EP2249980B1 - Device for explosive forming - Google Patents
Device for explosive forming Download PDFInfo
- Publication number
- EP2249980B1 EP2249980B1 EP08871795A EP08871795A EP2249980B1 EP 2249980 B1 EP2249980 B1 EP 2249980B1 EP 08871795 A EP08871795 A EP 08871795A EP 08871795 A EP08871795 A EP 08871795A EP 2249980 B1 EP2249980 B1 EP 2249980B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shock
- dissipator
- ignition
- elements
- impact crusher
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/06—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves
- B21D26/08—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves generated by explosives, e.g. chemical explosives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49805—Shaping by direct application of fluent pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49805—Shaping by direct application of fluent pressure
- Y10T29/49806—Explosively shaping
Definitions
- the invention relates to a device for explosive forming, with the features of the preamble of claim 1, (see, for example EP-A-0 830 907 ).
- An ignition tube connects an explosion chamber in the workpiece interior with a gas supply, venting and ignition device, wherein the ignition device is integrated into the ignition tube.
- the ignition device By means of the ignition device arranged in the ignition tube, the gas, oxyhydrogen gas in a stoichiometric mixture with low oxygen excess, is ignited. The explosion of the gas develops into a detonation wave, which transforms the workpiece and then expires.
- the invention is therefore based on the object to improve a device of the type mentioned in that the detonation wave can develop well, the explosion process can run more orderly and that the ignition mechanism has a longer life.
- the provided on the propagation path of the detonation wave shock breaker reduces the energy of the detonation wave whereby the device can be protected against high mechanical loads and thus also against permanent damage.
- the strong mitigation of the reflected shock wave already causes an extension of the life of the ignition mechanism.
- the impact crusher can be arranged between the ignition location and the ignition space exit.
- the detonation wave which returns through the Zündraumausgang can be mitigated in their energy.
- the shock breaker For example, the explosion propagating from the ignition location can develop sufficiently to reshape the workpiece as it passes through the mold.
- the impact crusher can be arranged closer to the ignition location than the ignition chamber outlet. This has the advantage that the developing detonation wave, after passing through the impact crusher, remains an appropriate distance through the ignition space in order to unfold, but the reflected detonation wave is attenuated in its energy when the impact crusher is reached.
- the impact crusher can be arranged directly at the ignition location.
- the ignition device is still effectively protected against the reflected detonation wave. Nevertheless, the explosion can still be triggered there and develop from there.
- the impact crusher can be arranged on the side facing away from the ignition of the mold.
- the detonation wave is attenuated after passing through the mold by the impact crusher in its energy.
- the explosion energy may be well-developed in the detonation wave until the detonation wave reaches the mold.
- the impact crusher can be arranged directly on the mold on the side facing away from the ignition.
- the detonation wave passing through the mold can thus be dampened in its energy immediately after passing through the mold.
- the impact crusher may be located closer to the end of the device opposite the ignition location. The reaction from the detonation wave striking the impact crusher to the mold could thus be reduced.
- the impact crusher forms the end of the device opposite the ignition location.
- the impact crusher could act as a scattering element, which strikes the detonation wave.
- the impact crusher can be arranged within a support tube which can be attached to the mold on the side remote from the ignition location of the molding tool.
- the support tube could be made of a different material than the impact crusher and simplify the construction of the impact crusher as an insert.
- the impact crusher in unit with the support tube may be designed as an end piece. This tail could connect directly to the mold and complete the device on the opposite side of the ignition space. A longer discharge path for the detonation wave could be omitted in this way.
- the impact crusher has and / or generates a curved and / or reduced passage with respect to the ignition space cross section or the support tube cross section. These transmission modes can consume a significant amount of energy for the reflected detonation wave.
- At least one impact crusher element can be provided, which is at least partially spaced from and forming a passage with the Zündrauminnenwandung or Stützrohrinnenwandung.
- the impact crusher element can be simple and thus stably constructed.
- a plurality of passages forming between the impact crusher elements may be provided.
- the flow resistance through the impact crusher may be smaller in the direction of flow away from the ignition location than towards the ignition location.
- the reflected detonation wave is reduced in energy to a much greater extent than the original explosion triggered by the ignition mechanism, and yet the ignition mechanism is protected when the impact crusher is located between the ignition location and the forming tool.
- the flow resistance through the impact crusher in the flow direction from the ignition location can be greater than towards the ignition location, and the impact crusher can be mounted on the side of the molding tool facing away from the ignition location.
- the shock wave energy can be withdrawn to a considerable extent even before it is reflected at the end of the device.
- the impact crusher can have at least one Drossef Wegschlag element. This allows the propagating explosion to pass through the shock absorber while the reflected detonation wave is decelerated by the recoil element prior to the ignition mechanism.
- the impact crusher may comprise at least one disposable element. This allows the explosion to pass through the shock-breaker while intercepting the reflected detonation wave from the disposable element prior to reaching the ignition mechanism.
- the impact crusher can have a larger surface area than the ignition space inner surface or supporting surface which is adjacent to the impact crusher. This can lead to increased friction with respect to the length of the impact crusher and thus to an improved reduction in the energy of the reflected detonation wave.
- the ignition space cross section and / or the support tube cross section in the region of the impact crusher can be increased. This creates an increased space especially for complex impact crushers.
- the impact crusher may have at least one branch off-going from a main passage.
- the detonation wave can be split, whereby likewise the energy of the detonation wave is divided and can be reflected and absorbed several times in the area of the branching.
- the at least one branch may be at least partially branched. This creates a multiplicity of branch points at which the detonation wave can be split up.
- the at least one branch can be closed at its end, whereby the detonation wave can remain inside the impact crusher.
- At least one of the branches can form a filling channel for fluid.
- the liquid used in a variant of explosion forming could be introduced into the device via the impact crusher.
- the explosive could be introduced into the interior of the device via the filling channel.
- the propagation space in the device may be connected via the branch with a propagation volume.
- the detonation wave could thus be at least partially conducted over the impact crusher in a propagation volume to decay.
- a filling device for fluid may be arranged on the side of the molding tool facing away from the ignition location.
- the structure of the device on the Zündortseite could be simpler and equipped with fewer connections.
- the impact crusher has a labyrinth structure. Due to the large surface area, the long labyrinth path and the multiple diversion of the reflected detonation wave, an effective deceleration of the same can be achieved.
- the impact crusher can have at least one labyrinth element and / or a plurality of impact crusher elements forming a labyrinth structure. Depending on the situation, it may be better to form the labyrinth from one or more labyrinth elements or from several elements that together form a labyrinth structure.
- the first is recommended z. B. in a small space, while the second option may be easier and cheaper to manufacture.
- the passage may be formed approximately meander-shaped.
- the meander shape with its diverse and strong deflections can reduce the energy of the reflected detonation front very effectively.
- the impact crusher may comprise at least one disc-like impact crusher element with at least one passage through the disc.
- the disc can provide a large baffle in the form of its face with low manufacturing cost.
- the impact crusher element is designed as a cylindrical disk. As a result, it can be stably formed while providing a long passage for reducing the energy of the reflected detonation front.
- the impact crusher element can have a branched passage system. Straight branching points can significantly reduce the energy of the reflected detonation wave.
- the impact crusher element may be formed sponge, braid and / or ball-like. These embodiments can effectively mitigate the detonation wave and have sufficient life.
- At least one impact breaker element may be formed as a deflection wall. With deflection walls, the detonation wave can be easily steered and controlled.
- the deflection wall is polygonal in its course. In this way, an additional attenuation of the energy of the reflected detonation wave is achieved.
- a plurality of spaced-apart butt-breaker elements can be arranged offset one behind the other in the flow direction and transversely to the flow direction.
- At least two shock-breaker elements arranged one behind the other can be arranged overlapping one another.
- the resulting labyrinthine structure with narrowed passages can decelerate the reflected detonation wave particularly well.
- the impact crusher may contain steel and / or copper beryllium (CuBe). Because of their toughness and simultaneous hardness, these materials are particularly well suited for use as impact crushers.
- CuBe copper beryllium
- the impact crusher can be arranged at least partially exchangeable. As a result, material fatigue or material removal can be prevented in good time by easy maintenance.
- the explosives can be supplied on the opposite side of the Zündraumausgang the shock absorber.
- the explosive supply can also be protected by the impact crusher.
- the explosive supply between impact breaker and Zündraumausgang done.
- sufficient ignition means can be supplied to the ignition mechanism for ignition, while the explosion is favored in its deployment and its growth after the impact breaker.
- FIG. 1 shows an ignition device 1 for the explosive forming of an inserted into a mold 2 workpiece 3.
- the workpiece 3 is indicated in dotted line in its outline, and the mold 2 shown broken off with the upper and lower halves.
- the ignition device 1 has an ignition mechanism 4 and an ignition chamber 5, which directly adjoins the ignition mechanism 4 in this embodiment in the form of an ignition tube.
- the ignition mechanism 4 has a Zündort 6, symbolically represented here by a spark, on which an explosive is ignited.
- the explosive reaches via at least one of the Explosionsffenzubowen 7 after passing a valve 22 in the ignition mechanism 4.
- the ignited in the ignition 6 explosive propagates with an explosion front in the ignition chamber 5 and the explosion front leaves this via the Zündraumausgang 8, which adjoins the mold 2 and the workpiece 3 located therein is connected.
- the device with fluid such as water is filled.
- a shock breaker 9 is provided, which is located here in the ignition space 5.
- the system boundaries of the impact crusher 9 are shown in dashed line, and a double-serrated element 10 symbolically denotes at least one impact crusher element 10, wherein it is indicated that the flow resistance in the direction of the forming tool 2 is smaller from the direction of the mold 2.
- the impact crusher 9 is disposed closer to the ignition point 6 than at the Zündraumausgang 8 and has outer walls 11, which pass into those of the ignition space 5.
- the explosive can be supplied via explosives 7 directly to the ignition mechanism 4 and thus the ignition point 6 and / or on the opposite side of the shock absorber 9 the ignition chamber 5.
- the flow direction 36 is marked with an arrow, which simultaneously describes the propagation path 37 of the detonation wave. A reflected detonation wave propagates substantially along the propagation path 37 but opposite to the flow direction 36 in the device.
- the outer walls 11 of the impact crusher 9 are enlarged in the region of the impact crusher 9 and adapted to an octagonal outer contour of a shock crusher element 10.
- the octagonal-prismatic impact breaker element 10 and the outer walls 11 define therebetween an arcuate as well as reduced passageway 12 through which both the original and the reflected detonation wave must pass.
- the end faces 13 of the impact crusher element 10 reduce the energy of the shaft.
