the metal soaps are employed at levels of the order of 5 to 20% by weight, preferably 8 to 15% by weight, preferably 10 to 12%, typically 11% by weight in the greases according to the invention.
- the amount of metallic soap (s) is generally adjusted to obtain Grade 00, Grade 0, Grade 1 or Grade 2 fats according to the NLGI classification.
- the greases according to the invention mainly contain metal fatty acid soaps as thickeners.
- metal fatty acid soaps simple or complex, together represent the highest percentage by weight in the greases according to the invention, compared to the percentage by weight of other thickening materials.
- the greases according to the invention mainly contain simple or complex lithium soaps as thickeners.
- lithium soaps, simple or complex together represent the highest percentage by weight in the greases according to the invention, compared to the percentage by weight of other thickening materials.
- the quantity of the metal soap or fatty acids, simple or complex constitutes at least 50%, more preferably at least 80% by weight relative to the total weight of thickening materials, in the grease compositions according to the invention. invention.
- the amount of lithium soap, simple or complex constitutes at least 50%, even more preferably at least 80% by weight relative to the total weight of thickening materials, in the grease compositions according to the invention.
- the greases according to the invention may contain as the major thickener metal soaps of fatty acids whether mple or complex, and smaller amounts of other thickeners, such as polyureas, or inorganic thickeners. type bentonite or alumino silicates.
- the greases according to the invention are free of polyurea thickeners, which are more technically complicated to manufacture, in particular because the components used in their manufacture, such as isocyanates and amines, are very toxic and unstable. in storage.
- the greases according to the invention contain exclusively metal salts of simple or complex fatty acids as thickeners.
- the greases according to the invention contain exclusively metallic soaps of simple or complex fatty acids of lithium as thickeners.
- the grease compositions according to the invention contain graphite and molybdenum dithiocarbamate, which gives them anti-wear properties. improved compared to known commercial fats. These properties can be achieved with a lower molybdenum content than known fats.
- the molybdenum content of the greases according to the invention is between 1000 and 2800 ppm.
- the ratio Mo / [graphite], between the content of molybdenum, in ppm, and the mass percentage of graphite in said composition is between 1250 and 1550.
- the grease compositions also have very good anti-wear and friction properties, equivalent to those of known commercial greases. These good properties are also achieved with a molybdenum content, and possibly a level of other metallic elements such as zinc or a phosphorus element level, lower than those of known fats.
- compositions according to the invention contain molybdenum dithiocarbamates, friction modifying additives well known to those skilled in the art.
- molybdenum dithiocarbamate organometallic friction modifiers may for example be dialkyldithiocarbamates of molybdenum corresponding to formula (I):
- X 1 , X 2 , X 3 , X 4 are alkyl chains, preferably having 2 to 13 carbon atoms, preferably 2 to 6 carbon atoms.
- the amount of MoDTC of the compositions according to the invention is adjusted so that their molybdenum content is between 1000 and 2800 ppm, preferably between 1500 and 2500 ppm, preferably between 1700 and 2300, preferably between 2000 and 2200 ppm. This content can be measured according to the usual techniques, plasma, atomic absorption, flurescence X.
- MoDTC as the only additive (antiwear) in a fat composition. Indeed, it is known that the MoDTC requires a minimum activation temperature and the presence of other additives (antiwear, extreme pressure) to be effective.
- Greases comprising MoDTC without other antiwear and / or extreme pressure additives would not be effective, especially at low temperatures.
- MoDTC is thus associated with phosphorus additives, for example dithiophosphates.
- the MoDTC is combined with graphite, which makes it possible to produce fats having very good properties in wear and friction, with a low molybdenum and phosphorus content.
- the grease compositions according to the invention contain graphite.
- graphite known for its properties as a solid lubricant, makes it possible to reduce the content of friction modifying and anti-wear additives containing molybdenum (and possibly phosphorus), without adding a metallic element, and by maintaining the wear properties. and friction suitable for applying homokinetic joints.
