[go: up one dir, main page]

EP2282014A1 - Rinförmiger Strömungskanalabschnitt für eine Turbomaschine - Google Patents

Rinförmiger Strömungskanalabschnitt für eine Turbomaschine Download PDF

Info

Publication number
EP2282014A1
EP2282014A1 EP09008227A EP09008227A EP2282014A1 EP 2282014 A1 EP2282014 A1 EP 2282014A1 EP 09008227 A EP09008227 A EP 09008227A EP 09008227 A EP09008227 A EP 09008227A EP 2282014 A1 EP2282014 A1 EP 2282014A1
Authority
EP
European Patent Office
Prior art keywords
flow channel
channel section
platforms
shielding
platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09008227A
Other languages
English (en)
French (fr)
Inventor
Fathi Ahmad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Priority to EP09008227A priority Critical patent/EP2282014A1/de
Priority to US13/379,530 priority patent/US20120100008A1/en
Priority to EP10725431A priority patent/EP2446119A1/de
Priority to PCT/EP2010/058352 priority patent/WO2010149528A1/de
Priority to CN2010800282474A priority patent/CN102803658A/zh
Priority to JP2012516636A priority patent/JP5443600B2/ja
Publication of EP2282014A1 publication Critical patent/EP2282014A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • F01D11/006Sealing the gap between rotor blades or blades and rotor
    • F01D11/008Sealing the gap between rotor blades or blades and rotor by spacer elements between the blades, e.g. independent interblade platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the invention relates to an annular flow channel section for a turbomachine, comprising a vane ring having a number of circumferentially juxtaposed vanes each comprising a blade root, a platform and a radiantly projecting into the flow channel airfoil, wherein the flow channel is platform-side limited by shielding, each sit between two immediately adjacent blades.
  • annular flow channel section is for example from the EP 1 219 787 B1 known.
  • the patent discloses a ring of cast guide vanes of an axial flow turbine in which the vanes have an aerodynamically curved airfoil at each of whose radially outer (foot-side) and inner (head-side) ends platforms are provided. Installed in the turbine, the platforms are covered by ceramic heat shields.
  • the heat shields are configured such that they each cover one half of the platform of two directly adjacent vanes in pairs. They thus essentially extend from the suction side wall of the blade profile of a first guide blade to the pressure side wall of the blade profile of a second guide blade.
  • the ceramic heat shield is connected via a spring fixed to the gas turbine blade, so that the former is attached interchangeable.
  • ceramic heat shields require a comparatively large wall thickness in order to be able to permanently and reliably withstand the temperatures of the hot gas occurring in a stationary gas turbine. If such ceramic heat shields on both the head-side and on the foot side Can be used platform of vanes, this leads to relatively large turbine vanes with correspondingly increased space requirements, which also increases the cost of production.
  • the object of the invention is therefore to provide an annular flow channel section for a turbomachine, which requires a comparatively small space requirement and, moreover, for a particularly long period of time the hot gas flowing in the flow channel section leads particularly reliably and safely without premature signs of wear occurring at the flow channel defining components ,
  • the object is achieved with an annular flow channel section for a turbomachine, in which the shielding elements are arranged under gap formation on the platforms and in the platform impingement cooling openings are provided for impingement cooling of the shielding elements.
  • the invention is based on the finding that the platform integrally formed on the guide vanes can be protected from the hot gas and its corrosive and thermal influences even when the shielding element is not made of a ceramic. In this case, the shielding is then sufficient to cool. According to the invention, it is provided that an impingement cooling of the shielding element is used for cooling. By cooling the shielding this can be configured thin-walled than in the prior art. The comparatively thin-walled design of the shielding element is space-saving and also less expensive. The airfoil of respective vanes can thereby be made shorter in its span, without reducing the flow area of the annular flow channel portion, compared with the known from the prior art flow channel section.
  • the shielding elements preferably each have a base plate which delimits the flow channel and is made of a metallic material which is manufactured separately from the guide vanes. By cooling the shielding can be made of metallic materials. In addition, the entire shielding element is manufactured separately from the guide vanes. This has the advantage that in the event of wear and tear on the shielding only this is to be replaced and not the complete vane, as in non-shielded vane platforms.
  • the shielding element is made of a metallic material having good insulating properties.
  • the wall thickness of the base plate is less than the wall thickness of the covered by the shielding platform.
  • the thinner the shielding element the better this can be cooled by the impingement cooling.
  • a flow channel section that is compact in terms of space can be specified, which reduces the manufacturing and material costs for such a flow channel section.