- FIG. 2b form two hexagonal-prismatic, abutting the outer walls 11, impact breaker elements 10 a curved and reduced, labyrinth-like passage 12 for the detonation wave from.
- a breakwater act here the edges of the flow direction behind the other and overlapping each other arranged Stoßbrecheremia 10th
- FIG 2c are three in the flow direction behind the other and arranged transversely offset thrust elements 10 used.
- the cube-shaped impact crusher elements 10 are oriented with their edges in the flow direction 36.
- In a second plane parallel to the plane of three cubic shock-breaker elements 10 are shown in dashed lines, offset from those described above. This creates a labyrinth-like structure with angled, reduced passages 12.
- Figure 2d are arranged transversely to the direction of flow walls as impact breaker elements 10 used to force the detonation wave through a labyrinthine, meander-like passage 12.
- the impact crusher elements 10 extend adjacent to the outer walls 11 of the impact crusher 9, transversely to the flow direction 36, approximately perpendicular to the Ignition space.
- the Figure 2d can also be understood that the impact breaker elements 10 are arranged only partially inclined to the flow direction 36 of the detonation wave.
- FIG. 2e two impact crusher elements 10 are arranged without spacing to the outer walls 11 of the impact crusher 9 in the flow direction 36 one behind the other. Their curved, reduced passage 12 and the series connection results in a labyrinth structure of individual labyrinth elements.
- FIG. 2f are, unlike FIG. 2e , a plurality of L-shaped shock breaker elements 10 arranged such that a labyrinth structure for an approximately Z-shaped passage 12 results between them.
- Figure 2g is a single-curved passage 12 shown as a shock absorber 9, the outer walls 11 connect to the ignition space 5.
- FIG. 2h shows a coil-like impact breaker element 10, which rebounds many times the detonation and deflects labyrinthine in itself.
- This ball-like impact breaker element 10 is partly on the outer walls 11 of the impact crusher 9, partly it is spaced therefrom.
- FIGS. 2a to 2h Also be understood that the corresponding shock breaker has surface elements which are arranged inclined to the flow direction 36 of the detonation wave, which form the Stoßbrecheremia 10, where the detonation wave reflects many times and thereby can be partially absorbed.
- FIG. 2i takes care of the symbolism of hydraulics to represent a disposable element 14 as a shock breaker element 10. This is to describe a shock-breaker element 10 which allows the propagating explosion wave to pass while blocking its reflection in the reverse flow direction.
- This disposable element 14 is not necessarily a valve as known from hydraulics.
- FIG. 2j has a throttle check element 15 as a shock breaker element 10.
- This contains a disposable element 14 as in FIG. 2i and a throttle element, which is equivalent to a curved and / or reduced passage 12.
- the throttle check element 15 is not necessarily a valve.
- To be expressed is a construction that lets the explosion through in its propagation direction and in hinders their direction of reflection. This is with the FIGS. 2i and 2j the flow resistance through the impact crusher 9 in the flow direction from the Zündraumausgang 8 to the ignition 6 each greater than that of the ignition point 6 to the Zündraumausgang. 8
- FIGS. 3a and b 1 a first detailed embodiment of an impact crusher 9 is shown in which three impact crusher elements 10 together form a labyrinth structure in the form of a multiply curved passage 12.
- FIG. 3a the rotationally symmetrical impact crusher 9 is shown in section, wherein the three impact crusher elements 10 are not cut.
- These are cylindrical disc-like impact crusher elements 10, each having a bore 16 and a groove 17 as a passage through the disc or past the disc. Because the cylinder-disk-shaped shock-breaker elements 10 are arranged in phase relationship with respect to their bores 16 and grooves 17 in the flow direction, the part of the detonation wave flowing through the impact-breaker elements 10 is redirected several times.
- the cylindrical disks 10 are arranged at a distance from the outer walls 11 of the impact crusher 9, so that an additional passage 12 is produced at this point.
- the impact breaker 9 or the impact breaker elements 10 can be mounted and maintained in a simple manner via a thread 23.
- the passage 12 is enlarged, but then tapered again so that the impact crusher elements 10 can not get into the adjacent ignition space 5 or into the support tube 25.
- this provides for above-mentioned reduction of the passage 12th
- FIG. 3b the cylindrical disk-shaped impact crusher elements 10 are drawn in perspective.
- the respective bores 16 and grooves 17 are here phase-shifted by 60 ° to the respective next in the flow direction of the cylindrical disk 10.
- FIG. 4 another shock breaker 9 is shown with cylindrical disc-shaped impact crusher elements 10.
- FIG. 4a shows a section through the rotationally symmetrical impact crusher 9, wherein the Stoßbrecheremia 10, four in number, are cut along.
- the cylindrically shaped impact crusher elements 10 here symmetrically constructed labyrinth elements.
- a labyrinth structure results here merely by juxtaposing in the flow direction 36.
- These impact crusher elements 10 are immovably on the outer wall 11 of the impact crusher 9. Starting from the ignition point 6 is the propagating explosion wave, a passage 12 is available, which tapers conically towards the impact crusher elements 10 and then reduced continues.
- the cylindrically shaped impact crusher elements 10 each have two bores 16 transversely to the flow direction 36, which are connected to each other via recesses 17 attached laterally. Longitudinal bores from the side of the end faces 13 end in each case at the bores 16. As a result, the passage 12 is first branched in T-shape, in order then to be brought together again via a second T-shape. The outlet of a bumper element 10 abuts the inlet of the next bumper element 10.
- FIG. 4b are two of the impact breaker elements 10 made FIG. 4a presented in different rotated perspective. Due to the branched passage system, it is irrelevant how the impact breaker elements 10 are arranged one behind the other in the flow direction.
- the impact breaker 9 consists of an octagonal-prismatic impact breaker element 10, whose end faces 13 are aligned as baffles in the flow direction 36.
- the impact crusher element 10 is laterally flanked by two deflecting walls 18 which continue the outer contour of the impact crusher element 10 at a parallel distance therefrom.
- the outer wall 11 of the impact crusher 9 is extended laterally of the impact crusher element 10 and the deflecting walls 18 and also follows, at a parallel distance to the deflecting walls 18, the outer contour of the octagonal-prismatic Stoßbrecherelements 10.
- the passage 12 between the impact crusher element 10 and outer walls 11 each divided and diverted.
- the passage 12 widens vascularly through the impact crusher 9, so that in the expansion of several shock-absorbing elements superimposed on each other like bulk material 10 find space.
- a catcher 19 This applies in particular to impact breaker elements 10, which are smaller than the corresponding passage 12 and a securing in the direction of gravity and the rebounding detonation wave.
- the catcher 19 is formed like a net, but it may also have blocking struts, which narrow the passage 12 such that no impact breaker element 10 passes through. The catcher 19 thus acts flow permeable and bulk solids blocking.
- this impact crusher 9 has a substantially larger surface area than the ignition space inner surface adjacent to the impact crusher 9.
- the dashed line 20 indicates a way to disconnect the assembly and maintenance of the two impact breaker half shells.
- FIG. 7 an arrangement is shown on the gap of several, here diamond-shaped prismatic, impact breaker elements 10 on a shock breaker carrier 21.
- the impact breaker elements 10 can be easily replaced.
- the impact breaker 9 or the impact breaker elements 10 contains steel and / or copper beryllium (CuBe).
- FIG. 8 shows a schematic view of a device 29 according to the invention, in which the impact crusher 9 is arranged on the side facing away from the ignition point 6 of the mold 2.
- the impact crusher 9 can be arranged directly adjacent to the molding tool 2, at a distance thereto or at the end of the support pipe 25.
- two valves 22 are provided, one being located at the ignition location 6 and the other at the support tube 25.
- the valves 22 can on the one hand serve for the supply of explosive 7, but also as a filling device for fluids, such as water.
- the impact crusher 9 could also be arranged on the side of the molding tool 2 facing the ignition location 6, or a plurality of impact crushers 9 could be provided on the propagation path of the detonation shaft. Furthermore, the orientation of the symbol for the impact breaker elements 10 is opposite to the representation in FIG FIG. 1 rotated by 180 degrees, to indicate that in this embodiment, the flow resistance of the impact crusher 9 in the flow direction 36 is greater than to the Zündort 6 out. In this case, the detonation wave can be attenuated after passing through the mold 2 already at the end of the device 29 in their energy. But the shock breaker 9 could also be arranged in the same way as in FIG. 1 so that the detonation wave is first attenuated when passing through less or not at all, to be broken by the impact breaker 9 after the reflection at the end 38 of the device 29.
- FIG. 9 shows a further embodiment of an impact crusher 9, which has a main passage 30 and a branch 26 has.
- the branch has sidewalls 33, which are inclined to the main passage. The inclination of the side walls 33 is conceivable at any angle to the main passage 30. Only one branch 26 is shown, although a plurality of such branches may be formed at a plurality of angles to the main passage 30. At its end, the branch 26 is closed. It can thereby be achieved that the detonation wave remains within the impact crusher 9 and can not act on the support tube 25 possibly surrounding the impact crusher 9 or the ignition chamber 5.
- At least the support tube 25 or the ignition space 5 in the region of the impact crusher can be made of a different material than the impact crusher, which preferably consists of resistant material, as mentioned above.
- the impact crusher 9 may be circular in cross-section, which facilitates assembly within a pipe or tubular member. However, it is also conceivable any deviating cross-section, for example, polygonal shapes.
- FIG. 10 shows an embodiment of the impact crusher 9, which is formed as a single impact breaker element 10 and is disposed within a support tube 25.
- the impact crusher element 10 has a lateral branch 26, which is open at its end and forms a filling channel 35 with an omission 34 in the support tube 25, by means of which fluid, for example water, can be filled into the propagation space of the device 29 or else the explosive agent supply 7 can be trained.
- the propagation space extends inside the device from the ignition point 6 to the end 38 of the device.
- the impact crusher 9 has a round cross-sectional shape, which, however, could also be formed in some other way square.
- FIG. 11 shows another embodiment of an impact crusher 9, which is formed as a single impact crusher member 10, wherein the impact crusher member 10 has a plurality of side branches, which are partially branched and branched, and an exemplary branch, which is connected via a channel 35 with a propagation space 27 ,
- the detonation wave can here partly leave the impact crusher, as well as the support tube 25, to be weakened in the propagation space 27 in their energy.
- the propagation space 27 may be filled with gas, liquid or solids.
- the main passage 30 opens into a reflection surface 32, which is hemispherical in this embodiment.
- the reflection surface 32 may also have another shape such as a dome shape or pyramidal or the like.
- the reflection surface 32 is formed in this embodiment as a part of a lid 31, which is removably attached to the support tube 25 in this embodiment and is formed together with the support tube 25 and the impact crusher 9 as an end piece.