- the graphite employed in the compositions according to the invention is a micrometric gauge, with particle sizes being approximately between 1 and 15 ⁇ , and for example a size distribution characterized by a diameter D50 of between 3 and 8 ⁇ , preferably between 5 and 7 ⁇ .
- the fat composition according to the invention preferably comprises between 0.5 and 3.0% by weight of graphite, preferably between 0.7 and 2.0%, preferably between 0.75 and 1.7%, preferentially between 1, 0 and 1.5% by weight of graphite.
- the greases according to the invention optionally contain sulfur-phosphorus anti wear and extreme pressure additives commonly used in the formulation of greases and lubricants.
- thiophosphoric acid thiophosphorous acid
- esters of these acids their salts
- dithiophosphates particularly zinc dithiophosphates.
- Zinc dithiophosphates of formula (II) are particularly preferred:
- R 1, R 2 , R 3 and R 4 are, independently of one another, linear or branched alkyl groups comprising from 1 to 24, preferably from 3 to 14 carbon atoms or optionally substituted aryl groups containing from 6 to 30, preferably from 8 to 18 carbon atoms.
- compositions according to the invention can be used alone or as a mixture in the grease compositions according to the invention.
- Their mass percentage in the compositions according to the invention is preferably between 0.5 and 5% by weight, preferably between 0.7 and 2% by weight, or between 0.8 and 1.5% by weight relative to the total weight of the composition.
- Their quantity will be adjusted so as to respect the limiting levels in molybdenum and phosphorus elements of the compositions according to the invention.
- the molybdenum (Mo) content of the compositions according to the invention is preferably between 1000 and 2800 ppm, preferably between 1500 and 2500 ppm, preferably between 1700 and 2300, preferably between 2000 and 2200 ppm.
- the phosphorus content (P) of the compositions according to the invention is preferably less than 1500 ppm, preferentially less than 1200 ppm, preferably between 300 and 1200 ppm, preferably between 400 and 1000 ppm, preferably between 500 and 900 ppm.
- This content can be measured according to the usual techniques, plasma, atomic absorption.
- the zinc content of the compositions according to the invention is less than 1500 ppm, preferably between 500 and 1400 ppm, preferably between 600 and 1300 ppm, preferably between 700 and 1200 ppm, preferentially between 800 and 1000 ppm.
- the lubricating compositions according to the present invention may also contain phosphorus anti-wear and extreme pressure additives, such as, for example, alkyl phosphates or alkyl phosphonates, phosphoric acid, phopsphorous acid, mono- di and triesters of phosphorous acid and phosphoric acid, and their salts
- phosphorus anti-wear and extreme pressure additives such as, for example, alkyl phosphates or alkyl phosphonates, phosphoric acid, phopsphorous acid, mono- di and triesters of phosphorous acid and phosphoric acid, and their salts
- the lubricating compositions according to the present invention may also contain additives which are used extensively and which are highly preferred, such as dithiocarbamates, thiadiazoles and benzothiazoles, sulfurized olefins.
- the greases according to the invention may also contain any type of additives adapted to their use, for example antioxidants, such as mined or phenolic, antirust which may be oxygenated compounds such as esters, passivating copper.
- antioxidants such as mined or phenolic
- antirust which may be oxygenated compounds such as esters, passivating copper.
- the greases according to the invention may also contain polymers (e), for example polyolefins, polyisobutene (PIB), polyethylenes, polypropylene, heavy PAOs, copolymer olefins (OCP), for example diene-styrene hydrogenated, polymethacrylates. (PMA) at generally between 1 and 35%.
- polymers e
- PIB polyisobutene
- OCP copolymer olefins
- PMA diene-styrene hydrogenated, polymethacrylates.
- PMA polymers
- molar mass PIBs between 15,000 and 25,000 daltons at levels generally between 2 and 15% by weight, or between 5 and 10% by weight.
- These polymers are used to improve the cohesiveness of the greases, which are thus more resistant to centrifugation. These polymers also result in better adhesiveness of the grease to the surface, and increase the viscosity of the base oil fraction, and thus the thickness of the oil film between the friction parts.
