[go: up one dir, main page]

EP2361216B1 - Vorrichtung zur steuerung der bewegung einer von einem kran hängenden last - Google Patents

Vorrichtung zur steuerung der bewegung einer von einem kran hängenden last Download PDF

Info

Publication number
EP2361216B1
EP2361216B1 EP09771368.9A EP09771368A EP2361216B1 EP 2361216 B1 EP2361216 B1 EP 2361216B1 EP 09771368 A EP09771368 A EP 09771368A EP 2361216 B1 EP2361216 B1 EP 2361216B1
Authority
EP
European Patent Office
Prior art keywords
sway angle
speed
angle
movement
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09771368.9A
Other languages
English (en)
French (fr)
Other versions
EP2361216A1 (de
Inventor
Pentcho Stantchev
Dobromir Valachev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Toshiba Inverter Europe SAS
Original Assignee
Schneider Toshiba Inverter Europe SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Toshiba Inverter Europe SAS filed Critical Schneider Toshiba Inverter Europe SAS
Publication of EP2361216A1 publication Critical patent/EP2361216A1/de
Application granted granted Critical
Publication of EP2361216B1 publication Critical patent/EP2361216B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical

Definitions

  • the present invention relates to a regulating device and a method for regulating the movement of a load suspended by cables to a hoist, this hoisting apparatus being capable of driving the load in a rotational movement.
  • the lifting gear concerned include in particular different types of tower cranes or jib cranes. These cranes have an arrow that hangs on top of a vertical mast.
  • the boom has a point of attachment to which the load is suspended by suspension cables. They have the distinction of making a first movement which is a rotational movement of the arrow about a vertical axis of rotation Z which is generally centered on the mast of the crane (rotation or slewing movement).
  • these cranes perform a second movement which is a linear movement of the point of attachment along the arrow, this second movement being called translation movement in the present document.
  • the point of attachment of the load is a carriage (trolley) which is movable in translation on rails, the translational movement then being performed along the horizontal axis X of the arrow (trolley movement).
  • Other cranes have an arrow which is liftable (luffing jib) or articulated (jack-knife jib) and at the end of which is arranged the point of attachment of the load. The lifting or articulation of the arrow then creates the translational movement of the point of attachment.
  • the cranes always include a load lifting device which is associated with the suspension cables whose length is variable so as to move the load vertically in a third movement called hoisting movement.
  • a first swing (or first swing) is generated by the rotational movement about the vertical axis of rotation Z.
  • a second swing (or second swing) is also generated by the acceleration / deceleration of the translational movement along the X translation axis.
  • the peculiarity of a dangling due to a rotational movement is that this dangling has a component that is generated by the centrifugal force of the load during the rotational movement, this force tending to move the load away from the rotational zone. It is therefore not possible to remove the first ballant by acting only on the controls of this rotational movement.
  • the first ballant has the particularity to remain present as soon as the speed of rotation is non-zero, even when the acceleration or deceleration of the rotational movement is zero.
  • the invention aims to control the oscillations of a load suspended from a crane, using a device and a simple process, fast and easy to implement. It makes it possible to minimize the measurements or the information taken which are necessary to carry out the control and the control of the ballad of a load.
  • the invention describes a device for regulating the movement of a load suspended by suspension cables at a point of attachment of a hoist, the point of attachment being able to perform a rotational movement. around a vertical axis of rotation and a translational movement along a translation axis, the rotational movement generating a first swing angle of the load along the axis of translation.
  • the regulating device comprises means for calculating the first swaying angle and a speed of the first swaying angle, using as only input variables information representative of a length of the suspension cables, information representative of a distance between the axis of rotation and the point of attachment and information representative of a speed of rotation of the point of attachment, and using as an internal variable an acceleration of the first angle of dangling.
  • the calculating means determines the first swing angle and the speed of the first swing angle using an iterative process using the acceleration of the first swing angle.
  • the calculation means determine the first swing angle of the load while also taking into account the translational movement effected by the point of attachment along the axis of translation.
  • the information representative of the rotation speed of the point of attachment is determined by using a speed reference which is supplied to a speed variator controlling the rotational movement of the point of attachment.
  • the information representative of the rotation speed of the point of attachment is determined by using a speed estimation which is developed by a variable speed drive controlling the rotational movement of the point of attachment.
  • the regulating device calculates an offset value of the first dangling angle which is a function of the rotation speed of the point of attachment and delivers a first correction signal of the speed of the translational movement of the d-point. grip which takes into account the offset value.
  • the first correction signal is proportional to the difference between the first swing angle and the offset value and is proportional to the speed of the first swing angle.
  • the first correction signal is added to a speed reference to provide a speed reference of the translation movement of the point of attachment, the correction signal being calculated by applying a correction coefficient to the difference between the first swing angle ( ⁇ x) and the offset value and the speed of the first swing angle.
  • the correction coefficients may be variable depending on the length of the suspension cables.