- FIG. 12 shows a further embodiment of an impact crusher 9 according to the invention, which is attached to the end 38 of the device 29 and has a plurality of reflective surfaces 32.
- the reflection surfaces form in such a way that in each case two reflection surfaces 32 oppose each other at an opening angle and thus result in triangular recesses on the impact crusher 9 seen from the side.
- the figure can also be understood to mean that it is a cross-section and as indicated by the dashed lines within the impact crusher 9, the recesses have a pyramidal shape.
- the incident from the flow direction 36 detonation wave can be broken several times, so that the energy of the impinging detonation wave is divided on a variety of reflected back at different angles shock waves.
- the maximum energy which can occur after reflection at the impact crusher 9 in a reflected back shock wave can thus be reduced with respect to the detonation wave.
- the impact breaker 9 may be provided in this embodiment, without additional holding devices in a direction indicated by the outer dashed lines support tube at the end 38.
- a reflection of the detonation wave at the smooth end 38 of the device 29 can be avoided in the present embodiment by using the impact crusher 9.
- the detonation wave can be scattered directly at the impact crusher 9 by hitting the plurality of reflection surfaces 32.
Landscapes
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Disintegrating Or Milling (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Vibration Dampers (AREA)
- Air Bags (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Confectionery (AREA)
- Surgical Instruments (AREA)
- Presses And Accessory Devices Thereof (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Percussive Tools And Related Accessories (AREA)
- Portable Nailing Machines And Staplers (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung für das Explosionsumformen, mit den Merkmalen des Oberbegriffs des Anspruchs 1, (siehe z.B.
Eine Solche Vorrichtung ist in der
In der Praxis hat sich bei gattungsgemäßen Vorrichtungen gezeigt, dass die Zündvorrichtung bzw. der Zündmechanismus durch das Explosionsumformen geschädigt wird.In practice, it has been found in generic devices that the ignition device or the ignition mechanism is damaged by the explosion forming.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung der eingangs erwähnten Gattung dahingehend zu verbessern, dass sich die Detonationswelle gut entwickeln kann, der Explosionsvorgang geordneter ablaufen kann und dass der Zündmechanismus eine höhere Lebensdauer aufweist.The invention is therefore based on the object to improve a device of the type mentioned in that the detonation wave can develop well, the explosion process can run more orderly and that the ignition mechanism has a longer life.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung mit den Merkmalen des Anspruchs 1.This object is achieved by a device having the features of claim 1.
Der auf dem Ausbreitungsweg der Detonationswelle vorgesehene Stoßbrecher mindert die Energie der Detonationswelle wodurch die Vorrichtung vor hohen mechanischen Belastungen und somit auch vor Dauerschäden geschützt werden kann. Erstaunlicherweise bewirkt das starke Abmildern der reflektierten Stoßwelle bereits eine Verlängerung der Lebensdauer des Zündmechanismus.The provided on the propagation path of the detonation wave shock breaker reduces the energy of the detonation wave whereby the device can be protected against high mechanical loads and thus also against permanent damage. Amazingly, the strong mitigation of the reflected shock wave already causes an extension of the life of the ignition mechanism.
In einer Variante der Erfindung kann der Stoßbrecher zwischen dem Zündort und dem Zündraumausgang angeordnet sein. Somit kann die Detonationswelle, die durch den Zündraumausgang zurückkehrt in ihrer Energie abgemildert werden. Trotz des Stoßbrechers kann sich die vom Zündort aus ausbreitende Explosion ausreichend entfalten, um beim Durchlaufen des Formwerkzeugs das Werkstück umzuformen.In a variant of the invention, the impact crusher can be arranged between the ignition location and the ignition space exit. Thus, the detonation wave, which returns through the Zündraumausgang can be mitigated in their energy. Despite the shock breaker For example, the explosion propagating from the ignition location can develop sufficiently to reshape the workpiece as it passes through the mold.
In einem günstigen Ausführungsbeispiel der Erfindung kann der Stoßbrecher näher an dem Zündort als dem Zündraumausgang angeordnet sein. Dies hat den Vorteil, dass der sich aufbauenden Detonationswelle nach Durchlaufen des Stoßbrechers eine angemessene Strecke durch den Zündraum bleibt, um sich zu entfalten, aber die reflektierte Detonationswelle bei Erreichen des Stoßbrechers in ihrer Energie abgemildert ist.In a favorable embodiment of the invention, the impact crusher can be arranged closer to the ignition location than the ignition chamber outlet. This has the advantage that the developing detonation wave, after passing through the impact crusher, remains an appropriate distance through the ignition space in order to unfold, but the reflected detonation wave is attenuated in its energy when the impact crusher is reached.
Vorteilhafterweise kann der Stoßbrecher direkt an dem Zündort angeordnet sein. Damit wird die Zündeinrichtung noch wirksam gegen die reflektierte Detonationswelle geschützt. Trotzdem kann die Explosion dort noch ausgelöst werden und sich von dort entwickeln.Advantageously, the impact crusher can be arranged directly at the ignition location. Thus, the ignition device is still effectively protected against the reflected detonation wave. Nevertheless, the explosion can still be triggered there and develop from there.
In einer bevorzugten Ausführungsform der Erfindung kann der Stoßbrecher auf der dem Zündort abgewandten Seite des Formwerkzeuges angeordnet sein. Die Detonationswelle wird nach dem Durchlauf durch das Formwerkzeug von dem Stoßbrecher in ihrer Energie gedämpft. Somit kann die Explosionsenergie gut entwickelt in der Detonationswelle enthalten sein, bis die Detonationswelle das Formwerkzeug erreicht.In a preferred embodiment of the invention, the impact crusher can be arranged on the side facing away from the ignition of the mold. The detonation wave is attenuated after passing through the mold by the impact crusher in its energy. Thus, the explosion energy may be well-developed in the detonation wave until the detonation wave reaches the mold.
In besonderer Weise kann der Stoßbrecher unmittelbar an dem Formwerkzeug auf der dem Zündort abgewandten Seite angeordnet sein. Die das Formwerkzeug durchlaufende Detonationswelle kann so unmittelbar nach dem Durchlaufen des Formwerkzeuges in ihrer Energie gedämpft werden.In a special way, the impact crusher can be arranged directly on the mold on the side facing away from the ignition. The detonation wave passing through the mold can thus be dampened in its energy immediately after passing through the mold.
Günstigerweise kann der Stoßbrecher näher an dem Ende der Vorrichtung angeordnet sein, welches dem Zündort gegenüberliegt. Die Rückwirkung von der auf den Stoßbrecher treffenden Detonationswelle auf das Formwerkzeug könnte so verringert werden.Conveniently, the impact crusher may be located closer to the end of the device opposite the ignition location. The reaction from the detonation wave striking the impact crusher to the mold could thus be reduced.
Vorstellbar kann ebenfalls sein, dass der Stoßbrecher das dem Zündort gegenüberliegende Ende der Vorrichtung bildet. So könnte der Stoßbrecher als streuendes Element wirken, auf das die Detonationswelle auftrifft.It can also be imagined that the impact crusher forms the end of the device opposite the ignition location. Thus, the impact crusher could act as a scattering element, which strikes the detonation wave.
Es wird vorgeschlagen, dass der Stoßbrecher innerhalb eines Stützrohres angeordnet sein kann, welches auf der dem Zündort abgewandten Seite des Formwerkzeuges an dem Formwerkzeug angebracht sein kann. Das Stützrohr könnte aus einem anderen Material als der Stoßbrecher gefertigt sein und den Aufbau des Stoßbrechers als Einsatz vereinfachen. Günstigerweise kann der Stoßbrecher in Einheit mit dem Stützrohr als Endstück ausgeführt sein. Dieses Endstück könnte sich direkt an das Formwerkzeug anschließen und die Vorrichtung auf der dem Zündraum entgegen gesetzten Seite abschließen. Eine längere Auslaufstrecke für die Detonationswelle könnte so entfallen.It is proposed that the impact crusher can be arranged within a support tube which can be attached to the mold on the side remote from the ignition location of the molding tool. The support tube could be made of a different material than the impact crusher and simplify the construction of the impact crusher as an insert. Conveniently, the impact crusher in unit with the support tube may be designed as an end piece. This tail could connect directly to the mold and complete the device on the opposite side of the ignition space. A longer discharge path for the detonation wave could be omitted in this way.
Es kann weiter von Vorteil sein, wenn der Stoßbrecher einen gekrümmten und/oder verringerten Durchlass gegenüber dem Zündraumquerschnitt oder dem Stützrohrquerschnitt aufweist und/oder erzeugt. Diese Durchlassformen können der reflektierten Detonationswelle in erheblichem Umfang Energie nehmen.It may also be advantageous if the impact crusher has and / or generates a curved and / or reduced passage with respect to the ignition space cross section or the support tube cross section. These transmission modes can consume a significant amount of energy for the reflected detonation wave.
In besonderer Weise kann mindestens ein Stoßbrecherelement vorgesehen sein, welches wenigstens teilweise beabstandet zu und einen Durchlass mit der Zündrauminnenwandung oder der Stützrohrinnenwandung bildend angeordnet ist. Durch den Einsatz des Stoßbrecherelements zur Bildung eines Durchlasses zwischen sich und der Zündrauminnenwandung oder der Stützrohrinnenwandung kann das Stoßbrecherelement einfach und damit stabil aufgebaut sein.In a special way, at least one impact crusher element can be provided, which is at least partially spaced from and forming a passage with the Zündrauminnenwandung or Stützrohrinnenwandung. By using the impact crusher element to form a passage between it and the Zündrauminnenwandung or the support tube inner wall, the impact crusher element can be simple and thus stably constructed.
In einer vorteilhaften Ausführungsform können mehrere sich zwischen den Stoßbrecherelementen bildende Durchlässe vorgesehen sein. Durch den Einsatz mehrerer derartiger Stoßbrecherelemente kann die Auswirkung der reflektierten Detonationswelle an den Zündrauminnenwänden oder den Stützrohrinnenwänden verringert und auf mehrere Elemente verteilt werden. Weiterhin kann deren Energie damit schrittweise gemindert werden, was wiederum die Beanspruchung der einzelnen Stoßbrecherelemente verringert.In an advantageous embodiment, a plurality of passages forming between the impact crusher elements may be provided. By using a plurality of such impact breaker elements, the effect of the reflected detonation wave on the Zündrauminnenwänden or the support tube inner walls can be reduced and distributed over several elements. Furthermore, their energy can thus be gradually reduced, which in turn reduces the stress on the individual impact crusher elements.