  • transverse wall sections are provided at the edges of the base plate, which are connectable to lateral walls of the platforms. This makes it possible to accomplish a convenient attachment of the shielding to the vane.
  • each shield member extends over a gap bounded by the platforms of two immediately adjacent vanes. This allows a low-loss guidance of the hot gas in the flow channel, even in the event that, due to thermally induced strains, an offset of adjacent platforms occurs.
  • the shielding element has a protective layer on the flow channel side, in particular a heat-insulating protective layer.
  • FIG. 1 shows the cross section through the blades 14 of two vanes 10 of an annular flow channel portion 12 of a hot gas axially flowed through by a turbomachine, such as gas turbine.
  • the flow channel section 12 essentially comprises a vane ring with a plurality of circumferentially juxtaposed vanes 10.
  • FIG. 1 shows only two of the vanes 10 are shown.
  • the vanes 10 are attached in a conventional manner to a guide vane.
  • the representation is in FIG. 1 chosen so that the blades 14 are shown in cross section and thus a plan view of the platforms 16 of the vanes 10 takes place. Between a suction side airfoil wall 18 of in FIG.
  • the vane ring between each pair of immediately adjacent airfoils 14 each have such a shielding element 22, wherein adjacent shielding elements 22 on the one hand upstream of a leading edge 21 of the airfoil 14 and downstream of a trailing edge 23 of the airfoil 14 with the smallest possible gap abut each other.
  • baffle cooling openings 24 are arranged, for example, grid-shaped.
  • the section along the section line II-II through the vane 10 and the shield 22 shows FIG. 2 , In FIG. 2 are closed FIG. 1 identical features provided with identical reference numerals.
  • the shielding element 22 is arranged with gap formation on the platform 16 on the hot gas side, wherein in the platform 16 to the surface of which, for example, oblique impingement cooling openings 24 are provided.
  • a coolant K is supplied during operation of the turbomachine, which emerge through the impingement cooling openings 24 from the rear space 28 and can enter into the gap between shield 22 and platform 16 like a jet. When the impact cooling jets strike, they cool the shielding element 22, so that, despite the hot gas flowing through the flow channel 26, it has a sufficient service life.
  • Shielding element 22 shown in cross-section is metallic and essentially comprises a base plate 30 which extends parallel to the channel-side platform surface. At the two opposite edges of the base plate 30 laterally transversely to the base plate 30 projecting wall portions 32 are provided, which surround respective side walls of the platform 16 like a clamp.
  • the Wall thickness of the base plate 30 is substantially lower than the wall thickness of the platform 16 in the region of the impact cooling openings 24.
  • the shielding element 22 For fastening the shielding element 22 to the guide blade 10 or to the platform 16, this can be screwed, for example, as indicated by the dot-dash line. Other types of attachment such. As well as a jamming, in particular positive clamping of the shielding member 22 to the platform 16 is also conceivable. If necessary, the shielding member 22 may have on its surface, which is exposed to the hot gas, a thermal heat-insulating layer in order to further increase its thermal resistance.
  • the coolant K flowing into the gap between the shielding element 22 and the platform surface flows after the impingement cooling at that gap 36 (FIG. FIG. 1 ), which is provided between the shielding member 22 and the suction-side airfoil wall 18 and pressure-side airfoil wall 20, respectively.
  • platform 16 and the shielding member 22 disposed above it may be both a foot-side platform and a head-side platform of vanes 10, provided that the guide vanes 10 used in the annular flow channel section 12 at both opposite ends of the blade 14 transverse to the blade 14th have extending platforms 16.
  • the invention can also be applied to only one of the two platforms 16 of such a vane 10.
  • the invention provides an annular flow channel section 12 for a turbomachine comprising a vane ring which has a number of circumferentially juxtaposed vanes 10, each comprising a platform 16 and a radiant manner into the flow channel 26 projecting airfoil 14, wherein the flow channel 26 platform side is limited by shielding 22, which are each arranged between two immediately adjacent airfoils 14, wherein the formation of a particularly space-saving flow channel section 12, the shielding 22 arranged under gap formation on the platforms 16 and in the platform 16th Impact cooling holes 24 are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft einen ringförmigen Strömungskanalabschnitt (12) für eine Turbomaschine, mit einem Leitschaufelkranz, welcher eine Anzahl von in Umfangsrichtung aneinandergereihten Leitschaufeln (10), jeweils umfassend einen Schaufelfuß, eine Plattform (16) und ein in den Strömungskanal (26) strahlenartig hineinragendes Schaufelblatt (14) aufweist, wobei der Strömungskanal (26) plattformseitig von Abschirmelementen (22) begrenzt ist, die jeweils zwischen zwei unmittelbar benachbarten Schaufelblättern (14) angeordnet sind, wobei zur Ausbildung eines besonders platzsparenden Strömungskanalabschnitts (12) die Abschirmelemente (22) unter Spaltbildung an den Plattformen (16) angeordnet und in der Plattform (16) Prallkühlöffnungen (24) vorgesehen sind.

