EP1988292B1 - Machine tournante comportant un système d'équilibrage axial passif - Google Patents
Machine tournante comportant un système d'équilibrage axial passif Download PDFInfo
- Publication number
- EP1988292B1 EP1988292B1 EP08155267A EP08155267A EP1988292B1 EP 1988292 B1 EP1988292 B1 EP 1988292B1 EP 08155267 A EP08155267 A EP 08155267A EP 08155267 A EP08155267 A EP 08155267A EP 1988292 B1 EP1988292 B1 EP 1988292B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- axial
- rotary machine
- shaft
- balancing system
- machine according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 claims description 55
- 238000011144 upstream manufacturing Methods 0.000 claims description 13
- 238000006073 displacement reaction Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims 1
- 238000011084 recovery Methods 0.000 description 25
- 239000012530 fluid Substances 0.000 description 8
- 230000033228 biological regulation Effects 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000005086 pumping Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D3/00—Machines or engines with axial-thrust balancing effected by working-fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D3/00—Machines or engines with axial-thrust balancing effected by working-fluid
- F01D3/04—Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/041—Axial thrust balancing
- F04D29/0416—Axial thrust balancing balancing pistons
Definitions
- the present invention relates to the field of rotating machines intended to be traversed by a main flow of liquid, such as for example suction pumps or turbines for generating an electric power. If the rotating machine is a pump, then the main flow of liquid is the aspirated liquid, whereas if the rotating machine is a turbine, the main flow of liquid is the liquid injected into the turbine.
- a main flow of liquid such as for example suction pumps or turbines for generating an electric power.
- the rotating machine generally comprises an electrical member consisting of a rotor and a stator, said member being an electric motor when the machine operates as a pump, and said member being an electric generator when the machine operates in a turbine.
- Such a rotating machine is often intended to be arranged vertically, that is to say that its axis of rotation extends generally vertically, so that one can define the "bottom” and the “top” of the pump with reference to such a vertical axis.
- This additional force is added to the force of gravity so that the rotation shaft undergoes significant forces directed axially down the machine.
- such rotating machines generally comprise an active axial balancing system, such as that described in the document US 4,538,960 or in the document GB 17268 which describes the preamble of claim 1, to compensate all or part of these efforts, exerting a force of axial recovery on the shaft in a direction opposite to that of the force of gravity.
- the intensity of the forces to be compensated can fluctuate, for example due to a fluctuation of the flow rate of the main flow of liquid, so that the intensity of the axial recovery force can suddenly become greater than the intensity of the forces. forces to compensate, thus causing the shaft to move towards the top of the machine.
- the intensity of the axial return force depends on the displacement of the rotation shaft relative to the housing. This makes it possible to regulate the intensity of the axial recovery force.
- the intensity of the axial return force decreases if the intensity of the axial return force becomes greater than the intensity of the forces to be compensated and, conversely, the axial recovery force increases if the intensity of the axial return force increases. the axial recovery force becomes less than the intensity of the forces to be compensated. In other words, the intensity of the axial recovery force is slaved to the displacement of the rotation shaft.
- An object of the present invention is to provide a rotating machine having improved axial recovery capability.
- the rotating machine according to the present invention further comprises a circuit for a secondary flow of liquid taken from the main flow of liquid, and a passive axial balancing system capable of exerting a second force. of axial recovery on the shaft, said passive axial balancing system being fed by the circuit of the secondary flow of liquid.
- the passive axial balancing system differs from the active axial balancing system in that the intensity of the second force is not slaved to the displacement of the shaft relative to the housing.
- the intensity of the second force is constant regardless of the displacement of the rotation shaft relative to the housing.
- the second axial return force has a direction opposite to that of the gravitational force, when the machine is arranged vertically.
- the second axial recovery force has a direction opposite to that of the tensile force mentioned above.
- the passive axial balancing system distinct from the active axial balancing system, therefore provides an additional axial return force, namely the second axial return force, as a result of which, the intensity of the overall axial recovery force exerting itself on the rotation shaft is advantageously increased.
- the flow rate of the secondary liquid flow is substantially lower than that of the main flow of liquid.
- the flow of secondary liquid flowing in the circuit during operation of the machine advantageously feeds the passive axial balancing system, that is to say that the secondary flow of liquid provides the energy necessary for the operation of the passive axial balancing system.
- the passive axial balancing system comprises an annular passage between the shaft and the housing, through which the secondary liquid flow is intended to flow, said passage axially defining an upstream fluid chamber of a downstream fluidic chamber. such that the pressure in the upstream fluid chamber is greater than the pressure in the downstream fluid chamber.
- upstream and downstream are here considered with reference to the direction of flow of the secondary flow of liquid.
- the pressure difference between the two chambers is due to the fact that the annular passage constitutes a flow restriction for the secondary flow of liquid.
- the annular passage is defined between a disk attached to the shaft and the housing.
- the annular passage is defined radially between the outer periphery of the disc and an inner surface of the housing.
- the disc preferably extends radially from the axis of the rotation shaft, so that it defines axially the upstream chamber of the downstream chamber.
- the second axial recovery force resulting from the pressure difference between the upstream and downstream chambers, is exerted on the rotation shaft via the disc.
- the disk comprises at its periphery an annular labyrinth seal.
- the annular passage is thus defined radially between the labyrinth seal and the inner surface of the housing.
- the passive axial balancing system further comprises means for calibrating the flow rate of the secondary liquid flow.
- the flow rate of the secondary liquid flow is calibrated so that a sufficient second axial recovery force is obtained without greatly reducing the efficiency of the rotating machine.
