EP2488618A1 - Engine lubricant - Google Patents
Engine lubricantInfo
- Publication number
- EP2488618A1 EP2488618A1 EP10771215A EP10771215A EP2488618A1 EP 2488618 A1 EP2488618 A1 EP 2488618A1 EP 10771215 A EP10771215 A EP 10771215A EP 10771215 A EP10771215 A EP 10771215A EP 2488618 A1 EP2488618 A1 EP 2488618A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- oil
- ester
- composition according
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010705 motor oil Substances 0.000 title claims abstract description 39
- 239000000203 mixture Substances 0.000 claims abstract description 37
- 150000002148 esters Chemical class 0.000 claims abstract description 33
- 238000002485 combustion reaction Methods 0.000 claims abstract description 29
- 230000001050 lubricating effect Effects 0.000 claims abstract description 11
- 239000000314 lubricant Substances 0.000 claims abstract description 6
- 239000003921 oil Substances 0.000 claims description 46
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 24
- 239000000654 additive Substances 0.000 claims description 18
- 239000003599 detergent Substances 0.000 claims description 17
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 16
- 239000002199 base oil Substances 0.000 claims description 15
- 239000003963 antioxidant agent Substances 0.000 claims description 10
- 238000005461 lubrication Methods 0.000 claims description 10
- -1 mandelates Chemical class 0.000 claims description 10
- 239000007866 anti-wear additive Substances 0.000 claims description 8
- 125000003118 aryl group Chemical group 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- 229920006395 saturated elastomer Polymers 0.000 claims description 7
- 230000000996 additive effect Effects 0.000 claims description 6
- 239000002270 dispersing agent Substances 0.000 claims description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 5
- 239000011707 mineral Substances 0.000 claims description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 5
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 4
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical class [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 claims description 4
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 4
- HWXBTNAVRSUOJR-UHFFFAOYSA-N 2-hydroxyglutaric acid Chemical class OC(=O)C(O)CCC(O)=O HWXBTNAVRSUOJR-UHFFFAOYSA-N 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 150000001860 citric acid derivatives Chemical class 0.000 claims description 3
- 150000005690 diesters Chemical class 0.000 claims description 3
- 150000003893 lactate salts Chemical class 0.000 claims description 3
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical class CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 3
- 150000004701 malic acid derivatives Chemical class 0.000 claims description 3
- 229940049964 oleate Drugs 0.000 claims description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 3
- 150000003892 tartrate salts Chemical class 0.000 claims description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 2
- 241000531123 GB virus C Species 0.000 claims 1
- ASKIVFGGGGIGKH-UHFFFAOYSA-N isostearic acid monoglyceride Natural products CC(C)CCCCCCCCCCCCCCC(=O)OCC(O)CO ASKIVFGGGGIGKH-UHFFFAOYSA-N 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 229920000193 polymethacrylate Polymers 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 150000002430 hydrocarbons Chemical group 0.000 description 4
- 235000013824 polyphenols Nutrition 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000005069 Extreme pressure additive Substances 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920013639 polyalphaolefin Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- 238000012384 transportation and delivery Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BTHAQRDGBHUQMR-UHFFFAOYSA-N [S]P(=O)=O Chemical compound [S]P(=O)=O BTHAQRDGBHUQMR-UHFFFAOYSA-N 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 230000001166 anti-perspirative effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003213 antiperspirant Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 229910052728 basic metal Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- KGGZTXSNARMULX-UHFFFAOYSA-L copper;dicarbamodithioate Chemical class [Cu+2].NC([S-])=S.NC([S-])=S KGGZTXSNARMULX-UHFFFAOYSA-L 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 239000010710 diesel engine oil Substances 0.000 description 1
- 150000002009 diols Chemical group 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002272 engine oil additive Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- 125000005609 naphthenate group Chemical class 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-M phenolate Chemical compound [O-]C1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-M 0.000 description 1
- 229940031826 phenolate Drugs 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/68—Esters
- C10M129/76—Esters containing free hydroxy or carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
Definitions
- the present invention relates to the lubrication of hybrid vehicle engines, particularly heavy-duty vehicles with hybrid engines.
