[go: up one dir, main page]

EP2432910B1 - Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product - Google Patents

Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product Download PDF

Info

Publication number
EP2432910B1
EP2432910B1 EP10717595.2A EP10717595A EP2432910B1 EP 2432910 B1 EP2432910 B1 EP 2432910B1 EP 10717595 A EP10717595 A EP 10717595A EP 2432910 B1 EP2432910 B1 EP 2432910B1
Authority
EP
European Patent Office
Prior art keywords
flat steel
steel product
annealing
layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10717595.2A
Other languages
German (de)
French (fr)
Other versions
EP2432910A1 (en
EP2432910B2 (en
Inventor
Manfred Meurer
Martin Norden
Wilhelm Warnecke
Marc Blumenau
Matthias Dahlem
Jennifer Schulz
Klaus Josef Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42235906&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2432910(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to PL10717595T priority Critical patent/PL2432910T3/en
Publication of EP2432910A1 publication Critical patent/EP2432910A1/en
Publication of EP2432910B1 publication Critical patent/EP2432910B1/en
Application granted granted Critical
Publication of EP2432910B2 publication Critical patent/EP2432910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/026Deposition of sublayers, e.g. adhesion layers or pre-applied alloying elements or corrosion protection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the invention relates to a process for the hot dip coating of a zinc flat or a zinc alloy containing 2 to 35% by weight of Mn, and to a flat steel product provided with a zinc or zinc alloy coating.
  • Typical alloying elements are manganese, chromium, silicon, aluminum, and the like, which form stable non-reducible surface oxides upon conventional recrystallizing annealing. These oxides can prevent the reactive wetting with a molten zinc.
  • steels with high manganese contents are, due to their favorable combination of properties consisting of high strengths of up to 1,400 MPa on the one hand and extremely high strains (uniform strains of up to 70% and elongations at break of up to 90%), in principle particularly suitable for use in the field of vehicle construction , especially in the automotive industry.
  • Specially suitable steels with high Mn contents for this application from 6 wt .-% to 30 wt .-%, for example, from DE 102 59 230 A1 , the DE 197 27 759 C2 or the DE 199 00 199 A1 known.
  • Flat products produced from the known steels have an isotropic deformation behavior at high strengths and, moreover, are still ductile even at low temperatures.
  • melt ribbon additionally contains aluminum in an amount sufficient to completely reduce the MnO layer and at least partially reduce the (FeMn) O layer.
  • a method for hot dip coating a high Mn-containing steel substrate is known in which the ratio% H 2 O /% H 2 of the water content% H 2 O to the hydrogen to produce a substantially free of oxidic interlayers metallic protective layer on the steel strip.
  • the content% H 2 of the annealing atmosphere is set as a function of the respective annealing temperature T G such that the ratio% H 2 O /% H 2 is less than or equal to 8 ⁇ 10 -15 ⁇ T G 3.529 , where T denotes the annealing temperature is.
  • This specification is based on the finding that, by means of a suitable setting of the annealing atmosphere, namely its hydrogen content in relation to its dew point, a surface finish of the steel strip to be coated sets during the annealing, which ensures optimum adhesion of the subsequently hot-dip coating guaranteed applied metallic protective coating.
  • the annealing atmosphere set in this way reduces both the iron and the manganese of the steel strip.
  • the aim is to avoid the formation of an adhesion of the melt coating on the high manganese steel substrate impairing oxide layer.
  • the object of the invention to provide a method which allows to provide high levels of Mn-containing flat steel products with a corrosion-protective zinc coating, in which a further improved adhesion of the coating is ensured on the steel substrate.
  • a flat steel product should be created in which as well under high degrees of deformation of each formed of zinc or a zinc alloy Zn coating securely adheres to the steel substrate.
  • this object is achieved in that the hot dip coating of a high Mn contents containing flat steel product, the steps specified in claim 1 are completed.
  • a flat steel product in the form of a steel strip or sheet steel is first provided for hot dip coating a 2 to 35 wt% Mn-containing flat steel product in a continuous process.
  • the coating procedure according to the invention is particularly suitable for steel strips which are highly alloyed in order to ensure high strength and good elongation properties.
  • Steel strips provided with a metallic protective coating by hot-dip coating according to the invention contain (in% by weight) C: ⁇ 1.6%, Mn: 2 - 35%, Al: ⁇ 10%, Ni: ⁇ 10%, Cr: ⁇ 10%, Si: ⁇ 10%, Cu: ⁇ 3%, Nb: ⁇ 0.6%, Ti: ⁇ 0.3%, V: ⁇ 0.3%, P: ⁇ 0.1%, B: ⁇ 0.01%, Mo: ⁇ 0.3%, N: ⁇ 1.0%, balance iron and unavoidable impurities.
  • a steel which (in wt .-%) C: ⁇ 1.00%, Mn: 7.00 - 30.00%, Al: 1.00 - 10.00%, Si :> 2.50 - 8.00% (assuming that the sum of Al content and Si content is> 3.50 - 12.00%), B: ⁇ 0.01%, Ni: ⁇ 8, 00%, Cu: ⁇ 3.00%, N: ⁇ 0.60%, Nb: ⁇ 0.30%, Ti: ⁇ 0.30%, V: ⁇ 0.30%, P: ⁇ 0.01% , Rest contains iron and unavoidable impurities.
  • both hot-rolled and cold-rolled steel strips can be coated in the manner according to the invention as flat steel products, with the method according to the invention being particularly effective in the processing of cold-rolled steel strip.
  • the thus provided flat products are annealed in a working step b).
  • the annealing temperature Tg is 600 - 1100 ° C, while the annealing time, over which the flat steel product is kept at the annealing temperature, 10 - 240 s.
  • the above-mentioned annealing temperature Tg and annealing time under a FeO iron oxide present on the steel flat product be reducing and oxidizing with respect to the manganese contained in the steel substrate.
  • the annealing atmosphere contains 0.01-85 vol .-% H 2 , H 2 O and the balance N 2 and technically unavoidable impurities and has a lying between -70 ° C and +60 ° C dew point, wherein for the H 2 O / H 2 ratio applies: 8x10 -15 * Tg 3.529 ⁇ H 2 O / H 2 ⁇ 0.957
  • the ratio H 2 O / H 2 is set so that it is greater than 8x10 -15 * Tg 3.529 and on the other hand at most equal to 0.957, where Tg the respective annealing temperature is designated.
  • the dew point of the atmosphere is preferably in the range of - 50 ° C to + 60 ° C.
  • the annealing atmosphere in this case typically contains 0.1-85 vol% H 2 .
  • a particularly economical mode of operation of the Annealing continuous furnace used in the invention can be achieved by keeping the dew point of the atmosphere at -20 ° C to +20 ° C.
  • the steel flat product at least partially covering Mn mixed oxide layer is produced by a performed before the hot dip coating annealing on the flat steel product, wherein it is particularly favorable in view of the adhesion of the Zn coating on the steel substrate, if the Mn mixed oxide layer substantially completely covers the surface of the flat steel product after annealing.
  • the Mn mixed oxide layer is defined in the context of the invention as MnO ⁇ Fe metal . That is, metallic iron is present in this Mn mixed oxide layer and not, as in the prior art, oxidized iron.
  • an Mn mixed oxide layer is deliberately set via at least one annealing stage by carrying out the annealing (step b)) under a FeO-reducing and an Mn-oxidizing atmosphere.
  • the layer of Mn mixed oxides produced on the steel substrate according to the invention forms a primer on which the subsequently applied zinc layer surprisingly adheres particularly securely.
  • the Mn mixed oxide layer remains during the Hot dip coating process as far as possible, so that it ensures the permanent cohesion of Zn coating and steel substrate in the finished product.
  • the annealed flat steel product is cooled to a bath inlet temperature with which it enters the Zn melt bath.
  • the bath inlet temperature of the flat steel product is in the range of 310-710 ° C.
  • the melt bath optionally, Si ⁇ 2%, Pb ⁇ 0.1%, Ti ⁇ 0.2%, Ni ⁇ 1%, Cu ⁇ 1%, Co ⁇ 0.3%, Mn ⁇ 0.5%, Cr ⁇ 0.2%, Sr ⁇ 0.5%, Fe ⁇ 3%, B ⁇ 0.1%, Bi ⁇ 0.1%, Cd ⁇ 0.1% present to certain properties of the coating in a conventional manner adjust.
  • the Zn coating according to the invention necessarily contains Al contents of 0.05-8% by weight and may additionally have contents of up to 8% by weight Mg, the upper limit of the contents of both elements in practice typically having a maximum of 5% by weight .-% is limited.
  • a flat steel product according to the invention having a Mn content of 2 to 35% by weight and a Zn protective coating which protects against corrosion is accordingly characterized in that the Zn protective coating comprises an Mn mixed oxide layer essentially covering and adhering to the flat steel product, in the metallic one Iron is present, and has a Zn layer which shields the flat steel product and the Mn mixed oxide layer adhering to it against the environment.
  • the Zn protective coating comprises an Fe (Mn) 2 Al 5 layer arranged between the Mn mixed oxide layer and the Zn layer. This arises when in the melt bath, a sufficient amount of aluminum from 0.05 to 5 wt .-% Al is present.
  • the Fe (Mn) 2 Al 5 layer forms a barrier layer, by means of which the reduction of the Mn mixed oxide layer during hot dip is reliably prevented.
  • the barrier layer can convert into FeZn phases, wherein the Mn oxide layer is still preserved.
  • the MnO layer and the Fe (Mn) 2 Al 5 layer of a coating produced and obtained according to the invention thus ensure, even after hot dip coating, that that the outer Zn layer adheres firmly to the steel substrate under high degrees of deformation.
  • the presence of an Mn mixed oxide layer on the surface of the steel substrate according to the invention has a positive effect not only when the Fe (Mn) 2 Al 5 layer is additionally formed, but also when magnesium is used in the molten bath alternatively or in addition to aluminum is present in effective levels.
  • the MnO layer produced according to the invention ensures particularly good and uniform wetting of the flat steel product with at the same time optimal adhesion and minimized risk of cracking or spalling even at high degrees of deformation.
  • a particularly practical embodiment of the invention results in this context when Al and Mg are present in the specified limits simultaneously in the melt bath and for the ratio of the Al content% Al and the Mg content% Mg is:% Al /% Mg ⁇ 1.
  • the Al content of the melt bath is always smaller than its Mg content.
  • Magnesium is characterized by a higher reduction potential on MnO than aluminum. Therefore, in the presence of higher Mg contents in the melt layer, forced dissolution of the MnO skeleton of the mixed oxide layer occurs.
  • the annealing step (step b)) carried out for preparing the hot-dip coating in the context of the method according to the invention can be carried out in one or more stages.
  • different hydrogen contents in the annealing atmosphere are possible depending on the dew point. If the dew point is in the range of -70 ° C to + 20 ° C, the annealing atmosphere may contain at least 0.01% by volume H 2 but less than 3% by volume H 2 . If, on the other hand, a dew point of at least +20 ° C up to and including +60 ° C is set, the hydrogen content should be in the range of 3% to 85%, so that the atmosphere has a reducing effect on iron.
  • the reducing effect with respect to the FeO which may be present and the oxidizing effect with respect to the Mn present in the steel substrate are thus reliably achieved.
  • the annealing step carried out according to the invention can be used for this purpose (Step b) of claim 1) preceded by an additional annealing step, wherein the steel flat product is kept at an annealing temperature of 200 - 1100 ° C for an annealing period of 0.1 - 60 s under an oxidative atmosphere for both Fe and Mn Containing 0.0001 - 5 vol .-% H 2 and optionally 200 - 5500 vol. ppm O 2 and having a dew point lying in the range of -60 ° C to +60 ° C.
  • the annealing step according to the invention is then carried out at a dew point in the range of -70 ° C to +20 ° C in a 0.01 to 85% hydrogen atmosphere taking into account the other parameters to be taken into account during the performance of the annealing step according to the invention, before the flat steel product is passed into the melt bath.
  • Optimal adhesion properties of the Zn coating are achieved in a coating produced according to the invention if the thickness of the Mn mixed oxide layer obtained after annealing (step b)) is 40-400 nm, in particular up to 200 nm.
  • a first sample of the cold-rolled steel strip was then annealed in a one-step annealing process.
  • the steel strip sample is heated at a heating rate of 10 K / s to an annealing temperature Tg of 800 ° C. where the sample was then held for 30 seconds.
  • the annealing was carried out under an annealing atmosphere, which consisted of 5 vol .-% H 2 and 95 vol .-% of N 2 and whose dew point was +25 ° C.
  • the annealed steel strip was cooled at a cooling rate of 20 K / s to a bath inlet temperature of 480 ° C, where it was first subjected to an overaging treatment for 20 seconds. The overaging treatment took place under the unchanged annealing atmosphere.
  • the steel strip was then passed into a 460 ° C, saturated to Fe zinc melt bath, which in addition to Zn, unavoidable impurities and Fe additionally contained 0.23 wt .-% Al. After a dipping time of 2 seconds, the hot-dip-coated steel strip has been led out of the molten bath and cooled to room temperature.
  • the steel strip was first heated to 600 ° C at a heating rate of 10 K / s and held at this annealing temperature for 10 seconds.
  • the annealing atmosphere contained 2000 ppm O 2 and the remainder N 2 . Their dew point was -30 ° C.
  • the steel strip is in a second annealing step to a 800 ° C amount annealing temperature Tg was heated at which it was kept for 30 seconds under a 5 vol .-% H 2 , remainder N 2 containing annealing atmosphere whose dew point was -30 ° C. Thereafter, the steel strip has been cooled under the annealing atmosphere with a cooling temperature of about 20 K / s to 480 ° C and subjected to an overaging treatment for 20 seconds.
  • the steel strip was passed at a bath inlet temperature of 480 ° C in a 460 ° C hot, saturated to Fe melt bath, in turn, 0.23 wt .-% Al and other elements contained in inactive traces of contamination and the remainder zinc. After a dipping time of 2 seconds, the finished hot-dip coated flat steel product is then led out of the melt bath and cooled to room temperature.
  • Fig. 1 schematically shows the structure of the coating Z thus obtained on the steel substrate S.
  • M MnO ⁇ Fe
  • F MnO ⁇ Fe (Mn) 2 Al 5
  • ⁇ phase a FeMnZn layer
  • the thickness of the Mn mixed oxide layer M is 20-400 nm
  • the thickness of the Fe (Mn) 2 Al 5 intermediate layer F is 10-200 nm.
  • the total thickness of the coating layers M and F is accordingly 20-600 nm.
  • the zinc layer Zn is significantly thicker at 3-20 ⁇ m.
  • Fig. 2 an oblique cut of a sample produced in the manner described above is reproduced.
  • the steel substrate S and the Mn y O x manganese mixed oxide layer M with embedded metallic iron lying thereon are clearly visible, the Fe (Mn) 2 Al 5 intermediate layer F lying on the mixed oxide layer M and the Zn layer lying on the intermediate layer F ,
  • the influence of the dew point of the respective annealing atmosphere has been examined for the coating result.
  • the samples were each subjected to an annealing process in which they were also heated at a heating rate of 10 K / s to an annealing temperature Tg of 800 ° C. At this annealing temperature, the sample has then been held for 60 seconds.
  • the annealing was carried out under an annealing atmosphere, each consisting of 5 vol .-% H 2 and 95 vol .-% of N 2 , wherein the respective dew point of the annealing atmosphere between -55 ° C and +45 ° C has been varied.
  • the annealed steel strip was cooled at a cooling rate of 20 K / s to a bath inlet temperature of 480 ° C as in the above-described series of experiments, where it was first subjected to an overaging treatment for 20 seconds.
  • the overaging treatment took place under the unchanged annealing atmosphere.
  • the steel strip was then passed into a 460 ° C, saturated to Fe zinc melt bath, in addition to Zn, unavoidable impurities and Fe additionally in combination 0.4 wt .-% Al and 1.0 Wt .-% Mg or alone 0.14 wt .-%, 0.17 wt .-% or 0.23 wt .-% Al contained.
  • the hot-dip-coated steel strip has been led out of the molten bath and cooled to room temperature.
  • Fig. 3 schematically shows the structure of the thus obtained on the steel substrate S 'ZnMg coating Z' shown.
  • M' MnO ⁇ Fe
  • F MnO ⁇ Fe (Mn) 2 Al 5
  • a FeMnZn layer which in turn is shielded from the environment by a ZnMg layer.
  • the thickness of the Mn mixed oxide layer M ' is 20-400 nm, while the thickness of the Fe (Mn) 2 Al 5 intermediate layer F' is 10-200 nm.
  • the total thickness of the coating layers M 'and F' is accordingly 20-600 nm.
  • the zinc layer ZnMg is significantly thicker at 3-20 ⁇ m.
  • Fig. 4 an oblique cut of a sample produced in the manner described above is reproduced.
  • the steel substrate S 'and the Mn y O x manganese mixed oxide layer M' lying thereon with embedded metallic iron, the Fe (Mn) 2 Al 5 intermediate layer F 'lying on the mixed oxide layer M and the ZnMg lying on the intermediate layer F' are clearly visible Layer to recognize.
  • each of V1-V3 and V4-V6 were obtained from a cold-rolled steel strip consisting of an Al-TRIP steel VS1 and a steel strip consisting of a likewise cold-rolled Si-TRIP steel VS2.
  • the composition of steels VS1 and VS2 are given in Table 5.
  • Table 5 C Mn P Si V al Cr Ti Nb VS1 0.22 1.1 0.02 0.1 0,002 1.7 0.06 0.1 0.001 VS2 0.18 1.8 0.02 1.8 0,002 0 0.06 0.01 0.001
  • the comparative samples V1-V6 were heat-treated in the manner described above for the samples according to the invention before being hot-dip coated in the melt bath.
  • the melt bath contained in each case 0.4% by weight of Al and 1% by weight of Mg.
  • the degree of wetting and the zinc adhesion were likewise examined in each case on the samples V1 - V6 coated in this way.
  • the experimental parameters and results of these experiments are listed in Table 6. It turns out that due to the lower manganese contents of the steels VS1 and VS2 do not form MnO structure in the mixed oxidation layer on the surface of the steel substrate. As a result, no opaque Fe (Mn) 2 layer is formed as a primer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Schmelztauchbeschichten eines 2 - 35 Gew.-% Mn enthaltenden Stahlflachprodukts mit Zink oder einer Zinklegierung sowie ein mit einem Zink- oder Zinklegierungsüberzug versehenes Stahlflachprodukt.The invention relates to a process for the hot dip coating of a zinc flat or a zinc alloy containing 2 to 35% by weight of Mn, and to a flat steel product provided with a zinc or zinc alloy coating.