Description

  • Die Erfindung betrifft einen ringförmigen Strömungskanalabschnitt für eine Turbomaschine, mit einem Leitschaufelkranz, welcher eine Anzahl von in Umfangsrichtung aneinandergereihten Leitschaufeln jeweils umfassend einen Schaufelfuß, eine Plattform und ein in den Strömungskanal strahlenartig hineinragendes Schaufelblatt aufweist, wobei der Strömungskanal plattformseitig von Abschirmelementen begrenzt ist, die jeweils zwischen zwei unmittelbar benachbarten Schaufelblättern sitzen.
  • Ein eingangs genannter ringförmiger Strömungskanalabschnitt ist beispielsweise aus der EP 1 219 787 B1 bekannt. Im Detail offenbart die Patentschrift einen Kranz von gegossenen Leitschaufeln einer axial durchströmten Turbine, bei denen die Leitschaufeln ein aerodynamisch gekrümmtes Schaufelblatt aufweisen, an dessen radial äußerem (fußseitigen) und inneren (kopfseitigen) Ende jeweils Plattformen vorgesehen sind. In der Turbine eingebaut sind die Plattformen von keramischen Hitzeschilden überdeckt. Die Hitzeschilde sind derart ausgestaltet, dass sie jeweils eine Plattformhälfte zweier unmittelbar benachbarter Leitschaufeln paarweise überdecken. Sie erstrecken sich somit im Wesentlichen von der Saugseitenwand des Schaufelprofils einer ersten Leitschaufel bis zur Druckseitenwand des Schaufelprofils einer zweiten Leitschaufel. Das keramische Hitzeschild ist dabei über eine Feder fest mit der Gasturbinenschaufel verbunden, so dass erstgenanntes austauschbar befestigt ist.
  • Keramische Hitzeschilde benötigen jedoch eine vergleichsweise große Wandstärke, um den in einer stationären Gasturbine auftretenden Temperaturen des Heißgases dauerhaft und zuverlässig standhalten zu können. Sofern solche keramische Hitzeschilde sowohl an der kopfseitigen als auch an der fußseitigen Plattform von Leitschaufeln verwendet werden, führt dies zu vergleichsweise großen Turbinenleitschaufeln mit entsprechend vergrößertem Raumbedarf, was gleichfalls die Herstellungskosten erhöht.
  • Aufgabe der Erfindung ist daher die Bereitstellung eines ringförmigen Strömungskanalabschnitts für eine Turbomaschine, welche einen vergleichsweise geringen Raumbedarf benötigt und darüber hinaus für einen besonders langen Zeitraum das im Strömungskanalabschnitt strömende Heißgas besonders zuverlässig und sicher führt, ohne dass an den den Strömungskanal begrenzenden Bauteilen vorzeitige Verschleißerscheinungen auftreten.
  • Die Aufgabe wird mit einem ringförmigen Strömungskanalabschnitt für eine Turbomaschine gelöst, bei der die Abschirmelemente unter Spaltbildung an den Plattformen angeordnet und in der Plattform Prallkühlöffnungen zur Prallkühlung der Abschirmelemente vorgesehen sind.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass die an den Leitschaufeln angeformte Plattform auch dann vor dem Heißgas und dessen korrosiven sowie thermischen Einflüssen geschützt werden kann, wenn das Abschirmelement nicht aus einer Keramik besteht. In diesem Fall ist das Abschirmelement dann ausreichend zu kühlen. Erfindungsgemäß ist dazu vorgesehen, dass zur Kühlung eine Prallkühlung des Abschirmelements eingesetzt wird. Durch die Kühlung des Abschirmelements kann dieses dünnwandiger ausgestaltet werden als beim Stand der Technik. Die vergleichsweise dünnwandige Ausgestaltung des Abschirmelements ist platzsparend und auch kostengünstiger. Das Schaufelblatt entsprechender Leitschaufeln kann dadurch in seiner Spannweite kürzer ausgestaltet werden, ohne den Strömungsquerschnitt des ringförmigen Strömungskanalabschnitts, verglichen mit dem aus dem Stand der Technik bekannten Strömungskanalabschnitt, zu verringern.
  • Üblicherweise sind Leitschaufeln, die im erfindungsgemäßen Strömungskanalabschnitt eingesetzt sind, im Gussverfahren hergestellt und somit hauptsächlich einstückig. Da bisher die Plattformen derartiger Leitschaufeln nicht nur dem Druck des Heißgases widerstehen mussten, sondern auch die von den Strömungskräfte hervorgerufenen mechanische Belastung des Schaufelblatts an eine rückseitige Verhakung weiterleiten musste, hatten diese bisher vergleichsweise massive Wände, d. h. große Wandstärken. Dies führte zu einer schlechten Kühlbarkeit von Plattformen, wodurch die Lebensdauer derartiger Leitschaufeln bisher auch von den Plattformen begrenzt war. Durch die Verwendung eines erfindungsgemäßen Abschirmelementes kann insbesondere die thermische Belastung derartiger Plattformen reduziert werden, was zu einer signifikanten Verlängerung der Lebensdauer von Leitschaufeln führt.