  • the calculating means calculate a second angle of the load on a tangential axis perpendicular to the translation axis and a speed of the second swing angle, using an iterative process and using as only input variables the information representative of the length, the information representative of the distance and the information representative of the speed of rotation, and using as an internal variable an acceleration of the second dangling angle.
  • the invention also claims an automation system for controlling the movement of a load suspended by suspension cables at a point of attachment of a hoist and comprising such a control device. Similarly, the invention claims a method for controlling the movement of a suspended load which is implemented in such a control device.
  • the device for regulating the displacement of a suspended load according to the invention can be implemented in a hoist device comprising a rotational movement of the load, such as a crane or the like.
  • the example of figure 1 shows a crane 5 which has a vertical mast and a substantially horizontal arrow 6.
  • the arrow 6 comprises a point of attachment 10, which can be a movable carriage as in the example of the figure 1 .
  • the arrow 6 can rotate about a vertical axis of rotation Z passing through the vertical mast of the crane 5.
  • the attachment point 10 is movable along the arrow 6 to perform a translational movement according to a X translation axis.
  • the translation axis X thus crosses the axis of rotation Z at a point O (see figure 2 ) and passes through the point of attachment 10.
  • the translation axis X is horizontal, but some cranes have an arrow 6 having a non-zero angle relative to the horizontal.
  • the crane 5 can perform a vertical lifting movement to raise and lower a load 15 suspended by one or more suspension cables 14 which pass through the point of attachment 10 and at the end of which is associated with a suspension member of the load 15 to move.
  • the point of attachment 10 is situated at a distance R from the axis of rotation Z (represented by the point O of the figure 2 ), this distance R varying as the point of attachment 10 moves along the axis of translation X.
  • the load 15 Under the action of the lifting movement, the load 15 obviously has a suspension height varying according to the length L of the cables This suspension suspension height of the load will subsequently be assimilated to the length of the cables L, to which an offset could be added possibly representing the distance between the low end of the cables 14 and the load 15 (materialized, for example by its center of gravity).
  • the load 15 moves along a virtual vertical cylinder centered on the vertical axis Z and radius R, ignoring the ballant.
  • the rotational movement of the point of attachment 10 is therefore carried out along a moving tangential horizontal axis Y which is always perpendicular to the translation axis X and tangent with respect to the vertical cylinder.
  • the load 15 takes a pendulous swinging motion which is defined by a swing angle having two orthogonal components.
  • a first component forms the first dangling angle noted ⁇ x and corresponds to the projection of the ballant on the translation axis X.
  • a second component forms the second dangling angle noted ⁇ y and corresponds to the projection of the ballant on the tangential axis Y
  • the load 15 also takes a pendulum movement with a swinging angle along the translation axis X only, which is therefore added to the first swing angle ⁇ x defined above.
  • the translation movement along the X axis is performed by means of a translation motor Mx driven by a variable speed drive Dx which receives a speed reference Vx ref (see figure 3 ).
  • the rotational movement about the vertical axis Z is performed by means of a rotation motor My driven by a variable speed drive Dy which receives an angular speed reference Vy ref .
  • the lifting movement along the Z axis is performed by means of a hoisting motor not shown in the figures which makes it possible to wind and unwind the suspension cables. This hoist motor could be placed on the point of attachment 10.
  • the translation or rotation movement is controlled by the driver of the crane 5, this conductor providing a translation speed reference signal Vcx, respectively a rotation speed reference signal Vcy, using, for example, combinator (s) - of the joystick type, as indicated on the figure 3 .
  • the speed instructions Vcx, Vcy come directly from automation equipment.
  • a rotational movement generates a ballant whose angle has components ⁇ x and ⁇ y nonzero in the two perpendicular axes, respectively X and Y.
  • the second component ⁇ y along the Y axis is generated by the acceleration / deceleration of the point of attachment and can be fought by acting on the control of the rotational movement.
  • the first component ⁇ x along the X axis is generated by the centrifugal force which causes a displacement of the load 15 which is not directed in the tangential plane YZ, but which is directed along a perpendicular plane XZ.
  • This first component ⁇ x can not therefore be fought by acting on the control of the rotational movement, but involves also acting on the control of the translational movement along the axis X.
  • centrifugal force causes the load to move along the X axis, even when the rotational movement is at constant speed (i.e., at zero acceleration / deceleration).
  • the object of the invention is therefore to assist in the control of a hoist 5 capable of performing a translational movement and a rotational movement of the point of attachment 10, these two movements can obviously be performed simultaneously. Similarly, the translation and rotation movements can be performed simultaneously with a lifting movement of the load 15 along the axis Z.
  • the invention makes it possible to simply and automatically damp the ballant along the X axis and along the Y axis during the displacement of the load 15, in a manner that is transparent to the driver of the machine.
  • the invention does not require a learning phase and does not require measurement of the swing angle ⁇ x and / or ⁇ y, measurement of the motor current or the motor torque which can prove to be expensive and longer to enforce.
  • a regulating device 20 is intended to damp the oscillating movement of the load 15 during its displacement in rotation and / or in translation, this displacement obviously being able to be performed at the same time as a lifting movement of the load 15 .
  • the regulating device 20 comprises means for determining information representative of the length L of the suspension cables.