- the means for calibrating the flow rate of the secondary liquid flow comprise said annular passage.
- the annular passage participates both in the generation of the second axial recovery force, and in the calibration of the flow rate of the secondary liquid flow.
- the annular passage has a predetermined radial extension in order to calibrate the flow rate of the secondary flow of liquid.
- the radial extension corresponds to the radial clearance existing between the disk and the casing.
- the secondary flow of liquid is also used to cool a rotating element of the machine.
- the secondary stream of liquid is a flow of coolant.
- this flow of coolant is advantageously calibrated so that the cooling of the rotating element is sufficient.
- a rotating element is an element of which at least one component is rotated by the shaft.
- the rotating element is a bearing, a motor and / or an electric generator.
- the machine according to the invention may comprise a plurality of rotating elements chosen from the abovementioned elements.
- the same flow of liquid is used to cool the rotating element and to feed the passive axial balancing system. It is therefore not necessary to provide separate circuits, which allows to advantageously simplify the structure of the machine.
- the rotating machine is a pump.
- the rotating machine is a turbine.
- the figure 1 represents an example of a rotary machine 10 according to the present invention, this rotating machine 10 being intended preferentially but not exclusively to pumping fluid such as liquefied gas. It can advantageously be used to empty the tanks of a LNG carrier.
- the rotating machine according to the invention may also be a turbine in which circulates a liquid driving a generator that provides an electric power.
- the machine 10 successively comprises a suction stage 12, a centrifugal wheel 14 and an annular duct 16 for discharging the aspirated liquid.
- the suction stage 12 comprises a rotary inductor 18 driven in rotation by a rotation shaft 20 of the machine 10, the rotation shaft 20 being driven by a rotating element consisting of an electric motor 22.
- the electric motor 22 comprises a rotor 24 fixed to the shaft 20 and a stator 26 fixed to a housing 28 of the machine 10.
- the rotation shaft 20 is rotatably mounted on the housing 28 via a low bearing 30 located between the centrifugal wheel and 14 and the motor 22, and a high bearing 32 located between the motor 22 and a discharge sleeve 34.
- the rotation shaft 20 comprises a shoulder 36 coming into axial abutment against an inner ring 38 of the low bearing 30.
- the machine 10 being arranged vertically, it is understood that the low bearing 30 supports the weight of the rotation shaft, the centrifugal wheel 14, the rotor 24 and the inductor 18, weight plus the tensile force undergone by the inductor 18 during the suction of the liquid.
- the machine 10 further comprises an active axial balancing system 40, well known elsewhere, capable of exerting on the shaft 20 a first axial recovery force R1 .
- the active axial balancing system 40 further allows the regulation of the intensity of the first axial recovery force R1. More precisely, the regulation depends on the axial displacement of the shaft 20 relative to the casing 28.
- the active axial balancing system 40 operates a regulation by decreasing the intensity of the first axial recovery force. R1.
- the active axial balancing system 40 is not sufficiently efficient when the flow rate of the main fluid flow F1 pumped is low. More specifically, it has been found that the regulation means do not work correctly for low flow rates.
- the rotating machine 10 also comprises, in a particularly advantageous manner, a passive axial balancing system 42, better visible on the figure 2 Which is capable of exerting on the shaft 20 a second axial take-up force R2.
- This axial balancing system 42 is passive, that is to say that, unlike the active axial balancing system, the second axial recovery force R2 is independent of the axial displacement of the shaft 20 relative to the housing 28. .
- the passive axial balancing system 42 comprises a disk 44 fixed to the upper end of the shaft 20.
- This disk 44 is able to slide in a bore 47 made in the casing 28.
- the high bearing 32 is mounted between the disk 44 and a shoulder 45 of the shaft 20.
- the disc 44 has at its periphery an annular labyrinth seal 46.
- annular labyrinth seal 46 may be provided.
- other types of joints may be provided.
- the passive axial balancing system 42 is fed by a circuit of a secondary flow of liquid F2 which is taken from the main flow of liquid F1, in this case thanks to a radial passage 49 formed in an inner surface 51 of the annular pipe 16.
- this secondary flow F2 passes through the gap 48 of the motor 22, whereby the motor is advantageously cooled.
- the secondary flow of liquid F2 then flows through an annular passage 52 defined radially between the outer periphery of the disc 44 and the casing 28, then flows in a downstream fluidic chamber 54 arranged axially downstream of the disc 44.
- This downstream fluidic chamber is preferably connected to a discharge orifice 56 to allow the discharge of the secondary liquid flow F2 towards the outside of the rotating machine 10.
- upstream and downstream are considered here in relation to in the direction of flow of the secondary flow of liquid F2.
- annular passage 52 defines axially the upstream fluid chamber 50 of the downstream fluidic chamber 54.
- the annular passage 52 forms a flow restriction for the secondary flow of liquid F 2, so that the pressure in the upstream fluid chamber 50 is greater than the pressure in the downstream fluidic chamber 54.
- this second axial recovery force R2 depends on the radial clearance between the disk 44 and the casing 28 and not on the displacement of the shaft 20 with respect to the casing 28.
- the "axial" balancing system 42 is termed "passive". Consequently, the overall axial recovery force R acting on the shaft 20 is the sum of the first and second axial recovery forces R1, R2 .
- the passive axial balancing system 42 further comprises calibration means for calibrating the flow rate of the secondary liquid flow F2.
- these calibration means comprise the annular passage 52.