Im modernen Automobilbau wird verstärkt auf hoch und höchstfeste Stähle zurückgegriffen. Typische Legierungselemente sind Mangan, Chrom, Silicium, Aluminium u.a., die bei konventioneller rekristallisierender Glühbehandlung stabile nicht reduzierbare Oxide an der Oberfläche bilden. Diese Oxide können die reaktive Benetzung mit einer Zinkschmelze hindern.Modern automotive engineering increasingly relies on high-strength and ultra-high-strength steels. Typical alloying elements are manganese, chromium, silicon, aluminum, and the like, which form stable non-reducible surface oxides upon conventional recrystallizing annealing. These oxides can prevent the reactive wetting with a molten zinc.

Stähle mit hohen Mangan-Gehalten eignen sich aufgrund ihrer günstigen Eigenschaftskombination aus hohen Festigkeiten von bis zu 1.400 MPa einerseits und extrem hohen Dehnungen (Gleichmaßdehnungen bis zu 70 % und Bruchdehnungen bis zu 90 %) andererseits grundsätzlich im besonderen Maße für die Verwendung im Bereich des Fahrzeugbaus, insbesondere im Automobilbau. Für diesen Einsatzzweck speziell geeignete Stähle mit hohen Mn-Gehalten von 6 Gew.-% bis 30 Gew.-% sind beispielsweise aus der DE 102 59 230 A1 , der DE 197 27 759 C2 oder der DE 199 00 199 A1 bekannt. Aus den bekannten Stählen erzeugte Flachprodukte weisen bei hohen Festigkeiten ein isotropes Verformungsverhalten auf und sind darüber hinaus auch bei tiefen Temperaturen noch duktil.On the other hand, steels with high manganese contents are, due to their favorable combination of properties consisting of high strengths of up to 1,400 MPa on the one hand and extremely high strains (uniform strains of up to 70% and elongations at break of up to 90%), in principle particularly suitable for use in the field of vehicle construction , especially in the automotive industry. Specially suitable steels with high Mn contents for this application from 6 wt .-% to 30 wt .-%, for example, from DE 102 59 230 A1 , the DE 197 27 759 C2 or the DE 199 00 199 A1 known. Flat products produced from the known steels have an isotropic deformation behavior at high strengths and, moreover, are still ductile even at low temperatures.

Diesen Vorteilen steht jedoch gegenüber, dass hochmanganhaltige Stähle zu Lochfraß neigen und nur schwer zu passivieren sind. Diese im Vergleich zu niedriger legierten Stählen bei Einwirken erhöhter Chloridionen-Konzentrationen große Neigung zu lokal zwar begrenzter, jedoch intensiver Korrosion macht die Verwendung von zur Werkstoffgruppe der hochlegierten Stahlbleche gehörenden Stählen gerade im Karosseriebau schwierig. Zudem neigen hochmanganhaltige Stähle zu Flächenkorrosion, wodurch das Spektrum ihrer Verwendung ebenfalls einschränkt wird.These advantages, however, contrast with the fact that high manganese steels tend to pitting and are difficult to passivate. This compared to lower alloyed steels when exposed to elevated chloride ion concentrations great tendency to locally limited, but intense corrosion makes the use of the material group of high-alloy steel sheets belonging steels straight in the body construction difficult. In addition, high manganese steels tend to surface corrosion, which also limits the spectrum of their use.

Daher ist vorgeschlagen worden, auch Stahlflachprodukte, die aus hochmanganhaltigen Stählen erzeugt sind, in an sich bekannter Weise mit einem metallischen Überzug zu versehen, der den Stahl vor korrosivem Angriff schützt. Praktische Versuche, Stahlbänder mit hohen Mangangehalten durch ein kostengünstig durchführbares Schmelztauchbeschichten mit einer metallischen Schutzschicht zu versehen, brachten neben grundsätzlichen Problemen bei der Benetzung mit der Zn-Schmelze insbesondere im Hinblick auf die bei einer Kaltverformung von dem Überzug geforderten Haftung auf dem Stahlsubstrat unbefriedigende Ergebnisse.It has therefore been proposed to also provide flat steel products, which are produced from high-manganese steels, in a manner known per se with a metallic coating which protects the steel from corrosive attack. Practical attempts to provide steel strips with high manganese contents by a cost-effective hot-dip coating with a metallic protective layer, in addition to fundamental problems in the wetting with the Zn melt, especially with regard to the required on a cold deformation of the coating adhesion to the steel substrate unsatisfactory results.

Als Grund für diese schlechten Haftungseigenschaften wurde die starke Oxidschicht ermittelt, die sich bei der für das Schmelztauchbeschichten unverzichtbaren Glühung einstellt. Die derart oxidierten Blechoberflächen lassen sich nicht mehr mit der erforderlichen Gleichmäßigkeit und Vollständigkeit mit dem Überzugsmetall benetzen, so dass das Ziel eines flächendeckenden Korrosionsschutzes nicht erreicht wird.The reason for these poor adhesion properties was found to be the thick oxide layer which sets in the annealing required for hot-dip coating. The thus oxidized sheet surfaces can no longer be wetted with the required uniformity and completeness with the coating metal, so that the goal of a nationwide corrosion protection is not achieved.

Die aus dem Bereich von hochlegierten, jedoch niedrigere Mn-Gehalte aufweisenden Stählen bekannten Möglichkeiten der Verbesserung der Benetzbarkeit durch Aufbringen einer Zwischenschicht aus Fe oder Ni führten bei Stahlblechen mit mindestens 6 Gew.-% Mangan nicht zu dem gewünschten Erfolg.The known from the field of high-alloyed, but lower Mn-containing steels known ways of improving the wettability by applying an intermediate layer of Fe or Ni resulted in steel sheets with at least 6 wt .-% manganese not to the desired success.

In der DE 10 2005 008 410 B3 ist vorgeschlagen worden, auf ein 6 - 30 Gew.-% Mn enthaltendes Stahlband vor der dem Schmelztauchbeschichten vorangehenden letzten Glühung eine Aluminiumschicht aufzutragen. Das auf dem Stahlband haftende Aluminium verhindert bei der der Schmelzbeschichtung vorgeschalteten Glühung des Stahlbands, dass dessen Oberfläche oxidiert. Anschließend bewirkt die Aluminium-Schicht nach Art eines Haftvermittlers, dass der durch die Schmelzbeschichtung erzeugte Überzug auch dann fest und vollflächig auf dem Stahlband haftet, wenn das Stahlband selbst aufgrund seiner Legierung dazu ungünstige Voraussetzungen bietet. Dazu wird bei dem bekannten Verfahren der Effekt genutzt, dass es bei der der Schmelzbeschichtung notwendig vorgeschalteten Glühbehandlung zu einer Diffusion des Eisens des Stahlbands in die Aluminiumschicht kommt. Im Zuge der Glühung entsteht auf dem Stahlband somit eine metallische, im Wesentlichen aus Al und Fe bestehende Auflage, die stoffschlüssig mit dem durch das Stahlband gebildeten Untergrund verbunden ist.In the DE 10 2005 008 410 B3 For example, it has been proposed to apply an aluminum layer to a 6-30 wt.% Mn-containing steel strip prior to the final annealing preceding the hot-dip coating. The aluminum adhering to the steel strip prevents the annealing of the steel strip which precedes the melt coating from oxidizing its surface. Subsequently, the aluminum layer in the manner of an adhesion promoter, that the coating produced by the melt coating adheres firmly and fully on the steel strip, even if the steel strip itself offers unfavorable conditions due to its alloy. For this purpose, in the known method, the effect is utilized that diffusion of the iron of the steel strip into the aluminum layer occurs during the annealing treatment necessary upstream of the melt coating. in the As a result of the annealing, a metallic, essentially Al and Fe, overlay, which is firmly bonded to the substrate formed by the steel strip, is produced on the steel strip.

Ein anderes Verfahren zum Beschichten eines hochmanganhaltigen, 0,35 - 1,05 Gew.-% C, 16 - 25 Gew.-% Mn, Rest Eisen sowie unvermeidbare Verunreinigungen enthaltendes Stahlband ist aus der WO 2006/042931 A1 bekannt. Gemäß diesem bekannten Verfahren wird das derart zusammengesetzte Stahlband zunächst kaltgewalzt und anschließend rekristallisierend in einer Atmosphäre geglüht, die sich in Bezug auf Eisen reduzierend verhält. Dabei sind die Glühparameter so gewählt, dass sich auf dem Stahlband beidseitig eine Zwischenschicht einstellt, die im Wesentlichen vollständig aus amorphem (FeMn)-Oxid besteht, und sich zusätzlich eine äußere Schicht einstellt, die aus kristallinem Mn-Oxid besteht, wobei die Dicke der beiden Schichten mindestens 0,5 µm beträgt. Eine Schmelztauchbeschichtung findet anschließend nicht mehr statt. Vielmehr soll die Mn-Oxidschicht in Kombination mit der (FeMn)-Oxidschicht einen ausreichenden Korrosionsschutz bieten.Another method of coating a high manganese content steel strip containing 0.35-1.05 wt% C, 16-25 wt% Mn, balance iron and unavoidable impurities is known from US Pat WO 2006/042931 A1 known. According to this known method, the steel strip thus composed is first cold-rolled and then annealed recrystallizing in an atmosphere which is reducing with respect to iron. In this case, the annealing parameters are selected such that on both sides of the steel strip an intermediate layer is formed, which consists essentially completely of amorphous (FeMn) oxide, and additionally adjusts an outer layer consisting of crystalline Mn oxide, wherein the thickness of two layers is at least 0.5 microns. A hot-dip coating then no longer takes place. Rather, the Mn oxide layer in combination with the (FeMn) oxide layer should provide adequate corrosion protection.

Auf einem ähnlichen Prinzip basiert das in der WO 2006/042930 ( EP 1 805 341 B1 ) beschriebene Verfahren, gemäß dem durch zwei aufeinander folgende Glühschritte zunächst auf dem hoch Mn-haltigen Stahlsubstrat eine Schicht aus Eisen-Mangan-Mischoxiden und dann auf dieser Schicht eine äußere aus Mn-Mischoxiden bestehende Schicht erzeugt wird. Anschließend wird das so beschichtete Stahlband in ein Schmelzenbad geleitet. Dieses Schmelzenband enthält neben Zink zusätzlich Aluminium in einer Menge, die ausreicht, um die MnO-Schicht vollständig und die (FeMn)O-Schicht zumindest teilweise zu reduzieren. Im Ergebnis soll so ein Schichtaufbau erreicht werden, in dem drei FeMnZn-Schichten und eine außen liegende Zn-Schicht identifiziert werden können.On a similar principle that is based in the WO 2006/042930 ( EP 1 805 341 B1 ) described method, according to the two successive annealing steps first on the high Mn-containing steel substrate, a layer of iron-manganese mixed oxides and then on this layer an outer Mn-mixed oxide layer is produced. Subsequently, the thus coated steel strip is passed into a melt bath. This In addition to zinc, melt ribbon additionally contains aluminum in an amount sufficient to completely reduce the MnO layer and at least partially reduce the (FeMn) O layer. As a result, a layer structure is to be achieved in which three FeMnZn layers and one outer Zn layer can be identified.