  • These determination means comprise, for example, a sensor or encoder associated with the lifting motor shaft or with the winding drum of the cables.
  • Other means for determining the length L are conceivable: for example, several limit switches distributed over the entire race of the cables, the length L being then determined by predetermined bearing values as a function of the triggering of these limit switches. . This solution is nevertheless less precise obviously.
  • the regulation device 20 comprises an estimator module 21 connected to a correction module 22.
  • the estimator module 21 receives as input the information representative of the length L of the cables, the distance R and the speed of rotation Vy and comprises means for calculating which compute in real time the first swinging angle ⁇ x and the speed (or variation) ⁇ 'x of this first angle ⁇ x, as well as the second swing angle ⁇ y and the speed (or variation) ⁇ 'y of this second angle .theta.y.
  • the estimator module 21 then transmits these calculated values to the correction module 22 which calculates and outputs a first correction signal ⁇ Vy which is added to the instruction of speed Vcy of the rotational movement, and a second correction signal ⁇ Vx which is added to the speed reference Vcx of the translational movement.
  • Equation a) has a specific term "Vy 2 * R * cos ⁇ x" which is always positive when the rotation speed Vy is non-zero. This translates the influence of the centrifugal force which makes that, as soon as a rotation movement is in progress (even with a zero acceleration V'y), a first bending angle ⁇ x is created in the X direction, perpendicular to the tangential axis Y.
  • the objective of the regulation is not to cancel this ballant during the rotational movement but only to reach a position of equilibrium with a non-zero ballad of the load 15 corresponding to an angle non-zero equilibrium during the rotation, then return to a swing angle ⁇ x zero at the end of the rotational movement, when the rotation speed Vy is zero.
  • this equilibrium angle therefore corresponds to an offset value, denoted by ⁇ x eq .
  • ⁇ x eq an offset value
  • the first correction signal ⁇ Vx therefore does not depend directly on the first swing angle ⁇ x but on the difference between the first swing angle ⁇ x and the offset value ⁇ x eq .
  • the offset value ⁇ x eq is non-zero and therefore the regulating device 20 delivers a correction signal ⁇ Vx which takes into account the value of offset generated by the centrifugal force on the swinging angle ⁇ x.
  • the offset value ⁇ x eq automatically becomes zero and the regulator 20 then applies a correction signal ⁇ Vx which is proportional to ⁇ x and ⁇ 'x.
  • the values of the correction coefficients K ⁇ , K ' ⁇ are fixed.
  • the values of the correction coefficients K ⁇ , K ' ⁇ are modifiable as a function of the length L of the cables determined by the device 20, so as to optimize the speed corrections to be made according to the height of the pendulum formed by the load 15.
  • the correction module 22 receives as input information representative of the length L and is therefore capable of storing several values of K ⁇ , K ' ⁇ along the length L.
  • the automation system of the crane 5 controls only a displacement in rotation, that is to say that it provides a translation speed setpoint Vcx which is zero.
  • the rotational movement thus generates a first swinging angle ⁇ x along the translation axis X caused by the centrifugal force applied to the load 15, as well as a second swinging angle ⁇ y along the tangential axis Y caused by the acceleration / deceleration of the rotational movement.
  • the first swinging angle can be canceled only by acting on the translational movement.
  • the automation system of the crane 5 also controls a translational movement, that is to say that it also provides a non-zero translation speed reference Vcx.
  • This translational movement also creates a swinging along the X axis caused by the acceleration / deceleration of the translational movement.
  • the first dangling angle ⁇ x then represents the accumulation of the dangling generated by the translation and rotation movements.
  • control device does not include any preliminary modeling step, which would require measuring other physical parameters such as a measurement of the swing angle or a measurement of the current flowing in the motor, for the purpose of determining or to refine a particular mathematical model or for the purpose of establishing a transfer function between the speed of the carriage and the dangling angle measured by a sensor for a given cable length.
  • the control device thus described is intended to be implanted in an automation system of the crane 5, responsible in particular for controlling and monitoring the movements of the load 15.
  • This automation system comprises in particular a speed variator Dx for the movement translation and a variable speed drive Dy for the rotational movement. Due to its simplicity, the control device can be installed directly in the variable speed drives Dx and Dy, for example by means of a specific module of the drive.
  • the automation system may also include a programmable controller which serves in particular to provide the Vcx and Vcy speed instructions. In this case, the control device can also be easily integrated into an application program of the programmable controller.
  • the regulating device implements a method for regulating the displacement of the load 15 in a rotational movement around the Z axis possibly associated with a translation movement along the X axis.
  • the regulation method comprises a calculation step , carried out by the estimator module 21, which makes it possible to determine a first swinging angle ⁇ x and a speed ⁇ 'x of this swinging angle.
  • the calculation step uses only the length L, the distance R and the rotation speed Vy of the hook point 10 as input variables and uses the acceleration ⁇ "x as an internal variable. a pendulum model with damping.
  • the control method also comprises a correction step performed by the correction module 22.
  • the correction step calculates an offset value ⁇ x eq of the angle ⁇ x which is proportional to the rotation speed Vy and delivers a first signal correction ⁇ Vx of the translation speed which takes into account the offset value ⁇ x eq .
  • the first correction signal ⁇ Vx is calculated by applying a correction coefficient K ⁇ x to the difference between the first swinging angle ⁇ x and the offset value ⁇ x eq and a correction coefficient K ' ⁇ x at the speed ⁇ 'x.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)