- the annular passage 52 has a radial extension e predetermined to calibrate the flow of the secondary liquid flow F2.
- This radial extension e is defined between the outer periphery of the disk 44 and the casing 28.
- the secondary flow of liquid F 2 is also advantageously used for cooling rotary elements of the machine 10, in this case the motor 22 and the bearing 32.
- the flow rate of the engine cooling flow is calibrated in a constant manner, whatever the axial position of the rotor 24.
- the rotating machine according to the invention can also be a turbine.
- the main flow of liquid has a direction of flow opposite to that of the main flow of liquid F1 of the machine operating as a pump.
- the secondary flow of liquid in the turbine has the same direction of flow as that of the secondary flow of liquid F2 circulating in the pump.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
Description
- La présente invention porte sur le domaine des machines tournantes destinées à être traversées par un flux de principal de liquide, telles par exemple les pompes d'aspiration ou les turbines pour générer une puissance électrique. Si la machine tournante est une pompe, alors le flux principal de liquide est le liquide aspiré, tandis que si la machine tournante est une turbine, le flux principal de liquide est le liquide injecté dans la turbine.
- La machine tournante comprend généralement un organe électrique constitué d'un rotor et d'un stator, ledit organe étant un moteur électrique lorsque la machine fonctionne comme une pompe, et ledit organe étant un générateur électrique lorsque la machine fonctionne en turbine.
- Une telle machine tournante est souvent destinée à être disposée verticalement, c'est-à-dire que son axe de rotation s'étend généralement verticalement, de sorte que l'on peut définir le « bas » et le « haut » de la pompe en référence à un tel axe vertical.
- On définit également les termes « axial », « radial » et « tangentiel » en référence à l'axe de la machine.
- Du fait de la masse importante de certains des éléments tournants de cette machine tournante, notamment celle de l'organe électrique et de l'arbre de rotation fixé au rotor de l'organe électrique, on comprend que la force de pesanteur qui tend à déplacer ces éléments vers le bas est importante.
- En outre, lorsque la machine fonctionne comme une pompe, la contre réaction due au pompage induit une force de traction qui tire vers le bas l'arbre de rotation de la machine et les éléments qui y sont fixés.
- Cette force supplémentaire s'ajoute à la force de pesanteur si bien que l'arbre de rotation subit des efforts importants dirigés axialement vers le bas de la machine.
- Il en résulte que les paliers prévus pour guider en rotation l'arbre de rotation sont fortement sollicités axialement par ces efforts, ce qui nuit à leur durée de vie.
- Pour pallier à cet inconvénient, de telles machines tournantes comprennent généralement un système d'équilibrage axial actif, tel que celui décrit dans le document
US 4 538 960 ou dans le documentGB 17268 - On comprend que l'on cherche à obtenir une force de reprise axiale dont l'intensité est sensiblement égale à l'intensité des forces à compenser, ces dernières étant constitués par la force de pesanteur et la force de traction.
- En pratique, l'intensité des forces à compenser peut fluctuer, par exemple en raison d'une fluctuation du débit du flux principal de liquide, si bien que l'intensité de la force de reprise axiale peut devenir soudainement supérieure à l'intensité des forces à compenser, entraînant ainsi le déplacement de l'arbre vers le haut de la machine.
- En l'absence d'un système d'équilibrage axial actif, une telle poussée axiale sur l'arbre conduirait à fatiguer les paliers, ce qui nuirait à leur durée de vie.
- Dans un système d'équilibrage axial actif, l'intensité de la force de reprise axiale dépend du déplacement de l'arbre de rotation par rapport au carter. Cela permet de réguler l'intensité de la force de reprise axiale.
- Ainsi, l'intensité de la force de reprise axiale diminue si l'intensité de la force de reprise axiale devient supérieure à l'intensité des forces à compenser et, à l'inverse, la force de reprise axiale augmente si l'intensité de la force de reprise axiale devient inférieure à l'intensité des forces à compenser. En d'autres termes, l'intensité de la force de reprise axiale est asservie au déplacement de l'arbre de rotation.
- On comprend donc que grâce au système d'équilibrage axial actif, l'intensité de la force de reprise axiale est activement régulée.
- La présente invention concerne donc une telle machine tournante selon la revendication 1 destinée à être traversée par un flux principal de liquide, comprenant :
- un arbre monté rotatif par rapport à un carter de la machine tournante,
- un système d'équilibrage axial actif apte à exercer une première force de reprise axiale sur l'arbre.
- Néanmoins, il a été constaté que dans certaines situations, l'intensité de la force de reprise axiale exercée par le système de reprise axial actif n'est pas suffisamment importante.
- Un but de la présente invention est de fournir une machine tournante ayant une capacité de reprise axiale améliorée.
- L'invention atteint son but par le fait que la machine tournante selon la présente invention comporte en outre un circuit pour un flux secondaire de liquide prélevé sur le flux principal de liquide, et un système d'équilibrage axial passif apte à exercer une deuxième force de reprise axiale sur l'arbre, ledit système d'équilibrage axial passif étant alimenté par le circuit du flux secondaire de liquide.
- Au sens de l'invention, le système d'équilibrage axial passif diffère du système d'équilibrage axial actif en ce que l'intensité de la deuxième force n'est pas asservie au déplacement de l'arbre par rapport au carter.
- En d'autres termes, l'intensité de la deuxième force est constante quel que soit le déplacement de l'arbre de rotation par rapport au carter.