Praktische Untersuchungen haben gezeigt, dass auch derart aufwändig vorbeschichtete Stahlbänder in der Praxis nicht die für eine Kaltverformung geforderte Haftung auf dem Stahlsubstrat aufweisen. Darüber hinaus erweist sich das aus der WO 2006/042930 bekannte Verfahren aufgrund der im Schmelzenbad ablaufenden, in der Praxis kaum steuerbaren Reaktionen als nicht ausreichend betriebssicher.Practical investigations have shown that even such elaborately precoated steel strips in practice do not have the required for a cold deformation adhesion to the steel substrate. In addition, this turns out to be from the WO 2006/042930 known processes due to running in the melt bath, hardly controllable in practice reactions as not sufficiently reliable.

Schließlich ist aus der DE 10 2006 039 307 B3 ein Verfahren zum Schmelztauchbeschichten eines hohe Mn-Gehalte aufweisenden Stahlsubstrats bekannt, bei dem zur Herstellung einer im Wesentlichen von oxidischen Zwischenschichten freien metallischen Schutzschicht auf dem Stahlband das Verhältnis %H2O/%H2 des Wasser-Gehaltes %H2O zum Wasserstoff-Gehalt %H2 der Glühatmosphäre in Abhängigkeit von der jeweiligen Glühtemperatur TG so eingestellt wird, dass das Verhältnis %H2O/%H2 kleiner oder gleich 8·10-15·x TG 3,529 ist, wobei mit T die Glühtemperatur bezeichnet ist. Dieser Vorgabe liegt die Erkenntnis zu Grunde, dass durch eine geeignete Einstellung der Glühatmosphäre, nämlich ihres Wasserstoff-Gehaltes im Verhältnis zu ihrem Taupunkt, sich beim Glühen eine Oberflächenbeschaffenheit des zu beschichtenden Stahlbands einstellt, die eine optimale Haftung des anschließend durch Schmelztauchbeschichten aufgetragenen metallischen Schutzüberzuges gewährleistet. Die so eingestellte Glühatmosphäre wirkt sowohl gegenüber dem Eisen als auch gegenüber dem Mangan des Stahlbands reduzierend. Ziel ist dabei, die Entstehung einer die Haftung des Schmelzüberzugs auf dem hochmanganhaltigen Stahlsubstrat beeinträchtigenden Oxidschicht zu vermeiden.Finally, out of the DE 10 2006 039 307 B3 A method for hot dip coating a high Mn-containing steel substrate is known in which the ratio% H 2 O /% H 2 of the water content% H 2 O to the hydrogen to produce a substantially free of oxidic interlayers metallic protective layer on the steel strip. The content% H 2 of the annealing atmosphere is set as a function of the respective annealing temperature T G such that the ratio% H 2 O /% H 2 is less than or equal to 8 × 10 -15 × T G 3.529 , where T denotes the annealing temperature is. This specification is based on the finding that, by means of a suitable setting of the annealing atmosphere, namely its hydrogen content in relation to its dew point, a surface finish of the steel strip to be coated sets during the annealing, which ensures optimum adhesion of the subsequently hot-dip coating guaranteed applied metallic protective coating. The annealing atmosphere set in this way reduces both the iron and the manganese of the steel strip. The aim is to avoid the formation of an adhesion of the melt coating on the high manganese steel substrate impairing oxide layer.

Praktische Untersuchungen haben gezeigt, dass gemäß dem voranstehend erläuterten bekannten Verfahren vorbereitete Stahlflachprodukte zwar ein gutes Benetzungsverhalten und eine für viele Anwendungen ausreichende Haftung des Zn-Überzuges aufweisen. Jedoch ergab sich bei der Verformung von entsprechend beschichteten Stahlflachprodukten zu Bauteilen, dass es bei hohen Verformungsgraden nach wie vor zu Ablösungen und Rissbildungen des Überzugs kommt.Practical investigations have shown that, according to the above-described known method, flat steel products prepared have a good wetting behavior and, for many applications, sufficient adhesion of the Zn coating. However, during the deformation of correspondingly coated flat steel products into components, high levels of deformation still lead to detachment and cracking of the coating.

Ferner können die aus dem Stand der Technik bekannten Verfahren, insbesondere bei Anwendung von hohen Prozesstemperaturen, die mechanischen Eigenschaften im Stahlflachprodukt negativ beeinflussen. Des Weiteren ist mit den bestehenden Prozessen kein ökonomischern, den ökologischen Anforderungen gerecht werdender Betrieb möglich.Furthermore, the methods known from the prior art, in particular when using high process temperatures, can adversely affect the mechanical properties in the flat steel product. Furthermore, with the existing processes, it is not possible to operate economically and meet the ecological requirements.

Vor diesem Hintergrund bestand die Aufgabe der Erfindung darin, ein Verfahren anzugeben, das es erlaubt, hohe Gehalte an Mn aufweisende Stahlflachprodukte mit einem vor Korrosion schützenden Zinküberzug zu versehen, bei dem eine weiter verbesserte Haftung des Überzugs auf dem Stahlsubstrat gewährleistet ist. Darüber hinaus sollte ein Stahlflachprodukt geschaffen werden, bei dem auch unter hohen Verformungsgraden der jeweils aus Zink oder eine Zinklegierung gebildete Zn-Überzug sicher auf dem Stahlsubstrat haftet.Against this background, the object of the invention to provide a method which allows to provide high levels of Mn-containing flat steel products with a corrosion-protective zinc coating, in which a further improved adhesion of the coating is ensured on the steel substrate. In addition, a flat steel product should be created in which as well under high degrees of deformation of each formed of zinc or a zinc alloy Zn coating securely adheres to the steel substrate.

In Bezug auf das Verfahren ist diese Aufgabe erfindungsgemäß dadurch gelöst, dass beim Schmelztauchbeschichten eines hohe Mn-Gehalte aufweisenden Stahlflachproduktes die in Anspruch 1 angegebenen Arbeitsschritte absolviert werden.With regard to the method, this object is achieved in that the hot dip coating of a high Mn contents containing flat steel product, the steps specified in claim 1 are completed.

In Bezug auf das Produkt ist die voranstehend angegebene Aufgabe zudem durch ein Stahlflachprodukt gelöst worden, das erfindungsgemäß die in Anspruch 8 angegebenen Merkmale besitzt.With respect to the product, the above-mentioned object has also been achieved by a flat steel product which according to the invention has the features specified in claim 8.

Gemäß der Erfindung wird zum Schmelztauchbeschichten eines 2 - 35 Gew.-% Mn enthaltenden Stahlflachprodukts in einem kontinuierlichen Verfahrensablauf zunächst ein Stahlflachprodukt in Form eines Stahlbands oder Stahlblechs zur Verfügung gestellt.According to the invention, a flat steel product in the form of a steel strip or sheet steel is first provided for hot dip coating a 2 to 35 wt% Mn-containing flat steel product in a continuous process.

Die erfindungsgemäße Vorgehensweise bei der Beschichtung ist insbesondere für solche Stahlbänder geeignet, die hoch legiert sind, um hohe Festigkeiten und gute Dehnungseigenschaften zu gewährleisten.The coating procedure according to the invention is particularly suitable for steel strips which are highly alloyed in order to ensure high strength and good elongation properties.

Stahlbänder, die in erfindungsgemäßer Weise durch Schmelztauchbeschichten mit einem metallischen Schutzüberzug versehen werden, enthalten (in Gew.-%) C: ≤ 1,6 %, Mn: 2 - 35 %, Al: ≤ 10 %, Ni: ≤ 10 %, Cr: ≤ 10 %, Si: ≤ 10 %, Cu: ≤ 3 %, Nb: ≤ 0,6 %, Ti: ≤ 0,3 %, V: ≤ 0,3 %, P: ≤ 0,1 %,
B: ≤ 0,01 %, Mo: ≤ 0,3 %, N: ≤ 1,0 %, Rest Eisen und unvermeidbare Verunreinigungen.
Steel strips provided with a metallic protective coating by hot-dip coating according to the invention contain (in% by weight) C: ≦ 1.6%, Mn: 2 - 35%, Al: ≦ 10%, Ni: ≦ 10%, Cr: ≦ 10%, Si: ≦ 10%, Cu: ≦ 3%, Nb: ≦ 0.6%, Ti: ≦ 0.3%, V: ≦ 0.3%, P: ≦ 0.1%,
B: ≤ 0.01%, Mo: ≤ 0.3%, N: ≤ 1.0%, balance iron and unavoidable impurities.

Besonders vorteilhaft wirken sich die durch die Erfindung erzielten Effekte bei der Beschichtung von hochlegierten Stahlbändern aus, die Mangan-Gehalte von mindestens 6 Gew.-% enthalten. So zeigt sich, dass ein Stahlgrundmaterial, welches (in Gew.-%) C: ≤ 1,00 %, Mn: 20,0 - 30,0 %, Al: ≤ 0,5 %, Si: ≤ 0,5 %, B: ≤ 0,01 %, Ni: ≤ 3,0 %, Cr: ≤ 10,0 %, Cu: ≤ 3,0 %, N: < 0,6 %, Nb: < 0,3 %, Ti: < 0,3 %, V: < 0,3 %, P: < 0,1 %, Rest Eisen und unvermeidbare Verunreinigungen enthält, sich besonders gut mit einem vor Korrosion schützenden Überzug beschichten lässt.The effects achieved by the invention in the coating of high-alloy steel strips which contain manganese contents of at least 6% by weight are particularly advantageous. Thus, it can be seen that a steel base material containing (in wt%) C: ≤ 1.00%, Mn: 20.0-30.0%, Al: ≤ 0.5%, Si: ≤ 0.5% , B: ≦ 0.01%, Ni: ≦ 3.0%, Cr: ≦ 10.0%, Cu: ≦ 3.0%, N: <0.6%, Nb: <0.3%, Ti : <0.3%, V: <0.3%, P: <0.1%, balance iron and unavoidable impurities, coat particularly well with a corrosion-protective coating.

Gleiches gilt, wenn ein Stahl als Grundmaterial eingesetzt wird, der (in Gew.-%) C: ≤ 1,00 %, Mn: 7,00 - 30,00 %, Al: 1,00 - 10,00 %, Si: > 2,50 - 8,00 % (wobei gilt, dass die Summe aus Al-Gehalt und Si-Gehalt > 3,50 - 12,00 % ist), B: < 0,01 %, Ni: < 8,00 %, Cu: < 3,00 %, N: < 0,60 %, Nb: < 0,30 %, Ti: < 0,30 %, V: < 0,30 %, P: < 0,01 %, Rest Eisen und unvermeidbare Verunreinigungen enthält.The same applies if a steel is used as the base material, which (in wt .-%) C: ≤ 1.00%, Mn: 7.00 - 30.00%, Al: 1.00 - 10.00%, Si :> 2.50 - 8.00% (assuming that the sum of Al content and Si content is> 3.50 - 12.00%), B: <0.01%, Ni: <8, 00%, Cu: <3.00%, N: <0.60%, Nb: <0.30%, Ti: <0.30%, V: <0.30%, P: <0.01% , Rest contains iron and unavoidable impurities.

Wie bei der üblichen Schmelztauchbeschichtung können als Stahlflachprodukte sowohl warmgewalzte als auch kaltgewalzte Stahlbänder in erfindungsgemäßer Weise beschichtet werden, wobei sich das erfindungsgemäße Verfahren insbesondere bei der Verarbeitung von kaltgewalztem Stahlband bewährt.As with the usual hot-dip coating, both hot-rolled and cold-rolled steel strips can be coated in the manner according to the invention as flat steel products, with the method according to the invention being particularly effective in the processing of cold-rolled steel strip.

Die so zur Verfügung gestellten Flachprodukte werden in einem Arbeitschritt b) geglüht. Die Glühtemperatur Tg beträgt dabei 600 - 1100 °C, während die Glühdauer, über die das Stahlflachprodukt auf der Glühtemperatur gehalten wird, 10 - 240 s beträgt.The thus provided flat products are annealed in a working step b). The annealing temperature Tg is 600 - 1100 ° C, while the annealing time, over which the flat steel product is kept at the annealing temperature, 10 - 240 s.

Für die Erfindung entscheidend ist, dass der bei der voranstehend genannten Glühtemperatur Tg und Glühdauer unter einer in Bezug auf Eisenoxid FeO, das auf dem Stahlflachprodukt vorhanden ist, reduzierend und in Bezug auf das im Stahlsubstrat enthaltene Mangan oxidierend wirkt. Dazu enthält die Glühatmosphäre 0,01 - 85 Vol.-% H2, H2O und als Rest N2 sowie technisch bedingt unvermeidbare Verunreinigungen und weist einen zwischen -70 °C und +60 °C liegenden Taupunkt auf, wobei für das H2O/H2-Verhältnis gilt:

        8x10-15*Tg3,529 < H2O/H2 ≤ 0,957

It is critical to the invention that the above-mentioned annealing temperature Tg and annealing time under a FeO iron oxide present on the steel flat product be reducing and oxidizing with respect to the manganese contained in the steel substrate. For this purpose, the annealing atmosphere contains 0.01-85 vol .-% H 2 , H 2 O and the balance N 2 and technically unavoidable impurities and has a lying between -70 ° C and +60 ° C dew point, wherein for the H 2 O / H 2 ratio applies:

8x10 -15 * Tg 3.529 <H 2 O / H 2 ≤ 0.957

Erfindungsgemäß ist also das Verhältnis H2O/H2 so einzustellen, dass es einerseits größer als 8x10-15*Tg3,529 und andererseits höchstens gleich 0,957 ist, wobei mit Tg die jeweilige Glühtemperatur bezeichnet ist.According to the invention, therefore, the ratio H 2 O / H 2 is set so that it is greater than 8x10 -15 * Tg 3.529 and on the other hand at most equal to 0.957, where Tg the respective annealing temperature is designated.

Bei praxistypischen Anwendungen, die insbesondere darauf abzielen, auf dem jeweiligen Stahlsubstrat in erfindungsgemäßer Weise ein Mg-haltigen Zinklegierungsüberzug in einem einstufigen Glühverfahren zu erzeugen, liegt der Taupunkt der Atmosphäre bevorzugt im Bereich von - 50 °C bis + 60 °C. Gleichzeitig enthält die Glühatmosphäre in diesem Fall typischerweise 0,1 - 85 Vol.-% H2. Eine besonders wirtschaftliche Betriebsweise des zum Glühen erfindungsgemäß genutzten Durchlaufofens kann dadurch erreicht werden, dass der Taupunkt der Atmosphäre bei -20 °C bis +20 °C gehalten wird.In practical applications, which aim in particular to produce on the respective steel substrate according to the invention a Mg-containing zinc alloy coating in a single-stage annealing process, the dew point of the atmosphere is preferably in the range of - 50 ° C to + 60 ° C. At the same time, the annealing atmosphere in this case typically contains 0.1-85 vol% H 2 . A particularly economical mode of operation of the Annealing continuous furnace used in the invention can be achieved by keeping the dew point of the atmosphere at -20 ° C to +20 ° C.

