[go: up one dir, main page]

EP1941133A1 - Filterelement und filter zur abgasnachbehandlung - Google Patents

Filterelement und filter zur abgasnachbehandlung

Info

Publication number
EP1941133A1
EP1941133A1 EP06819064A EP06819064A EP1941133A1 EP 1941133 A1 EP1941133 A1 EP 1941133A1 EP 06819064 A EP06819064 A EP 06819064A EP 06819064 A EP06819064 A EP 06819064A EP 1941133 A1 EP1941133 A1 EP 1941133A1
Authority
EP
European Patent Office
Prior art keywords
filter element
filter
element according
walls
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06819064A
Other languages
English (en)
French (fr)
Inventor
Bernd Reinsch
Teruo Komori
Lars Thuener
Dominik Huelsmeier
Christian Schiller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1941133A1 publication Critical patent/EP1941133A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24488Differential nonuniformity at margin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24744Longitudinal or transverse tubular cavity or cell

Definitions

  • the invention relates to a filter element for cleaning the exhaust gases of an internal combustion engine according to the preamble of claim 1 and a soot filter with a filter element according to the independent claim 15.
  • Such filter elements are used for example as a soot filter for diesel internal combustion engines.
  • the filter elements often consist of a ceramic material and have a plurality of mutually parallel inlet channels and outlet channels.
  • Filter elements made of ceramic materials are produced by extrusion. This means that the blank of the filter element is a prismatic body with a plurality of mutually parallel channels. The channels of a blank are initially open at both ends.
  • soot deposits are oxidized, whereby heat is released. Since more soot deposits in the interior of the filter element than at its periphery. In addition, because the heat dissipation at the periphery of the filter element is better than in the interior of the same, occur especially in the regeneration of the filter element local temperature differences, which lead to thermal stresses within the filter element.
  • the invention has for its object to provide a filter element made of a ceramic material, preferably cordierite, which is relatively insensitive to the released during the oxidation of carbon deposits heat.
  • a filter element in particular for filtering exhaust gases of a diesel internal combustion engine, with a parallel to the main flow direction of the exhaust gas extending longitudinal axis, with a plurality of parallel to the longitudinal axis inlet channels and a plurality of parallel to the longitudinal axis extending outlet channels, wherein the inlet channels and the outlet channels be limited by filter walls, achieved in that the filter walls are at least partially coated.
  • the inventive coating of the filter walls increases their thermal inertia, so that the temperature rise resulting from the release of heat during soot oxidation is reduced.
  • the filter element according to the invention is more resistant to local differences in the loading of soot and to local differences in the heat dissipation of the heat generated during the oxidation of the deposited soot.
  • the entire filter element is coated. Rather, it is often sufficient if the areas of the filter element in which the highest operating temperatures occur are provided with a coating according to the invention.
  • the filter walls are coated on the inside of the inlet channels. This ensures that exactly where the soot is mainly deposited, namely on the insides of the inlet channels, the thermal inertia of the filter walls is particularly high, so that the heat generated during the oxidation of the deposited soot is not too Inadmissibly high local temperatures within the filter element leads.
  • coatings are conceivable as coating materials, which are chemically stable and inert to the filter material, in particular cordierite, and have a large volume and / or mass-specific heat capacity.
  • any specific heat capacity that is greater than the specific heat capacity of the starting material of the filter element is to be regarded as large.
  • the coating of the filter walls consists of oxides of the metals zirconium, cerium, lanthanum, titanium and / or aluminum.
  • the aforementioned boundary conditions namely chemical resistance, inert behavior towards the filter material, in particular cordierite, temperature resistance and high specific heat capacity are met.
  • the thickness of the coating is between 12 ⁇ m and 150 ⁇ m, preferably between 12 ⁇ m and 50 ⁇ m.
  • the thickness of the coating can be chosen locally different. This makes it possible to protect the most thermally stressed areas with a thicker layer against inadmissibly high temperatures than the thermally less stressed areas of the filter element. In general, the areas around the longitudinal axis and seen in the flow direction rear end of the filter element are thermally stressed the most. Particular preference is given to those coating materials which, for example, in addition to the required properties, such as chemical stability, inert behavior towards the filter material, in particular cordierite, temperature resistance and high specific heat capacity have other properties, such as catalytic properties.