- Par ailleurs, tout comme la première force de reprise axiale, la deuxième force de reprise axiale présente un sens opposé à celui de la force de pesanteur, lorsque la machine est disposée verticalement.
- Lorsque la machine tournante selon l'invention est une pompe, la deuxième force de reprise axiale présente un sens opposé à celui de la force de traction mentionnée ci-dessus.
- Le système d'équilibrage axial passif, distinct du système d'équilibrage axial actif, fournit donc une force de reprise axiale supplémentaire, à savoir la deuxième force de reprise axiale, en conséquence de quoi, l'intensité de la force globale de reprise axiale s'exerçant sur l'arbre de rotation est avantageusement augmentée.
- Selon l'invention, le débit du flux secondaire de liquide est sensiblement inférieur à celui du flux principal de liquide.
- Aussi, selon l'invention, le flux de liquide secondaire circulant dans le circuit lors du fonctionnement de la machine, alimente avantageusement le système d'équilibrage axial passif, c'est-à-dire que le flux secondaire de liquide fournit l'énergie nécessaire au fonctionnement du système d'équilibrage axial passif.
- Avantageusement, le système d'équilibrage axial passif comprend un passage annulaire entre l'arbre et le carter, au travers duquel le flux secondaire de liquide est destiné à s'écouler, ledit passage délimitant axialement une chambre fluidique amont d'une chambre fluidique aval, de telle sorte que la pression dans la chambre fluidique amont est supérieure à la pression dans la chambre fluidique aval.
- Les termes « amont » et « aval sont ici considérés en référence au sens d'écoulement du flux secondaire de liquide.
- La différence de pression entre les deux chambres est due au fait que le passage annulaire constitue une restriction d'écoulement pour le flux secondaire de liquide.
- De manière avantageuse, le passage annulaire est défini entre un disque fixé à l'arbre et le carter.
- De préférence, le passage annulaire est défini radialement entre la périphérie extérieure du disque et une surface interne du carter.
- Aussi, le disque s'étend de préférence radialement depuis l'axe de l'arbre de rotation, de telle sorte qu'il délimite axialement la chambre amont de la chambre aval. La deuxième force de reprise axiale, résultant de la différence de pression entre les chambres amont et aval, s'exerce donc sur l'arbre de rotation par l'intermédiaire du disque.
- Avantageusement, le disque comporte à sa périphérie un joint labyrinthe annulaire.
- Le passage annulaire est donc défini radialement entre le joint labyrinthe et la surface intérieure du carter.
- De manière particulière avantageuse, le système d'équilibrage axial passif comporte en outre des moyens pour calibrer le débit du flux secondaire de liquide.
- En effet, le débit du flux secondaire de liquide ne doit pas être trop élevé car sinon cela diminuerait le rendement de la machine.
- Grâce à la présente invention, le débit du flux secondaire de liquide est calibré de telle sorte que l'on obtient une deuxième force de reprise axiale suffisante sans trop diminuer le rendement de la machine tournante.
- Avantageusement, les moyens pour calibrer le débit du flux secondaire de liquide comprennent ledit passage annulaire.
- En d'autres termes, le passage annulaire participe à la fois à la génération de la deuxième force de reprise axiale, et au calibrage du débit du flux secondaire de liquide.
- Avantageusement, le passage annulaire présente une extension radiale prédéterminée afin de calibrer le débit du flux secondaire de liquide.
- De préférence, l'extension radiale correspond au jeu radial existant entre le disque et le carter.
- Avantageusement, le flux secondaire de liquide est également utilisé pour refroidir un élément tournant de la machine.
- Ainsi, le flux secondaire de liquide constitue un flux de liquide de refroidissement. En ce cas, ce flux de liquide de refroidissement est avantageusement calibré de telle sorte que le refroidissement de l'élément tournant est suffisant.
- Au sens de l'invention, un élément tournant est un élément dont au moins une pièce constitutive est entraînée en rotation par l'arbre.
- De préférence, l'élément tournant est un palier, un moteur et/ou un générateur électrique. La machine selon l'invention peut comporter plusieurs éléments tournants choisis parmi les éléments précités.
- Comme l'élément tournant s'échauffe lors du fonctionnement de la machine, il est nécessaire de le refroidir.
- Grâce à l'invention, on utilise le même flux de liquide pour refroidir l'élément tournant et pour alimenter le système d'équilibrage axial passif. Il n'est donc pas nécessaire de prévoir des circuits distincts, ce qui permet de simplifier avantageusement la structure de la machine.
- Selon une première variante, la machine tournante est une pompe.
- Selon une deuxième variante, la machine tournante est une turbine.
- L'invention sera mieux comprise et ses avantages apparaîtront mieux à la lecture de la description détaillée qui suit, d'un mode de réalisation indiqué à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :
- la
figure 1 est une vue en coupe d'une machine tournante selon la présente invention, cette dernière étant une pompe ; - la
figure 2 est une vue de détail de la machine tournante de lafigure 1 , représentant le système d'équilibrage axial passif selon l'invention. - La
figure 1 représente un exemple d'une machine tournante 10 conforme à la présente invention, cette machine tournante 10 étant destinée préférentiellement mais non exclusivement au pompage de fluide tel du gaz liquéfié. Elle peut avantageusement être utilisée pour vider les cuves d'un méthanier. - L'exemple représenté sur la
figure 1 n'est pas limitatif, la machine tournante selon l'invention pouvant également être une turbine dans laquelle circule un liquide entraînant un générateur qui fournit une puissance électrique. - Dans la description qui suit, les adjectifs « axial » , « tangentiel » et « radial » sont définis par rapport à l'axe de rotation A de la machine 10.