Im Ergebnis wird so durch eine vor dem Schmelztauchbeschichten durchgeführte Glühung auf dem Stahlflachprodukt eine 20 - 400 nm dicke, das Stahlflachprodukt mindestens abschnittsweise bedeckende Mn-Mischoxidschicht erzeugt, wobei es im Hinblick auf die Haftung des Zn-Überzuges auf dem Stahlsubstrat besonders günstig ist, wenn die Mn-Mischoxidschicht die Oberfläche des Stahlflachproduktes nach dem Glühen im Wesentlichen vollständig bedeckt. Die Mn-Mischoxidschicht ist dabei im Sinne der Erfindung als MnO·Femetall definiert. D.h., in dieser Mn-Mischoxidschicht liegt metallisches Eisen vor und nicht, wie beim Stand der Technik, oxidiertes Eisen.As a result, a 20-400 nm thick, the steel flat product at least partially covering Mn mixed oxide layer is produced by a performed before the hot dip coating annealing on the flat steel product, wherein it is particularly favorable in view of the adhesion of the Zn coating on the steel substrate, if the Mn mixed oxide layer substantially completely covers the surface of the flat steel product after annealing. The Mn mixed oxide layer is defined in the context of the invention as MnO · Fe metal . That is, metallic iron is present in this Mn mixed oxide layer and not, as in the prior art, oxidized iron.

Erfindungsgemäß wird also über mindestens eine Glühstufe gezielt eine Mn-Mischoxidschicht eingestellt, indem die Glühung (Arbeitsschritt b)) unter einer für FeO reduzierenden und einer für Mn oxidierenden Atmosphäre durchgeführt wird.Thus, according to the invention, an Mn mixed oxide layer is deliberately set via at least one annealing stage by carrying out the annealing (step b)) under a FeO-reducing and an Mn-oxidizing atmosphere.

Überraschend hat sich gezeigt, dass auf diese Weise ein Stahlflachprodukt erhalten wird, das eine gute Benetzung bei der anschließend durchgeführten Schmelztauchbeschichtung sicherstellt. Ebenso bildet die auf dem Stahlsubstrat erfindungsgemäß erzeugte Schicht aus Mn-Mischoxiden einen Haftgrund, auf dem die anschließend aufgebrachte Zinkschicht überraschender Weise besonders sicher haftet. Im Gegensatz zum in der WO 2006/042930 beschriebenen Stand der Technik bleibt dabei die Mn-Mischoxidschicht während des Schmelztauchbeschichtungsvorgangs weitestgehend erhalten, so dass sie auch im fertigen Produkt den dauerhaften Zusammenhalt von Zn-Überzug und Stahlsubstrat gewährleistet. Nach dem voranstehend erläuterten Glühschritt wird das geglühte Stahlflachprodukt auf eine Badeintrittstemperatur abgekühlt, mit der es in das Zn-Schmelzenbad eintritt. Typischerweise liegt die Badeintrittstemperatur des Stahlflachprodukts im Bereich von 310 - 710 °C.Surprisingly, it has been found that in this way a flat steel product is obtained which ensures good wetting during the subsequent hot-dip coating. Likewise, the layer of Mn mixed oxides produced on the steel substrate according to the invention forms a primer on which the subsequently applied zinc layer surprisingly adheres particularly securely. Unlike in the WO 2006/042930 In this case, the Mn mixed oxide layer remains during the Hot dip coating process as far as possible, so that it ensures the permanent cohesion of Zn coating and steel substrate in the finished product. After the annealing step explained above, the annealed flat steel product is cooled to a bath inlet temperature with which it enters the Zn melt bath. Typically, the bath inlet temperature of the flat steel product is in the range of 310-710 ° C.

Anschließend wird das auf die Badeintrittstemperatur abgekühlte Stahlflachprodukt innerhalb einer Tauchzeit von 0,1 - 10 Sekunden, insbesondere 0,1 - 5 s, durch ein an Eisen gesättigtes, 420 - 520 °C heißes Zn-Schmelzenbad geleitet, das aus dem Hauptbestandteil Zink und unvermeidbaren Verunreinigungen sowie 0,05 - 8 Gew.-% Al und/oder bis zu 8 Gew.-% Mg, insbesondere 0,05 - 5 Gew.-% Al und/oder bis zu 5 % Gew.-% Mg, besteht. Zusätzlich sind in dem Schmelzenbad optional Si < 2 %, Pb < 0,1 %, Ti < 0,2 %, Ni < 1 %, Cu < 1 %, Co < 0,3 %, Mn < 0,5 %, Cr < 0,2 %, Sr < 0,5 %, Fe < 3 %, B < 0,1 %, Bi < 0,1 %, Cd < 0,1 % vorhanden, um in an sich bekannter Weise bestimmte Eigenschaften des Überzugs einzustellen.Subsequently, the cooled to the Badeintrittstemperatur steel flat product within a dipping time of 0.1 - 10 seconds, in particular 0.1 - 5 s, passed through a saturated with iron, 420 - 520 ° C hot Zn melt bath consisting of the main component zinc and unavoidable impurities and 0.05 to 8 wt .-% Al and / or up to 8 wt .-% Mg, in particular 0.05 to 5 wt .-% Al and / or up to 5% wt .-% Mg exists , In addition, in the melt bath, optionally, Si <2%, Pb <0.1%, Ti <0.2%, Ni <1%, Cu <1%, Co <0.3%, Mn <0.5%, Cr <0.2%, Sr <0.5%, Fe <3%, B <0.1%, Bi <0.1%, Cd <0.1% present to certain properties of the coating in a conventional manner adjust.

Das so erhaltene, mit einem vor Korrosion schützenden Zn-Schutzüberzug schmelztauchbeschichtete Stahlflachprodukt wird schließlich abgekühlt, wobei vor dem Abkühlen noch in an sich bekannter Weise die Dicke des Überzugs eingestellt werden kann.The thus obtained, with a corrosion-protective Zn protective coating hot-dip coated steel flat product is finally cooled, and before cooling, the thickness of the coating can be adjusted in a conventional manner.

Der erfindungsgemäße Zn-Überzug enthält notwendig Al-Gehalte von 0,05 - 8 Gew.-% und kann zusätzlich Gehalte an bis zu 8 Gew.-% Mg aufweisen, wobei die Obergrenze der Gehalte beider Elemente in der Praxis typischerweise auf maximal 5 Gew.-% beschränkt ist.The Zn coating according to the invention necessarily contains Al contents of 0.05-8% by weight and may additionally have contents of up to 8% by weight Mg, the upper limit of the contents of both elements in practice typically having a maximum of 5% by weight .-% is limited.

Ein erfindungsgemäßes Stahlflachprodukt mit einem Mn-Gehalt von 2 - 35 Gew.-% und einem vor Korrosion schützenden Zn-Schutzüberzug ist dementsprechend dadurch gekennzeichnet, dass der Zn-Schutzüberzug eine auf dem Stahlflachprodukt im Wesentlichen deckende und haftende Mn-Mischoxidschicht, in der metallisches Eisen vorliegt, und eine das Stahlflachprodukt und die auf ihm haftende Mn-Mischoxidschicht gegenüber der Umgebung abschirmende Zn-Schicht aufweist.A flat steel product according to the invention having a Mn content of 2 to 35% by weight and a Zn protective coating which protects against corrosion is accordingly characterized in that the Zn protective coating comprises an Mn mixed oxide layer essentially covering and adhering to the flat steel product, in the metallic one Iron is present, and has a Zn layer which shields the flat steel product and the Mn mixed oxide layer adhering to it against the environment.

Eine besonders gute Haftung der Zinkschicht auf dem Stahlsubstrat ergibt sich dann, wenn der Zn-Schutzüberzug eine zwischen der Mn-Mischoxidschicht und der Zn-Schicht angeordnete Fe(Mn)2Al5-Schicht umfasst. Diese entsteht dann, wenn in dem Schmelzenbad eine ausreichende Menge an Aluminium von 0,05 - 5 Gew.-% Al vorhanden ist. Die Fe(Mn)2Al5-Schicht bildet dabei eine Sperrschicht, durch die die Reduktion der Mn-Mischoxidschicht beim Schmelztauchen sicher verhindert wird. In Abhängigkeit vom insbesondere zwischen 0,05 - 0,15 Gew.-% liegenden Al-Gehalt kann sich die Sperrschicht in FeZn-Phasen umwandeln, wobei die Mn-Oxidschicht dennoch erhalten bleibt.A particularly good adhesion of the zinc layer on the steel substrate results when the Zn protective coating comprises an Fe (Mn) 2 Al 5 layer arranged between the Mn mixed oxide layer and the Zn layer. This arises when in the melt bath, a sufficient amount of aluminum from 0.05 to 5 wt .-% Al is present. The Fe (Mn) 2 Al 5 layer forms a barrier layer, by means of which the reduction of the Mn mixed oxide layer during hot dip is reliably prevented. Depending on the particular between 0.05 - 0.15 wt .-% lying Al content, the barrier layer can convert into FeZn phases, wherein the Mn oxide layer is still preserved.

Die MnO-Schicht und die Fe(Mn)2Al5-Schicht eines erfindungsgemäß erzeugten und beschaffenen Überzugs stellen somit auch nach dem Schmelztauchbeschichten noch sicher, dass die außen liegende Zn-Schicht unter hohen Verformungsgraden fest auf dem Stahlsubstrat haftet.The MnO layer and the Fe (Mn) 2 Al 5 layer of a coating produced and obtained according to the invention thus ensure, even after hot dip coating, that that the outer Zn layer adheres firmly to the steel substrate under high degrees of deformation.

Jedoch wirkt sich die erfindungsgemäße Anwesenheit einer Mn-Mischoxidschicht auf der Oberfläche des Stahlsubstrats nicht nur dann positiv aus, wenn sich zusätzlich die Fe(Mn)2Al5-Schicht bildet, sondern auch dann, wenn in dem Schmelzenbad Magnesium alternativ oder ergänzend zu Aluminium in wirksamen Gehalten vorhanden ist. Auch bei Erzeugung einer ZnMg-Überzugsschicht auf dem Stahlsubstrat stellt die erfindungsgemäß erzeugte MnO-Schicht eine besonders gute und gleichmäßige Benetzung des Stahlflachproduktes bei gleichzeitig optimaler Haftung und minimiertem Risiko einer Rissbildung oder Abplatzung auch bei hohen Umformgraden sicher.However, the presence of an Mn mixed oxide layer on the surface of the steel substrate according to the invention has a positive effect not only when the Fe (Mn) 2 Al 5 layer is additionally formed, but also when magnesium is used in the molten bath alternatively or in addition to aluminum is present in effective levels. Even when a ZnMg coating layer is produced on the steel substrate, the MnO layer produced according to the invention ensures particularly good and uniform wetting of the flat steel product with at the same time optimal adhesion and minimized risk of cracking or spalling even at high degrees of deformation.

Eine besonders praxisgerechte Ausgestaltung der Erfindung ergibt sich in diesem Zusammenhang dann, wenn Al und Mg in den angegebenen Grenzen gleichzeitig im Schmelzenbad vorhanden sind und für das Verhältnis des Al-Gehalts %Al und des Mg-Gehalts %Mg gilt: %Al/%Mg < 1. Bei dieser Ausgestaltung der Erfindung ist also der Al-Gehalt des Schmelzenbades stets kleiner als dessen Mg-Gehalt. Dies hat den Vorteil, dass die erfindungsgemäß angestrebte Grenzschichtbildung auch ohne eine besondere Glühschrittfolge im Rahmen des erfindungsgemäßen Verfahrens zu einer Erhöhung des metallischen Eisens in der Mischoxidschicht führt. Magnesium zeichnet sich dabei durch ein höheres Reduktionspotential auf MnO als Aluminium aus. Deshalb erfolgt bei Anwesenheit von höheren Mg-Gehalten in der Schmelzschicht eine forcierte Auflösung des MnO-Gerüsts der Mischoxidschicht. Da das Mischoxid starker aufgelöst wird, steht effektiv mehr metallisches Eisen "Femetall" aus der "Tiefe" der Mischoxidschicht an der Reaktionsfront Mischoxidschicht/Zinkbad zur Verfügung, so dass sich die deckende Fe(Mn)2Al5-Grenzschicht als Haftvermittler besonders effektiv ausbilden kann. Dementsprechend trägt die MnO-Reduktion durch gelöstes Magensium in-situ mit besonders hoher Wirksamkeit zur erfindungsgemäß angestrebten, die besonders gute Haftung des Zn-Überzuges gewährleistenden Grenzschichtbildung bei.A particularly practical embodiment of the invention results in this context when Al and Mg are present in the specified limits simultaneously in the melt bath and for the ratio of the Al content% Al and the Mg content% Mg is:% Al /% Mg <1. In this embodiment of the invention, therefore, the Al content of the melt bath is always smaller than its Mg content. This has the advantage that the boundary layer formation desired according to the invention leads to an increase of the metallic iron in the mixed oxide layer even without a special annealing step sequence in the context of the method according to the invention. Magnesium is characterized by a higher reduction potential on MnO than aluminum. Therefore, in the presence of higher Mg contents in the melt layer, forced dissolution of the MnO skeleton of the mixed oxide layer occurs. Because the mixed oxide dissolved more is, is effectively more metallic iron "Fe metal " from the "depth" of the mixed oxide layer on the reaction front mixed oxide layer / zinc bath available, so that the opaque Fe (Mn) 2 Al 5 boundary layer can form a particularly effective adhesion promoter. Accordingly, the MnO reduction by dissolved magensium in-situ with particularly high efficiency contributes to the envisaged boundary layer formation, which ensures the particularly good adhesion of the Zn coating.

Der zur Vorbereitung des Schmelztauchbeschichtens im Rahmen des erfindungsgemäßen Verfahrens durchgeführte Glühschritt (Arbeitsschritt b)) kann ein- oder mehrstufig durchgeführt werden. Im Fall, dass die Glühung einstufig durchgeführt wird, sind in Abhängigkeit vom Taupunkt verschiedene Wasserstoffgehalte in der Glühatmosphäre möglich. Liegt der Taupunkt im Bereich von -70 °C bis +20 °C kann die Glühatmosphäre mindestens 0,01 Vol.-% H2, jedoch weniger als 3 Vol.-% H2 enthalten. Wird dagegen ein Taupunkt von mindestens +20 °C bis einschließlich + 60 °C eingestellt, sollte der Wasserstoffgehalt im Bereich von 3 % bis 85 % liegen, damit die Atmosphäre reduzierend für Eisen wirkt. Unter Berücksichtigung der anderen während der Durchführung des erfindungsgemäßen Glühschritts zu berücksichtigenden Parameter wird so die reduzierende Wirkung in Bezug auf das gegebenenfalls vorhandene FeO und die oxidierende Wirkung in Bezug auf das im Stahlsubstrat vorhandene Mn sicher erreicht.The annealing step (step b)) carried out for preparing the hot-dip coating in the context of the method according to the invention can be carried out in one or more stages. In the case that the annealing is carried out in one stage, different hydrogen contents in the annealing atmosphere are possible depending on the dew point. If the dew point is in the range of -70 ° C to + 20 ° C, the annealing atmosphere may contain at least 0.01% by volume H 2 but less than 3% by volume H 2 . If, on the other hand, a dew point of at least +20 ° C up to and including +60 ° C is set, the hydrogen content should be in the range of 3% to 85%, so that the atmosphere has a reducing effect on iron. Taking into account the other parameters to be taken into consideration during the performance of the annealing step according to the invention, the reducing effect with respect to the FeO which may be present and the oxidizing effect with respect to the Mn present in the steel substrate are thus reliably achieved.