In einem günstigen Ausführungsbeispiel kann der Strömungswiderstand durch den Stoßbrecher in Strömungsrichtung von dem Zündort weg kleiner sein als zu dem Zündort hin. Dadurch wird die reflektierte Detonationswelle in wesentlich größerem Maße in ihrer Energie gemindert als die durch den Zündmechanismus ausgelöste ursprüngliche Explosion und trotzdem der Zündmechanismus geschützt wird, wenn der Stoßbrecher zwischen dem Zündort und dem Formwerkzeug angeordnet ist.In a favorable embodiment, the flow resistance through the impact crusher may be smaller in the direction of flow away from the ignition location than towards the ignition location. As a result, the reflected detonation wave is reduced in energy to a much greater extent than the original explosion triggered by the ignition mechanism, and yet the ignition mechanism is protected when the impact crusher is located between the ignition location and the forming tool.
Weiterhin kann der Strömungswiderstand durch den Stoßbrecher in Strömungsrichtung von dem Zündort weg größer sein als zu dem Zündort hin, und der Stoßbrecher kann auf der dem Zündort abgewandten Seite des Formwerkzeuges angebracht sein. Dadurch kann der Stoßwelle Energie in erheblichem Umfang entzogen werden noch bevor diese am Ende der Vorrichtung reflektiert wird.Furthermore, the flow resistance through the impact crusher in the flow direction from the ignition location can be greater than towards the ignition location, and the impact crusher can be mounted on the side of the molding tool facing away from the ignition location. As a result, the shock wave energy can be withdrawn to a considerable extent even before it is reflected at the end of the device.
In besonderer Weise kann der Stoßbrecher mindestens ein Drossefrückschlag-Element aufweisen. Dadurch kann die sich ausbreitende Explosion den Stoßbrecher passieren, während die reflektierte Detonationswelle vor dem Zündmechanismus durch das Rückschlag-Element abgebremst wird.In a special way, the impact crusher can have at least one Drossefrückschlag element. This allows the propagating explosion to pass through the shock absorber while the reflected detonation wave is decelerated by the recoil element prior to the ignition mechanism.
In einer besonderen Ausführungsform kann der Stoßbrecher mindestens ein Einweg-Element aufweisen. Dadurch kann die Explosion den Stoßbrecher passieren, während die reflektierte Detonationswelle von dem Einweg-Element vor Erreichen des Zündmechanismuses abgefangen wird.In a particular embodiment, the impact crusher may comprise at least one disposable element. This allows the explosion to pass through the shock-breaker while intercepting the reflected detonation wave from the disposable element prior to reaching the ignition mechanism.
Vorteilhafterweise kann der Stoßbrecher eine größere Oberfläche als die dem Stoßbrecher benachbarte Zündrauminnenfläche oder Stützrohnnnenfläche aufweisen. Dies kann zu einer erhöhten Reibung bezüglich der Länge des Stoßbrechers und damit zu einer verbesserten Minderung der Energie der reflektierten Detonationswelle führen.Advantageously, the impact crusher can have a larger surface area than the ignition space inner surface or supporting surface which is adjacent to the impact crusher. This can lead to increased friction with respect to the length of the impact crusher and thus to an improved reduction in the energy of the reflected detonation wave.
In einer besonders günstigen Ausführungsform kann der Zündraumquerschnitt und/oder der Stützrohrquerschnitt in dem Bereich des Stoßbrechers vergrößert sein. Dies schafft einen vergrößerten Bauraum speziell für komplexe Stoßbrecher.In a particularly favorable embodiment, the ignition space cross section and / or the support tube cross section in the region of the impact crusher can be increased. This creates an increased space especially for complex impact crushers.
Günstigerweise kann der Stoßbrecher über wenigstens eine von einem Hauptdurchgang abgehende seitliche Abzweigung verfügen. An der Stelle der Abzweigung kann sich die Detonationswelle aufteilen, wobei sich ebenfalls die Energie der Detonationswelle aufteilt und im Bereich der Abzweigung mehrfach reflektiert und absorbiert werden kann.Conveniently, the impact crusher may have at least one branch off-going from a main passage. At the point of the branching, the detonation wave can be split, whereby likewise the energy of the detonation wave is divided and can be reflected and absorbed several times in the area of the branching.
Zweckmäßigerweise kann die wenigstens eine Abzweigung wenigstens teilweise verästelt sein. Damit wird eine Vielzahl von Abzweigungsstellen geschaffen, an denen sich die Detonationswelle aufteilen kann.Conveniently, the at least one branch may be at least partially branched. This creates a multiplicity of branch points at which the detonation wave can be split up.
Es wird vorgeschlagen, dass die wenigstens eine Abzweigung an ihrem Ende geschlossen sein kann, wodurch die Detonationswelle im Inneren des Stoßbrechers verbleiben kann.It is proposed that the at least one branch can be closed at its end, whereby the detonation wave can remain inside the impact crusher.
Gemäß einer Variante der Erfindung kann wenigstens eine der Abzweigungen einen Befüllkanal für Fluid bilden. So ließe sich beispielsweise die in einer Variante des Explosionsumformens genutzte Flüssigkeit über den Stoßbrecher in die Vorrichtung einfüllen. Weiterhin könnte über den Befüllkanal das Explosionsmittel in das Innere der Vorrichtung eingebracht werden.According to a variant of the invention, at least one of the branches can form a filling channel for fluid. Thus, for example, the liquid used in a variant of explosion forming could be introduced into the device via the impact crusher. Furthermore, the explosive could be introduced into the interior of the device via the filling channel.
Vorstellbar kann der Ausbreitungsraum in der Vorrichtung über die Abzweigung mit einem Ausbreitungsvolumen verbunden sein. Die Detonationswelle könnte so zumindest teilweise über den Stoßbrecher in ein Ausbreitungsvolumen zum Abklingen geleitet werden.Conceivably, the propagation space in the device may be connected via the branch with a propagation volume. The detonation wave could thus be at least partially conducted over the impact crusher in a propagation volume to decay.
Möglicherweise kann eine Befüllvorrichtung für Fluid an der dem Zündort abgewandten Seite des Formwerkzeugs angeordnet sein. Dadurch könnte der Aufbau der Vorrichtung auf der Zündortseite einfacher und mit weniger Anschlüssen ausgestattet sein.Possibly, a filling device for fluid may be arranged on the side of the molding tool facing away from the ignition location. As a result, the structure of the device on the Zündortseite could be simpler and equipped with fewer connections.
Es kann von Vorteil sein, wenn der Stoßbrecher eine Labyrinth-Struktur aufweist. Durch die große Oberfläche, die lange zu durchlaufende Labyrinth-Strecke und die mehrfache Umleitung der reflektierten Detonationswelle kann ein effektives Abbremsen derselben erreicht werden.It may be advantageous if the impact crusher has a labyrinth structure. Due to the large surface area, the long labyrinth path and the multiple diversion of the reflected detonation wave, an effective deceleration of the same can be achieved.
In besonderer Weise kann der Stoßbrecher mindestens ein Labyrinth-Element und/oder mehrere, eine Labyrinth-Struktur bildende Stoßbrecherelemente aufweisen. Je nach Situation kann es günstiger sein, das Labyrinth aus einem oder aus mehreren Labyrinth-Elementen zu bilden oder aber aus mehreren Elementen, welche gemeinsam eine Labyrinth-Struktur bilden. Ersteres empfiehlt sich z. B. bei geringem Bauraum, während die zweitere Möglichkeit einfacher und billiger in der Herstellung sein kann.In a special way, the impact crusher can have at least one labyrinth element and / or a plurality of impact crusher elements forming a labyrinth structure. Depending on the situation, it may be better to form the labyrinth from one or more labyrinth elements or from several elements that together form a labyrinth structure. The first is recommended z. B. in a small space, while the second option may be easier and cheaper to manufacture.
In einem günstigen Ausführungsbeispiel kann der Durchlass etwa mäanderförmig ausgebildet sein. Die Mäanderform mit ihren vielfältigen und starken Umlenkungen kann die Energie der reflektierten Detonationsfront sehr effektiv mindern.In a favorable embodiment, the passage may be formed approximately meander-shaped. The meander shape with its diverse and strong deflections can reduce the energy of the reflected detonation front very effectively.
Vorteilhafterweise kann der Stoßbrecher mindestens ein scheibenartiges Stoßbrecherelement mit mindestens einem Durchlass durch die Scheibe hindurch aufweisen. Die Scheibe kann eine große Prallfläche in Form ihrer Stirnfläche bei gleichzeitig geringem Fertigungsaufwand bieten.Advantageously, the impact crusher may comprise at least one disc-like impact crusher element with at least one passage through the disc. The disc can provide a large baffle in the form of its face with low manufacturing cost.
Es kann von Vorteil sein, wenn das Stoßbrecherelement als Zylinderscheibe ausgebildet ist. Dadurch kann es stabil ausgebildet werden und gleichzeitig für einen langen Durchlass zur Minderung der Energie der reflektierten Detonationsfront sorgen.It may be advantageous if the impact crusher element is designed as a cylindrical disk. As a result, it can be stably formed while providing a long passage for reducing the energy of the reflected detonation front.
In besonderer Weise können mehrere Stoßbrecherelemente mit phasenverschoben aufeinanderfolgenden Durchlässen vorgesehen sein. Dadurch wird die Detonationswelle mehrfach umgelenkt, was deren Energie in besonderer Weise mindert.In a special way, several impact crusher elements can be provided with phase-shifted successive passages. As a result, the detonation wave is deflected several times, which reduces their energy in a special way.
In einer vorteilhaften Ausführungsform kann das Stoßbrecherelement ein verzweigtes Durchlasssystem aufweisen. Gerade Verzweigungsstellen können die Energie der reflektierten Detonationswelle erheblich mindern.In an advantageous embodiment, the impact crusher element can have a branched passage system. Straight branching points can significantly reduce the energy of the reflected detonation wave.
In einem günstigen Ausführungsbeispiel kann das Stoßbrecherelement schwamm-, geflecht- und/oder knäuelartig ausgebildet sein. Diese Ausbildungsformen können die Detonationswelle wirksam abmildern und haben eine ausreichende Lebensdauer.In a favorable embodiment, the impact crusher element may be formed sponge, braid and / or ball-like. These embodiments can effectively mitigate the detonation wave and have sufficient life.
Vorteilhafterweise kann mindestens ein Stoßbrecherelement als Umlenkwand ausgebildet sein. Mit Umlenkwänden kann die Detonationswelle einfach gelenkt und gesteuert werden.Advantageously, at least one impact breaker element may be formed as a deflection wall. With deflection walls, the detonation wave can be easily steered and controlled.
Es kann von Vorteil sein, wenn die Umlenkwand in ihrem Verlauf mehreckig ausgebildet ist. In dieser Weise wird ein zusätzliches Abmildern der Energie der reflektierten Detonationswelle erreicht.It may be advantageous if the deflection wall is polygonal in its course. In this way, an additional attenuation of the energy of the reflected detonation wave is achieved.