  • Insbesondere bei Strömungskanalabschnitten, in denen Leitschaufeln ohne Abschirmelemente eingesetzt waren, traten zudem insbesondere im Bereich eine hohlkehlartigen Übergangs von Plattform zum Schaufelblatt durch eine entsprechende Verrundung eine Masseanhäufung auf, die nur unzureichend kühlbar war. Durch die unzureichende Kühlbarkeit des Übergangs traten auch an diesen Stellen Ermüdungserscheinungen wie Risse auf. Nunmehr kann durch die Verwendung von Abschirmelementen der Übergang vor dem unmittelbaren Kontakt und Einfluss des im Strömungskanal strömenden Heißgases besser geschützt werden, da an dieser Stelle nunmehr ein Spalt zwischen Abschirmelement und Schaufelblattwand resp. Übergang vorhanden ist, durch den die zur Prallkühlung des Abschirmelementes verwendete Kühlmittel, beispielsweise Kühlluft nach Abschluss der Prallkühlung in den Strömungskanal austreten kann. Auch dies führt zu einer verlängerten Lebensdauer der Leitschaufel aufgrund der Reduzierung der thermischen Belastung im Bereich des Übergangs von Plattform zu Schaufelblatt.
  • Weitere vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
  • Vorzugsweise weisen die Abschirmelemente jeweils eine den Strömungskanal begrenzende Grundplatte aus einem metallischen Werkstoff auf, der separat von den Leitschaufeln gefertigt ist. Durch die Kühlung des Abschirmelements kann auf metallische Materialien zurückgegriffen werden. Zudem ist das gesamte Abschirmelement separat von den Leitschaufeln gefertigt. Dies hat den Vorteil, dass für den Fall des Auftretens von Verschleißerscheinungen am Abschirmelement nur dieses zu ersetzen ist und nicht die komplette Leitschaufel, wie bei nicht abgeschirmten Leitschaufelplattformen.
  • Vorzugsweise ist das Abschirmelement aus einem metallischen Material mit guten Isolationseigenschaften gefertigt.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung ist die Wandstärke der Grundplatte geringer als die Wandstärke der vom Abschirmelement überdeckten Plattform. Je dünnwandiger das Abschirmelement ist, umso besser lässt sich dieses durch die Prallkühlung kühlen. Außerdem kann mit einem vergleichsweise dünnwandigen Abschirmelement ein im Raumbedarf kompakter Strömungskanalabschnitt angegeben werden, was die Herstellungs- und Materialkosten für einen derartigen Strömungskanalabschnitt reduziert.
  • Gemäß einer bevorzugten Ausgestaltung sind an den Rändern der Grundplatte quer angeordnete Wandabschnitte vorgesehen, welche mit seitlichen Wänden der Plattformen verbindbar sind. Hierdurch lässt sich eine zweckmäßige Befestigung des Abschirmelements an der Leitschaufel bewerkstelligen.
  • Üblicherweise erstreckt sich jedes Abschirmelement über einen von den Plattformen zweier unmittelbar benachbarter Leitschaufeln begrenzten Spalt. Dies ermöglicht eine verlustarme Führung des Heißgases im Strömungskanal, selbst für den Fall, dass aufgrund von thermisch bedingten Dehnungen ein Versatz von einander benachbarten Plattformen auftritt.
  • Um die thermische Widerstandsfähigkeit des Abschirmelements gegenüber dem Heißgas weiter zu erhöhen, kann es von Vorteil sein, wenn das Abschirmelement strömungskanalseitig eine Schutzschicht, insbesondere eine wärmedämmende Schutzschicht aufweist.
  • Die weitere Erläuterung der Erfindung erfolgt anhand des in der Zeichnung dargestellten Ausführungsbeispiels.
  • Es zeigen:
  • FIG 1
    einen Schnitt durch zwei der Schaufelblätter eines ringförmigen Strömungskanalabschnitts als Abwick- lung dessen mit einem über die Plattformen der Leitschaufeln angeordnetem Abschirmelement und
    FIG 2
    den Schnitt gemäß Schnitt II-II durch die Plattform der Leitschaufel und durch das Abschirmelement.
  • FIG 1 zeigt den Querschnitt durch die Schaufelblätter 14 von zwei Leitschaufeln 10 eines ringförmigen Strömungskanalabschnitts 12 einer von einem Heißgas axial durchströmbaren Turbomaschine, beispielsweise Gasturbine. Der Strömungskanalabschnitt 12 umfasst im Wesentlichen einen Leitschaufelkranz mit einer Vielzahl von in Umfangsrichtung aneinander gereihten Leitschaufeln 10. Von dem im Stand der Technik vielfach bekannten Leitschaufelkranz sind in FIG 1 lediglich zwei der Leitschaufeln 10 dargestellt. Die Leitschaufeln 10 sind dabei in herkömmlicher Art an einem Leitschaufelträger befestigt.