Claims (22)

  1. Steuervorrichtung zum Steuern der Bewegung einer Last (15), die von Hängekabeln (14) an einer Verankerungsstelle (10) einer Hubmaschine (5) hängt, wobei die Verankerungsstelle (10) eine Drehbewegung um eine vertikale Drehachse (Z) und eine Verschiebungsbewegung entlang einer Verschiebungsachse (X) ausführen kann, wobei die Drehbewegung einen ersten Schwungwinkel (Θx) der Last (15) entlang der Verschiebungsachse (X) erzeugt, dadurch gekennzeichnet, dass die Steuervorrichtung (20) Rechenmittel aufweist, die den ersten Schwungwinkel (Θx) und eine Geschwindigkeit (Θ'x) des ersten Schwungwinkels (Θx) bestimmen, indem als einzige Eingangsvariablen eine Information verwendet wird, die für eine Länge (L) der Hängekabel (14) repräsentativ ist, eine Information, die für eine Entfernung (R) zwischen der Drehachse (Z) und der Verankerungsstelle (10) repräsentativ ist, und eine Information, die für eine Drehgeschwindigkeit (Vy) der Verankerungsstelle (10) repräsentativ ist, und indem als eine interne Variable eine Beschleunigung (Θ"x) des ersten Schwungwinkels (Θx) verwendet wird.
  2. Steuervorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Rechenmittel den ersten Schwungwinkel (Θx) und die Geschwindigkeit (Θ'x) des ersten Schwungwinkels (Θx) mit Hilfe eines iterativen Prozesses bestimmen, indem die Beschleunigung (Θ"x) des ersten Schwungwinkels (Θx) verwendet wird.
  3. Steuervorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Rechenmittel den ersten Schwungwinkel (Θx) der Last (15) auch unter Berücksichtigung der Verschiebungsbewegung, die von der Verankerungsstelle (10) entlang der Verschiebungsachse (X) ausgeführt wird, bestimmen.
  4. Steuervorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Steuervorrichtung (20) einen Versatzwert (Θxeq) des ersten Schwungwinkels (Θx) berechnet, der von der Drehgeschwindigkeit (Vy) der Verankerungsstelle (10) abhängt und ein erstes Korrektursignal (ΔVx) der Geschwindigkeit der Verschiebungsbewegung der Verankerungsstelle (10) liefert, das den Versatzwert (Θxeq) berücksichtigt.
  5. Steuervorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das erste Korrektursignal (ΔVx) zu dem Unterschied zwischen dem ersten Schwungwinkel (Θx) und dem Versatzwert (Θxeq) proportional ist und zu der Geschwindigkeit (Θ'x) des ersten Schwungwinkels (Θx) proportional ist.
  6. Steuervorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass das erste Korrektursignal (ΔVx) zu einem Geschwindigkeitssollwert (Vcx) hinzugefügt wird, um eine Bezugsgeschwindigkeit (Vxref) der Verschiebungsbewegung der Verankerungsstelle (10) zu liefern, wobei das erste Korrektursignal (ΔVx) berechnet wird, indem ein Korrekturkoeffizient (KΘx, K'Θx) an den Unterschied zwischen dem ersten Schwungwinkel (Θx) und dem Versatzwert (Θxeq) und an die Geschwindigkeit (Θ'x) des ersten Schwungwinkels (Θx) angewandt wird.
  7. Steuervorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Korrekturkoeffizienten (KΘx, K'Θx) in Abhängigkeit von der Länge (L) der Hängekabels (14) der Last (15) variabel sind.
  8. Steuervorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Rechenmittel einen zweiten Schwungwinkel (Θy) der Last (15) gemäß einer tangentialen Achse (Y) berechnen, die zu der Verschiebungsachse (X) senkrecht ist, und eine Geschwindigkeit (Θ'y) des zweiten Schwungwinkels (Θy), indem als einzige Eingangsvariablen die Information verwendet wird, die für die Länge (L) repräsentativ ist, die Information, die für die Entfernung (R) repräsentativ ist, und die Information, die für die Drehgeschwindigkeit (Vy) repräsentativ ist, und indem als interne Variable eine Beschleunigung (Θ"y) des zweiten Schwungwinkels (Θy) verwendet wird.
  9. Steuervorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Rechenmittel (21) den zweiten Schwungwinkel (Θy) und die Geschwindigkeit (Θ'y) des zweiten Schwungwinkels (Θy) mit Hilfe eines iterativen Prozesses berechnen, der die Beschleunigung (Θ"y) des zweiten Schwungwinkels (Θy) verwendet.
  10. Steuervorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Steuervorrichtung (20) ein zweites Korrektursignal (ΔVy) der berechneten Drehgeschwindigkeit liefert, indem ein Korrekturkoeffizient (KΘy, K'Θy) an den zweiten Schwungwinkel (Θy) und an die Geschwindigkeit (Θ'y) des zweiten Schwungwinkels angewandt wird.
  11. Automatiksystem, das dazu bestimmt ist, die Bewegung einer Last (15) zu steuern, die von Hängekabeln (14) an einer Verankerungsstelle (10) einer Hubmaschine (5) hängt, dadurch gekennzeichnet, dass das Automatiksystem eine Steuervorrichtung nach einem der vorhergehenden Ansprüche aufweist.