- Hybrid drive systems overcome these disadvantages by implementing an electric motor and an internal combustion engine in series or in parallel.
- a special feature of hybrid systems is the "stop-start” system. The vehicle starts in electric mode, then goes into thermal mode as soon as the speed increases, and vice versa. The engine is stopped at each stop of the vehicle.
- the internal combustion engine of hybrid vehicles undergoes, during its life, a number of stops and starts much higher than in a conventional vehicle. This potentially generates, for the internal combustion engines of hybrid vehicles, specific wear problems, in particular in the long term.
- WO2008 / 067259 discloses a lubricating composition
- a base oil and the condensation product of a dicarboxylic acid compound with a dialkoxy or diol substitution, and a C6 to C12 alcohol.
- US4820431 discloses a railway diesel engine lubricating composition
- a railway diesel engine lubricating composition comprising a base oil, a dispersant, an overbased phenolate, an alkyl sulfonate and a polyhydroxy compound.
- US2008 / 090741 discloses a lubricating composition
- a lubricating composition comprising a base oil, an overbased detergent and a weakly basic detergent, with a salt to metal ratio of between 3 and 8.
- Application GB 2454349 discloses a method of heating the lubricating oil of diesel engines of hybrid vehicles, with the aim of avoiding problems of cold start and loss of power due to friction. This system requires an ancillary device, and goes against the observations made in test.
- R, R 'and R "independently of one another are a linear or branched, saturated or unsaturated hydrocarbon group optionally substituted by one or more aromatic groups, and having 1 to 30 carbon atoms, and / or its borated derivatives for the lubrication of internal combustion engines of vehicles with hybrid engines whose maximum torque, measured between 1000 and 3000 revolutions / minute, is greater than 1000 Nm
- the ester (a) contains at least one free OH hydroxyl group belonging to the R group, said OH group being located in the alpha, beta or gamma position with respect to the carbon of the CO function of an ester function on which the group R is attached, or contains at least one free hydroxyl OH group belonging to the group R ', said OH group being located in the beta, gamma or delta position with respect to the oxygen of the COO group of an ester function on which the R' group is attached.
- the R 'group of the ester (a) represents a C 1 to C 10 , preferably C 2 to C 8 , even more preferably C 3 to C 6, group .
- n 1 and the groups R and R "of the ester (a) represent groups Cs to C 25 , preferably C 12 to C 18 .
- At least one ester (a) is chosen from monoesters or diesters of glycerol, even more preferentially chosen from glycerol mono or di oleate, mono or di stearate or mono or di isostearate. glycerol and / or their borated derivatives.
- n is strictly greater than 1 and the R group of the ester (a) represents a C 1 -C 5 , preferably C 1 -C 3, group .
- At least one ester (a) is chosen from citrates, tartrates, malates, lactates, mandelates, glycolates, hydroxypropionates, hydroxyglutarates and / or their borated derivatives.
- the kinematic viscosity at 100 ° C of the engine oil used according to the invention is between 16.9 and 21.9 cSt.
- the kinematic viscosity at 100 ° C of the engine oil used according to the invention, measured according to ASTM D445, is between 21.9 and 26.1 cSt.
- the internal combustion engines lubricated according to the invention are diesel engines.
- the hybrid heavy-vehicle vehicles whose internal combustion engine is lubricated according to the invention are parallel hybrids.
- the use of an engine oil according to the invention aims to reduce the wear of internal combustion engines.
- an oil according to the invention is made on vehicles that operate according to the urban cycle ETC defined by the European Directive 1999/96 / EC.
- the subject of the present invention is also a lubricating composition for a hybrid vehicle internal combustion engine of maximum torque greater than 1000 Nm between 1000 and 3000 revolutions minutes, whose kinematic viscosity at 100 ° C. measured according to the ASTM D445 standard is between 16 and 27 cSt, and including:
- the lubricating composition according to the invention further comprises:
- an additive composition for engine lubricant comprising one or more detergent additives, one or more dispersing additives, one or more antioxidant additives, preferably amino or phenolic additives, one or more antiwear additives, preferentially chosen; among the zinc dithiophosphates.