- the greases according to the invention are preferably manufactured by forming the metal soap in situ.
- One or more fatty acids are dissolved in a fraction of the base oil or base oil mixture at room temperature. This fraction is generally of the order of 50% of the total amount of oil contained in the final fat.
- the fatty acids may be long acids, comprising from 14 to 28 carbon atoms, for a cyclic form, optionally combined with short fatty acids, comprising from 6 to 12 carbon atoms, to form complex soaps.
- metal compounds preferably metal hydroxide type.
- the preferred metal of the compositions according to the invention is Lithium TM, optionally combined to a lesser extent with calcium.
- the saponification reaction of the fatty acids is allowed to proceed with the metal compound (s) at a temperature of about 100 to 110 ° C.
- the water formed is then evaporated by cooking the mixture at a temperature of about 200 ° C.
- the grease is then cooled by the remaining fraction of base oil.
- the additives are then incorporated at about 80 ° C.
- the consistency of a grease measures its hardness or fluidity at rest. It is quantified by the depth of penetration of a cone of given dimensions and mass.
- the fat is previously subjected to mixing.
- the conditions for measuring the consistency of a grease are defined by ASTM D 217. Depending on their consistency, the fats are divided into 9 classes or 9 NLGI grades (National Lubricating Grease Institute) commonly used in the field of fats. These grades are shown in the table below.
- the greases according to the invention are preferably greases with a consistency of between 265 and 430, preferably between 265 and 385, preferably between 265 and 340 tenths of a millimeter according to ASTM D217.
- they are NLGI grade 00, 0, 1 or 2, that is to say that their consistency is respectively between 400 and 430, or 335 and 385, or 310 and 340, or 265 and 295 tenths of a millimeter according to ASTM D217.
- Grease compositions containing various additives are prepared from the same grease base comprising mineral and synthetic base oils, thickened with a single lithium soap prepared from lithium hydroxide (LiOH). H2O), and 12-hydroxystearic acid.
- the composition of the fat foot is shown in Table 1 below.
- the term "grease foot” commonly refers to a person skilled in the art as a grease composition containing only base oils and thickeners, and no additive.
- PIB polymer
- DTPZn anti-wear
- MoS 2 graphite
- the MoDTC used is di-n-butyldithiocarbamate molybdenum, containing 28% by mass of molybdenum
- the MoS2 used is a micrometric powder consisting of particles of size between 0.5 and 8 ⁇ , of D50 about 2 ⁇ .
- Grease A is a commercial grease for constant velocity joints
- greases E, I and J are according to the invention.
- the wear properties were evaluated by measuring the wear diameter (in mm) after the 4-ball wear test according to ASTM D2266 (1 hour, load 40 kg, 75 ° C). According to STL Specification S71 3100, CV greases must lead to a wear diameter of less than 50 mm.