In besonderer Weise können mehrere schüttgutartig aufeinanderliegende Stoßbrecherelemente vorgesehen sein. Die schüttgutartige Anordnung bewirkt eine gute Schwächung der reflektierten Detonationswelle, und über die Menge und Art der Stoßbrecherelemente kann die gewünschte Stoßbrecherwirkung einfach gewählt werden.In a special way, several bulk-like superimposed shock-breaker elements can be provided. The bulk-like arrangement causes a good weakening of the reflected wave detonation, and on the amount and type of impact breaker elements, the desired impact breaker effect can be easily selected.
In einer vorteilhaften Ausführungsform können mehrere zueinander beabstandete Stoßbrecherelemente in Strömungsrichtung hintereinander und quer zur Strömungsrichtung versetzt zueinander angeordnet sein. Dadurch kann in besonderer Weise auf die Form der Detonationsfront und ihrer nachfolgenden Welle eingegangen, und diese somit effektiv abgebremst werden.In an advantageous embodiment, a plurality of spaced-apart butt-breaker elements can be arranged offset one behind the other in the flow direction and transversely to the flow direction. As a result, the shape of the detonation front and its subsequent shaft can be addressed in a special way, and thus effectively braked.
In einem günstigen Ausführungsbeispiel können mindestens zwei hintereinander angeordnete Stoßbrecherelemente überlappend zueinander angeordnet sein. Die dadurch entstehende labyrinthartige Struktur mit verengten Durchlässen kann die reflektierte Detonationswelle besonders gut abbremsen.In a favorable embodiment, at least two shock-breaker elements arranged one behind the other can be arranged overlapping one another. The resulting labyrinthine structure with narrowed passages can decelerate the reflected detonation wave particularly well.
In besonderer Weise können mehrere Stoßbrecherelemente von einem Stoßbrecherträger gehalten sein. Dies erlaubt eine einfache Montage und Wartung der Stoßbrecherelemente. In einer besonderen Ausführungsform kann der Stoßbrecher Stahl und/oder Kupfer-Beryllium (CuBe) enthalten. Diese Werkstoffe eignen sich wegen ihrer Zähigkeit bei gleichzeitiger Härte besonders gut für den Einsatz als Stoßbrecher.In a special way, several impact breaker elements can be held by a shock breaker carrier. This allows easy installation and maintenance of the impact crusher elements. In a particular embodiment, the impact crusher may contain steel and / or copper beryllium (CuBe). Because of their toughness and simultaneous hardness, these materials are particularly well suited for use as impact crushers.
Vorteilhafterweise kann der Stoßbrecher wenigstens teilweise austauschbar angeordnet sein. Dadurch kann einer Materialermüdung beziehungsweise einem Materialabtrag rechtzeitig durch einfach durchzuführende Wartung vorgebeugt werden.Advantageously, the impact crusher can be arranged at least partially exchangeable. As a result, material fatigue or material removal can be prevented in good time by easy maintenance.
In besonderer Weise kann die Explosionsmittelzufuhr auf der dem Zündraumausgang entgegengesetzten Seite des Stoßbrechers erfolgen. Dadurch kann die Explosionsmittelzufuhr ebenso durch den Stoßbrecher geschützt werden.In a special way, the explosives can be supplied on the opposite side of the Zündraumausgang the shock absorber. As a result, the explosive supply can also be protected by the impact crusher.
In einem alternativen günstigen Ausführungsbeispiel kann die Explosionsmittelzufuhr zwischen Stoßbrecher und Zündraumausgang erfolgen. Dadurch kann dem Zündmechanismus ausreichend Explosionsmittel zur Zündung zugeführt werden, während die Explosion in ihrer Entfaltung und ihrem Anwachsen nach dem Stoßbrecher begünstigt ist.In an alternative favorable embodiment, the explosive supply between impact breaker and Zündraumausgang done. As a result, sufficient ignition means can be supplied to the ignition mechanism for ignition, while the explosion is favored in its deployment and its growth after the impact breaker.
Im Folgenden werden mehrere Ausführungsformen der Erfindung anhand der Zeichnung beschrieben. Es zeigen:
- Figur 1
- eine schematische Darstellung der Erfindung,
- Figur 2a bis j
- mehrere schematische Ausführungsformen des Stoßbrechers aus
Figur 1 oder Figur 8 , - Figur 3a, b
- eine detaillierte Ausführungsform des Stoßbrechers aus
Figur 1 oder Figur 8 , - Figur 4a, b
- eine weitere detaillierte Ausführungsform des Stoßbrechers aus
Figur 1 oder Figur 8 , Figur 5- eine weitere schematische Ausführungsform des Stoßbrechers aus
Figur 1 oder Figur 8 , Figur 6- eine zusätzliche schematische Ausführungsform des Stoßbrechers aus
Figur 1 oder Figur 8 , - Figur 7
- eine schematische Ausführungsform eines Stoßbrecherträgers für einen Stoßbrecher nach
den Figuren 1, 2 oder 5 , Figur 8- eine schematische Darstellung einer zusätzlichen Ausführungsform der Erfin- dung
Figur 9- eine schematische Darstellung einer weiteren Ausführungsform des Stoßbre- chers aus
Figur 1 oder Figur 8 , Figur 10- eine zusätzliche schematische Darstellung einer Ausführungsform des Stoß- brechers aus den
Figuren 1 oder 8 , und Figur 11- eine schematische Darstellung einer weiteren Ausführungsform des Stoßbre- chers, sowie einer schematischen Darstellung des Ausbreitungsraumes oder einer Befüllvorrichtung,
Figur 12- eine schematische Darstellung einer weiteren Ausführungsform des Stoßbre- chers, am Ende der Vorrichtung aus
Figur 1 oder Figur 8 angeordnet.
- FIG. 1
- a schematic representation of the invention,
- FIGS. 2a to j
- several schematic embodiments of the impact crusher
FIG. 1 orFIG. 8 . - FIG. 3a, b
- a detailed embodiment of the impact crusher
FIG. 1 orFIG. 8 . - FIG. 4a, b
- another detailed embodiment of the impact crusher
FIG. 1 orFIG. 8 . - FIG. 5
- another schematic embodiment of the impact crusher
FIG. 1 orFIG. 8 . - FIG. 6
- an additional schematic embodiment of the impact crusher
FIG. 1 orFIG. 8 . - FIG. 7
- a schematic embodiment of a shock breaker carrier for a shock breaker according to the
FIGS. 1, 2 or5 . - FIG. 8
- a schematic representation of an additional embodiment of the invention
- FIG. 9
- a schematic representation of another embodiment of the Stoßbre- chers from
FIG. 1 orFIG. 8 . - FIG. 10
- an additional schematic representation of an embodiment of the impact crusher from the
FIGS. 1 or8th , and - FIG. 11
- FIG. 2 a schematic representation of a further embodiment of the impact breaker, as well as a schematic representation of the propagation space or a filling device, FIG.
- FIG. 12
- a schematic representation of another embodiment of the Stoßbre- chers, at the end of the device
FIG. 1 orFIG. 8 arranged.
Zwischen dem Zündort 6 und dem Zündraumausgang 8 ist ein Stoßbrecher 9 vorgesehen, welcher sich hier in dem Zündraum 5 befindet. Dabei sind die Systemgrenzen des Stoßbrechers 9 in gestrichelter Linie dargestellt, und ein doppeltgezacktes Element 10 bezeichnet symbolisch mindestens ein Stoßbrecherelement 10 wobei angedeutet wird, dass der Strömungswiderstand in Richtung des Formwerkzeuges 2 kleiner ist aus der Richtung des Formwerkzeuges 2. In diesem Ausführungsbeispiel ist der Stoßbrecher 9 näher an dem Zündort 6 als an dem Zündraumausgang 8 angeordnet und weist Außenwände 11 auf, welche in diejenigen des Zündraums 5 übergehen. Das Explosionsmittel kann über Explosionsmittelzufuhren 7 direkt dem Zündmechanismus 4 und damit dem Zündort 6 und/oder auf der dem Stoßbrecher 9 entgegengesetzten Seite dem Zündraum 5 zugeführt werden. Die Strömungsrichtung 36 ist mit einem Pfeil gekennzeichnet, welcher gleichzeitig auch den Ausbreitungsweg 37 der Detonationswelle beschreibt. Eine reflektierte Detonationswelle breitet sich im Wesentlichen entlang des Ausbreitungsweges 37 aber entgegengesetzt zur Strömungsrichtung 36 in der Vorrichtung aus.Between the
In
In
In
In
In
In
In
Grundsätzlich können die
In den
In
In
In
In
In
In
In
Aufgrund der beim Abbremsen der Detonationswelle wirksamen Kräfte enthält der Stoßbrecher 9 bzw. die Stoßbrecherelemente 10 Stahl und/oder Kupfer-Beryllium (CuBe).Due to the forces acting upon deceleration of the detonation wave, the
Der Stoßbrecher 9 könnte auch auf der dem Zündort 6 zugewandten Seite des Formwerkzeuges 2 angeordnet sein oder es könnten mehrere Stoßbrecher 9 auf dem Ausbreitungsweg der Detonationswelle vorgesehen sein. Weiterhin ist die Orientierung des Symbols für die Stoßbrecherelemente 10 gegenüber der Darstellung in
Der Hauptdurchgang 30 mündet in einer Reflexionsfläche 32, die in diesem Ausführungsbeispiel halbkugelförmig ausgebildet ist. Die Reflexionsfläche 32 kann jedoch auch eine andere Form aufweisen etwa eine Kalottenform oder pyramidenförmig oder dergleichen. Die Reflexionsfläche 32 ist in diesem Ausführungsbeispiel als ein Teil eines Deckels 31 ausgebildet, der in diesem Ausführungsbeispiel abnehmbar an dem Stützrohr 25 angebracht ist und zusammen mit dem Stützrohr 25 und dem Stoßbrecher 9 als Endstück ausgebildet ist.The
Der Stoßbrecher 9 kann in diesem Ausführungsbeispiel ohne zusätzliche Haltevorrichtungen in einem durch die äußeren gestrichelten Linien angedeuteten Stützrohr an dessen Ende 38 vorgesehen sei. Eine Reflexion der Detonationswelle an dem glatten Ende 38 der Vorrichtung 29 kann in dem vorliegenden Ausführungsbeispiel durch Einsatz des Stoßbrechers 9 vermieden werden. Die Detonationswelle kann unmittelbar an dem Stoßbrecher 9 durch Auftreffen auf die Vielzahl der Reflexionsflächen 32 gestreut werden.The
Claims (26)
- A device for explosive forming of workpieces (3), comprising an ignition chamber (5) and an ignition mechanism (4), an explosive agent being ignitable by means of the ignition mechanism (4) in the ignition chamber (5) at an ignition point (6), from which a detonation wave may propagate to form the workpiece in a die (2), characterised in that a shock dissipator (9) is provided in the propagation path (37) of the detonation wave, and in that the shock dissipator (9) is arranged on the side of the die (2) remote from the ignition point (6) and/or on the side of the die (2) facing the ignition point (6).