- the subject of the present invention is the lubrication of the internal combustion engines of heavy goods vehicles equipped with hybrid systems, in particular those intended to circulate mainly in urban areas, such as delivery utilities, garbage trucks or vehicles used for transporting goods.
- hybrid vehicle here means vehicles associating an internal combustion engine with an electric motor, preferably the systems where these two motors are associated in parallel, called parallel hybrid vehicles.
- the operating principle of these vehicles is as follows: • during stationary phases (where the vehicle is stationary), both engines are stopped,
- kinetic energy is used to recharge the batteries.
- Heavy-duty vehicles typically have a payload of more than 3.5 tonnes.
- the engines that equip them are, for both conventional vehicles and for hybrid vehicles, four-stroke engines, most often diesel, which have power characteristics, and especially high torque.
- the heavy-duty engines have a speed of between 800 and 3000 revolutions / min.
- the maximum or plateau of the power and torque curves is obtained between 1000 and 3000 rpm, most often between 1000 and 1700 rpm.
- the maximum torque is generally obtained around 1200 revolutions / minute
- the present invention relates to the lubrication of internal combustion engines of vehicles with hybrid engines, said internal combustion engines having a maximum torque (measured between 1000 and 3000 rpm), greater than 1000 Nm, preferably greater than 1500, or at 1700, or at 2000 Nm
- said internal combustion engines are diesel engines.
- vehicles with hybrid powertrain are parallel hybrid vehicles.
- the power or torque characteristics referred to herein refer to net power or net torque as defined in SAE J 1349.
- the present invention more preferably relates to the lubrication of internal combustion engines of heavy goods vehicles equipped with hybrid systems circulating in an urban environment, where the stop / start phenomenon and the resulting wear are increased.
- ETC cycle European Transient Cycle
- FIGE European Directive 1999/96 / EC of 13 December 1999.
- the first part of the cycle (from 0 to 600 s) characterizes urban functioning. This part of the cycle will be referred to as the "ETC Urban Cycle”.
- the motor oils used according to the present invention comprise one or more base oils, generally representing at least 70% by weight of said motor oils, and up to 85% or 90% by weight and more.
- the base oil (s) used in the engine oils according to the present invention may be oils of mineral or synthetic origin of groups I to V according to the classes defined in the API classification (or their equivalents according to the ATIEL classification) as summarized. below, alone or mixed.
- oils may be oils of vegetable, animal or mineral origin.
- the mineral base oils according to the invention include all types of bases obtained by atmospheric distillation and vacuum of crude oil, followed by refining operations such as solvent extraction, desalphating, solvent dewaxing, hydrotreatment, hydrocracking and hydro iso meris ation, hydro finish.
- the base oils of the compositions according to the present invention may also be synthetic oils, such as certain esters of carboxylic acids and alcohols, or polyalphaolefins.
- the polyoaplphafines used as base oils for example, are obtained from monomers having from 4 to 32 carbon atoms (for example octene, decene), and a viscosity at 100 ° C of between 1.5 and 15 Cst. Their weight average molecular weight is typically between 250 and 3000.
- Mixtures of synthetic and mineral oils may also be employed, for example when formulating multigrade oils to avoid cold start problems.
- a viscosity index (VI) improving polymer which makes it possible to guarantee a good cold performance and a minimum viscosity at high temperature
- a viscosity index (VI) improving polymer such as, for example, polymeric esters, olefins copolymers (OCP), homopolymers or copolymers of styrene, butadiene or isoprene, polymethacrylates (PMA).
- the motor oils according to the present invention may contain from about 0.0 to 20%, or from 5 to 15%, or from 7 to 10% by weight of VI improvers, for example selected from polymeric esters, olefins copolymers (OCP), homopolymers or copolymers of styrene, butadiene or isoprene, polymethacrylates (PMA).
- VI improvers for example selected from polymeric esters, olefins copolymers (OCP), homopolymers or copolymers of styrene, butadiene or isoprene, polymethacrylates (PMA).
- the engine oils according to the invention preferably have a viscosity index value or VI, measured according to ASTM D2270 greater than 130, preferably greater than 140, preferably greater than 150.