    Die Darstellung ist in FIG 1 so gewählt, dass die Schaufelblätter 14 im Querschnitt dargestellt sind und somit eine Draufsicht auf die Plattformen 16 der Leitschaufeln 10 erfolgt. Zwischen einer saugseitigen Schaufelblattwand 18 der in FIG 1 weiter unten dargestellten Leitschaufel 10 und der druckseitigen Schaufelblattwand 20 der in FIG 1 weiter oben dargestellten Leitschaufel 10 ist ein Abschirmelement 22 formschlüssig angeordnet. Das Abschirmelement 22 überdeckt die darunter liegenden Bereiche der Plattformen 16 zwischen den Schaufelblättern 14 der beiden unmittelbar benachbarten Leitschaufeln 10 vollständig. Der Klarheit halber ist nur eines der im Strömungskanalabschnitt 12 angeordneten Abschirmelemente 22 dargestellt. Prinzipiell weist der Leitschaufelkranz zwischen jedem Paar von unmittelbar benachbarten Schaufelblättern 14 jeweils ein derartiges Abschirmelement 22 auf, wobei benachbarte Abschirmelemente 22 zudem einerseits stromauf einer Vorderkante 21 des Schaufelblatts 14 und stromab einer Hinterkante 23 des Schaufelblatts 14 mit möglichst kleinem Spalt aufeinander stoßen.
  • Ferner sind in den Plattformen 16 Prallkühlöffnungen 24 beispielweise rasterförmig angeordnet. Den Schnitt gemäß der Schnittlinie II-II durch die Leitschaufel 10 und das Abschirmelement 22 zeigt FIG 2. In FIG 2 sind zu FIG 1 identische Merkmale mit identischen Bezugszeichen versehen. Das Abschirmelement 22 ist unter Spaltbildung an der Plattform 16 heißgasseitig angeordnet, wobei in der Plattform 16 zu dessen Oberfläche beispielsweise schräg verlaufende Prallkühlöffnungen 24 vorgesehen sind. Dem vom Strömungskanal 26 abgewandten Rückraum 28 wird während des Betriebs der Strömungsmaschine ein Kühlmittel K zugeführt, welches durch die Prallkühlöffnungen 24 aus dem Rückraum 28 austreten und in den Spalt zwischen Abschirmelement 22 und Plattform 16 strahlartig eintreten kann. Beim Auftreffen der Prallkühlstrahlen kühlen diese das Abschirmelement 22, so dass trotz des durch das im Strömungskanal 26 strömenden Heißgases dieses eine ausreichende Lebensdauer aufweist.
  • Das in FIG 2 im Querschnitt gezeigte Abschirmelement 22 ist metallisch und umfasst im Wesentlichen eine Grundplatte 30, welche sich parallel zur kanalseitigen Plattformoberfläche erstreckt. An den beiden einander gegenüberliegenden Rändern der Grundplatte 30 sind seitlich quer zur Grundplatte 30 abstehende Wandabschnitte 32 vorgesehen, welche entsprechende Seitenwände der Plattform 16 klammerartig umgreifen. Die Wandstärke der Grundplatte 30 ist dabei wesentlich geringer als die Wandstärke der Plattform 16 im Bereich der Prallkühlöffnungen 24.
  • Zur Befestigung des Abschirmelements 22 an der Leitschaufel 10 bzw. an der Plattform 16 kann dieses beispielsweise, wie durch die strichpunktierte Linie angedeutet, verschraubt sein. Andere Befestigungsarten wie z. B. auch ein Festklemmen, insbesondere formschlüssiges Festklemmen des Abschirmelements 22 an der Plattform 16 ist auch denkbar. Sofern erforderlich, kann das Abschirmelement 22 an seiner Oberfläche, die dem Heißgas ausgesetzt ist, eine thermische Wärmedämmschutzschicht aufweisen, um dessen thermische Beständigkeit weiter zu erhöhen.
  • Das in den Spalt zwischen Abschirmelement 22 und Plattformoberfläche einströmende Kühlmittel K strömt nach erfolgter Prallkühlung an demjenigen Spalt 36 (FIG 1) aus, welcher zwischen dem Abschirmelement 22 und der saugseitigen Schaufelblattwand 18 bzw. druckseitigen Schaufelblattwand 20 vorgesehen ist.
  • Bei der in FIG 2 dargestellten Plattform 16 und dem darüber angeordneten Abschirmelement 22 kann es sich dabei sowohl um eine fußseitige Plattform als auch um eine kopfseitige Plattform von Leitschaufeln 10 handeln, sofern die im ringförmigen Strömungskanalabschnitt 12 verwendeten Leitschaufeln 10 an beiden gegenüberliegenden Enden des Schaufelblatts 14 sich quer zum Schaufelblatt 14 erstreckende Plattformen 16 aufweisen. Selbstverständlich kann die Erfindung auch an nur einer der beiden Plattformen 16 einer derartigen Leitschaufel 10 angewendet werden.
  • Insgesamt wird mit der Erfindung ein ringförmiger Strömungskanalabschnitt 12 für eine Turbomaschine angegeben, mit einem Leitschaufelkranz, welcher eine Anzahl von in Umfangsrichtung aneinandergereihten Leitschaufeln 10, jeweils umfassend eine Plattform 16 und ein in den Strömungskanal 26 strahlenartig hineinragendes Schaufelblatt 14 aufweist, wobei der Strömungskanal 26 plattformseitig von Abschirmelementen 22 begrenzt ist, die jeweils zwischen zwei unmittelbar benachbarten Schaufelblättern 14 angeordnet sind, wobei zur Ausbildung eines besonders platzsparenden Strömungskanalabschnitts 12 die Abschirmelemente 22 unter Spaltbildung an den Plattformen 16 angeordnet und in der Plattform 16 Prallkühlöffnungen 24 vorgesehen sind.