Soll dagegen das Stahlflachprodukt vor dem Eintritt in das Schmelzenbad in zwei Stufen geglüht werden, so kann dazu dem erfindungsgemäß durchgeführten Glühschritt (Arbeitsschritt b) von Anspruch 1) ein zusätzlicher Glühschritt vorgeschaltet werden, bei dem das Stahlflachprodukt bei einer Glühtemperatur von 200 - 1100 °C für eine Glühdauer von 0,1 - 60 s unter einer für sowohl Fe als auch für Mn oxidativen Atmosphäre gehalten wird, die 0,0001 - 5 Vol.-% H2 sowie optional 200 - 5500 Vol.-ppm O2 enthält und einen im Bereich von -60 °C bis +60 °C liegenden Taupunkt besitzt. Anschließend wird dann der erfindungsgemäße Glühschritt bei einem Taupunkt im Bereich von -70 °C bis +20 °C in einer 0,01 - 85 % Wasserstoff enthaltenden Atmosphäre unter Berücksichtigung der anderen während der Durchführung des erfindungsgemäßen Glühschritts zu berücksichtigenden Parameter durchgeführt, bevor das Stahlflachprodukt in das Schmelzenbad geleitet wird.If, on the other hand, the steel flat product is to be annealed in two stages before it enters the melt bath, the annealing step carried out according to the invention can be used for this purpose (Step b) of claim 1) preceded by an additional annealing step, wherein the steel flat product is kept at an annealing temperature of 200 - 1100 ° C for an annealing period of 0.1 - 60 s under an oxidative atmosphere for both Fe and Mn Containing 0.0001 - 5 vol .-% H 2 and optionally 200 - 5500 vol. ppm O 2 and having a dew point lying in the range of -60 ° C to +60 ° C. Subsequently, the annealing step according to the invention is then carried out at a dew point in the range of -70 ° C to +20 ° C in a 0.01 to 85% hydrogen atmosphere taking into account the other parameters to be taken into account during the performance of the annealing step according to the invention, before the flat steel product is passed into the melt bath.

Optimale Haftungseigenschaften des Zn-Überzuges werden bei einem erfindungsgemäß erzeugten Überzug erreicht, wenn die Dicke der nach dem Glühen (Arbeitsschritt b)) erhaltenen Mn-Mischoxidschicht 40 - 400 nm, insbesondere bis zu 200 nm, beträgt.Optimal adhesion properties of the Zn coating are achieved in a coating produced according to the invention if the thickness of the Mn mixed oxide layer obtained after annealing (step b)) is 40-400 nm, in particular up to 200 nm.

Ebenso trägt es zur Optimierung des Verformungsverhaltens eines erfindungsgemäß erzeugten Stahlflachproduktes bei, wenn das mit der Mn-Mischoxidschicht versehene Stahlflachprodukt vor dem Eintritt in das Schmelzenbad einer Überalterungsbehandlung unterzogen wird.It likewise contributes to optimizing the deformation behavior of a flat steel product produced according to the invention when the steel flat product provided with the Mn mixed oxide layer is subjected to an overaging treatment before it enters the melt bath.

Nachfolgend wird die Erfindung von Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1
ein mit einem Al-haltigen Zn-Überzug versehenes Stahlflachprodukt in einer schematischen Schnittdarstellung;
Fig. 2
einen Schrägschliff einer Probe eines mit einem Zn-Überzugs versehenen Stahlflachprodukts;
Fig. 3
ein mit einem ZnMg-Überzug versehenes Stahlflachprodukt in einer schematischen Schnittdarstellung;
Fig. 4
einen Schrägschliff einer Probe eines mit einem ZnMg-Überzugs versehenen Stahlflachprodukts.
The invention of embodiments will be explained in more detail. Show it:
Fig. 1
a provided with an Al-containing Zn coating steel flat product in a schematic sectional view;
Fig. 2
an oblique cut of a sample of a Zn-coated steel flat product;
Fig. 3
a provided with a ZnMg coating steel flat product in a schematic sectional view;
Fig. 4
an oblique cut of a sample of a ZnMg coated steel flat product.

Aus einem hoch manganhaltigen Stahl mit der in Tabelle 1 angegebenen Zusammensetzung ist in bekannter Weise ein kaltgewalztes Stahlband erzeugt worden. Tabelle 1 C Mn P Si V Al Cr Ti Nb 0,634 22,2 0,02 0,18 0,2 0,01 0,08 0,001 0,001 Rest Eisen und unvermeidbare Verunreinigungen, Angaben in Gew.-% From a high manganese steel with the composition given in Table 1, a cold-rolled steel strip has been produced in a known manner. Table 1 C Mn P Si V al Cr Ti Nb 0.634 22.2 0.02 0.18 0.2 0.01 0.08 0.001 0.001 Balance iron and unavoidable impurities, data in% by weight

Eine erste Probe des kaltgewalzten Stahlbands ist daraufhin in einem einstufig durchgeführten Glühprozess geglüht worden.A first sample of the cold-rolled steel strip was then annealed in a one-step annealing process.

Dazu ist die Stahlband-Probe mit einer Erwärmungsrate von 10 K/s auf eine Glühtemperatur Tg von 800 °C aufgeheizt worden, bei der die Probe dann für 30 Sekunden gehalten worden ist. Die Glühung erfolgte dabei unter einer Glühatmosphäre, die zu 5 Vol.-% H2 und zu 95 Vol.-% aus N2 bestand und deren Taupunkt bei +25 °C lag. Anschließend ist das geglühte Stahlband mit einer Abkühlrate von 20 K/s auf eine Badeintrittstemperatur von 480 °C abgekühlt worden, bei der es zunächst für 20 Sekunden einer Überalterungsbehandlung unterzogen worden ist. Die Überalterungsbehandlung fand dabei unter der unveränderten Glühatmosphäre statt. Ohne die Glühatmosphäre zu verlassen, ist das Stahlband daraufhin in ein 460 °C heißes, an Fe gesättigtes Zink-Schmelzenbad geleitet worden, das neben Zn, unvermeidbaren Verunreinigungen und Fe zusätzlich 0,23 Gew.-% Al enthielt. Nach einer Tauchzeit von 2 Sekunden ist das nun schmelztauchbeschichtete Stahlband aus dem Schmelzbad herausgeleitet und auf Raumtemperatur abgekühlt worden.For this purpose, the steel strip sample is heated at a heating rate of 10 K / s to an annealing temperature Tg of 800 ° C. where the sample was then held for 30 seconds. The annealing was carried out under an annealing atmosphere, which consisted of 5 vol .-% H 2 and 95 vol .-% of N 2 and whose dew point was +25 ° C. Subsequently, the annealed steel strip was cooled at a cooling rate of 20 K / s to a bath inlet temperature of 480 ° C, where it was first subjected to an overaging treatment for 20 seconds. The overaging treatment took place under the unchanged annealing atmosphere. Without leaving the annealing atmosphere, the steel strip was then passed into a 460 ° C, saturated to Fe zinc melt bath, which in addition to Zn, unavoidable impurities and Fe additionally contained 0.23 wt .-% Al. After a dipping time of 2 seconds, the hot-dip-coated steel strip has been led out of the molten bath and cooled to room temperature.

In einem zweiten Versuch ist eine zweite Probe des gemäß Tabelle 1 zusammengesetzten kaltgewalzten Stahlbands in einem ebenfalls kontinuierlich durchlaufenen Verfahrensablauf in einem zweistufigen Prozess geglüht und anschließend schmelztauchbeschichtet worden.In a second experiment, a second sample of the cold-rolled steel strip assembled according to Table 1 was annealed in a likewise continuous process in a two-stage process and then hot-dip coated.

Dazu ist das Stahlband zunächst mit einer Heizrate von 10 K/s auf 600 °C erwärmt und bei dieser Glühtemperatur für 10 Sekunden gehalten worden. Die Glühatmosphäre enthielt dabei 2000 ppm O2 und als Rest N2. Ihr Taupunkt lag bei -30 °C.For this purpose, the steel strip was first heated to 600 ° C at a heating rate of 10 K / s and held at this annealing temperature for 10 seconds. The annealing atmosphere contained 2000 ppm O 2 and the remainder N 2 . Their dew point was -30 ° C.

In unmittelbarem Anschluss daran ist das Stahlband in einem zweiten Glühschritt auf eine 800 °C betragende Glühtemperatur Tg erwärmt worden, bei der es für 30 Sekunden unter einer 5 Vol.-% H2, Rest N2 enthaltenden Glühatmosphäre gehalten worden ist, deren Taupunkt bei -30 °C lag. Darauf ist das Stahlband nach wie vor unter der Glühatmosphäre mit einer ca. 20 K/s betragenden Abkühltemperatur auf 480 °C abgekühlt und für 20 Sekunden einer Überalterungsbehandlung unterzogen worden. Im Anschluss daran ist das Stahlband mit einer Badeintrittstemperatur von 480 °C in ein 460 °C heißes, an Fe gesättigtes Schmelzenbad geleitet worden, das wiederum 0,23 Gew.-% Al sowie andere Elemente in unwirksamen Verunreinigungsspuren und als Rest Zink enthielt. Nach einer Tauchzeit von 2 Sekunden ist das fertig schmelztauchbeschichtete Stahlflachprodukt dann aus dem Schmelzenbad herausgeleitet und auf Raumtemperatur abgekühlt worden.Immediately following this, the steel strip is in a second annealing step to a 800 ° C amount annealing temperature Tg was heated at which it was kept for 30 seconds under a 5 vol .-% H 2 , remainder N 2 containing annealing atmosphere whose dew point was -30 ° C. Thereafter, the steel strip has been cooled under the annealing atmosphere with a cooling temperature of about 20 K / s to 480 ° C and subjected to an overaging treatment for 20 seconds. Thereafter, the steel strip was passed at a bath inlet temperature of 480 ° C in a 460 ° C hot, saturated to Fe melt bath, in turn, 0.23 wt .-% Al and other elements contained in inactive traces of contamination and the remainder zinc. After a dipping time of 2 seconds, the finished hot-dip coated flat steel product is then led out of the melt bath and cooled to room temperature.

In Fig. 1 ist schematisch der Aufbau des auf diese Weise auf dem Stahlsubstrat S erhaltenen Überzugs Z dargestellt. Demnach liegt auf dem Stahlsubstrat S eine MnyOx Mangan-Mischoxidschicht M (M = MnO·Fe) auf, auf der sich eine Fe(Mn)2Al5-Zwischenschicht F (F = MnO·Fe (Mn)2Al5) oder bei Al-Gehalten von maximal 0,15 Gew.-% im Schmelzenbad eine FeMnZn-Schicht gebildet hat, die wiederum gegenüber der Umgebung durch eine Zn-Schicht Zn (η-Phase) abgeschirmt ist. Die Dicke der Mn-Mischoxidschicht M beträgt dabei 20 - 400 nm, während die Dicke der Fe(Mn)2Al5-Zwischenschicht F 10 - 200 nm beträgt. Die Gesamtdicke der Überzugsschichten M und F beträgt dementsprechend 20 - 600 nm. Die Zink-Schicht Zn ist dagegen mit 3 - 20 µm deutlich dicker.In Fig. 1 schematically shows the structure of the coating Z thus obtained on the steel substrate S. Accordingly, on the steel substrate S is a Mn y O x manganese mixed oxide layer M (M = MnO · Fe), on which a Fe (Mn) 2 Al 5 intermediate layer F (F = MnO · Fe (Mn) 2 Al 5 ) or at Al contents of at most 0.15 wt .-% in the melt bath has formed a FeMnZn layer, which in turn is shielded from the environment by a Zn layer Zn (η phase). The thickness of the Mn mixed oxide layer M is 20-400 nm, while the thickness of the Fe (Mn) 2 Al 5 intermediate layer F is 10-200 nm. The total thickness of the coating layers M and F is accordingly 20-600 nm. In contrast, the zinc layer Zn is significantly thicker at 3-20 μm.

In Fig. 2 ist ein Schrägschliff einer in der voranstehend beschriebenen Weise erzeugten Probe wiedergegeben. Deutlich sind das Stahlsubstrat S sowie die darauf liegende MnyOx Mangan-Mischoxidschicht M mit eingelagertem metallischen Eisen, die auf der Mischoxidschicht M liegende Fe(Mn)2Al5-Zwischenschicht F und die auf der Zwischenschicht F liegende Zn-Schicht zu erkennen.In Fig. 2 an oblique cut of a sample produced in the manner described above is reproduced. The steel substrate S and the Mn y O x manganese mixed oxide layer M with embedded metallic iron lying thereon are clearly visible, the Fe (Mn) 2 Al 5 intermediate layer F lying on the mixed oxide layer M and the Zn layer lying on the intermediate layer F ,

Zur Überprüfung des Erfolgs der erfindungsgemäßen Verfahrensweise sind zwanzig zusätzliche Versuche 1 - 20 durchgeführt worden, bei denen das Schmelzenbad neben Zn und unvermeidbaren Verunreinigungen jeweils 0,23 Gew.-% Al enthielt. An den so erhaltenen Proben sind jeweils der Benetzungsgrad und die Zinkhaftung visuell untersucht worden. Als Prüfprinzip ist der Kerbschlagtest gemäß SEP 1931 angewendet worden. Die Versuchsparameter und Ergebnisse dieser Versuche sind in Tabelle 2 angegeben.To test the success of the procedure according to the invention, twenty additional experiments 1-20 were carried out, in which the melt bath contained 0.23 wt.% Al in addition to Zn and unavoidable impurities. The wetting degree and the zinc adhesion were visually examined on the samples thus obtained. As a test principle, the notch impact test according to SEP 1931 has been used. The experimental parameters and results of these experiments are given in Table 2.