- A device according to claim 1, characterised in that the shock dissipator (9) is arranged between the ignition point (6) and an ignition chamber outlet (8).
- A device according to claim 1 or claim 2, characterised in that the shock dissipator (9) is arranged closer to the ignition point (6) than to the ignition chamber outlet (8), in particular in that the shock dissipator (9) is arranged directly at the ignition point (6).
- A device according to any one of the preceding claims, characterised in that the shock dissipator (9) is arranged directly on the die (2), or preferably in that the shock dissipator (9) is located closer to the opposite end (38) of the device (29) from the ignition point (6), in particular in that the shock dissipator (9) forms the opposite end (38) of the device (29) from the ignition point (6).
- A device according to claim 4, characterised in that the shock dissipator (9) is provided inside a supporting tube (25), in particular in that the shock dissipator (9) is formed as an endpiece (28) in unity with the supporting tube (25).
- A device according to any one of the preceding claims, characterised in that the shock dissipator (9) comprises and/or produces a passage (12) curved and/or narrowed relative to the ignition chamber cross-section.
- A device according to any one of the preceding claims, characterised in that at least one shock dissipator element (10) is provided, which is arranged at least partially spaced from and forming a passage (12) with the ignition chamber internal wall or the supporting tube internal wall, or in that a plurality of shock dissipator elements (10) are provided which form passages (12) between each other, in particular in that a plurality of shock dissipator elements (10) are provided which adjoin one another in the manner of bulk material.
- A device according to any one of the preceding claims, characterised in that the flow resistance through the shock dissipator (9) is greater or less in the flow direction (36) away from the ignition point (6) than towards the ignition point (6).
- A device according to any one of the preceding claims, characterised in that the shock dissipator (9) comprises at least one flow restrictor element (15) or at least one one-way element (14).
- A device according to any one of the preceding claims, characterised in that the shock dissipator (9) has a larger surface area than the ignition chamber inner surface or supporting tube inner surface adjoining the shock dissipator (9).
- A device according to any one of the preceding claims, characterised in that the shock dissipator (9) includes shock dissipator elements (10) comprising surface elements arranged at least partially at an angle to the direction of flow (36), which shock dissipator elements are in particular at least partially staggered.
- A device according to any one of the preceding claims, characterised in that the ignition chamber cross-section and/or the supporting tube cross-section is enlarged in the region of the shock dissipator (9).
- A device according to any one of the preceding claims, characterised in that the shock dissipator (9) has at least one lateral branch (26) extending from a main passageway (30), preferably in that the at least one branch (26) is at least partially ramified, in particular in that the branch (26) is closed at its end.
- A device according to claim 13, characterised in that at least one branch (26) forms a filling channel (35) for fluid.
- A device according to claims 13 or 14, characterised in that the propagation chamber is connected inside the device (29) via the branch (26) to a propagation space (27).
- A device according to any one of the preceding claims, characterised in that a filling channel (35) for fluid is provided on the side of the die (2) remote from the ignition point (6).
- A device according to any one of the preceding claims, characterised in that the shock dissipator (9) has a labyrinthine structure, preferably in that the shock dissipator (9) comprises at least one labyrinth element and/or a plurality of shock dissipator elements (10) forming a labyrinthine structure, in particular in that the passage (12) for instance adopts a zigzag configuration.
- A device according to any one of the preceding claims, characterised in that the shock dissipator (9) comprises at least one disc-like shock dissipator element (10) with at least one passage (12) through the disc, in particular in that the shock dissipator element (10) takes the form of a cylindrical disc.
- A device according to claim 18, characterised in that a plurality of shock dissipator elements (10) are provided with successive phase-shifted passages (12), or in that the shock dissipator element (10) comprises a branched passage system.
- A device according to any one of the preceding claims, characterised in that the shock dissipator element (10) is sponge-like or intertwined and/or tangled.
- A device according to any one of the preceding claims, characterised in that at least one shock dissipator element (10) takes the form of a deflecting wall (18), in particular in that the deflecting wall (18) is polygonal in profile.
- A device according to any one of the preceding claims, characterised in that a plurality of mutually spaced shock dissipator elements (10) are arranged one behind the other in the direction of flow (36) and staggered relative to one another across the direction of flow (36), in particular in that at least two shock dissipator elements (10) arranged one behind the other are arranged overlapping one another.
- A device according to any one of the preceding claims, characterised in that a plurality of shock dissipator elements (10) are held by a shock dissipator support (21).
- A device according to any one of the preceding claims, characterised in that the shock dissipator (9) contains steel and/or copper beryllium (CuBe).
- A device according to any one of the preceding claims, characterised in that the shock dissipator (9) is at least partially replaceable.
- A device according to any one of the preceding claims, characterised in that explosive agent feed (7) takes place on the side of the shock dissipator (9) opposite the ignition chamber outlet (8), or in that explosive agent feed (7) takes place between shock dissipator (9) and ignition chamber outlet (8).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08871795T PL2249980T3 (en) | 2008-01-31 | 2008-09-19 | Device for explosive forming |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008006979A DE102008006979A1 (en) | 2008-01-31 | 2008-01-31 | Device for explosion forming |
PCT/EP2008/007901 WO2009095042A1 (en) | 2008-01-31 | 2008-09-19 | Device for explosive forming |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2249980A1 EP2249980A1 (en) | 2010-11-17 |
EP2249980B1 true EP2249980B1 (en) | 2011-08-31 |
EP2249980B9 EP2249980B9 (en) | 2012-02-22 |
Family
ID=40786550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08871795A Not-in-force EP2249980B9 (en) | 2008-01-31 | 2008-09-19 | Device for explosive forming |
Country Status (12)
Country | Link |
---|---|
US (1) | US8713982B2 (en) |
EP (1) | EP2249980B9 (en) |
CN (1) | CN101970148B (en) |
AT (1) | ATE522296T1 (en) |
BR (1) | BRPI0822038A2 (en) |
CA (1) | CA2713659A1 (en) |
DE (1) | DE102008006979A1 (en) |
ES (1) | ES2369838T3 (en) |
MX (1) | MX2010008467A (en) |
PL (1) | PL2249980T3 (en) |
RU (1) | RU2487775C2 (en) |
WO (1) | WO2009095042A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005025660B4 (en) | 2005-06-03 | 2015-10-15 | Cosma Engineering Europe Ag | Apparatus and method for explosion forming |
DE102006037754B3 (en) | 2006-08-11 | 2008-01-24 | Cosma Engineering Europe Ag | Procedure for the explosion forming, comprises arranging work piece in tools and deforming by means of explosion means, igniting the explosion means in ignition place of the tools using induction element, and cooling the induction element |
DE102006037742B4 (en) | 2006-08-11 | 2010-12-09 | Cosma Engineering Europe Ag | Method and apparatus for explosion forming |
DE102006056788B4 (en) | 2006-12-01 | 2013-10-10 | Cosma Engineering Europe Ag | Closing device for explosion forming |
DE102006060372A1 (en) | 2006-12-20 | 2008-06-26 | Cosma Engineering Europe Ag | Workpiece for explosion reformation process, is included into molding tool and is deformed from output arrangement by explosion reformation |
DE102007007330A1 (en) | 2007-02-14 | 2008-08-21 | Cosma Engineering Europe Ag | Method and tool assembly for explosion forming |
US8443641B2 (en) | 2007-02-14 | 2013-05-21 | Cosma Engineering Europe Ag | Explosion forming system |
DE102007023669B4 (en) | 2007-05-22 | 2010-12-02 | Cosma Engineering Europe Ag | Ignition device for explosion forming |
DE102007036196A1 (en) | 2007-08-02 | 2009-02-05 | Cosma Engineering Europe Ag | Apparatus for supplying a fluid for explosion forming |
US9636736B2 (en) * | 2007-12-13 | 2017-05-02 | Cosma Engineering Europe Ag | Method and mould arrangement for explosion forming |
DE102008006979A1 (en) | 2008-01-31 | 2009-08-06 | Cosma Engineering Europe Ag | Device for explosion forming |
WO2009133454A2 (en) * | 2008-04-30 | 2009-11-05 | Cosma Engineering Europe Ag | Explosion forming system |
CZ302917B6 (en) * | 2011-02-18 | 2012-01-18 | Západoceská Univerzita V Plzni | Process for producing hollow high-strength bodies of multiphase martensitic steels |
FR3009214B1 (en) * | 2013-08-01 | 2016-01-01 | Nantes Ecole Centrale | ELECTRO-HYDROFORMING MACHINE FOR THE PLASTIC DEFORMATION OF A PROJECTILE PART OF THE WALL OF A WORKPIECE |
CN103743638A (en) * | 2014-01-06 | 2014-04-23 | 安徽理工大学 | Simulated composite loading device for explosive wave |
US11628485B2 (en) | 2021-05-14 | 2023-04-18 | Battelle Savannah River Alliance, LLC. | Tooling assembly and method for explosively forming features in a thin-walled cylinder |