  12. Verfahren zum Steuern der Bewegung einer Last (15), die von Hängekabeln (14) an einer Verankerungsstelle (10) einer Hubmaschine (5) hängt, wobei die Verankerungsstelle (10) eine Drehbewegung um eine vertikale Drehachse (Z) und eine Verschiebungsbewegung entlang einer Verschiebungsachse (X) ausführen kann, wobei die Drehbewegung einen ersten Schwungwinkel (Θx) der Last (15) entlang der Verschiebungsachse (X) erzeugt, dadurch gekennzeichnet, dass das Verfahren einen Rechenschritt aufweist, der den ersten Schwungwinkel (Θx) und eine Geschwindigkeit (Θ'x) des ersten Schwungwinkels (Θx) bestimmt, indem als einzige Eingangsvariablen eine Information verwendet wird, die für eine Länge (L) der Hängekabel (14) repräsentativ ist, eine Information, die für eine Entfernung (R) zwischen der Drehachse (Z) und der Verankerungsstelle (10) repräsentativ ist, und eine Information, die für eine Drehgeschwindigkeit (Vy) der Verankerungsstelle (10) repräsentativ ist, und indem als eine interne Variable eine Beschleunigung (Θ"x) des ersten Schwungwinkels (Θx) verwendet wird.
  13. Steuerverfahren nach Anspruch 12, dadurch gekennzeichnet, dass der Rechenschritt den ersten Schwungwinkel (Θx) und die Geschwindigkeit (Θ'x) des ersten Schwungwinkels (Θx) mit Hilfe eines iterativen Prozesses bestimmt, indem die Beschleunigung (Θ"x) des ersten Schwungwinkels (Θx) verwendet wird.
  14. Steuerverfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Rechenschritt den ersten Schwungwinkel (Θx) der Last (15) auch unter Berücksichtigung der Verschiebungsbewegung, die von der Verankerungsstelle (10) entlang der Verschiebungsachse (X) ausgeführt wird, bestimmt.
  15. Steuerverfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Verfahren einen Korrekturschritt aufweist, der einen Versatzwert (Θxeq) des ersten Schwungwinkels (Θx) berechnet, der zu der Drehgeschwindigkeit (Vy) der Verankerungsstelle (10) proportional ist, und ein erstes Korrektursignal (ΔVx) der Geschwindigkeit der Verschiebungsbewegung der Verankerungsstelle (10) liefert, das den Versatzwert (Θxeq) berücksichtigt.
  16. Steuerverfahren nach Anspruch 15, dadurch gekennzeichnet, dass das erste Korrektursignal (ΔVx) zu dem Unterschied zwischen dem ersten Schwungwinkel (Θx) und dem Versatzwert (Θxeq) proportional ist und zu der Geschwindigkeit (Θ'x) des ersten Schwungwinkels (Θx) proportional ist.
  17. Steuerverfahren nach Anspruch 16, dadurch gekennzeichnet, dass das erste Korrektursignal (ΔVx) zu einem Geschwindigkeitssollwert (Vcx) hinzugefügt wird, um eine Bezugsgeschwindigkeit (Vxref) der Verschiebungsbewegung der Verankerungsstelle (10) zu liefern, wobei das erste Korrektursignal (ΔVx) berechnet wird, indem ein Korrekturkoeffizient (KΘx, K'Θx) an den Unterschied zwischen dem ersten Schwungwinkel (Θx) und dem Versatzwert (Θxeq) und an die Geschwindigkeit (Θ'x) des ersten Schwungwinkels (Θx) angewandt wird.
  18. Steuerverfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Korrekturkoeffizienten (KΘx, K'Θx) in Abhängigkeit von der Länge (L) der Hängekabel (14) der Last (15) variabel sind.
  19. Steuerverfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Rechenschritt einen zweiten Schwungwinkel (Θy) der Last (15) entlang einer tangentialen Achse (Y), die zu der Verschiebungsachse (X) senkrecht ist, und eine Geschwindigkeit (Θ'y) des zweiten Schwungwinkels (Θy) bestimmt, indem als einzige Eingangsvariablen die Information verwendet wird, die für die Länge (L) repräsentativ ist, die Information, die für die Entfernung (R) repräsentativ ist, und die Information, die für die Drehgeschwindigkeit (Vy) repräsentativ ist, und indem als interne Variable eine Beschleunigung (Θ"y) des zweiten Schwungwinkels (Θy) verwendet wird.
  20. Steuerverfahren nach Anspruch 19, dadurch gekennzeichnet, dass der Rechenschritt einen zweiten Schwungwinkel (Θy) und die Geschwindigkeit (Θ'y) des zweiten Schwungwinkels (Θy) mit Hilfe eines iterativen Prozesses bestimmt, der die Beschleunigung (Θ"y) des zweiten Schwungwinkels (Θy) verwendet.
  21. Steuerverfahren nach Anspruch 19, dadurch gekennzeichnet, dass das Verfahren einen Korrekturschritt aufweist, der ein zweites Korrektursignal (ΔVy) der berechneten Drehgeschwindigkeit liefert, in dem ein Korrekturkoeffizient (KΘy, K'Θy) an den zweiten Schwungwinkel (Θy) und an die Geschwindigkeit (Θ'y) des zweiten Schwungwinkels angewandt wird.
  22. Steuerverfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Rechenschritt ein mathematisches Pendelmodell mit Dämpfung verwendet.
EP09771368.9A 2008-12-15 2009-12-14 Vorrichtung zur steuerung der bewegung einer von einem kran hängenden last Active EP2361216B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858598A FR2939783B1 (fr) 2008-12-15 2008-12-15 Dispositif de regulation du deplacement d'une charge suspendue a une grue
PCT/EP2009/067008 WO2010069890A1 (fr) 2008-12-15 2009-12-14 Dispositif de regulation du deplacement d'une charge suspendue a une grue