- volume of fat lg distributed in thin film and continuous before test
- Fats E and I have the additional advantage of having low friction coefficients, the order of magnitude of those of commercial grease A.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Lubricants (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1060441A FR2968669B1 (fr) | 2010-12-13 | 2010-12-13 | Composition de graisse |
PCT/IB2011/055621 WO2012080939A1 (fr) | 2010-12-13 | 2011-12-12 | Composition de graisse |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2652099A1 true EP2652099A1 (de) | 2013-10-23 |
EP2652099B1 EP2652099B1 (de) | 2018-03-07 |
Family
ID=43776081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11805228.1A Not-in-force EP2652099B1 (de) | 2010-12-13 | 2011-12-12 | Schmierfettzusammensetzung |
Country Status (11)
Country | Link |
---|---|
US (1) | US20130281331A1 (de) |
EP (1) | EP2652099B1 (de) |
JP (1) | JP5980224B2 (de) |
KR (1) | KR20130130015A (de) |
CN (1) | CN103339243B (de) |
AR (1) | AR084243A1 (de) |
BR (1) | BR112013014826A2 (de) |
CA (1) | CA2821567C (de) |
FR (1) | FR2968669B1 (de) |
MX (1) | MX2013006761A (de) |
WO (1) | WO2012080939A1 (de) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2984350B1 (fr) * | 2011-12-16 | 2015-02-27 | Total Raffinage Marketing | Composition de graisse |
FR2984348B1 (fr) | 2011-12-16 | 2015-02-27 | Total Raffinage Marketing | Compositions lubrifiantes pour transmissions |
FR2990213B1 (fr) | 2012-05-04 | 2015-04-24 | Total Raffinage Marketing | Composition lubrifiante pour moteur |
FR2998303B1 (fr) | 2012-11-16 | 2015-04-10 | Total Raffinage Marketing | Composition lubrifiante |
FR3018079B1 (fr) * | 2014-02-28 | 2017-06-23 | Total Marketing Services | Composition lubrifiante a base de nanoparticules metalliques |
JP6274435B2 (ja) * | 2014-09-22 | 2018-02-07 | 住鉱潤滑剤株式会社 | 潤滑剤組成物 |
JP6777285B2 (ja) * | 2016-11-30 | 2020-10-28 | 出光興産株式会社 | 混合グリース |
KR101964745B1 (ko) * | 2017-07-28 | 2019-08-13 | 주식회사 베어링아트 | 그리스 조성물 |
US20190382680A1 (en) * | 2018-06-18 | 2019-12-19 | Exxonmobil Research And Engineering Company | Formulation approach to extend the high temperature performance of lithium complex greases |
CN109504354B (zh) * | 2019-01-14 | 2021-03-09 | 中海石油(中国)有限公司上海分公司 | 一种润滑剂、钻井液及其应用 |
CN110724577B (zh) * | 2019-09-29 | 2022-04-15 | 清研高装科技(天津)有限公司 | 一种机器人用润滑脂及其应用 |
JP7280800B2 (ja) | 2019-10-16 | 2023-05-24 | 協同油脂株式会社 | 車載電装品の減速機部用グリース組成物 |
JP2021130793A (ja) * | 2020-02-21 | 2021-09-09 | 出光興産株式会社 | 劣化測定装置、システム、及び方法、並びに潤滑油組成物 |
CN114317072A (zh) * | 2020-09-29 | 2022-04-12 | 惠州金永信五金制品有限公司 | 一种适用于金属冲压的润滑剂 |
JP7575324B2 (ja) | 2021-03-26 | 2024-10-29 | 住鉱潤滑剤株式会社 | グリース組成物 |
CN113293052A (zh) * | 2021-05-25 | 2021-08-24 | 苏州安美润滑科技有限公司 | 汽车球笼润滑脂及其制备方法 |
CN114703005A (zh) * | 2022-05-07 | 2022-07-05 | 辽宁国瑞新能科技有限公司 | 纳米石墨烯极压抗磨修复润滑脂 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5670461A (en) * | 1994-08-19 | 1997-09-23 | Gkn Automotive Ag | High temperature lubricating grease containing urea compounds |
JP3320569B2 (ja) | 1994-10-21 | 2002-09-03 | 協同油脂株式会社 | 等速ジョイント用グリース組成物 |
JP3954662B2 (ja) * | 1995-09-12 | 2007-08-08 | 昭和シェル石油株式会社 | オープンギヤー用グリース組成物 |
AR017087A1 (es) * | 1997-09-12 | 2001-08-22 | Shell Int Research | Una composicion lubricante, un metodo para lubricar una junta de velocidad constante con la misma y dicha junta de velocidad constante. |
JP2003105367A (ja) * | 2001-10-01 | 2003-04-09 | Asahi Denka Kogyo Kk | 潤滑性組成物 |
JP5386803B2 (ja) * | 2007-07-31 | 2014-01-15 | Nokクリューバー株式会社 | グリース組成物 |
JP4886304B2 (ja) | 2006-01-27 | 2012-02-29 | 昭和シェル石油株式会社 | グリース組成物 |
CN101353606B (zh) * | 2007-09-11 | 2011-04-20 | 威海旺润来润滑科技有限公司 | 复合润滑脂添加剂 |
JP2009138055A (ja) * | 2007-12-04 | 2009-06-25 | Ntn Corp | 潤滑用グリース |
KR20100108905A (ko) * | 2009-03-31 | 2010-10-08 | 장암엘에스 주식회사 | 내열성 및 저마찰력이 우수한 등속조인트용 그리스 조성물 |