Darüber hinaus sind weitere sechzehn Versuche 21 - 36 durchgeführt worden, bei denen das Schmelzenbad neben Zn und unvermeidbaren Verunreinigungen 0,11 Gew.-% Al enthielt. Gegenüber der im oben erläuterten Versuch aufgezeigten, als Fe(Mn)2Al5-Schicht ausgebildeten Sperrschicht stellte sich bei diesem niedrigeren Al-Gehalt des Schmelzenbads eine FeMnZn-Sperrschicht ein. An den so erhaltenen Proben sind ebenfalls jeweils der Benetzungsgrad und die Zinkhaftung untersucht worden. Die Versuchsparameter und Ergebnisse dieser Versuche sind in Tabelle 3 angegeben.In addition, another sixteen experiments 21-36 were carried out, in which the melt bath in addition to Zn and unavoidable impurities contained 0.11 wt .-% Al. Compared with the barrier layer formed as Fe (Mn) 2 Al 5 layer shown in the above-explained experiment, an FeMnZn barrier layer appeared at this lower Al content of the melt bath. The wetting degree and the zinc adhesion were also investigated on the samples thus obtained. The experimental parameters and results of these experiments are given in Table 3.

Auf Grundlage weiterer Proben des aus dem gemäß Tabelle 1 zusammengesetzten Stahl kaltgewalzten hochmanganghaltigen Stahlbands ist der Einfluss des Taupunkts der jeweiligen Glühatmosphäre auf das Beschichtungsergebnis untersucht worden. Die Proben sind dazu jeweils einem Glühprozess unterzogen worden, bei dem sie ebenfalls mit einer Erwärmungsrate von 10 K/s auf eine Glühtemperatur Tg von 800 °C aufgeheizt worden sind. Auf dieser Glühtemperatur sind die Probe dann für 60 Sekunden gehalten worden ist. Die Glühung erfolgte jeweils unter einer Glühatmosphäre, die jeweils zu 5 Vol.-% H2 und zu 95 Vol.-% aus N2 bestand, wobei der jeweilige Taupunkt der Glühatmosphäre zwischen -55 °C und +45 °C variiert worden ist.Based on further samples of the high manganese content cold rolled from the composite steel according to Table 1 Steel bands, the influence of the dew point of the respective annealing atmosphere has been examined for the coating result. The samples were each subjected to an annealing process in which they were also heated at a heating rate of 10 K / s to an annealing temperature Tg of 800 ° C. At this annealing temperature, the sample has then been held for 60 seconds. The annealing was carried out under an annealing atmosphere, each consisting of 5 vol .-% H 2 and 95 vol .-% of N 2 , wherein the respective dew point of the annealing atmosphere between -55 ° C and +45 ° C has been varied.

Nach der Wärmebehandlung ist das geglühte Stahlband wie bei der voranstehend beschriebenen Versuchsserie mit einer Abkühlrate von 20 K/s auf eine Badeintrittstemperatur von 480 °C abgekühlt worden, bei der es zunächst für 20 Sekunden einer Überalterungsbehandlung unterzogen worden ist. Die Überalterungsbehandlung fand dabei unter der unveränderten Glühatmosphäre statt. Ohne die Glühatmosphäre zu verlassen, ist das Stahlband daraufhin in ein 460 °C heißes, an Fe gesättigtes Zink-Schmelzenbad geleitet worden, das neben Zn, unvermeidbaren Verunreinigungen und Fe zusätzlich jeweils in Kombination 0,4 Gew.-% Al und 1,0 Gew.-% Mg oder alleine 0,14 Gew.-%, 0,17 Gew.-% oder 0,23 Gew.-% Al enthielt. Nach einer Tauchzeit von 2 Sekunden ist das nun schmelztauchbeschichtete Stahlband aus dem Schmelzbad herausgeleitet und auf Raumtemperatur abgekühlt worden.After the heat treatment, the annealed steel strip was cooled at a cooling rate of 20 K / s to a bath inlet temperature of 480 ° C as in the above-described series of experiments, where it was first subjected to an overaging treatment for 20 seconds. The overaging treatment took place under the unchanged annealing atmosphere. Without leaving the annealing atmosphere, the steel strip was then passed into a 460 ° C, saturated to Fe zinc melt bath, in addition to Zn, unavoidable impurities and Fe additionally in combination 0.4 wt .-% Al and 1.0 Wt .-% Mg or alone 0.14 wt .-%, 0.17 wt .-% or 0.23 wt .-% Al contained. After a dipping time of 2 seconds, the hot-dip-coated steel strip has been led out of the molten bath and cooled to room temperature.

In Fig. 3 ist schematisch der Aufbau des auf diese Weise auf dem Stahlsubstrat S' erhaltenen ZnMg-Überzugs Z' dargestellt. Demnach liegt auf dem Stahlsubstrat S' eine MnyOx Mangan-Mischoxidschicht M' (M = MnO·Fe) auf, auf der sich eine Fe(Mn)2Al5-Zwischenschicht F (F = MnO·Fe (Mn)2Al5) oder bei Al-Gehalten von maximal 0,15 Gew.-% im Schmelzenbad eine FeMnZn-Schicht gebildet hat, die wiederum gegenüber der Umgebung durch eine ZnMg-Schicht abgeschirmt ist. Die Dicke der Mn-Mischoxidschicht M' beträgt 20 - 400 nm, während die Dicke der Fe(Mn)2Al5-Zwischenschicht F' 10 - 200 nm beträgt. Die Gesamtdicke der Überzugsschichten M' und F' beträgt dementsprechend 20 - 600 nm. Die Zink-Schicht ZnMg ist dagegen mit 3 - 20 µm deutlich dicker.In Fig. 3 schematically shows the structure of the thus obtained on the steel substrate S 'ZnMg coating Z' shown. Accordingly, on the steel substrate S 'is a Mn y O x manganese mixed oxide layer M' (M = MnO · Fe), on which a Fe (Mn) 2 Al 5 intermediate layer F (F = MnO · Fe (Mn) 2 Al 5 ) or at Al contents of at most 0.15 wt .-% in the melt bath has formed a FeMnZn layer, which in turn is shielded from the environment by a ZnMg layer. The thickness of the Mn mixed oxide layer M 'is 20-400 nm, while the thickness of the Fe (Mn) 2 Al 5 intermediate layer F' is 10-200 nm. The total thickness of the coating layers M 'and F' is accordingly 20-600 nm. In contrast, the zinc layer ZnMg is significantly thicker at 3-20 μm.

In Fig. 4 ist ein Schrägschliff einer in der voranstehend beschriebenen Weise erzeugten Probe wiedergegeben. Deutlich sind das Stahlsubstrat S' sowie die darauf liegende MnyOx Mangan-Mischoxidschicht M' mit eingelagertem metallischen Eisen, die auf der Mischoxidschicht M liegende Fe(Mn)2Al5-Zwischenschicht F' und die auf der Zwischenschicht F' liegende ZnMg-Schicht zu erkennen.In Fig. 4 an oblique cut of a sample produced in the manner described above is reproduced. The steel substrate S 'and the Mn y O x manganese mixed oxide layer M' lying thereon with embedded metallic iron, the Fe (Mn) 2 Al 5 intermediate layer F 'lying on the mixed oxide layer M and the ZnMg lying on the intermediate layer F' are clearly visible Layer to recognize.

Neben der bereits erwähnten Variation der Taupunkte der Glühatmosphäre sind bei zur Überprüfung des Erfolgs der erfindungsgemäßen Verfahrensweise durchgeführten einundzwanzig Versuchen 37 - 57 die Al- und Mg-Gehalte des Schmelzenbades variiert worden. An den so erhaltenen Proben sind jeweils der Benetzungsgrad und die Zinkhaftung visuell untersucht worden. Als Prüfprinzip ist auch hier der Kerbschlagtest gemäß SEP 1931 angewendet worden. Die Versuchsparameter und Ergebnisse dieser Versuche sind in Tabelle 4 angegeben.In addition to the already mentioned variation of the dew points of the annealing atmosphere, the Al and Mg contents of the melt bath have been varied at twenty-one trials 37-57 carried out to test the success of the method according to the invention. The wetting degree and the zinc adhesion were visually examined on the samples thus obtained. As a test principle, the notch impact test in accordance with SEP 1931 has also been used here. The experimental parameters and results of these experiments are given in Table 4.

Es zeigt sich, dass bei kombinierter Anwesenheit von Al und Mg und einer Einstellung des Taupunkts auf den Bereich von -50 °C bis +60 °C auch im einstufig erfolgenden Glühprozess zuverlässig auf hochmanganhaltigen Stahlsubstraten zinkbasierte Überzüge erzeugen lassen.It can be seen that when Al and Mg are combined and the dew point is set within the range of -50 ° C to +60 ° C, zinc-based coatings can be reliably produced on high-manganese steel substrates even in a single-stage annealing process.

Zum Vergleich sind aus einem kaltgewalzten Stahlband, das aus einem Al-TRIP-Stahl VS1 bestand, und einem Stahlband, das aus einem ebenfalls kaltgewalzten Si-TRIP-Stahl VS2 bestand, weitere jeweils drei Proben V1-V3 und V4 - V6 gewonnen worden. Die Zusammensetzung der Stähle VS1 und VS2 sind in Tabelle 5 angegeben. Tabelle 5 C Mn P Si V Al Cr Ti Nb VS1 0,22 1,1 0,02 0,1 0,002 1,7 0,06 0,1 0,001 VS2 0,18 1,8 0,02 1,8 0,002 0 0,06 0,01 0,001 Rest Eisen und unvermeidbare Verunreinigungen, Angaben in Gew.-% For comparison, a further three samples each of V1-V3 and V4-V6 were obtained from a cold-rolled steel strip consisting of an Al-TRIP steel VS1 and a steel strip consisting of a likewise cold-rolled Si-TRIP steel VS2. The composition of steels VS1 and VS2 are given in Table 5. Table 5 C Mn P Si V al Cr Ti Nb VS1 0.22 1.1 0.02 0.1 0,002 1.7 0.06 0.1 0.001 VS2 0.18 1.8 0.02 1.8 0,002 0 0.06 0.01 0.001 Balance iron and unavoidable impurities, data in% by weight