- La machine tournante 10 étant généralement destinée à être disposée verticalement, on définit les adjectifs « bas » et « haut » en référence à la direction verticale.
- Considérée selon la direction d'aspiration du flux principal de liquide schématisé ici par les flèches référencées F1, la machine 10 comprend successivement un étage d'aspiration 12, une roue centrifuge 14 et une conduite annulaire 16 permettant le refoulement du liquide aspiré.
- L'étage d'aspiration 12 comporte un inducteur 18 rotatif entraîné en rotation par un arbre de rotation 20 de la machine 10, l'arbre de rotation 20 étant quant à lui entraîné par un élément tournant constitué par un moteur électrique 22.
- Le moteur électrique 22 comporte un rotor 24 fixé à l'arbre 20 et un stator 26 fixé à un carter 28 de la machine 10.
- Comme on le constate sur la
figure 1 , l'arbre de rotation 20 est monté rotatif sur le carter 28 par l'intermédiaire d'un palier bas 30 situé entre la roue centrifuge et 14 et le moteur 22, et d'un palier haut 32 situé entre le moteur 22 et un manchon de refoulement 34. - L'arbre de rotation 20 comporte un épaulement 36 venant en butée axiale contre une bague intérieure 38 du palier bas 30.
- La machine 10 étant disposée verticalement, on comprend que le palier bas 30 supporte le poids de l'arbre de rotation, de la roue centrifuge 14, du rotor 24 et de l'inducteur 18, poids auquel s'ajoute la force de traction subie par l'inducteur 18 lors de l'aspiration du liquide.
- Pour reprendre au moins en partie la résultante des efforts mentionnés ci-dessus, la machine 10 comporte en outre un système d'équilibrage axial actif 40, bien connu par ailleurs, apte à exercer sur l'arbre 20 une première force de reprise axiale R1.
- Cette reprise d'effort est réalisée grâce à la première force de reprise axial R1 opposée à la résultante des efforts mentionnés ci-dessus.
- De manière connue, le système d'équilibrage axial actif 40 permet en outre la régulation de l'intensité de la première force de reprise axiale R1. Plus précisément, la régulation dépend du déplacement axial de l'arbre 20 par rapport au carter 28.
- En pratique, si l'intensité de la première force de reprise axiale R1 est supérieure à celle de la résultante des efforts à reprendre, le système d'équilibrage axial actif 40 opère une régulation en diminuant l'intensité de la première force de reprise axiale R1.
- Il a été constaté que le système d'équilibrage axial actif 40 n'est pas suffisamment performant lorsque le débit du flux principal de liquide F1 pompé est faible. Plus précisément, il a été constaté que les moyens de régulation ne fonctionnent pas correctement pour des faibles débits.
- Pour remédier à cet inconvénient, la machine tournante 10 comporte en outre, de manière particulièrement avantageuse, un système d'équilibrage axial passif 42, mieux visible sur la
figure 2 , qui est apte à exercer sur l'arbre 20 une deuxième force de reprise axiale R2. - Ce système d'équilibrage axial 42 est passif, c'est-à-dire que, contrairement au système d'équilibrage axial actif, la deuxième force de reprise axiale R2 est indépendante du déplacement axial de l'arbre 20 par rapport au carter 28.
- A l'aide de la
figure 2 , on voit que le système d'équilibrage axial passif 42 comporte un disque 44 fixé à l'extrémité supérieure de l'arbre 20. - Ce disque 44 est apte à coulisser dans un alésage 47 réalisé dans le carter 28.
- De préférence, le palier haut 32 est monté entre le disque 44 et un épaulement 45 de l'arbre 20.
- De préférence, le disque 44 comporte à sa périphérie un joint labyrinthe annulaire 46. On peut toutefois prévoir d'autres types de joints.
- Conformément à l'invention, le système d'équilibrage axial passif 42 est alimenté par un circuit d'un flux secondaire de liquide F2 qui est prélevé sur le flux principal de liquide F1, en l'espèce grâce à un passage radial 49 ménagé dans une surface intérieure 51 de la conduite annulaire 16.
- Comme on le voit sur la
figure 1 , ce flux secondaire F2 traverse l'entrefer 48 du moteur 22, grâce à quoi le moteur est avantageusement refroidi. - A l'aide de la
figure 2 , on constate que le flux secondaire de liquide F2 traverse ensuite le palier haut 32, permettant ainsi de manière avantageuse le refroidissement dudit palier haut, avant de pénétrer dans une chambre fluidique amont 50 disposée axialement en amont du disque 44. - Le flux secondaire de liquide F2 s'écoule ensuite au travers d'un passage annulaire 52 défini radialement entre la périphérie extérieure du disque 44 et le carter 28, puis s'écoule dans une chambre fluidique aval 54 disposée axialement en aval du disque 44. Cette chambre fluidique aval est de préférence reliée à un orifice d'évacuation 56 pour permettre l'évacuation du flux secondaire de liquide F2 vers l'extérieur de la machine tournante 10. Les termes « amont » et « aval » sont considérés ici par rapport au sens d'écoulement du flux secondaire de liquide F2.
- Comme on l'a représenté sur la
figure 2 , le passage annulaire 52 délimite axialement la chambre fluidique amont 50 de la chambre de fluidique aval 54. - Comme on l'a déjà mentionné, le passage annulaire 52 forme une restriction d'écoulement pour le flux secondaire de liquide F2, si bien que la pression dans la chambre fluidique amont 50 est supérieure à la pression dans la chambre fluidique aval 54.