- compositions according to the present invention there is no limitation to the use of any particular base oil (and optionally VI improving polymer) for making the compositions according to the present invention, except that their amount and their nature must be adjusted.
- a viscosity grade sufficiently viscous that is to say a kinematic viscosity (KV100) at 100 ° C according to ASTM D445, between 16 and 27 cSt.
- the motor oils according to the invention are preferably grade 50 or 60 according to the SAEJ300 classification, that is to say that their kinematic viscosity at 100 ° C. according to ASTM D445 is preferably between 16.9 and 21.9 cSt or between 21, 9 and 26.1 cSt.
- the engine oils according to the invention are multigrade oils of 20 W grade, preferably of 15W grade according to the SAEJ classification, ie their dynamic viscosity (CCS) according to ASTM D5293 is less than 9500 mPa.s. at -15 ° C, preferably below 7000 mPa.s at -20 ° C.
- CCS dynamic viscosity
- the motor oils used in the invention comprise at least one hydroxyl ester (a) of formula
- m is an integer of 0 to 4, preferably 0 to 2
- n is an integer of 1 to 8, preferably 1 to 4
- the ester (a) contains at least one free OH hydroxyl group belonging to the R group, said OH group being located at the alpha, beta or gamma position with respect to the carbon of the CO 2 function.
- R ' represents a C 1 -C 10 , preferably C 2 -C 6 , even more preferentially C 3 -C 6, group .
- n is equal to 1 and R and R "represent C 6 to C 6 groups, preferably C 12 to C 18 groups.
- R and / or R" are saturated, more stable compounds are obtained. oxidation. The presence of unsaturation leads to liquid compounds at room temperature, which are more easily solubilized in the oils.
- the hydroxylated esters (a) may be chosen from monoesters or diesters obtained from glycerol, such as glycerol mono or di oleate, mono- or di-stearate or glycerol mono or di isostearate. , and their borated derivatives.
- n is an integer strictly greater than 1 and the R group of the ester (c) represents a group -C 5, preferably C l -C 3.
- the hydroxylated esters (a) may also be chosen from citrates, tartrates, malates, lactates, mandelates, glycolates, hydroxypropionates, hydroxyglutarates or their borated derivatives.
- esters of formula R (OH) m (COOR '(OH) p (OOCR ") q ) n are prepared according to methods known to those skilled in the art, in particular by reaction of a polycarboxylic acid of formula R (OH) m (COOH) n with an alcohol of formula R '(OH) or a polyol of formula R' (OH) p with monocarboxylic acids RCOOH and / or R'COOH, the substituents R, R ', R and the indices m, n, p being as defined above.
- oils used according to the invention may comprise between 0.5 and 10% by weight, preferably between 1 and 7% by weight, or between 2 and 5% by weight of such esters (a).
- level of antiwear additive oils used according to the invention may be identical to that of conventional oils for internal combustion engine heavy vehicles.
- the engine oils used according to the invention may further contain any type of additives suitable for use as engine oil, particularly heavy-duty engine.
- additives may be introduced individually and / or included in packages of additives used in commercial four-stroke engine lubricant formulations, with performance levels as defined by ACEA (Association of European Automobile Manufacturers) and / or ⁇ (American Petroleum Institute), for example respectively ACEA E9 and API CJ-4 well known to those skilled in the art.
- ACEA Association of European Automobile Manufacturers
- API CJ-4 American Petroleum Institute
- compositions according to the invention may contain, in particular and without limitation, anti-wear and extreme pressure additives, antioxidants, overbased or non-overbased detergents, pour point improvers, dispersants, antifoam, thickeners. ..
- the anti-wear and extreme pressure additives protect the friction surfaces by forming a protective film adsorbed on these surfaces.
- the most commonly used is Zinc di thiophosphate or DTPZn. This category also contains various phosphorus, sulfur, nitrogen, chlorine and boron compounds.
- anti-wear additives there is a wide variety of anti-wear additives, but the most used category in motor oils is that of phospho-sulfur-containing additives such as metal alkylthiophosphates, in particular zinc alkylthiophosphates, and more specifically zinc dialkyldithiophosphates or DTPZn.