Claims (6)

  1. Ringförmiger Strömungskanalabschnitt (12) für eine Turbomaschine,
    mit einem Leitschaufelkranz, welcher eine Anzahl in Umfangsrichtung aneinandergereihter Leitschaufeln (10) jeweils umfassend einen zur Befestigung vorgesehenen Schaufelfuß, zumindest eine fußseitige Plattform (16) und ein in den Strömungskanal (26) strahlenartig hineinragendes Schaufelblatt (14) aufweist,
    wobei der Strömungskanal (26) plattformseitig von Abschirmelementen (22) begrenzt ist, die jeweils zwischen zwei unmittelbar benachbarten Schaufelblättern (14) angeordnet sind,
    dadurch gekennzeichnet, dass
    die Abschirmelemente (22) unter Spaltbildung an den Plattformen (16) angeordnet und in den Plattformen (16) Prallkühlöffnungen (24) zur Prallkühlung der Abschirmelemente (22) vorgesehen sind.
  2. Strömungskanalabschnitt (12) nach Anspruch 1,
    bei der die Abschirmelemente (22) jeweils eine den Strömungskanal (26) begrenzende Grundplatte (30) aus einem metallischen Werkstoff aufweisen, welche separat von den Leitschaufeln (10) gefertigt ist.
  3. Strömungskanalabschnitt (12) nach Anspruch 2,
    bei der die Wandstärke der Grundplatte (30) geringer ist als die Wandstärke der vom Abschirmelement (22) überdeckten Plattformen (16).
  4. Strömungskanalabschnitt (12) nach Anspruch 2 oder 3, bei der an der Grundplatte (30) quer angeordnete Wandabschnitte (32) vorgesehen sind, welche mit seitlichen Wänden der Plattformen (16) verbindbar sind.
  5. Strömungskanalabschnitt (12) nach einem der Ansprüche 1 bis 4,
    bei der jedes Abschirmelement (22) einen von den Plattformen (16) unmittelbar benachbarter Leitschaufeln (10) begrenzten Spalt überdeckt.
  6. Strömungskanalabschnitt (12) nach einem der Ansprüche 1 bis 5,
    bei der das Abschirmelement (22) strömungskanalseitig eine Schutzschicht aufweist.
EP09008227A 2009-06-23 2009-06-23 Rinförmiger Strömungskanalabschnitt für eine Turbomaschine Withdrawn EP2282014A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09008227A EP2282014A1 (de) 2009-06-23 2009-06-23 Rinförmiger Strömungskanalabschnitt für eine Turbomaschine
US13/379,530 US20120100008A1 (en) 2009-06-23 2010-06-15 Annular flow channel section for a turbomachine
EP10725431A EP2446119A1 (de) 2009-06-23 2010-06-15 Ringförmiger strömungskanalabschnitt für eine turbomaschine
PCT/EP2010/058352 WO2010149528A1 (de) 2009-06-23 2010-06-15 Ringförmiger strömungskanalabschnitt für eine turbomaschine
CN2010800282474A CN102803658A (zh) 2009-06-23 2010-06-15 用于涡轮机的环形的流动通道区段
JP2012516636A JP5443600B2 (ja) 2009-06-23 2010-06-15 ターボ機械のための環状流路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09008227A EP2282014A1 (de) 2009-06-23 2009-06-23 Rinförmiger Strömungskanalabschnitt für eine Turbomaschine