- Il s'ensuit qu'il s'exerce sur une face latérale amont 58 du disque 44 une pression supérieure à celle qui s'exerce sur une face latérale aval 60 du disque 44. Cette différence de pression génère donc la deuxième force de reprise axiale R2 qui s'exerce sur l'arbre 20 via le disque 44.
- On comprend en outre que l'intensité de cette deuxième force de reprise axiale R2 dépend du jeu radial entre le disque 44 et le carter 28 et non pas du déplacement de l'arbre 20 par rapport au carter 28.
- Pour cette raison, on qualifie de "passif" le système d'équilibrage axial 42. Par conséquent, la force de reprise axiale globale R s'exerçant sur l'arbre 20 est la somme des première et deuxième forces de reprise axiale R1, R2.
- De manière particulièrement avantageuse, le système d'équilibrage axial passif 42 comporte en outre des moyens de calibrage pour calibrer le débit du flux secondaire de liquide F2. En l'espèce, ces moyens de calibrage comprennent le passage annulaire 52.
- En l'espèce, le passage annulaire 52 présente une extension radiale e prédéterminée afin de calibrer le débit du flux secondaire de liquide F2.
- Cette extension radiale e est définie entre la périphérie extérieure du disque 44 et le carter 28.
- Comme on l'a vu ci-dessus, le flux secondaire de liquide F2 est également utilisé, de manière avantageuse, pour refroidir des éléments tournants de la machine 10, en l'espèce le moteur 22 et le palier 32.
- II est avantageux de calibrer le débit de ce flux de liquide de refroidissement car un débit trop faible ne refroidirait pas suffisamment les éléments tournants, tandis qu'un débit trop important diminuerait le rendement de la machine, lequel rendement est fonction du débit du flux principal de liquide F1. On comprend en effet que si l'on prélève un flux secondaire de liquide F2 trop important, le flux principal F1 est diminué d'autant.
- En d'autres termes, grâce à l'invention, le débit du flux de refroidissement moteur est calibré de manière constante, quelle que soit la position axiale du rotor 24.
- Comme on l'a déjà mentionné ci-dessus, la machine tournante selon l'invention peut également être une turbine. En ce cas, le flux principal de liquide présente un sens d'écoulement opposé à celui du flux principal de liquide F1 de la machine fonctionnant en pompe. En revanche, le flux secondaire de liquide dans la turbine présente le même sens d'écoulement que celui du flux secondaire de liquide F2 circulant dans la pompe.
Claims (13)
- Machine tournante (10) destinée à être traversée par un flux principal de liquide (F1), comprenant :- un arbre (20) monté rotatif par rapport à un carter (28) de la machine tournante,- un système d'équilibrage axial actif (40) apte à exercer une première force de reprise axiale (R1) sur l'arbre, l'intensité de la première force de reprise axiale dépendant du déplacement de l'arbre par rapport au carter.- une roue centrifuge (14) montée sur l'arbre :ladite machine étant caractérisée en ce qu'elle comporte en outre un circuit pour un flux secondaire de liquide (F2) prélevé sur le flux principal de liquide (F1), et un système d'équilibrage axial passif (42), distinct du système d'équilibrage axial actif et de la roue centrifuge, apte à exercer une deuxième force de reprise axiale (R2) sur l'arbre (20), ledit système d'équilibrage axial passif (42) étant alimenté par le circuit du flux secondaire de liquide (F2), et la deuxième force de reprise axiale n'étant pas asservie au déplacement de l'arbre par rapport au carter.
- Machine tournante selon la revendication 1, caractérisée en ce que le système d'équilibrage axial passif comprend un passage annulaire (52) entre l'arbre (20) et le carter (28), au travers duquel le flux secondaire de liquide (F2) est destiné à s'écouler, ledit passage délimitant axialement une chambre fluidique amont (50) d'une chambre fluidique aval (54), de telle sorte que la pression dans la chambre fluidique amont est supérieure à la pression dans la chambre fluidique aval.
- Machine tournante selon la revendication 2, caractérisée en ce que la chambre fluidique aval (54) est reliée à un orifice d'évacuation (56).
- Machine tournante selon l'une quelconque des revendications 2 à 3, caractérisée en que le passage annulaire (52) est défini entre un disque (44) fixé à l'arbre (20) et le carter (28).
- Machine tournante selon la revendication 4, caractérisée en ce que le disque (44) est fixé à une extrémité de l'arbre (20).
- Machine tournante selon la revendication 4 ou 5, caractérisée en ce que le disque (44) comporte à sa périphérie un joint labyrinthe annulaire (46).
- Machine tournante selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le système d'équilibrage axial passif (42) comporte en outre des moyens (52) pour calibrer le débit du flux secondaire de liquide (F2).
- Machine tournante selon les revendications 2 et 7, caractérisée en ce que les moyens pour calibrer le débit du flux secondaire de liquide comprennent ledit passage annulaire (52).
- Machine tournante selon la revendication 8, caractérisée en ce que le passage annulaire présente une extension radiale (e) prédéterminée afin de calibrer le débit du flux secondaire de liquide (F2).
- Machine tournante selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le flux secondaire de liquide (F2) est également utilisé pour refroidir un élément tournant (22, 32) de la machine.
- Machine tournante selon la revendication 10, caractérisé en ce que l'élément tournant est un palier (32), un moteur (22) et/ou un générateur électrique.
- Machine tournante (10) selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'elle est une pompe.