  • the filter element according to the invention preferably has filter walls with a porosity between 40% and 65%, particularly preferably between 45% and 55%.
  • Suitable materials for the filter walls of the filter element are alumina, magnesium silicate, preferably cordierite, titanium oxide, silicon carbide and / or aluminum titanate.
  • the performance of the filter element according to the invention is further increased if the cross-sectional areas of the inlet channels and the cross-sectional areas of
  • the inside of the inlet channels is larger than the inner surface of the outlet channels. Since the storage capacity of the filter element for soot deposits essentially depends on the inlet surface of the inner surface of the inlet channels, the storage capacity of the filter element for soot is increased by the claimed geometry according to the invention.
  • the advantages mentioned above are also achieved with a soot filter with a filter element, with a housing, with a feed line and with a discharge, in that a filter element according to the invention is used.
  • Figure 1 is a schematic representation of a
  • Figure 2 shows an embodiment of a filter element according to the invention in longitudinal section
  • FIG. 3 shows an enlarged detail from FIG. 2,
  • an internal combustion engine carries the reference numeral 10.
  • the exhaust gases are discharged via an exhaust pipe 12, in which a filter device 14 is arranged.
  • soot particles are filtered out of the exhaust gas flowing in the exhaust pipe 12. This is especially true for diesel Internal combustion engines required to comply with legal requirements.
  • the filter device 14 comprises a cylindrical housing 16, in which a filter element 18, which is also rotationally symmetrical in the present exemplary embodiment, is also arranged.
  • a filter element 18 which is also rotationally symmetrical in the present exemplary embodiment, is also arranged.
  • the invention is not limited to these geometries.
  • FIG. 2 shows a cross section through a filter element 18 according to the prior art.
  • the filter element 18 is manufactured as an extruded shaped body from a ceramic material, such as cordierite.
  • the filter element 18 is flowed through in the direction of the arrows 20 of not shown exhaust gas.
  • An entrance surface has the reference numeral 22 in FIG. 2, while an exit surface in FIG. 2 has the reference numeral 24.
  • inlet channels 28 Parallel to a longitudinal axis 26 of the filter element 18 extend a plurality of inlet channels 28 in alternation with outlet channels 30.
  • the inlet channels 28 are closed at the outlet surface 24.
  • the sealing plugs are shown in FIG. 2 without reference numerals.
  • the outlet channels 30 are open at the outlet surface 24 and closed in the region of the inlet surface 22.
  • the flow path of the unpurified exhaust gas thus leads into one of the inlet channels 28 and from there through a filter wall (without reference numerals) in one of
  • Exit channels 30 This is exemplified by the arrows 32.
  • the outer diameter of the filter element 18 is denoted by D a in FIG.
  • D a The outer diameter of the filter element 18
  • a greatly enlarged section of the filter element 18 of FIG. 2 is not shown to scale.
  • the inner walls of the inlet channels 28 are coated with a coating 36.
  • this coating 36 must be porous, so that the exhaust gases can pass from the inlet channels 28 into the outlet channels 30 both through the coating 36 and through filter walls 34. Since the heat load of the filter element in the region of the exit surface 24 is greater than in the region of the entry surface 22, the thickness D of the coating 36 increases in the direction of the exit surface 24.
  • the coating 36 has a higher specific heat capacity than the filter walls 34, the heat capacity of the filter element is adapted to the thermal load of the same by the locally different thickness D of the coating 36. As a result, it is achieved, on the one hand, that no impermissibly high temperatures occur in the region of the exit surface 24 and, on the other hand, that no unnecessarily thick coating 36 is present in the region of the entry surface 22.
  • the coating 36 may be applied by various conventional methods known in the art. One possible method is to dive onto the filter element 18 in a suspension which contains the substances forming the subsequent coating 36 and then to subject it to a further heat treatment. In this case, both sides of the filter walls 34 would be coated.
  • a one-sided coating, as shown in FIG. 3 is shown, and how it is advantageous for technical and economic reasons, for example, be achieved in that the filter element 18 is filled at the inlet surface 22 with a suspension, and then the filter element 18 is subjected to a heat treatment.
  • the size of the grains contained in the suspension is to be matched to the size of the pores of the filter element 18, that the grains are deposited on the inner surface of the inlet channels 28 and the liquid of the suspension is sucked through the filter walls 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Es wird ein Filterelement für eine Abgasnachbehandlungseinrichtung einer Brennkraftmaschine vorgeschlagen, das aus einem beschichteten keramischen Werkstoff besteht und deshalb unempfindlicher gegenüber ortlichen Uberhitzungen ist.