Publications (1)

Publication Number Publication Date
EP2282014A1 true EP2282014A1 (de) 2011-02-09

Family

ID=41351921

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09008227A Withdrawn EP2282014A1 (de) 2009-06-23 2009-06-23 Rinförmiger Strömungskanalabschnitt für eine Turbomaschine
EP10725431A Withdrawn EP2446119A1 (de) 2009-06-23 2010-06-15 Ringförmiger strömungskanalabschnitt für eine turbomaschine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10725431A Withdrawn EP2446119A1 (de) 2009-06-23 2010-06-15 Ringförmiger strömungskanalabschnitt für eine turbomaschine

Country Status (5)

Country Link
US (1) US20120100008A1 (de)
EP (2) EP2282014A1 (de)
JP (1) JP5443600B2 (de)
CN (1) CN102803658A (de)
WO (1) WO2010149528A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2634373A1 (de) * 2012-02-28 2013-09-04 Siemens Aktiengesellschaft Anordnung für eine Turbomaschine
EP2540971B1 (de) * 2011-06-27 2019-04-03 General Electric Company Herstellungsverfahren für eine Passage zur Plattformkühlung der Plattform in einer Turbinenrotorschaufel und zugehörige Turbinenrotorschaufel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11111801B2 (en) * 2013-06-17 2021-09-07 Raytheon Technologies Corporation Turbine vane with platform pad
ITCO20130051A1 (it) * 2013-10-23 2015-04-24 Nuovo Pignone Srl Metodo per la produzione di uno stadio di una turbina a vapore
JP6366180B2 (ja) * 2014-09-26 2018-08-01 三菱日立パワーシステムズ株式会社 シール構造
US10598029B2 (en) 2016-11-17 2020-03-24 United Technologies Corporation Airfoil with panel and side edge cooling
US20200182085A1 (en) * 2018-12-07 2020-06-11 United Technoligies Corporation Impingement cooling of components
CN112943378B (zh) * 2021-02-04 2022-06-28 大连理工大学 一种涡轮叶片枝网式冷却结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820336A (en) * 1994-11-11 1998-10-13 Mitsubishi Heavy Industries, Ltd. Gas turbine stationary blade unit
WO1999054597A1 (de) * 1998-04-21 1999-10-28 Siemens Aktiengesellschaft Turbinenschaufel
WO1999060253A1 (de) * 1998-05-18 1999-11-25 Siemens Aktiengesellschaft Gekühlte turbinenschaufelplattform
EP1557535A1 (de) * 2004-01-20 2005-07-27 Siemens Aktiengesellschaft Turbinenschaufel und Gasturbine mit einer solchen Turbinenschaufel
EP1557534A1 (de) * 2004-01-20 2005-07-27 Siemens Aktiengesellschaft Turbinenschaufel und Gasturbine mit einer solchen Turbinenschaufel
EP1219787B1 (de) 2000-12-27 2005-12-21 Siemens Aktiengesellschaft Gasturbinenschaufel und Gasturbine
US20070237630A1 (en) * 2006-04-11 2007-10-11 Siemens Power Generation, Inc. Vane shroud through-flow platform cover

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3433015A (en) * 1965-06-23 1969-03-18 Nasa Gas turbine combustion apparatus
BE755567A (fr) * 1969-12-01 1971-02-15 Gen Electric Structure d'aube fixe, pour moteur a turbines a gaz et arrangement de reglage de temperature associe
US4218178A (en) * 1978-03-31 1980-08-19 General Motors Corporation Turbine vane structure
US5281097A (en) * 1992-11-20 1994-01-25 General Electric Company Thermal control damper for turbine rotors
FR2758855B1 (fr) * 1997-01-30 1999-02-26 Snecma Systeme de ventilation des plates-formes des aubes mobiles
JP3546135B2 (ja) * 1998-02-23 2004-07-21 三菱重工業株式会社 ガスタービン動翼のプラットフォーム
JP3453293B2 (ja) * 1998-03-03 2003-10-06 三菱重工業株式会社 ガスタービン動翼のプラットフォーム
FR2810365B1 (fr) * 2000-06-15 2002-10-11 Snecma Moteurs Systeme de ventilation d'une paire de plates-formes d'aubes juxtaposees
GB2411697B (en) * 2004-03-06 2006-06-21 Rolls Royce Plc A turbine having a cooling arrangement
ATE484652T1 (de) * 2005-04-28 2010-10-15 Siemens Ag Verfahren und vorrichtung zur einstellung eines radialspaltes eines axial durchströmten verdichters einer strömungsmaschine
US7488157B2 (en) * 2006-07-27 2009-02-10 Siemens Energy, Inc. Turbine vane with removable platform inserts
US7766609B1 (en) * 2007-05-24 2010-08-03 Florida Turbine Technologies, Inc. Turbine vane endwall with float wall heat shield
US8240987B2 (en) * 2008-08-15 2012-08-14 United Technologies Corp. Gas turbine engine systems involving baffle assemblies