Publications (2)

Publication Number Publication Date
EP2361216A1 EP2361216A1 (de) 2011-08-31
EP2361216B1 true EP2361216B1 (de) 2013-12-25

Family

ID=40873226

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09771368.9A Active EP2361216B1 (de) 2008-12-15 2009-12-14 Vorrichtung zur steuerung der bewegung einer von einem kran hängenden last

Country Status (6)

Country Link
US (1) US8504253B2 (de)
EP (1) EP2361216B1 (de)
JP (1) JP2012512111A (de)
CN (1) CN102245490B (de)
FR (1) FR2939783B1 (de)
WO (1) WO2010069890A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110775819A (zh) * 2019-11-21 2020-02-11 湖南沃森电气科技有限公司 一种塔式起重机防摇摆控制方法及系统

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8930091B2 (en) * 2010-10-26 2015-01-06 Cmte Development Limited Measurement of bulk density of the payload in a dragline bucket
CN102285592A (zh) * 2011-04-08 2011-12-21 中交第三航务工程局有限公司 提升斗控制系统以及控制方法
EP2562125B1 (de) * 2011-08-26 2014-01-22 Liebherr-Werk Nenzing GmbH Kransteuervorrichtung
CN102367158B (zh) * 2011-09-15 2013-05-15 济南富友慧明监控设备有限公司 一种基于塔身刚度的塔机倾翻临界状态判断方法
CN102431912B (zh) * 2011-09-15 2013-10-30 济南富友慧明监控设备有限公司 一种塔机配重重量评估方法
CN102431918B (zh) * 2011-09-15 2013-09-04 济南富友慧明监控设备有限公司 一种判断塔机塔身钢结构损伤方位的方法
CN102367159B (zh) * 2011-09-15 2013-05-15 济南富友慧明监控设备有限公司 一种判断塔机偏拉的方法
CN102502403B (zh) * 2011-10-28 2013-09-18 河南卫华重型机械股份有限公司 起重机防摇摆控制方法
CN102491178B (zh) * 2011-12-15 2014-07-09 中联重科股份有限公司 起重机回转控制的方法与系统
CN102530729B (zh) * 2012-02-14 2014-05-21 三一重工股份有限公司 控制吊物振摆的方法和系统
CN102530725B (zh) * 2012-03-29 2014-07-02 苏州市思玛特电力科技有限公司 汽车起重机防摆控制技术
ITMI20131958A1 (it) * 2013-11-25 2015-05-26 Milano Politecnico Dispositivo e procedimento per il controllo del pendolamento di un carico sospeso da un apparato di sollevamento
EP2896590A1 (de) 2014-01-16 2015-07-22 Caporali Roberto Paolo Luigi Verfahren und einrichtung zur open-loop steuerung der schwingung einer nutzlast für drehkräne
CN103991801B (zh) * 2014-05-12 2016-02-17 中联重科股份有限公司 塔机及其吊钩防摇控制方法、装置和系统
US9422139B1 (en) 2014-05-19 2016-08-23 Google Inc. Method of actively controlling winch swing via modulated uptake and release
NO338432B1 (no) * 2016-01-20 2016-08-15 Frode Olsen Høy hastighets rotor. Motorenheter (M) som vil gjøre det mulig å montere flere enheter sammen til en større og kraftigere enhet. Motorenheten benyttes så i serier for å gi høy rotasjonshastighet
JP7180966B2 (ja) 2016-01-29 2022-11-30 マニタウォック クレイン カンパニーズ, エルエルシー 視覚的アウトリガー監視システム
US10829347B2 (en) 2016-11-22 2020-11-10 Manitowoc Crane Companies, Llc Optical detection system for lift crane
CN106595553B (zh) * 2016-12-30 2019-05-03 杭州后博科技有限公司 一种基于摆动强弱的铁塔连接结构缝隙检测方法及系统
EP3566998B1 (de) * 2018-05-11 2023-08-23 ABB Schweiz AG Steuerung von brückenkränen