- Machine tournante (10) selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'elle est une turbine.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0754787A FR2915535B1 (fr) | 2007-04-30 | 2007-04-30 | Machine tournante comportant un systeme d'equilibrage axial passif |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1988292A1 EP1988292A1 (fr) | 2008-11-05 |
EP1988292B1 true EP1988292B1 (fr) | 2010-12-29 |
Family
ID=38777982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08155267A Active EP1988292B1 (fr) | 2007-04-30 | 2008-04-28 | Machine tournante comportant un système d'équilibrage axial passif |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080267763A1 (fr) |
EP (1) | EP1988292B1 (fr) |
JP (1) | JP5650372B2 (fr) |
KR (1) | KR101550748B1 (fr) |
FR (1) | FR2915535B1 (fr) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2943108B1 (fr) | 2009-03-16 | 2012-01-13 | Snecma | Butee axiale debrayable |
US8360712B2 (en) | 2010-01-22 | 2013-01-29 | General Electric Company | Method and apparatus for labyrinth seal packing rings |
US9181817B2 (en) | 2010-06-30 | 2015-11-10 | General Electric Company | Method and apparatus for labyrinth seal packing rings |
JP5751885B2 (ja) * | 2011-03-29 | 2015-07-22 | 株式会社神戸製鋼所 | 発電システム及び発電装置 |
EP3171033A1 (fr) * | 2015-11-19 | 2017-05-24 | Grundfos Holding A/S | Pompe centrifuge à étages multiples avec ouverture de carter pour la maintenance d'un piston d'équilibrage de poussée axiale |
ES2756199T3 (es) * | 2015-11-19 | 2020-04-27 | Grundfos Holding As | Bomba centrífuga multietapa con un émbolo de compensación de empuje axial, cuyos lados de presión y de aspiración están separados por un retén frontal |
CN111255528B (zh) * | 2020-01-22 | 2022-03-04 | 天津大学 | 一种千瓦量级超临界二氧化碳透平轴向力的平衡装置 |
FR3112812B1 (fr) | 2020-07-24 | 2022-07-29 | Safran Aircraft Engines | Pompe à carburant améliorée pour moteur d’aéronef |
CN112377272B (zh) * | 2020-11-30 | 2024-04-19 | 浙江博旭新能源科技有限公司 | 一种向心式透平轴向力调节装置 |
KR102652408B1 (ko) * | 2021-01-21 | 2024-03-29 | 현대중공업터보기계 주식회사 | 균형시스템 마모 방지 수단을 구비하는 원심 펌프 |
KR102548101B1 (ko) * | 2021-07-27 | 2023-06-27 | 협성철광 주식회사 | Lng 공급용 펌프 |
KR102417243B1 (ko) * | 2022-01-21 | 2022-07-06 | 주식회사 신성터보마스터 | 베어링의 윤활 및 냉각 성능이 향상된 lng펌프 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB190917268A (en) * | 1908-07-24 | 1910-01-20 | Henri Legros | An Improved Arrangement for Equilibrating the Axial Thrust in Centrifugal Pumps and the like. |
US3280750A (en) * | 1964-09-17 | 1966-10-25 | Crane Co | Motor driven pump |
DE1815088C3 (de) * | 1968-12-17 | 1974-11-07 | Klein, Schanzlin & Becker Ag, 6710 Frankenthal | Axialschubausgleich bei Spaltrohrmotorpumpen |
FR2032189A5 (fr) * | 1969-02-21 | 1970-11-20 | Guinard Pompes | |
US3563618A (en) * | 1969-08-13 | 1971-02-16 | Ivanov Viktor V | Gas- or liguid-lubricated hydrostatic double-action thrust |
US3652186A (en) * | 1970-05-25 | 1972-03-28 | Carter Co J C | Pressure lubricated, cooled and thrust balanced pump and motor unit |
GB1331668A (en) * | 1971-10-14 | 1973-09-26 | Yokota H | Device for balancing axial thrust on the impeller shaft of a centrifugal pump |
CH563530A5 (fr) * | 1973-03-22 | 1975-06-30 | Bbc Sulzer Turbomaschinen | |
US4115038A (en) * | 1975-01-27 | 1978-09-19 | Litzenberg David P | Motor driven pump |
JPS5825876B2 (ja) * | 1980-02-18 | 1983-05-30 | 株式会社日立製作所 | 軸推力平衡装置 |
JPS58192997A (ja) * | 1982-05-07 | 1983-11-10 | Hitachi Ltd | 立形モ−タポンプ |
US5044896A (en) * | 1988-10-31 | 1991-09-03 | Wilo-Werk Gmbh & Co. Pumpen - Und Apparatebau | Split tube centrifugal pump |
JPH0524992U (ja) * | 1991-03-29 | 1993-04-02 | 大阪瓦斯株式会社 | 液化ガス用サブマージドポンプ |
JPH0658238A (ja) * | 1992-08-04 | 1994-03-01 | Chubu Electric Power Co Inc | 多段水力機械 |
JP3435196B2 (ja) * | 1993-11-09 | 2003-08-11 | 株式会社 日立インダストリイズ | 液化ガスタンク用潜没ポンプの軸推力平衡装置 |
US5591016A (en) * | 1994-11-30 | 1997-01-07 | Nikkiso Co., Ltd. | Multistage canned motor pump having a thrust balancing disk |
US5567129A (en) * | 1995-05-25 | 1996-10-22 | Bonardi; G. Fonda | Thrust control system for gas-bearing turbocompressors |
US5659205A (en) * | 1996-01-11 | 1997-08-19 | Ebara International Corporation | Hydraulic turbine power generator incorporating axial thrust equalization means |
DE19631824A1 (de) * | 1996-08-07 | 1998-02-12 | Klein Schanzlin & Becker Ag | Kreiselpumpenlagerung mit Axialschubausgleich |
US6309174B1 (en) * | 1997-02-28 | 2001-10-30 | Fluid Equipment Development Company, Llc | Thrust bearing for multistage centrifugal pumps |