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820336A (en) * 1994-11-11 1998-10-13 Mitsubishi Heavy Industries, Ltd. Gas turbine stationary blade unit
WO1999054597A1 (de) * 1998-04-21 1999-10-28 Siemens Aktiengesellschaft Turbinenschaufel
WO1999060253A1 (de) * 1998-05-18 1999-11-25 Siemens Aktiengesellschaft Gekühlte turbinenschaufelplattform
EP1219787B1 (de) 2000-12-27 2005-12-21 Siemens Aktiengesellschaft Gasturbinenschaufel und Gasturbine
EP1557535A1 (de) * 2004-01-20 2005-07-27 Siemens Aktiengesellschaft Turbinenschaufel und Gasturbine mit einer solchen Turbinenschaufel
EP1557534A1 (de) * 2004-01-20 2005-07-27 Siemens Aktiengesellschaft Turbinenschaufel und Gasturbine mit einer solchen Turbinenschaufel
US20070237630A1 (en) * 2006-04-11 2007-10-11 Siemens Power Generation, Inc. Vane shroud through-flow platform cover

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540971B1 (de) * 2011-06-27 2019-04-03 General Electric Company Herstellungsverfahren für eine Passage zur Plattformkühlung der Plattform in einer Turbinenrotorschaufel und zugehörige Turbinenrotorschaufel
EP2634373A1 (de) * 2012-02-28 2013-09-04 Siemens Aktiengesellschaft Anordnung für eine Turbomaschine
WO2013127833A1 (en) * 2012-02-28 2013-09-06 Siemens Aktiengesellschaft Arrangement for a turbomachine
CN104136720A (zh) * 2012-02-28 2014-11-05 西门子公司 用于涡轮机器的装置
CN104136720B (zh) * 2012-02-28 2016-08-31 西门子公司 用于涡轮机器的装置
US9863271B2 (en) 2012-02-28 2018-01-09 Siemens Aktiengesellschaft Arrangement for a turbomachine

Also Published As

Publication number Publication date
WO2010149528A1 (de) 2010-12-29
JP5443600B2 (ja) 2014-03-19
CN102803658A (zh) 2012-11-28
EP2446119A1 (de) 2012-05-02
US20120100008A1 (en) 2012-04-26
JP2012530870A (ja) 2012-12-06

Similar Documents

Publication Publication Date Title
EP2282014A1 (de) Rinförmiger Strömungskanalabschnitt für eine Turbomaschine
DE3019920C2 (de) Einrichtung zur äußeren Ummantelung der Laufschaufeln von Axialturbinen für Gasturbinentriebwerke
DE10116452B4 (de) Gasturbine und Reparaturverfahren für diese
DE69936176T2 (de) Berstschutzring für Turbinen
EP1219787B1 (de) Gasturbinenschaufel und Gasturbine
DE102009044102A1 (de) Geteilte Verkleidung für eine Gasturbine
EP3121371B1 (de) Turbine mit gekühlten turbinenleitschaufeln
WO2007012592A1 (de) Gekühlte turbinenschaufel für eine gasturbine und verwendung einer solchen turbinenschaufel
EP2693061B1 (de) Verdichterschaufel einer Gasturbine sowie Verfahren zu deren Herstellung
EP2084368B1 (de) Turbinenschaufel
DE3345263A1 (de) Keramische turbinenschaufel
EP1757773B1 (de) Hohle Turbinenschaufel
WO2013167346A1 (de) Turbinenlaufschaufel und axialer rotorabschnitt für eine gasturbine
EP3219918A1 (de) Kühleinrichtung zur kühlung von plattformen eines leitschaufelkranzes einer gasturbine
DE102011050961A1 (de) Turbinenschaufelanordnung
EP2787178B1 (de) Leitschaufelanordnung
EP1960636B1 (de) Strömungsmaschine
EP2526263B1 (de) Gehäusesystem für eine axialströmungsmaschine
EP2860356B1 (de) Strömungsmaschine
EP3921576B1 (de) Resonator, verfahren zur herstellung eines solchen sowie mit einem solchen versehene brenneranordnung
EP3921577B1 (de) Rohrbrennkammersystem und gasturbinenanlage mit einem solchen rohrbrennkammersystem
EP3623576B1 (de) Gasturbinen-laufschaufel
WO1999007981A1 (de) Hitzebeständige leitschaufel, schaufel-eintrittskante sowie schaufelkörper
EP1662090B1 (de) Turbinenschaufel einer Gasturbine
EP3022395B1 (de) Einsatzelement, ringsegment, gasturbine, montageverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110810