- Preferred compounds are of formula
- DTPZn ((SP (S) (OR1) (OR2)) 2, where R1 and R2 are alkyl groups, preferably containing from 1 to 18 carbon atoms, DTPZn is typically present at levels of the order of 0, 1 to 2% by weight in the motor oils.
- Phosphates of amines, polysulfides, especially sulfur-containing olefins, are also commonly used anti-wear additives.
- the anti-wear and extreme pressure additives are generally present in the compositions for heavy-duty engine lubricants at contents of between 0.5 and 6%, preferably between 0.7 and 2%, preferably between 1 and 1.5% by weight.
- Antioxidants delay the degradation of oils in service, which can result in the formation of deposits, the presence of sludge, or an increase in the viscosity of the oil. They act as free radical inhibitors or destroyers of hydroperoxides.
- the antioxidants commonly used are the antioxidants of the phenolic type, amines.
- Phenolic anoxidants may be ashless, or may be in the form of neutral or basic metal salts. Typically, they are compounds containing a sterically hindered hydroxyl group, for example when 2 hydroxyl groups are in the o or p position of each other, or when the phenol is substituted with an alkyl group containing at least 6 carbon atoms. .
- Amino compounds are another class of antioxidants that can be used alone or possibly in combination with phenolics.
- Typical examples are aromatic amines, of formula R 8 R 9 R 10 N, where R 5 is an aliphatic group, or an optionally substituted aromatic group, R 9 is an optionally substituted aromatic group, Rio is hydrogen, or a group alkyl or aryl, or a group of formula RnS (O) x R12, where R11 is alkylene, alkenylene, or aralkylene, and x is 0, 1 or 2.
- Sulfurized alkyl phenols or their alkali and alkaline earth metal salts are also used as antioxidants.
- antioxidants are that of oil-soluble copper compounds, for example copper thio or dithiophosphate, copper and carboxylic acid salts, copper dithiocarbamates, sulphonates, phenates, acetylacetonates. Copper salts I and II, succinic acid or anhydride are used.
- These compounds are typically present in lubricating compositions for engine weight lords in amounts of between 0.1 and 5% by weight, preferably between 0.3 and 2% by weight, even more preferably between 0, 5 and 1.5% by weight.
- Detergents reduce the formation of deposits on the surface of metal parts by dissolving the secondary products of oxidation and combustion, and allow the neutralization of certain acidic impurities from combustion and found in the oil.
- the detergents commonly used in the formulation of lubricating compositions are typically anionic compounds having a long lipophilic hydrocarbon chain and a hydrophilic head.
- the associated cation is typically a metal cation of an alkali or alkaline earth metal.
- the detergents are preferably chosen from alkali metal or alkaline earth metal salts of carboxylic acids, sulphonates, salicylates and naphthenates, as well as the salts of phenates, preferably of calcium, magnesium, sodium or barium. These metal salts may contain the metal in an approximately stoichiometric amount or in excess (in an amount greater than the stoichiometric amount). In the latter case, we are dealing with so-called overbased detergents.
- the excess metal providing the overbased detergent character is in the form of oil-insoluble metal salts, for example carbonate, hydroxide, oxalate, acetate, glutamate, preferably carbonate, preferably calcium, magnesium, sodium or barium.
- the lubricant compositions according to the present invention may contain any type of detergent known to those skilled in the art, neutral or overbased.
- the more or less overbased character of the detergents is characterized by the BN (base number), measured according to the ASTM D2896 standard, and expressed in mg of KOH per gram.
- Neutral detergents have a BN between about 0 and 80.
- the overbased detergents they BN values typically of the order of 150 and more, or 250 or 450 or more.
- the BN of the lubricant composition containing detergents is measured by ASTM D2896 and expressed as mg KOH per gram of lubricant.
- the amounts of detergents included in the motor oils according to the invention are adjusted so that the BN of said oils, measured according to ASTM D2896, is between 5 and less than or equal to 20 mg of KOH per gram of d motor oil, preferably between 8 and 15 mg of KOH per gram of engine oil
- Pour point depressant additives improve the cold behavior of oils by slowing the formation of paraffin crystals. They are for example alkyl polymethacrylates, polyacrylates, polyarylamides, polyalkylsphenols, polyalkylnaphthalenes, alkylated polystyrene, etc. They are generally present in the oils according to the invention at contents of between 0.1 and 0.5% by weight. .