CN111268564B (zh) * 2020-02-10 2021-05-28 河北工业大学 基于迭代-遗传算法的智能天车防摆控制系统

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2188686A (en) * 1939-02-25 1940-01-30 Dravo Corp Luffing crane
US2589172A (en) * 1947-05-26 1952-03-11 George P Wagner Level luffing crane
US2805781A (en) * 1955-01-24 1957-09-10 Arthur L Senn Load stabilized crane
US3148548A (en) * 1959-03-20 1964-09-15 Northrop Corp Velocity measuring device
GB1132967A (en) * 1964-12-08 1968-11-06 Davy And United Instr Ltd Control systems for preventing swinging of suspended loads
JPS6241189A (ja) * 1985-08-16 1987-02-23 株式会社日立製作所 クレ−ン制御方式
JP2512821B2 (ja) * 1989-03-27 1996-07-03 株式会社神戸製鋼所 クレ―ンの旋回停止制御方法および装置
KR960006116B1 (ko) * 1990-03-23 1996-05-09 가부시끼가이샤 고오베 세이꼬오쇼 건설기계에 있어서 상부선회체의 선회정지제어방법 및 장치와 경사각 연산장치
JPH07110759B2 (ja) * 1990-10-18 1995-11-29 株式会社神戸製鋼所 建設機械における上部旋回体の旋回停止制御方法および装置
FI91058C (fi) * 1991-03-18 1996-01-10 Kci Kone Cranes Int Oy Nosturin ohjausmenetelmä
JP2564060B2 (ja) * 1991-10-24 1996-12-18 株式会社神戸製鋼所 建設機械の安全装置
JP2837313B2 (ja) * 1992-05-22 1998-12-16 川鉄マシナリー株式会社 クレーンの振れ止め・位置決め制御装置
KR970003508B1 (ko) * 1994-03-25 1997-03-18 한국원자력연구소 크레인의 진동방지를 위한 속도 제어 방법
DE19519368A1 (de) * 1995-05-26 1996-11-28 Bilfinger Berger Bau Verfahren zur Bestimmung der Position einer Last
JP3850520B2 (ja) * 1997-08-19 2006-11-29 住友重機械工業株式会社 クレ−ンの振れ角計測装置
US6072127A (en) * 1998-08-13 2000-06-06 General Electric Company Indirect suspended load weighing apparatus
JP2000034093A (ja) * 1998-07-21 2000-02-02 Kobe Steel Ltd 旋回式作業機械とその安全作業領域及び定格荷重の設定方法
JP2000219482A (ja) * 1999-01-28 2000-08-08 Hitachi Service & Engineering (West) Ltd クレーンの制御方法及び制御装置
DK1326798T3 (da) * 2000-10-19 2006-08-14 Liebherr Werk Nenzing Kran eller gravemaskine til omladning af en i et lasttov hængende last med lastpenduldæmpning
EP1652810B1 (de) * 2003-08-05 2012-12-19 Sintokogio, Ltd. Kran und steuerung dafür
JP4472949B2 (ja) * 2003-08-21 2010-06-02 秀和 西村 ジブクレーンの制御方法及び装置
CN2663386Y (zh) * 2003-12-10 2004-12-15 武汉港迪自动化系统有限责任公司 卸船机智能控制电子防摇设备
WO2007000256A1 (en) * 2005-06-28 2007-01-04 Abb Ab Load control device for a crane
DE102007039408A1 (de) * 2007-05-16 2008-11-20 Liebherr-Werk Nenzing Gmbh Kransteuerung, Kran und Verfahren
US7832126B2 (en) * 2007-05-17 2010-11-16 Siemens Industry, Inc. Systems, devices, and/or methods regarding excavating
US7736415B2 (en) * 2007-09-05 2010-06-15 Specialty Minerals (Michigan) Inc. Rotary lance
FR2923818A1 (fr) * 2007-11-19 2009-05-22 Schneider Toshiba Inverter Dispositif de regulation du deplacement d'une charge suspendue.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110775819A (zh) * 2019-11-21 2020-02-11 湖南沃森电气科技有限公司 一种塔式起重机防摇摆控制方法及系统