Family Cites Families (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE217154C (en) | ||||
DE260450C (en) | ||||
DE1452667U (en) | ||||
US392635A (en) | 1888-11-13 | powers | ||
US1280451A (en) | 1917-02-02 | 1918-10-01 | William F Hagen | Valve. |
GB742460A (en) | 1952-06-11 | 1955-12-30 | Union Carbide & Carbon Corp | Sheet metal forming by use of detonation waves |
GB878178A (en) * | 1959-12-01 | 1961-09-27 | Olin Mathieson | Metal forming |
DE1129562B (en) | 1961-04-21 | 1962-05-17 | Telefonbau | Circuit arrangement for recording charges with call slip printer in international remote dialing operation |
US3162087A (en) | 1962-03-23 | 1964-12-22 | Lakes Jack | Cartridge forming apparatus utilizing explosive pressure |
US3252312A (en) | 1962-04-25 | 1966-05-24 | Continental Can Co | Method and apparatus for explosive reshaping of hollow ductile objects |
US3160949A (en) | 1962-05-21 | 1964-12-15 | Aerojet General Co | Method of joining elongated objects |
DE1235246B (en) | 1962-07-17 | 1967-03-02 | Wmf Wuerttemberg Metallwaren | Device for high-energy shaping, in particular for explosive shaping of sheet metal or the like. |
CH409831A (en) | 1962-08-28 | 1966-03-31 | Josef Schaberger & Co G M B H | Device for deforming bodies by explosion |
FR1342377A (en) | 1962-10-17 | 1963-11-08 | Continental Can Co | Method and device for explosive reshaping of ductile hollow objects |
DE1218986B (en) | 1962-12-21 | 1966-06-16 | Wmf Wuerttemberg Metallwaren | Process and plate for the production of hollow bodies or similar shaped parts from sheet metal by high-energy forming |
AT248838B (en) | 1963-11-19 | 1966-08-25 | Wmf Wuerttemberg Metallwaren | Method and tool for the production of workpieces by high energy forming |
US3342048A (en) | 1964-08-13 | 1967-09-19 | Gen Am Transport | Detonation wave forming machine |
US3338080A (en) | 1964-09-21 | 1967-08-29 | Gen Dynamics Corp | Forming apparatus |
DE1527949A1 (en) | 1965-01-19 | 1969-11-20 | Chemokomplex Vegyipari Gep Es | Method and device for the formation of domed shells from metal plates |
DE1552100B2 (en) | 1965-03-18 | 1971-07-22 | Tokyu Seizo K.K., Yokohama, Kana gawa (Japan) | DEVICE FOR HIGH ENERGY FORMING OF METALLIC WORKPIECES WITH A JET OF LIQUID |
DE1452667A1 (en) | 1965-09-30 | 1969-03-06 | Gen American Transp Corp | Machine for plastic deformation by means of detonation waves |
GB1129562A (en) | 1966-03-07 | 1968-10-09 | Vickers Ltd | The generation of shock waves by exploding wire methods |
GB1280451A (en) | 1968-05-02 | 1972-07-05 | Int Research & Dev Co Ltd | Improvements in and relating to methods of explosively welding tubes into tube plates |
AT299664B (en) | 1968-05-17 | 1972-06-26 | Boehler & Co Ag Geb | Device for the explosion deformation of metallic materials |
DE1777207A1 (en) | 1968-09-25 | 1971-04-01 | Hertel Heinrich Prof Dr Ing | Device for high-performance forming of workpieces, in particular made of sheet metal, with the aid of shock agents |
DE1777208A1 (en) | 1968-09-25 | 1971-04-01 | Hertel Heinrich Prof Dr Ing | Device for high-performance forming of workpieces, in particular made of sheet metal, with the aid of shock agents |
DE1801784A1 (en) | 1968-10-08 | 1970-06-11 | Bbc Brown Boveri & Cie | Working spark gap for generating pressure waves in an insulating, liquid medium |
DE1808942A1 (en) | 1968-11-14 | 1970-06-11 | Rune Hank | Explosive forming |
US3654788A (en) | 1968-11-20 | 1972-04-11 | Lead Metal Kogyo Kk | Method of discharge forming bulged articles |
US3640110A (en) | 1969-08-14 | 1972-02-08 | Inoue K | Shock forming |
US3661004A (en) | 1969-11-07 | 1972-05-09 | Atlas Chem Ind | Explosive tubing swager |
US3737975A (en) | 1970-07-15 | 1973-06-12 | Kinnon C Mc | Arrangement for explosively formed connections and method of making such connections |
DE2043251A1 (en) | 1970-09-01 | 1972-03-02 | Nydamit Nobel Ag | Explosive forming - by shock wave conducted into the workpiece from outside |
DE2059181C3 (en) | 1970-12-02 | 1975-02-27 | Messwandler-Bau Gmbh, 8600 Bamberg | Arrangement for high pressure energy conversion of bodies |
US3742746A (en) | 1971-01-04 | 1973-07-03 | Continental Can Co | Electrohydraulic plus fuel detonation explosive forming |
DE2107460A1 (en) | 1971-02-17 | 1972-08-31 | Mylaeus Geb | Internally expanding pipes - to centrally increase their buckling strength |
GB1436538A (en) | 1972-11-17 | 1976-05-19 | Dale Ltd John | Manufacture of articles such as collapsible tubes |
DE2337176C3 (en) | 1973-07-21 | 1981-08-06 | Tokyu Sharyo Seizo K.K., Yokohama, Kanagawa | Device for high-speed forming of metallic tubular workpieces in a multi-part molding chamber |
GB1419889A (en) | 1973-12-21 | 1975-12-31 | Kh Aviatsionnyj Institut | Plant for explosive forming |
ZA754574B (en) | 1974-07-29 | 1976-06-30 | Concast Inc | A method of forming the walls of continuous casting and chill |
DD114231A1 (en) | 1974-08-29 | 1975-07-20 | ||
FR2300322A1 (en) | 1975-02-04 | 1976-09-03 | Poudres & Explosifs Ste Nale | Underwater mine explosion system - is initiated by pneumatic switch with timer and converter stage giving long delay |
SU575161A1 (en) * | 1975-05-11 | 1977-10-05 | Физико-технический институт АН Белорусской ССР | Device for stamping sheet parts by high-pressure liquid |
GB1482978A (en) | 1975-06-27 | 1977-08-17 | Ici Ltd | Expanding metal tubes |
DE2628579C2 (en) | 1976-06-25 | 1983-02-17 | Fiziko-techničeskij institut Akademii Nauk Belorusskoj SSR, Minsk | Device for electrohydraulic explosion forming |
GB1542519A (en) | 1976-07-07 | 1979-03-21 | Fiz Tekh I An Brus Ssr | Electrical discharge forming devices |
US4187709A (en) | 1976-08-23 | 1980-02-12 | Kevin Strickland | Explosive forming |
DE2754666A1 (en) | 1977-12-08 | 1979-06-13 | Hinapat Ag | METHOD AND DEVICE FOR PRODUCING A TUBE BLANK |
DD135859A1 (en) | 1978-04-24 | 1979-06-06 | Heinz Heinrich | PROCESS FOR TERMINATION OF EXPLOSIVE IN EXPLOSIVE PLANTS |
GB2047147B (en) | 1979-04-06 | 1982-12-08 | Ukrain Nii Protezirova Protez | Manufacturing sockets for extremity prosthesis |
AT371384B (en) | 1980-08-08 | 1983-06-27 | Uk Nii Protezirovania Protezos | METHOD FOR FORMING A WORKPIECE BY IMPULSE LOAD, GAS CANON FOR CARRYING OUT THE METHOD AND FORMING DEVICE FOR FORMING WORKPIECE BY IMPULSE LOADING WITH SUCH A GAS CANNON |
DD158364B1 (en) | 1981-04-09 | 1986-03-12 | Germania Chemnitz | PROTECTION DEVICE FOR EXPLOSIVE WORKING OF COMPONENTS |
BG34210A1 (en) | 1981-07-15 | 1983-08-15 | Kortenski | Machine for explosive forming |
US4492104A (en) | 1981-12-02 | 1985-01-08 | Meadowcraft Inc. | Explosive shaping of metal tubing |
US4494392A (en) * | 1982-11-19 | 1985-01-22 | Foster Wheeler Energy Corporation | Apparatus for forming an explosively expanded tube-tube sheet joint including a low energy transfer cord and booster |
DE3305615C2 (en) | 1983-02-18 | 1986-10-16 | Heinrich Dr.-Ing. 4290 Bocholt Hampel | Arrangement for fastening a pipe in a perforated plate by means of explosion pressure waves |
US4571800A (en) | 1983-07-11 | 1986-02-25 | Thiokol Corporation | Method for explosively forming an auxiliary exit cone for the nozzle of a rocket motor |
DE3347319A1 (en) | 1983-12-28 | 1985-07-11 | Kraftwerk Union AG, 4330 Mülheim | DEVICE FOR WELDING PLATING PIPES |
DE3581293D1 (en) | 1984-02-09 | 1991-02-21 | Toyota Motor Co Ltd | METHOD FOR PRODUCING ULTRAFINE CERAMIC PARTICLES. |
SU1181331A1 (en) | 1984-06-05 | 1989-10-23 | Научно-исследовательский институт технологии автомобильной промышленности | Installation for spraying by detonation |
DE3512015A1 (en) | 1985-04-02 | 1986-10-02 | Robert Bosch Gmbh, 7000 Stuttgart | DEVICE FOR THE TREATMENT OF WORKPIECES BY MEANS OF TEMPERATURE AND PRESSURE BLOWERS FROM THE END OF A COMBUSTIBLE GAS MIXTURE, ESPECIALLY THERMAL DEBURRING SYSTEM |
US4738012A (en) | 1985-12-31 | 1988-04-19 | Hughes Robert W | Method of making a cam shaft |
DE3709181A1 (en) | 1987-03-20 | 1988-09-29 | Asea Ab | METHOD FOR THE PRODUCTION OF COMPLEX SHEET METAL PARTS AND TOOL FOR PRINT FORMING SUCH SHEET METAL PARTS |
DE3872523T2 (en) | 1987-04-15 | 1993-03-11 | Res Foundation Inst Pty Ltd | MOLDING METHOD. |
US4856311A (en) * | 1987-06-11 | 1989-08-15 | Vital Force, Inc. | Apparatus and method for the rapid attainment of high hydrostatic pressures and concurrent delivery to a workpiece |
DE3726475C1 (en) * | 1987-08-08 | 1988-09-29 | Bosch Gmbh Robert | Method and device for determining the amount of an explosive gas mixture to be introduced into a processing chamber for materials |
US4788841A (en) | 1987-11-18 | 1988-12-06 | Aluminum Company Of America | Method and apparatus for making step wall tubing |
GB8918552D0 (en) * | 1989-08-15 | 1989-09-27 | Alford Sidney C | Flexible linear explosive cutting or fracturing charge |
DE4035894C1 (en) | 1990-11-12 | 1992-01-30 | Hampel, Heinrich, Dr., Moresnet, Be | Cooling box for blast furnaces with low mfr. cost - produced from cooling pipe preformed with number bends and explosively welded |
US5256430A (en) * | 1991-05-29 | 1993-10-26 | Nkk Corporation | Method for generating a detonation pressure |
GB9114444D0 (en) | 1991-07-04 | 1991-08-21 | Cmb Foodcan Plc | Apparatus and method for reshaping containers |
US5220727A (en) | 1992-06-25 | 1993-06-22 | Hochstein Peter A | Method making cam shafts |
DE4232913C2 (en) | 1992-10-01 | 1995-04-27 | Daimler Benz Ag | Two-stage process for hydromechanical explosion-assisted deep-drawing of sheet metal and a deep-drawing press for carrying out the process |
RU2049581C1 (en) * | 1993-01-25 | 1995-12-10 | Всероссийский научно-исследовательский институт технической физики | Gas explosion forging method and apparatus |
CN1032576C (en) * | 1993-05-24 | 1996-08-21 | 王南海 | High-energy wholly shaping end-closing technology without mould |
JPH0751761A (en) * | 1993-08-18 | 1995-02-28 | Nkk Corp | Production of panel parts by detonation pressure |
JPH0788570A (en) * | 1993-09-20 | 1995-04-04 | Nkk Corp | Molding device by detonation liquid pressure or elastic pressure and its foundation |