- Dispersants for example succinimides, PIB (polyisobutene) succinimides,
- Mannich bases ensure the suspension and evacuation of insoluble solid contaminants consisting of secondary oxidation products that are formed when the engine oil is in use.
- the dispersant level is typically relatively higher in heavy-duty engine oils than in light-duty engine oils, mainly due to longer oil change intervals. It is typically between 4 and 10% by weight, preferably between 4.5 and 7% by weight.
- the system tested includes a 6-cylinder diesel engine with a maximum torque of 1200 Nm from 1200 to 1700 rpm. It is a hybrid type parallel and includes a starter alterno between the clutch and the gearbox of the vehicle.
- the engine oil is around 100 ° C in these tests.
- the wear is followed by a usual technique of radiotracers, consisting of irradiating the surface of the bearings whose wear is to be tested, and measuring at the end of the test the radioactivity of the engine oil, which contains proportionally irradiated metal particles. to wear the parts in question.
- Oil A is a 10W30 heavy duty commercial grade engine oil formulated with an ACE A E9 performance lighter engine oil additive package.
- Oils B and C contain the same additivation but are of grade respectively 15W50 and 20W50.
- the oil D is an oil according to the invention, which also contains the same additivation and is grade 15W50.
- the additive package is identical for oils A, B, C and D: it is a classic package for diesel engine oils (ACEA E9 performance level), including:
- ZnDDPs zinc dithiophosphate antiperspirants
- Tests with the reference oil A showed a high wear rate, corroborated by visual observations (wear on 40% of the surface of the first bearing).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0904963A FR2951456B1 (en) | 2009-10-16 | 2009-10-16 | ENGINE LUBRICANT |
PCT/IB2010/054691 WO2011045773A1 (en) | 2009-10-16 | 2010-10-15 | Engine lubricant |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2488618A1 true EP2488618A1 (en) | 2012-08-22 |
EP2488618B1 EP2488618B1 (en) | 2018-09-26 |
Family
ID=42138951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10771215.0A Active EP2488618B1 (en) | 2009-10-16 | 2010-10-15 | Use of an engine lubricant |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2488618B1 (en) |
BR (1) | BR112012008947B1 (en) |
FR (1) | FR2951456B1 (en) |
WO (1) | WO2011045773A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2983867B1 (en) | 2011-12-09 | 2014-08-22 | Total Raffinage Marketing | ENGINE LUBRICANT FOR HYBRID OR MICRO-HYBRID MOTOR VEHICLES |
FR3115291B1 (en) * | 2020-10-20 | 2023-11-17 | Total Marketing Services | Use of dialkylene glycol ester to reduce friction in vehicles equipped with hybrid engines |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683069A (en) * | 1981-05-06 | 1987-07-28 | Exxon Research & Engineering Co. | Glycerol esters as fuel economy additives |
US4479883A (en) * | 1982-01-06 | 1984-10-30 | Exxon Research & Engineering Co. | Lubricant composition with improved friction reducing properties containing a mixture of dithiocarbamates |
US4459223A (en) * | 1982-05-05 | 1984-07-10 | Exxon Research And Engineering Co. | Lubricant oil composition with improved friction reducing properties |
US4820431A (en) * | 1986-02-28 | 1989-04-11 | Amoco Corporation | Railway lubricating oil |
MY145889A (en) * | 2004-07-08 | 2012-05-15 | Shell Int Research | Lubricating oil composition |
US7538076B2 (en) * | 2005-03-28 | 2009-05-26 | The Lubrizol Corporation | Lubricant and concentrate compositions comprising hindered-phenol-containing diester antioxidant and method thereof |
US7482312B2 (en) * | 2005-04-01 | 2009-01-27 | Shell Oil Company | Engine oils for racing applications and method of making same |
US20080090741A1 (en) * | 2006-10-16 | 2008-04-17 | Lam William Y | Lubricating oils with enhanced piston deposit control capability |
EP2089496A1 (en) * | 2006-11-28 | 2009-08-19 | The Lubrizol Corporation | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
GB0721262D0 (en) | 2007-10-30 | 2007-12-05 | Ford Global Tech Llc | A method for heating the oil of an engine |
FR2924439B1 (en) * | 2007-12-03 | 2010-10-22 | Total France | LUBRICATING COMPOSITION FOR FOUR-STROKE ENGINE WITH LOW ASH RATES |