Auch die Vergleichsproben V1-V6 sind in der für die erfindungsgemäßen Proben voranstehend beschriebenen Weise wärmebehandelt worden, bevor sie im Schmelzenbad schmelztauchbeschichtet worden sind. Das Schmelzenbad enthielt dabei neben Zn und unvermeidbaren Verunreinigungen jeweils 0,4 Gew.-% Al und 1 Gew.-% Mg. An den so beschichteten Proben V1 - V6 sind ebenfalls jeweils der Benetzungsgrad und die Zinkhaftung untersucht worden. Die Versuchsparameter und Ergebnisse dieser Versuche sind in Tabelle 6 aufgelistet. Es zeigt sich, dass aufgrund der niedrigeren Mangan-Gehalte der Stähle VS1 und VS2 sich keine MnO-Struktur in der Mischoxidationsschicht an der Oberfläche des Stahlsubstrats bildet. Infolgedessen bildet sich auch keine deckende Fe(Mn)2-Schicht als Haftvermittler. Als Resultat kommt es im Schmelzenbad zu keiner ausreichenden MnO-Reduktion durch gelöstes Magnesium, so dass bei den Vergleichsproben auch keine ausreichende Benetzung und dementsprechend auch keine ausreichende Haftung der Beschichtung erzielt werden kann. Tabelle 2 Versuchs-Nr.: 1. Glühstufe 2. Glühstufe Zinkbenetzung Zinkhaftung Erfindungsgemäß Glühtemp. [°C] Glühdauer [s] O2-Gehalt [ppm] Glühtemp. Tg [°C] Glühdauer [s] H2-Gehalt [%] Taupunkt [°C] 1 Einstufig 800 60 5 -50 Nein Nein Nein 2 800 60 5 -30 Nein Nein Nein 3 800 60 5 -15 Stark gestört Nein Nein 4 800 60 5 -5 Stark gestört Nein Nein 5 800 60 5 5 Stark gestört Nein Nein 6 800 60 5 +15 Gestört Eingeschränkt Nein 7 800 60 5 +25 Ja Ja Ja 8 800 60 5 +45 Ja Ja Ja 9 500 10 2000 800 30 5 -30 Störstellen Ja Ja 10 600 10 2000 800 60 5 -30 Ja Ja Ja 11 700 10 2000 800 30 5 -15 Störstellen Ja Ja 12 800 10 2000 800 30 5 -15 Störstellen Ja Ja 13 500 10 2500 800 30 5 -15 Störstellen Ja Ja 14 600 10 2500 800 30 5 -30 Ja Ja Ja 15 700 10 2500 800 30 5 -30 Ja Ja Ja 16 800 10 2500 800 30 5 -30 Ja Ja Ja 17 500 6 2500 800 30 5 -30 Störstellen Ja Ja 18 600 6 2500 800 30 5 -30 Ja Ja Ja 19 700 6 2500 800 30 5 -30 Ja Ja Ja 20 800 6 2500 800 30 5 -30 Ja Ja Ja Tabelle 3 Versuchs-Nr.: 1. Glühstufe 2. Glühstufe Zinkbenetzung Zinkhaftung Erfindungsgemäß Glühtemp. [°C] Glühdauer [s] O2-Gehalt [ppm] Glühtemp. Tg [°C] Glühdauer [s] H2-Gehalt [%] Taupunkt [°C] 21 Einstufig 800 60 5 -50 Nein Nein Nein 22 800 60 5 -30 Nein Nein Nein 23 800 60 5 -15 Stark gestört Nein Nein 24 800 60 5 -5 Stark gestört Nein Nein 25 800 60 5 +5 Stark gestört Nein Nein 26 800 60 5 +15 Gestört Eingeschränkt Nein 27 800 60 5 +25 Ja Ja Ja 28 800 60 5 +45 Ja Ja Ja 29 500 10 2000 800 30 5 -30 Störstellen Ja Ja 30 600 10 2000 800 60 5 -30 Ja Ja Ja 31 700 10 2000 800 30 5 -15 Störstellen Ja Ja 32 800 10 2000 800 30 5 -15 Störstellen Ja Ja 33 500 10 2500 800 30 5 -15 Störstellen Ja Ja 34 600 10 2500 800 30 5 -30 Ja Ja Ja 35 700 10 2500 800 30 5 -30 Ja Ja Ja 36 800 10 2500 800 30 5 -30 Ja Ja Ja Tabelle 4 Versuchs-Nr.: Glühung Schmelzenbad Zinkbenetzung Zinkhaftung Erfindungsgemäß Glühtemp. Tg [°C] Haltezeit [s] H2-Gehalt [%] Taupunkt [°C] Mg-Gehalt [Gew.-%] Al-Gehalt [Gew.-%] 37. 800 60 5 +5 1 0,4 Ja Ja Ja 38. 800 60 5 +15 1 0,4 Ja Ja Ja 39. 800 60 5 +25 1 0,4 Ja Ja Ja 40. 800 60 5 +45 1 0,4 Ja Ja Ja 41. 800 60 5 -50 - 0,14 Nein Nein Nein 42. 800 60 5 -30 - 0,14 Nein Nein Nein 43. 800 60 5 -15 - 0,14 Nein Nein Nein 44. 800 60 5 -50 - 0,17 Nein Nein Nein 45. 800 60 5 -30 - 0,17 Nein Nein Nein 46. 800 60 5 -15 - 0,17 Nein Nein Nein 47. 800 60 5 -50 - 0,23 Nein Nein Nein 48. 800 60 5 -30 - 0,23 Nein Nein Nein 49. 800 60 5 -15 - 0,23 Nein Nein Nein 50. 800 60 5 -55 1 0,9 Störstellen Nein Nein 51. 800 60 5 -30 1 0,9 Ja Ja Ja 52. 800 60 5 -15 1 0,9 Ja Ja Ja 53. 800 60 5 -5 1 0,9 Ja Ja Ja 54. 800 60 5 -55 5 1 Störstellen Nein Nein 55. 800 60 5 -30 5 1 Ja Ja Ja 56. 800 60 5 -15 5 1 Ja Ja Ja 57. 800 60 5 -5 5 0,4 Ja Ja Ja Tabelle 6 Versuchs-Nr.: Stahl Glühung Schmelzenbad Zinkbenetzung Zinkhaftung Erfindungsgemäß Glühtemp. Tg [°C] Haltezeit [s] H2-Gehalt [%] Taupunkt [°C] Mg-Gehalt [Gew.-%] Al-Gehalt [Gew.-%] V1 VS1 800 60 5 -50 1 0,4 Nein Nein Nein V2 VS1 800 60 5 -30 1 0,4 Nein Nein Nein V3 VS1 800 60 5 -15 1 0,4 Nein Nein Nein V4 VS2 800 60 5 -50 1 0,4 Nein Nein Nein V5 VS2 800 60 5 -30 1 0,4 Nein Nein Nein V6 VS2 800 60 5 -15 1 0,4 Nein Nein Nein Also, the comparative samples V1-V6 were heat-treated in the manner described above for the samples according to the invention before being hot-dip coated in the melt bath. In addition to Zn and unavoidable impurities, the melt bath contained in each case 0.4% by weight of Al and 1% by weight of Mg. The degree of wetting and the zinc adhesion were likewise examined in each case on the samples V1 - V6 coated in this way. The experimental parameters and results of these experiments are listed in Table 6. It turns out that due to the lower manganese contents of the steels VS1 and VS2 do not form MnO structure in the mixed oxidation layer on the surface of the steel substrate. As a result, no opaque Fe (Mn) 2 layer is formed as a primer. As a result, there is no sufficient MnO reduction by dissolved magnesium in the melt bath, so that in the comparative samples also no sufficient wetting and, accordingly, no sufficient adhesion of the coating can be achieved. Table 2 Experiment No .: 1st annealing stage 2nd annealing stage Zinc wetting zinc liability According to the invention Glühtemp. [° C] Annealing time [s] O 2 content [ppm] Glühtemp. Tg [° C] Annealing time [s] H 2 content [%] Dew point [° C] 1 Single stage 800 60 5 -50 No No No 2 800 60 5 -30 No No No 3 800 60 5 -15 Heavily disturbed No No 4 800 60 5 -5 Heavily disturbed No No 5 800 60 5 5 Heavily disturbed No No 6 800 60 5 +15 Disturbed Limited No 7 800 60 5 +25 Yes Yes Yes 8th 800 60 5 +45 Yes Yes Yes 9 500 10 2000 800 30 5 -30 impurity Yes Yes 10 600 10 2000 800 60 5 -30 Yes Yes Yes 11 700 10 2000 800 30 5 -15 impurity Yes Yes 12 800 10 2000 800 30 5 -15 impurity Yes Yes 13 500 10 2500 800 30 5 -15 impurity Yes Yes 14 600 10 2500 800 30 5 -30 Yes Yes Yes 15 700 10 2500 800 30 5 -30 Yes Yes Yes 16 800 10 2500 800 30 5 -30 Yes Yes Yes 17 500 6 2500 800 30 5 -30 impurity Yes Yes 18 600 6 2500 800 30 5 -30 Yes Yes Yes 19 700 6 2500 800 30 5 -30 Yes Yes Yes 20 800 6 2500 800 30 5 -30 Yes Yes Yes Experiment No .: 1st annealing stage 2nd annealing stage Zinc wetting zinc liability According to the invention Glühtemp. [° C] Annealing time [s] O 2 content [ppm] Glühtemp. Tg [° C] Annealing time [s] H 2 content [%] Dew point [° C] 21 Single stage 800 60 5 -50 No No No 22 800 60 5 -30 No No No 23 800 60 5 -15 Heavily disturbed No No 24 800 60 5 -5 Heavily disturbed No No 25 800 60 5 +5 Heavily disturbed No No 26 800 60 5 +15 Disturbed Limited No 27 800 60 5 +25 Yes Yes Yes 28 800 60 5 +45 Yes Yes Yes 29 500 10 2000 800 30 5 -30 impurity Yes Yes 30 600 10 2000 800 60 5 -30 Yes Yes Yes 31 700 10 2000 800 30 5 -15 impurity Yes Yes 32 800 10 2000 800 30 5 -15 impurity Yes Yes 33 500 10 2500 800 30 5 -15 impurity Yes Yes 34 600 10 2500 800 30 5 -30 Yes Yes Yes 35 700 10 2500 800 30 5 -30 Yes Yes Yes 36 800 10 2500 800 30 5 -30 Yes Yes Yes Experiment No .: annealing melt bath Zinc wetting zinc liability According to the invention Glühtemp. Tg [° C] Holding time [s] H 2 content [%] Dew point [° C] Mg content [% by weight] Al content [% by weight] 37th 800 60 5 +5 1 0.4 Yes Yes Yes 38th 800 60 5 +15 1 0.4 Yes Yes Yes 39th 800 60 5 +25 1 0.4 Yes Yes Yes 40th 800 60 5 +45 1 0.4 Yes Yes Yes 41st 800 60 5 -50 - 0.14 No No No 42nd 800 60 5 -30 - 0.14 No No No 43rd 800 60 5 -15 - 0.14 No No No 44th 800 60 5 -50 - 0.17 No No No 45th 800 60 5 -30 - 0.17 No No No 46th 800 60 5 -15 - 0.17 No No No 47th 800 60 5 -50 - 0.23 No No No 48th 800 60 5 -30 - 0.23 No No No 49th 800 60 5 -15 - 0.23 No No No 50th 800 60 5 -55 1 0.9 impurity No No 51st 800 60 5 -30 1 0.9 Yes Yes Yes 52nd 800 60 5 -15 1 0.9 Yes Yes Yes 53rd 800 60 5 -5 1 0.9 Yes Yes Yes 54th 800 60 5 -55 5 1 impurity No No 55th 800 60 5 -30 5 1 Yes Yes Yes 56th 800 60 5 -15 5 1 Yes Yes Yes 57th 800 60 5 -5 5 0.4 Yes Yes Yes Experiment No .: stole annealing melt bath Zinc wetting zinc liability According to the invention Glühtemp. Tg [° C] Holding time [s] H 2 content [%] Dew point [° C] Mg content [% by weight] Al content [% by weight] V1 VS1 800 60 5 -50 1 0.4 No No No V2 VS1 800 60 5 -30 1 0.4 No No No V3 VS1 800 60 5 -15 1 0.4 No No No V4 VS2 800 60 5 -50 1 0.4 No No No V5 VS2 800 60 5 -30 1 0.4 No No No V6 VS2 800 60 5 -15 1 0.4 No No No

Claims (12)

  1. Method for hot-dip coating a flat steel product, consisting of (in % wt.) C: ≤1.6 %, Mn: 2 - 35 %, Al: ≤ 10 %, Ni: ≤ 10 %, Cr: ≤10 %, Si: ≤ 10 %, Cu: ≤ 3 %, Nb: ≤ 0.6 %, Ti: ≤ 0.3 %, V: ≤ 0.3 %, P: ≤ 0.1 %, B: ≤ 0.01 %, Mo: ≤ 0.3 %, N: ≤ 1.0 % and the remainder iron and unavoidable impurities, with zinc or a zinc alloy, comprising the following production steps:
    a) providing the flat steel product;
    b) annealing the flat steel product
    - at an annealing temperature Tg of 600 - 1100 °C,
    - for an annealing duration of 10 - 240 s under an annealing atmosphere having a reducing effect in relation to the FeO present on the flat steel product and having an oxidising effect in relation to the Mn contained in the steel substrate, this annealing atmosphere containing 0.01 - 85 % vol. H2, H2O and N2 and technically induced unavoidable impurities as the remainder and having a dew point which is between -70 °C and +60 °C, wherein for the H2O/H2 ratio the following applies: 8 x 10 15 * Tg 3.529 < H 2 O / H 2 0.957 ,
    Figure imgb0002
    c) cooling the annealed flat steel product down to a bath entry temperature;
    d) passing the flat steel product, cooled down to the bath entry temperature, through a 420 - 520 °C hot Zn molten bath saturated with iron within a dipping time of 0.1 - 10 s, so that the flat steel product is hot-dip coated with a Zn protective coating which protects against corrosion, wherein the Zn molten bath consists of the main constituent zinc and unavoidable impurities, as well as0.05 - 8 % wt. Al and/or up to 8 % wt. Mg, as well as optionally Si < 2 %, Pb < 0.1 %, Ti < 0.2 %, Ni < 1 %, Cu < 1 %, Co < 0.3 %, Mn < 0.5 %, Cr < 0.2 %, Sr < 0.5 %, Fe < 3 %, B < 0.1 %, Bi < 0.1 %, Cd < 0.1 %;
    e) cooling the flat steel product flowing out of the molten bath and provided with the Zn coating.
  2. Method according to Claim 1, characterised in that the flat steel product is provided as a cold-rolled steel strip.
  3. Method according to either of Claims 1 and 2, characterised in that upstream of the annealing (production step b)) an annealing step is inserted in which the flat steel product is held at an annealing temperature of 200 - 1100 °C for an annealing duration of 0.1 - 60 s under an atmosphere which is oxidative for Fe and Mn, contains 0.0001 - 5 % vol. H2 and optionally 200 - 5500 vol. ppm O2 and has a dew point in the range from -60 °C to +60 °C.
  4. Method according to any one of the preceding claims, characterised in that the dipping time in the Zn molten bath is 0.1 - 5 s.
  5. Method according to any one of the preceding claims, characterised in that the Zn molten bath in each case contains both Al and Mg.
  6. Method according to Claim 5, characterised in that the Al content is in each case less than the Mg content of the molten bath.
  7. Method according to any one of the preceding claims, characterised in that the temperature of the flat steel product when it enters the molten bath is 360 - 710 °C.
  8. Flat steel product having a steel substrate, which consists of (in % wt.) C: ≤ 1.6 %, Mn: 2 - 35 %, Al: ≤ 10 %, Ni: ≤ 10 %, Cr: ≤10 %, Si: ≤ 10 %, Cu: ≤ 3 %, Nb: ≤ 0.6 %, Ti: ≤ 0.3 %, V: ≤ 0.3 %, P: ≤ 0.1 %, B: ≤ 0.01 %, Mo: ≤ 0.3 %, N: ≤ 1.0 % and the remainder iron and unavoidable impurities, and a Zn protective coating which protects against corrosion and is formed from zinc or a zinc alloy, characterised in that the Zn protective coating has an Mn mixed oxide layer consisting of MnO Femetal, which essentially covers the flat steel product and adheres to the flat steel product, and has a Zn layer shielding the flat steel product and the MnO Femetal layer adhering to it from the environment.
  9. Flat steel product according to Claim 8, characterised in that the Zn protective coating comprises an Fe(Mn)2Al5 layer arranged between the MnO Femetal layer and the Zn layer.
  10. Flat steel product according to either of Claims 8 or 9, characterised in that the Zn protective coating comprises an FeMnZn layer which lies between the MnO Femetal layer and the Zn layer.
  11. Flat steel product according to any one of Claims 8 to 10, characterised in that the Zn protective layer is formed as a ZnMg alloy coating.
  12. Flat steel product according to any one of Claims 8 to 11, characterised in that it is produced according to the method according to any one of Claims 1 to 7.
EP10717595.2A 2009-04-23 2010-04-22 Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product Active EP2432910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10717595T PL2432910T3 (en) 2009-04-23 2010-04-22 Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009018577A DE102009018577B3 (en) 2009-04-23 2009-04-23 A process for hot dip coating a 2-35 wt.% Mn-containing flat steel product and flat steel product
PCT/EP2010/055334 WO2010122097A1 (en) 2009-04-23 2010-04-22 Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product

Publications (3)

Publication Number Publication Date
EP2432910A1 EP2432910A1 (en) 2012-03-28
EP2432910B1 true EP2432910B1 (en) 2019-02-13
EP2432910B2 EP2432910B2 (en) 2022-08-03

Family

ID=42235906

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10717595.2A Active EP2432910B2 (en) 2009-04-23 2010-04-22 Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product

Country Status (13)