Description

Filterelement und Filter zur Abgasnachbehandlung
Stand der Technik
Die Erfindung betrifft ein Filterelement zur Reinigung der Abgase einer Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1 und einen Rußfilter mit einem Filterelement nach dem nebengeordneten Anspruch 15. Derartige Filterelemente werden beispielsweise als Rußfilter für Dieselbrennkraftmaschinen eingesetzt.
Die Filterelemente bestehen häufig aus einem keramischen Werkstoff und weisen eine Vielzahl von parallel zueinander verlaufenden Eintrittskanälen und Austrittskanälen auf.
Hergestellt werden Filterelemente aus keramischen Werkstoffen durch Extrudieren. Dies bedeutet, dass der Rohling des Filterelements ein prismatischer Körper mit einer Vielzahl von parallel zueinander verlaufenden Kanälen ist. Die Kanäle eines Rohlings sind zunächst an beiden Enden offen.
Damit das zu reinigende Abgas durch die Wände des Filters strömt, wird ein Teil der Kanäle am hinteren Ende des Filterelements verschlossen, während ein anderer Teil der Kanäle am vorderen Ende des Filterelements verschlossen werden. Dadurch werden zwei Gruppen von Kanälen gebildet, nämlich die sogenannten Eintrittskanäle, welche am hinteren Ende verschlossen sind und die sogenannten Austrittskanäle, welche am Anfang des Filterelements verschlossen sind.
Zwischen den Eintrittskanälen und den Austrittskanälen besteht nur über die porösen Wände des Filterelements eine Strömungsverbindung, so dass das Abgas das Filterelement nur durchströmen kann, indem es aus den Eintrittskanälen durch die Wände des Filterelements hindurch in die Austrittskanäle strömt.
Bei der Regeneration der Filterelemente werden die Rußablagerungen oxidiert, wobei Wärme freigesetzt wird. Da sich im Inneren des Filterelements mehr Ruß ablagert als an dessen Peripherie. Weil außerdem die Wärmeabfuhr an der Peripherie des Filterelements besser ist als im Inneren desselben, treten vor allem bei der Regeneration des Filterelements lokale Temperaturunterschiede auf, die zu Wärmespannungen innerhalb des Filterelements führen.
Wenn die Wärmespannungen zu groß werden, entstehen Risse im Filterelement, die zu einem Versagen desselben führen. Diese Gefahr ist vor allem bei Filterelementen aus Cordierit gegeben, da Cordierit eine vergleichsweise geringe spezifische Wärmekapazität hat und deshalb bei der Oxidation von Rußablagerungen lokal sehr hohe Temperaturen auftreten können.
Der Erfindung liegt die Aufgabe zugrunde, ein Filterelement aus einem keramischen Werkstoff, bevorzug Cordierit, bereitzustellen, das relativ unempfindlich gegenüber der bei der Oxidierung der Rußablagerungen freiwerdenden Wärme ist . Diese Aufgabe wird bei einem Filterelement, insbesondere zur Filterung von Abgasen einer Dieselbrennkraftmaschine, mit einer parallel zur Hauptströmungsrichtung des abgasverlaufenden Längsachse, mit einer Vielzahl von parallel zur Längsachse verlaufenden Eintrittskanälen und mit einer Vielzahl von parallel zur Längsachse verlaufenden Austrittskanälen, wobei die Eintrittskanäle und die Austrittskanäle durch Filterwände begrenzt werden, dadurch gelöst, dass die Filterwände mindestens teilweise beschichtet sind.
Vorteile der Erfindung
Durch die erfindungsgemäße Beschichtung der Filterwände wird deren thermische Trägheit erhöht, so dass der aus der Freisetzung von Wärme bei der Rußoxidation resultierende Temperaturanstieg vermindert wird. Dadurch wird das erfindungsgemäße Filterelement beständiger gegen lokale Unterschiede bei der Beladung mit Ruß und gegenüber lokalen Unterschieden bezüglich der Wärmeabfuhr der beim Oxidieren des abgelagerten Rußes entstehenden Wärme.