US6231302B1 (en) * | 1999-06-08 | 2001-05-15 | G. Fonda Bonardi | Thermal control system for gas-bearing turbocompressors |
DE10064717A1 (de) * | 2000-12-22 | 2002-07-11 | Grundfos As | Verfahren zum Betreiben eines Pumpenaggregats |
GB2384274A (en) * | 2002-01-16 | 2003-07-23 | Corac Group Plc | Downhole compressor with electric motor and gas bearings |
US7063519B2 (en) * | 2002-07-02 | 2006-06-20 | R & D Dynamics Corporation | Motor driven centrifugal compressor/blower |
JP4300088B2 (ja) * | 2003-09-29 | 2009-07-22 | 日機装株式会社 | サブマージドポンプ |
-
2007
- 2007-04-30 FR FR0754787A patent/FR2915535B1/fr not_active Expired - Fee Related
- 2007-06-11 US US11/811,638 patent/US20080267763A1/en not_active Abandoned
- 2007-08-13 KR KR1020070081066A patent/KR101550748B1/ko active IP Right Grant
-
2008
- 2008-04-28 EP EP08155267A patent/EP1988292B1/fr active Active
- 2008-04-30 JP JP2008118994A patent/JP5650372B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
US20080267763A1 (en) | 2008-10-30 |
KR101550748B1 (ko) | 2015-09-07 |
FR2915535B1 (fr) | 2009-07-24 |
KR20080097111A (ko) | 2008-11-04 |
JP2008278743A (ja) | 2008-11-13 |
FR2915535A1 (fr) | 2008-10-31 |
JP5650372B2 (ja) | 2015-01-07 |
EP1988292A1 (fr) | 2008-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1988292B1 (fr) | Machine tournante comportant un système d'équilibrage axial passif | |
CA2719472C (fr) | Dispositif et procede d'equilibrage de pression dans une enceinte palier de turboreacteur | |
EP2136073B1 (fr) | Système de paliers pour ensemble de turbomachines | |
EP3025061B1 (fr) | Pompe centrifuge, en particulier pour l'alimentation de moteurs de fusée | |
FR2907495A1 (fr) | Turbomachine | |
EP3269994B1 (fr) | Systeme de freinage ameliore pour machine hydraulique | |
FR2965858A1 (fr) | Amortisseur a compression de film liquide | |
EP1626170B1 (fr) | Turbomachine à soufflantes contrarotatives | |
WO2022096815A1 (fr) | Ensemble pour turbomachine d'aeronef a double flux, l'ensemble etant equipe d'ailettes de decharge d'air pilotees en incidence | |
WO2021116622A1 (fr) | Système propulsif aéronautique à faible débit de fuite et rendement propulsif amélioré | |
EP2376789B1 (fr) | Pompe a dispositif d'equilibrage axial. | |
CH705213B1 (fr) | Pompe comprenant un système d'équilibrage axial. | |
FR2947016A1 (fr) | Compresseur centrifuge. | |
EP3759353B1 (fr) | Turbomachine comportant un circuit de prelevement d'air | |
EP4185775B1 (fr) | Pompe à carburant améliorée pour moteur d'aéronef | |
EP4056829A1 (fr) | Refroidissement de pignons d'un réducteur mécanique d'une turbomachine | |
FR3108681A1 (fr) | Ensemble pour turbomachine d’aeronef a soufflante entrainee par un reducteur de vitesse, l’ensemble comprenant un amortisseur a compression de film d’huile sous pression regulee | |
FR2969714A1 (fr) | Recepteur de turbomachine d'aeronef a doublet d'helices contrarotatives non carenees, comprenant une turbine libre exterieure a maintien renforce | |
EP4146912B1 (fr) | Agencement pour turbomachine d'aeronef à lubrification ameliorée, l'agencement comprenant un arbre couplé en rotation à un élément suiveur, par des cannelures | |
EP4127417B1 (fr) | Ensemble pour turbomachine d'aéronef comportant un système amelioré de lubrification d'un réducteur d'entrainement de soufflante | |
EP4374048A1 (fr) | Manchon rapporté sur un arbre basse pression dans une turbomachine | |
FR2967467A1 (fr) | Dispositif d’alimentation en fluide d’au moins un film fluide amortisseur d’un palier d’un moteur a turbine a gaz et procede d’alimentation | |
FR3020404A1 (fr) | Circuit d'alimentation en fluide de geometries variables de turbomachine sans pompe volumetrique | |
FR3120388A1 (fr) | Aube tournante pour turbine de turbomachine d’aéronef, comprenant un organe passif souple de régulation de débit d’air de refroidissement de l’aube | |
FR3145340A1 (fr) | Mécanisme de changement de pas avec dispositif de verrouillage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080428 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17Q | First examination report despatched |
Effective date: 20090608 |
|
AKX | Designation fees paid |
Designated state(s): CH FR GB LI |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH FR GB LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: SNECMA, FR Effective date: 20170713 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240320 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240320 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 17 |