-
2010
- 2010-12-13 FR FR1060441A patent/FR2968669B1/fr not_active Expired - Fee Related
-
2011
- 2011-12-12 CA CA2821567A patent/CA2821567C/fr not_active Expired - Fee Related
- 2011-12-12 US US13/993,269 patent/US20130281331A1/en not_active Abandoned
- 2011-12-12 BR BR112013014826A patent/BR112013014826A2/pt not_active Application Discontinuation
- 2011-12-12 WO PCT/IB2011/055621 patent/WO2012080939A1/fr active Application Filing
- 2011-12-12 CN CN201180065536.6A patent/CN103339243B/zh not_active Expired - Fee Related
- 2011-12-12 MX MX2013006761A patent/MX2013006761A/es active IP Right Grant
- 2011-12-12 EP EP11805228.1A patent/EP2652099B1/de not_active Not-in-force
- 2011-12-12 JP JP2013543939A patent/JP5980224B2/ja not_active Expired - Fee Related
- 2011-12-12 KR KR1020137018022A patent/KR20130130015A/ko not_active Ceased
- 2011-12-12 AR ARP110104630A patent/AR084243A1/es not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO2012080939A1 * |
Also Published As
Publication number | Publication date |
---|---|
CA2821567C (fr) | 2018-10-02 |
AR084243A1 (es) | 2013-05-02 |
JP2014501292A (ja) | 2014-01-20 |
CN103339243A (zh) | 2013-10-02 |
CA2821567A1 (fr) | 2012-06-21 |
KR20130130015A (ko) | 2013-11-29 |
CN103339243B (zh) | 2016-08-10 |
MX2013006761A (es) | 2013-08-01 |
US20130281331A1 (en) | 2013-10-24 |
EP2652099B1 (de) | 2018-03-07 |
BR112013014826A2 (pt) | 2016-10-04 |
WO2012080939A1 (fr) | 2012-06-21 |
FR2968669B1 (fr) | 2014-02-28 |
JP5980224B2 (ja) | 2016-08-31 |
FR2968669A1 (fr) | 2012-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2652099B1 (de) | Schmierfettzusammensetzung | |
EP2652100B1 (de) | Schmierfettzusammensetzung | |
CA2771772C (fr) | Composition de graisse | |
EP2986693B1 (de) | Schmiermittelzusammensetzung auf der basis von metallnanopartikeln | |
EP2401349B1 (de) | Schmiermittelzusammensetzung | |
EP3110929B1 (de) | Schmiermittelzusammensetzung auf basis von metallnanopartikeln | |
WO2015014986A1 (fr) | Compositions lubrifiantes pour transmissions | |
FR2992655A1 (fr) | Composition lubrifiante | |
WO2013120965A1 (fr) | Compositions lubrifiantes pour transmissions | |
FR3065007B1 (fr) | Composition lubrifiante notamment pour limiter le frottement | |
WO2025051917A1 (fr) | Graisses lubrifiantes ameliorees et nouveaux additifs fonctionnels soufres | |
FR3062387A1 (fr) | Dilipoate de dimere(s) diol et son utilisation comme additif |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130617 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20140911 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170721 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
INTC | Intention to grant announced (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20171215 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 976564 Country of ref document: AT Kind code of ref document: T Effective date: 20180315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011046349 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180307 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180607 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 976564 Country of ref document: AT Kind code of ref document: T Effective date: 20180307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180607 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011046349 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180709 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
26N | No opposition filed |
Effective date: 20181210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011046349 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181212 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181212 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111212 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180707 |