Country Link
US (1) US9611527B2 (en)
EP (1) EP2432910B2 (en)
JP (1) JP5834002B2 (en)
KR (1) KR101679006B1 (en)
CN (1) CN102421928B (en)
AU (2) AU2010240903A1 (en)
BR (1) BRPI1016179B1 (en)
CA (1) CA2759369C (en)
DE (1) DE102009018577B3 (en)
ES (1) ES2717878T3 (en)
PL (1) PL2432910T3 (en)
TR (1) TR201906585T4 (en)
WO (1) WO2010122097A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009044861B3 (en) 2009-12-10 2011-06-22 ThyssenKrupp Steel Europe AG, 47166 Process for producing a readily deformable flat steel product, flat steel product and method for producing a component from such a flat steel product
WO2011081392A2 (en) * 2009-12-29 2011-07-07 주식회사 포스코 Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
KR101304850B1 (en) * 2010-10-21 2013-09-05 주식회사 포스코 Metal-coating steel sheet, galvanized steel sheet and method for manufacturing the same
DE102011051731B4 (en) * 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer
KR101428151B1 (en) * 2011-12-27 2014-08-08 주식회사 포스코 Zn-coated hot rolled steel sheet having high mn and method for manufacturing the same
CN104271789B (en) * 2012-04-23 2017-06-06 株式会社神户制钢所 Drop stamping alloy galvanized steel plate and its manufacture method and hot stamping part
KR101528008B1 (en) * 2012-10-23 2015-06-10 주식회사 포스코 Galvanealed steel sheet with good surface quality and adhesion and method for manufacturing the same
KR101510505B1 (en) * 2012-12-21 2015-04-08 주식회사 포스코 Method for manufacturing high manganese galvanized steel steet having excellent coatability and ultra high strength and manganese galvanized steel steet produced by the same
KR101518599B1 (en) * 2013-10-23 2015-05-07 주식회사 포스코 High manganess steel sheet with high strength and excellent vibration isolation property and mathod for manufacturing the same
CN103602939B (en) * 2013-11-27 2015-11-18 株洲冶炼集团股份有限公司 A kind of hot dip zinc alloy and hot galvanizing method
CN103981474B (en) * 2014-05-13 2017-07-21 国家电网公司 A kind of high anticorrosive zinc base alloy layer for steel solvent method hot-dip
US20180312955A1 (en) * 2015-09-30 2018-11-01 Thyssenkrupp Steel Europe Ag Flat Steel Product Having a Zn-Galvannealed Protective Coating, and Method for the Production Thereof
JP6164280B2 (en) * 2015-12-22 2017-07-19 Jfeスチール株式会社 Mn-containing alloyed hot-dip galvanized steel sheet excellent in surface appearance and bendability and method for producing the same
JP6237937B2 (en) 2016-03-11 2017-11-29 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet
DE102017201697A1 (en) 2017-02-02 2018-08-02 Thyssenkrupp Ag Semi-finished product, use and method for producing a cohesive connection
CN108929991B (en) * 2017-05-26 2020-08-25 宝山钢铁股份有限公司 Hot-dip plated high manganese steel and manufacturing method thereof
CN108929992B (en) 2017-05-26 2020-08-25 宝山钢铁股份有限公司 Hot-dip medium manganese steel and manufacturing method thereof
CN107326277B (en) * 2017-06-20 2019-01-25 河钢股份有限公司邯郸分公司 480MPa grades of galvanized steels and its production method
CN109371285B (en) * 2018-10-24 2021-07-02 国网辽宁省电力有限公司营口供电公司 A kind of steel core wire anti-corrosion alloy coating for overhead conductor and preparation method thereof
DE102018132171A1 (en) * 2018-12-13 2020-06-18 Thyssenkrupp Steel Europe Ag Battery case and usage
DE102019108459B4 (en) * 2019-04-01 2021-02-18 Salzgitter Flachstahl Gmbh Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings
DE102019108457B4 (en) * 2019-04-01 2021-02-04 Salzgitter Flachstahl Gmbh Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings
US11149327B2 (en) * 2019-05-24 2021-10-19 voestalpine Automotive Components Cartersville Inc. Method and device for heating a steel blank for hardening purposes
CN113994016B (en) * 2019-06-03 2024-09-27 蒂森克虏伯钢铁欧洲股份公司 Method for producing a sheet metal component from a flat steel product provided with a corrosion protection coating
CN113699475A (en) * 2021-09-01 2021-11-26 四川振鸿钢制品有限公司 Hot-dip galvanizing method for steel
CN115058675A (en) * 2022-07-15 2022-09-16 攀钢集团攀枝花钢铁研究院有限公司 Method for improving coating quality of hot-dip high-strength steel
CN116005094A (en) * 2023-01-07 2023-04-25 首钢京唐钢铁联合有限责任公司 Zinc coating, zinc coating steel sheet and preparation method thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2522485A1 (en) 1974-05-24 1975-12-04 Armco Steel Corp PROCESS FOR IMPROVING THE WETTABILITY OF THE SURFACE OF A LOW-ALLOY STEEL STRIP AND SHEET METAL BY A MOLTEN COVERING METAL
DE19727759A1 (en) 1997-07-01 1999-01-07 Max Planck Inst Eisenforschung Lightweight steel and its use
BE1011131A6 (en) 1997-04-28 1999-05-04 Centre Rech Metallurgique Method of coating a steel strip by hot-dip galvanising
DE19900199A1 (en) 1999-01-06 2000-07-13 Ralf Uebachs High strength light constructional steel for pre-stressed concrete reinforcements or automobile body components has high manganese and aluminum contents
DE10259230A1 (en) 2002-12-17 2004-07-15 Thyssenkrupp Stahl Ag Method of making a steel product
WO2006002843A1 (en) 2004-06-29 2006-01-12 Corus Staal Bv Steel sheet with hot dip galvanized zinc alloy coating and process to produce it
DE102005008410B3 (en) 2005-02-24 2006-02-16 Thyssenkrupp Stahl Ag Coating steel bands comprises heating bands and applying liquid metal coating
WO2006042930A1 (en) 2004-10-20 2006-04-27 Arcelor France Hot-dip coating method in a zinc bath for strips of iron/carbon/manganese steel
WO2006042931A1 (en) 2004-10-20 2006-04-27 Arcelor France Method for production of sheets of austenitic iron/carbon/manganese steel and sheets produced thus
DE102004059566B3 (en) 2004-12-09 2006-08-03 Thyssenkrupp Steel Ag Process for hot dip coating a strip of high strength steel
JP2007211279A (en) 2006-02-08 2007-08-23 Nippon Steel Corp Ultra-high strength steel sheet excellent in hydrogen embrittlement resistance, its manufacturing method, manufacturing method of ultra-high strength hot-dip galvanized steel sheet, and manufacturing method of ultra-high-strength galvannealed steel sheet
WO2007109865A1 (en) 2006-03-29 2007-10-04 Centre De Recherches Metallurgiques Asbl-Centrum Voor Research In De Metallurgie Vzw Method for continuously annealing and preparing strip of high-strength steel for the purpose of hot-dip galvanizing it
CN100368580C (en) 2003-04-10 2008-02-13 新日本制铁株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
DE102006039307B3 (en) 2006-08-22 2008-02-21 Thyssenkrupp Steel Ag Process for coating a 6-30 wt.% Mn-containing hot or cold rolled steel strip with a metallic protective layer
JP2008156734A (en) 2006-12-26 2008-07-10 Jfe Steel Kk High-strength hot-dip galvanized steel sheet and its manufacturing method
WO2008102009A1 (en) 2007-02-23 2008-08-28 Corus Staal Bv Cold rolled and continuously annealed high strength steel strip and method for producing said steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316764A (en) 1994-05-31 1995-12-05 Sumitomo Metal Ind Ltd Method for producing galvannealed steel sheet
JP2003193213A (en) 2001-12-21 2003-07-09 Kobe Steel Ltd Hot dip galvanized steel sheet and galvannealed steel sheet

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2522485A1 (en) 1974-05-24 1975-12-04 Armco Steel Corp PROCESS FOR IMPROVING THE WETTABILITY OF THE SURFACE OF A LOW-ALLOY STEEL STRIP AND SHEET METAL BY A MOLTEN COVERING METAL
BE1011131A6 (en) 1997-04-28 1999-05-04 Centre Rech Metallurgique Method of coating a steel strip by hot-dip galvanising
DE19727759A1 (en) 1997-07-01 1999-01-07 Max Planck Inst Eisenforschung Lightweight steel and its use
DE19900199A1 (en) 1999-01-06 2000-07-13 Ralf Uebachs High strength light constructional steel for pre-stressed concrete reinforcements or automobile body components has high manganese and aluminum contents
DE10259230A1 (en) 2002-12-17 2004-07-15 Thyssenkrupp Stahl Ag Method of making a steel product
CN100368580C (en) 2003-04-10 2008-02-13 新日本制铁株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2006002843A1 (en) 2004-06-29 2006-01-12 Corus Staal Bv Steel sheet with hot dip galvanized zinc alloy coating and process to produce it
WO2006042931A1 (en) 2004-10-20 2006-04-27 Arcelor France Method for production of sheets of austenitic iron/carbon/manganese steel and sheets produced thus
WO2006042930A1 (en) 2004-10-20 2006-04-27 Arcelor France Hot-dip coating method in a zinc bath for strips of iron/carbon/manganese steel
EP1805341A1 (en) 2004-10-20 2007-07-11 ARCELOR France Hot-dip coating method in a zinc bath for strips of iron/carbon/manganese steel
DE102004059566B3 (en) 2004-12-09 2006-08-03 Thyssenkrupp Steel Ag Process for hot dip coating a strip of high strength steel
DE102005008410B3 (en) 2005-02-24 2006-02-16 Thyssenkrupp Stahl Ag Coating steel bands comprises heating bands and applying liquid metal coating
JP2007211279A (en) 2006-02-08 2007-08-23 Nippon Steel Corp Ultra-high strength steel sheet excellent in hydrogen embrittlement resistance, its manufacturing method, manufacturing method of ultra-high strength hot-dip galvanized steel sheet, and manufacturing method of ultra-high-strength galvannealed steel sheet
WO2007109865A1 (en) 2006-03-29 2007-10-04 Centre De Recherches Metallurgiques Asbl-Centrum Voor Research In De Metallurgie Vzw Method for continuously annealing and preparing strip of high-strength steel for the purpose of hot-dip galvanizing it
DE102006039307B3 (en) 2006-08-22 2008-02-21 Thyssenkrupp Steel Ag Process for coating a 6-30 wt.% Mn-containing hot or cold rolled steel strip with a metallic protective layer
WO2008022980A2 (en) 2006-08-22 2008-02-28 Thyssenkrupp Steel Ag Process for coating a hot- or cold-rolled steel strip containing 6 - 30% by weight of mn with a metallic protective layer
JP2008156734A (en) 2006-12-26 2008-07-10 Jfe Steel Kk High-strength hot-dip galvanized steel sheet and its manufacturing method
WO2008102009A1 (en) 2007-02-23 2008-08-28 Corus Staal Bv Cold rolled and continuously annealed high strength steel strip and method for producing said steel

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FOURMENTIN ET AL.: "MICROSTRUCTURE AND PROPERTIES OF RAPIDLY HEAT TREATED AND GALVANIZED DUAL PHASE STEEL", 7TH INTERNATIONAL CONFERENCE ON ZINC AND ZINC ALLOY COATED STEEL SHEET GALVATECH`07, 2007, pages 380 - 385, XP055656585
GAO ET AL.: "GALVANIZING TRIP STEEL USING THE DIRECT REDUCTION PROCESS", 7TH INTERNATIONAL CONFERENCE ON ZINC AND ZINC ALLOY COATED STEEL SHEET GALVATECH`07, 2007, pages 472 - 477, XP055656590
HUIN D; FLAUDER P; J-B LEBLOND: "Numerical Simulation of Internal Oxidation of Steels during Annealing Treatments", OXIDATION OF METALS,, vol. 64, no. 1-2, August 2005 (2005-08-01), pages 131 - 167, XP019290164
KIM ET AL.: "Galvanizability of Advanced High-Strength Steels 1180TRIP and 1180CP", GALVANIZERS ASSOCIATION 100TH ANNUAL MEETING, 27 October 2008 (2008-10-27), Baltimore, Maryland, USA, pages 1 - 14, XP055656594
TOORU TSURU: "7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet Galvatech`07", Osaka, Japan, pages iii - xvii
XUE BIN YU, XIN YAN JIN, QUAN CHENG ZHANG: "Top dross and bath behavior from galvannealing to galvanizing transition", 7TH INTERNATIONAL CONFERENCE ON ZINC AND ZINC ALLOY COATED STEEL SHEET GALVATECH`07, 18 November 2007 (2007-11-18) - 22 November 2007 (2007-11-22), Osaka, Japan, pages 129 - 134, XP055656603

Also Published As

Publication number Publication date
CA2759369A1 (en) 2010-10-28
ES2717878T3 (en) 2019-06-26
AU2010240903A1 (en) 2011-11-10
KR20120025476A (en) 2012-03-15
EP2432910A1 (en) 2012-03-28
US9611527B2 (en) 2017-04-04
CA2759369C (en) 2017-02-07
BRPI1016179A2 (en) 2016-04-19
TR201906585T4 (en) 2019-05-21
AU2016200172A1 (en) 2016-01-28
PL2432910T3 (en) 2019-07-31
AU2016200172B2 (en) 2017-08-03
US20120125491A1 (en) 2012-05-24
DE102009018577B3 (en) 2010-07-29
CN102421928A (en) 2012-04-18
EP2432910B2 (en) 2022-08-03
KR101679006B1 (en) 2016-11-24
WO2010122097A1 (en) 2010-10-28
JP5834002B2 (en) 2015-12-16
BRPI1016179B1 (en) 2020-04-07
CN102421928B (en) 2015-10-21
JP2012524839A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
EP2432910B1 (en) Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product
EP2054536B1 (en) Process for coating a hot- or cold-rolled steel strip containing 6 - 30% by weight of mn with a metallic protective layer
EP2031081B1 (en) Dual-phase steel, flat product made of such dual-phase steel and method for manufacturing a flat product
EP2028282B1 (en) Dual-phase steel, flat product made of such dual-phase steel and method for manufacturing a flat product
EP2049699B2 (en) Method for steel strip coating and a steel strip provided with said coating
EP2864517B1 (en) High-strength multiphase steel and method for producing a strip made from this steel with a minimum tensile strength of 580 mpa
EP2809819B1 (en) Ultrahigh-strength multiphase steel having improved properties during production and processing
DE60133493T2 (en) Hot-dip galvanized steel sheet and process for its production
EP2235229B9 (en) Method for coating a warm or cold-rolled flat steel product comprising 6 - 30 weight-% mn with a metallic protective layer
EP2513346B1 (en) Method for producing an easily deformable flat steel product
EP2840159B1 (en) Method for producing a steel component
EP2924141A1 (en) Cold rolled steel flat product and method for its production
EP4208576A1 (en) Steel component produced by hot-shaping a steel flat product, steel flat product and method for producing a steel component
DE102017223633A1 (en) Cold-rolled flat steel product with metallic anticorrosion layer and method for producing the same
EP3877555B1 (en) Method for producing a sheet-metal component from a steel-plate product which is provided with an anti-corrosion coating
EP3332048B1 (en) Method for producing a zinc-magnesium-galvannealed hot-dip coating and flat steel product provided with such a coating
DE69408739T2 (en) Surface-treated steel sheet and method of manufacturing the same
EP3894603B1 (en) Method for producing a coated steel flat product, method for producing a steel component and coated steel flat product ii
WO2021148312A1 (en) Steel component comprising an anti-corrosion layer containing manganese
DE3101850C2 (en) Process for the production of molten aluminum coated, low carbon steel sheets with low yield strength and high resistance to high temperature oxidation
DE102020204356A1 (en) Hardened sheet metal component, produced by hot forming a flat steel product and process for its production
DE102021128327A1 (en) COLD ROLLED STEEL FLAT PRODUCT WITH METALLIC ANTI-CORROSION COATING AND PROCESS FOR MANUFACTURING SUCH
EP4092141A1 (en) Flat steel product with an al coating, method for producing the same, steel component and method for producing the same
EP4283003A1 (en) Method for producing a sheet metal part
EP4511522A1 (en) Flat steel product having an al coating, method for the production thereof, steel component, and method for production thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160407

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180831

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1096280

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015778

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2717878

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190513

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 30977

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190513

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190514

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502010015778

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: SALZGITTER FLACHSTAHL GMBH

Effective date: 20191113

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20200325

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200421

Year of fee payment: 11

Ref country code: CZ

Payment date: 20200421

Year of fee payment: 11

Ref country code: ES

Payment date: 20200629

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20200422

Year of fee payment: 11

Ref country code: IT

Payment date: 20200428

Year of fee payment: 11

Ref country code: GB

Payment date: 20200427

Year of fee payment: 11

Ref country code: SE

Payment date: 20200427

Year of fee payment: 11

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SALZGITTER FLACHSTAHL GMBH

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100422

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 30977

Country of ref document: SK

Effective date: 20210422

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210422

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210423

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210423

27A Patent maintained in amended form

Effective date: 20220803

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502010015778

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240418

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240419

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010015778

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240426

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20221103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20221103