WO2010016856A1 (en) * | 2007-12-12 | 2010-02-11 | The Lubrizol Corporation | Marine diesel cylinder lubricants for improved fuel efficiency |
-
2009
- 2009-10-16 FR FR0904963A patent/FR2951456B1/en not_active Expired - Fee Related
-
2010
- 2010-10-15 WO PCT/IB2010/054691 patent/WO2011045773A1/en active Application Filing
- 2010-10-15 EP EP10771215.0A patent/EP2488618B1/en active Active
- 2010-10-15 BR BR112012008947-1A patent/BR112012008947B1/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
See references of WO2011045773A1 * |
Also Published As
Publication number | Publication date |
---|---|
BR112012008947A2 (en) | 2020-09-15 |
FR2951456B1 (en) | 2011-12-09 |
BR112012008947B1 (en) | 2021-07-20 |
EP2488618B1 (en) | 2018-09-26 |
FR2951456A1 (en) | 2011-04-22 |
WO2011045773A1 (en) | 2011-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2844726B1 (en) | Lubricant composition for an engine | |
EP2920283B1 (en) | Lubricant composition | |
EP2245125A1 (en) | Lubricating composition for four stroke engine with low ash content | |
WO2019077105A1 (en) | Composition for cooling and lubricating a drive system of a vehicle | |
EP2844725A1 (en) | Engine lubricant for vehicles having a hybrid or micro-hybrid engine | |
EP3523407B1 (en) | Lubricanting composition for a marine engine or a stationary engine | |
EP2935542A1 (en) | Lubricating composition made from polyglycerol ether | |
EP4185674A1 (en) | Lubricating composition for a motor vehicle drive train | |
EP2488618B1 (en) | Use of an engine lubricant | |
EP2788462B1 (en) | Engine lubricant for hybrid or micro-hybrid motor vehicles | |
FR3092335A1 (en) | Lubricating composition to prevent pre-ignition | |
EP4185675A1 (en) | Lubricating composition with improved anti-corrosion properties for a motor vehicle drive train | |
FR3092337A1 (en) | Lubricating composition to prevent pre-ignition | |
WO2019202150A1 (en) | Lubricant composition for industrial engines with increased fe potential | |
WO2024052415A1 (en) | Lubricant composition with improved eco fuel properties in hybrid vehicles | |
WO2022018001A1 (en) | Oxidation-stable lubricating composition for a motor vehicle drive train | |
EP4314214A1 (en) | Lubrication of rechargeable hybrid vehicle engine and hybrid vehicle comprising a range extender | |
WO2024056827A1 (en) | Use of a monoester in a lubricant composition for vehicle transmissions | |
WO2024008675A1 (en) | Use of an anti-wear additive for improving the thermal conductivity of a cooling fluid for an electric vehicle | |
WO2023061899A1 (en) | Carbodiimide for use as an additive in lubricants intended for drive device systems for improved elastomer compatibility | |
WO2024165518A1 (en) | Use of a diester in a lubricant composition for vehicle transmissions | |
FR3011246A1 (en) | LUBRICATING COMPOSITION BASED ON COPOLYMERS ETHYLENE / PROPYLENE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120504 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TOTAL MARKETING SERVICES |
|
17Q | First examination report despatched |
Effective date: 20140326 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170928 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180302 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1046047 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010053881 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181227 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1046047 Country of ref document: AT Kind code of ref document: T Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190126 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190126 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010053881 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181015 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101015 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180926 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20231019 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231020 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231026 Year of fee payment: 14 Ref country code: FR Payment date: 20231024 Year of fee payment: 14 Ref country code: DE Payment date: 20231020 Year of fee payment: 14 Ref country code: CH Payment date: 20231102 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231019 Year of fee payment: 14 |