DE19536292C2 (en) | 1995-09-29 | 1997-09-25 | Leinemann Gmbh & Co | Method and device for reducing a detonation in a container or piping system |
DE19638688A1 (en) | 1996-09-20 | 1998-03-26 | Schmalbach Lubeca | Sealing device for unit for moulding hollow bodies |
DE19638678A1 (en) | 1996-09-20 | 1998-03-26 | Schmalbach Lubeca | Closure device for a device for expansion molding |
EP0830907A3 (en) * | 1996-09-20 | 1998-09-23 | Schmalbach-Lubeca AG | Sealing device for an apparatus for expansion moulding |
DE19638679A1 (en) | 1996-09-20 | 1998-03-26 | Schmalbach Lubeca | Sealing device for unit for moulding hollow bodies |
DE19709918C2 (en) | 1997-03-11 | 2001-02-01 | Dornier Medizintechnik | High performance pressure wave source |
US5890698A (en) | 1997-10-13 | 1999-04-06 | Domytrak; Walter | Valve having pressure equalizing conduit |
IL122795A (en) | 1997-12-29 | 2002-02-10 | Pulsar Welding Ltd | Combined pulsed magnetic and pulsed discharge forming of a dish from a planar plate |
DE19818572C1 (en) | 1998-04-25 | 1999-11-11 | Leinemann Gmbh & Co | Process for rendering a detonation front harmless and detonation protection |
SE518722C2 (en) | 1998-06-26 | 2002-11-12 | Flow Holdings Gmbh Sagl Llc | Device and method for expansion molding |
DE19852302A1 (en) | 1998-11-12 | 2000-05-25 | Fraunhofer Ges Forschung | Method and device for processing workpieces with high-energy radiation |
DE19915383B4 (en) | 1999-04-06 | 2004-07-22 | Amborn, Peter, Dr.-Ing. | Hydroforming |
JP4421021B2 (en) | 1999-08-19 | 2010-02-24 | 株式会社ディスコ | Electric discharge molding unit and cutting device |
DE19957836B4 (en) | 1999-11-25 | 2004-05-27 | RMG - Gaselan Regel + Meßtechnik GmbH | Method and device for damping the pressure surge on flame arresters during detonations |
JP2002093379A (en) | 2000-09-14 | 2002-03-29 | Matsushita Electric Ind Co Ltd | Discharge formation device, discharge luminous device, plasma display panel and illumination device and display device using these |
US7093470B2 (en) | 2002-09-24 | 2006-08-22 | The Boeing Company | Methods of making integrally stiffened axial load carrying skin panels for primary aircraft structure and fuel tank structures |
DE10328154A1 (en) | 2003-06-07 | 2004-12-23 | Günter Volland | Bomb protective container |
US7296449B2 (en) | 2004-09-21 | 2007-11-20 | Ball Corporation | Dry hydraulic can shaping |
CN1278795C (en) * | 2004-12-28 | 2006-10-11 | 张宝军 | Bi-metal pipe deflagrate composite set and bi metal pipe manufacturing process |
DE102005012475A1 (en) | 2005-03-16 | 2006-09-21 | IFUTEC Ingenieurbüro für Umformtechnik GmbH | Process for producing a transition to a hollow molded part |
DE102005025660B4 (en) | 2005-06-03 | 2015-10-15 | Cosma Engineering Europe Ag | Apparatus and method for explosion forming |
DE102006008533A1 (en) * | 2006-02-22 | 2007-08-30 | Rheinisch-Westfälisch-Technische Hochschule Aachen | Tubular hollow body shaping method, involves inserting form-stable body into hollow body for equalization of pressure profile along detonation direction, where form-stable body projects over shaping area |
JP2007222778A (en) | 2006-02-23 | 2007-09-06 | Toto Ltd | Discharge-formed gas dissolving apparatus |
DE102006019856A1 (en) | 2006-04-28 | 2007-11-08 | Admedes Schuessler Gmbh | Process for working materials using porous silicon as explosive |
DE102006037754B3 (en) | 2006-08-11 | 2008-01-24 | Cosma Engineering Europe Ag | Procedure for the explosion forming, comprises arranging work piece in tools and deforming by means of explosion means, igniting the explosion means in ignition place of the tools using induction element, and cooling the induction element |
DE102006037742B4 (en) | 2006-08-11 | 2010-12-09 | Cosma Engineering Europe Ag | Method and apparatus for explosion forming |
DE102006056788B4 (en) | 2006-12-01 | 2013-10-10 | Cosma Engineering Europe Ag | Closing device for explosion forming |
DE102006060372A1 (en) | 2006-12-20 | 2008-06-26 | Cosma Engineering Europe Ag | Workpiece for explosion reformation process, is included into molding tool and is deformed from output arrangement by explosion reformation |
DE102007007330A1 (en) | 2007-02-14 | 2008-08-21 | Cosma Engineering Europe Ag | Method and tool assembly for explosion forming |
US8443641B2 (en) * | 2007-02-14 | 2013-05-21 | Cosma Engineering Europe Ag | Explosion forming system |
DE102007023669B4 (en) | 2007-05-22 | 2010-12-02 | Cosma Engineering Europe Ag | Ignition device for explosion forming |
DE102007036196A1 (en) | 2007-08-02 | 2009-02-05 | Cosma Engineering Europe Ag | Apparatus for supplying a fluid for explosion forming |
DE102008006979A1 (en) | 2008-01-31 | 2009-08-06 | Cosma Engineering Europe Ag | Device for explosion forming |
-
2008
- 2008-01-31 DE DE102008006979A patent/DE102008006979A1/en not_active Ceased
- 2008-09-19 AT AT08871795T patent/ATE522296T1/en active
- 2008-09-19 US US12/865,266 patent/US8713982B2/en active Active
- 2008-09-19 MX MX2010008467A patent/MX2010008467A/en active IP Right Grant
- 2008-09-19 CN CN200880126045.6A patent/CN101970148B/en active Active
- 2008-09-19 PL PL08871795T patent/PL2249980T3/en unknown
- 2008-09-19 ES ES08871795T patent/ES2369838T3/en active Active
- 2008-09-19 RU RU2010135870/02A patent/RU2487775C2/en not_active IP Right Cessation
- 2008-09-19 WO PCT/EP2008/007901 patent/WO2009095042A1/en active Application Filing
- 2008-09-19 EP EP08871795A patent/EP2249980B9/en not_active Not-in-force
- 2008-09-19 CA CA2713659A patent/CA2713659A1/en not_active Abandoned
- 2008-09-19 BR BRPI0822038-7A patent/BRPI0822038A2/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
ES2369838T3 (en) | 2011-12-07 |
CN101970148B (en) | 2016-08-03 |
CN101970148A (en) | 2011-02-09 |
US20100326158A1 (en) | 2010-12-30 |
WO2009095042A1 (en) | 2009-08-06 |
PL2249980T3 (en) | 2011-12-30 |
RU2010135870A (en) | 2012-03-10 |
MX2010008467A (en) | 2010-10-07 |
RU2487775C2 (en) | 2013-07-20 |
DE102008006979A1 (en) | 2009-08-06 |
EP2249980A1 (en) | 2010-11-17 |
EP2249980B9 (en) | 2012-02-22 |
CA2713659A1 (en) | 2009-08-06 |
BRPI0822038A2 (en) | 2015-07-21 |
ATE522296T1 (en) | 2011-09-15 |
US8713982B2 (en) | 2014-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2249980B1 (en) | Device for explosive forming | |
DE60209556T2 (en) | DETONATION FLAME BARRIER WITH A SPIRALLY WRAPPED SURFACE GRILLE FOR GASES WITH SMALL BORDER SPLIT | |
EP1944565B1 (en) | Device for deflecting hollow charge projectiles | |
DE3137855C2 (en) | ||
DE19638658A1 (en) | Shock-load absorber fixture surface on wall of power station | |
DE2557836A1 (en) | PNEUMATIC HAMMER | |
DE69931499T2 (en) | VALVE ACTUATES OVER GAS PRESSURE TANK | |
DE102005051657A1 (en) | Pyrotechnic actuator | |
DE69113103T2 (en) | Shatterproof nuclear fuel rod foot piece. | |
DE102016213551A1 (en) | Nozzle for water, in particular for a water cannon | |
DE19821449A1 (en) | High pressure jet nozzle to generate high pressure fluid jet | |
DE60037934T2 (en) | Burrowing warhead | |
DE2342288C2 (en) | Hydraulic shredding device for core drilling tools | |
DE1910779A1 (en) | IMPROVEMENTS TO THE EFFECTIVENESS OF HOLLOW CHARGE | |
EP1283958A1 (en) | Pneumatic cylinder with damping in the end position | |
EP2806245A1 (en) | Protective device against projectiles | |
DE4106566A1 (en) | Shelter against direct impact of conventional missile | |
EP0382916B1 (en) | Piping assembly for the receipt of cables | |
DE102007035551A1 (en) | Support device for an explosive charge of a penetrator | |
DE102019215501A1 (en) | Milling tool and method for removing a pipe buried in the ground | |
DE7838809U1 (en) | DEVICE FOR THE DISPOSAL OF AIR-POLLUTANT PARTICLES, IN PARTICULAR LEAD PARTICLES, FROM THE EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE | |
DE3615169C2 (en) | ||
DE3129480C1 (en) | Valve body for a hydraulic guillotine shear | |
DE3808419C1 (en) | Armour plate | |
DE602005004548T2 (en) | SHIELD AND WITH SUCH A SHIELD EQUIPPED STORE LIKE A GRANATE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100827 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008004735 Country of ref document: DE Effective date: 20111027 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2369838 Country of ref document: ES Kind code of ref document: T3 Effective date: 20111207 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110831 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111231 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111201 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
BERE | Be: lapsed |
Owner name: MAGNA INTERNATIONAL INC. Effective date: 20110930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120102 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120601 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008004735 Country of ref document: DE Effective date: 20120601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120930 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120919 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20140826 Year of fee payment: 7 Ref country code: AT Payment date: 20140827 Year of fee payment: 7 Ref country code: ES Payment date: 20140812 Year of fee payment: 7 Ref country code: PL Payment date: 20140825 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140917 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140906 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150919 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 522296 Country of ref document: AT Kind code of ref document: T Effective date: 20150919 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150930 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150919 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180706 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180904 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008004735 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200401 |