Also Published As

Publication number Publication date
CN102245490A (zh) 2011-11-16
US20110218714A1 (en) 2011-09-08
CN102245490B (zh) 2013-07-24
FR2939783B1 (fr) 2013-02-15
WO2010069890A1 (fr) 2010-06-24
FR2939783A1 (fr) 2010-06-18
JP2012512111A (ja) 2012-05-31
EP2361216A1 (de) 2011-08-31
US8504253B2 (en) 2013-08-06

Similar Documents

Publication Publication Date Title
EP2361216B1 (de) Vorrichtung zur steuerung der bewegung einer von einem kran hängenden last
EP2219988B1 (de) Verfahren und vorrichtung zur steuerung der bewegung einer aufgehängten last
EP0578280B1 (de) Verfahren zum Steuern der Ortsveränderung einer pendelartigen Last und Vorrichtung um dieses in Angriff zu nehmen
EP1935732B1 (de) Adaptatives Bremssteurungsverfahren für Fahrzeuge
FR2591957A1 (fr) Appareillage de regulation de propulsion pour vehicules automobiles
FR2698344A1 (fr) Dispositif de régulation du transfert d'une charge suspendue.
EP0713474B1 (de) Verfahren zur kontrolle von schwingungen einer pendelnden last und vorrichtung zur durchführung des verfahrens
EP0611211B1 (de) Kontroll- und Steuersystem für die Geschwindigkeit einer bewegten, pendelnden Ladung und Hebevorrichtung mit einem solchen System
FR2597996A1 (fr) Dispositif de commande du rotor d'un helicoptere
EP0197989A1 (de) Verfahren und anordnung zum dämpfen von schwingungen einer freien hängenden last unter einer beweglichen laufkatze
FR2598141A1 (fr) Dispositif de commande de suppression des oscillations dans une grue du type a suspension.
FR2645846A1 (fr) Dispositif de controle de la position et des oscillations d'une charge suspendue durant son transfert au moyen d'un appareil de levage
FR2704847A1 (fr) Procédé et dispositif de limitation du ballant d'une charge suspendue à un support motorisé.
EP1753947B1 (de) Verfahren zur steuerung eines eingestellten drehmoments für räder eines automatikgetriebes für ein kraftfahrzeug und entsprechende vorrichtung
FR2461676A1 (fr) Procede pour la commande automatique de la trajectoire du fardeau d'un engin de levage et dispositif pour sa mise en oeuvre
WO2016038296A1 (fr) Système et procédé de commande d'une machine électrique asynchrone
FR2775678A1 (fr) Procede de regulation de deplacement d'une charge suspendue
EP1094594B1 (de) Umrichter zur Regelung eines elektrischen Hubmotors
TWI804983B (zh) 基於變頻器架構之橋式天車系統全時程防搖擺的控制方法
EP2303744A2 (de) Verfahren zur einstellung des drehzahlkreises eines wechselgetriebes
EP4463360A1 (de) System zur anpassung der steuerung eines elektrischen fahrradmotors an den widerstand gegen vorwärtsfahrt
JP2006076685A (ja) トロリの空転防止制御装置およびこれを備えたクレーン
FR2743058A1 (fr) Dispositif d'antipatinage pour un chariot d'engin de levage
CH694502A5 (fr) Dispositif de commande d'un variateur de vitesse de moteur d'engin de levage ayant une fonction anti-ballant.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130926

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 646516

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009021015

Country of ref document: DE

Effective date: 20140213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140325

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 646516

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140428

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009021015

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009021015

Country of ref document: DE

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141214

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091214

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20241217

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241227

Year of fee payment: 16