Es ist erfindungsgemäß nicht erforderlich, dass das gesamte Filterelement beschichtet wird. Es ist vielmehr häufig schon ausreichend, wenn die Bereiche des Filterelements, in denen die höchsten Betriebstemperaturen auftreten, mit einer erfindungsgemäßen Beschichtung versehen werden.
Besonders bevorzugt ist es dabei, wenn die Filterwände auf der Innenseite der Eintrittskanäle beschichtet sind. Dadurch ist gewährleistet, dass genau dort wo der Ruß schwerpunktmäßig abgelagert wird, nämlich an den Innenseiten der Eintrittskanäle, die thermische Trägheit der Filterwände besonders hoch ist, so dass die beim Oxidieren des abgelagerten Rußes entstehende Wärme nicht zu unzulässig hohen lokalen Temperaturen innerhalb des Filterelements führt.
Grundsätzlich sind als Beschichtungsmaterialen alle Beschichtungen denkbar, die chemisch stabil und inert gegenüber dem Filtermaterial, insbesondere Cordierit, sind und eine große volumen- und/oder massespezifische Wärmekapazität aufweisen. Dabei ist jede spezifische Wärmekapazität als groß anzusehen, die größer als die spezifische Wärmekapazität des Ausgangsmaterials des Filterelements ist.
Es hat sich als vorteilhaft erwiesen, wenn die Beschichtung der Filterwände aus Oxiden der Metalle Zirkonium, Cer, Lanthan, Titan und/oder Aluminium besteht. Bei allen diesen Oxiden sind die zuvor genannten Randbedingungen, nämlich chemische Beständigkeit, inertes Verhalten gegenüber dem Filtermaterial, insbesondere Cordierit, Temperaturfestigkeit und hohe spezifische Wärmekapazität erfüllt.
Es hat sich in praktischen Versuchen als vorteilhaft erwiesen, wenn die Dicke der Beschichtung zwischen 12 μm und 150 μm, bevorzugt zwischen 12 μm und 50 μm, beträgt.
Es versteht sich von selbst, dass im Einzelfall auch die Dicke der Beschichtung lokal unterschiedlich gewählt werden kann. Dadurch ist es möglich, die am stärksten thermisch belasteten Bereiche mit einer dickeren Schicht gegen unzulässig hohe Temperaturen zu schützen als die thermisch weniger beanspruchten Bereiche des Filterelements. In der Regel sind die Bereiche um die Längsachse und im in Strömungsrichtung gesehen hinteren Ende des Filterelements thermisch am stärksten beansprucht. Besonders bevorzugt sind solche Beschichtungsmaterialen, die beispielsweise neben den geforderten Eigenschaften, wie chemische Stabilität, inertes Verhalten gegenüber dem Filtermaterial, insbesondere Cordierit, Temperaturbeständigkeit und hohe spezifische Wärmekapazität noch weitere Eigenschaften, wie beispielsweise katalytische Eigenschaften aufweisen.
Das erfindungsgemäße Filterelement hat bevorzugt Filterwände mit einer Porosität zwischen 40% und 65%, besonders bevorzugt zwischen 45% und 55%.
Es hat sich ebenfalls als vorteilhaft erwiesen, wenn die Zelldichte der Filterelemente zwischen 100 cpsi (cpsi = Zellen pro Quadratzoll) und 300 cpsi bevorzugt zwischen 180 cpsi und 240 cpsi beträgt.
Als geeignete Materialen für die Filterwände des Filterelements haben sich Aluminiumoxid, Magnesiumsilicat, bevorzugt Cordierit, Titanoxid, Silizumkarbid und/oder Aluminiumtitanat erwiesen.
Die Leistungsfähigkeit des erfindungsgemäßen Filterelements wird weiter gesteigert, wenn die Querschnittsflächen der Eintrittskanäle und die Querschnittsflächen der
Austrittskanäle in einem Verhältnis zwischen 2,0 und 1,0, bevorzugt zwischen 1,7 und 1,1 bilden. Dann nämlich ist die Innenseite der Eintrittskanäle größer als die Innenfläche der Austrittskanäle. Da die Speicherkapazität des Filterelements für Rußablagerungen im Wesentlichen von der Eintrittsfläche von der Innenfläche der Eintrittskanäle abhängt, wird durch die erfindungsgemäß beanspruchte Geometrie die Speicherkapazität des Filterelements für Ruß erhöht . Die eingangs genannten Vorteile werden auch mit einem Rußfilter mit einem Filterelement, mit einem Gehäuse, mit einer Zuleitung und mit einer Ableitung, dadurch gelöst, dass ein erfindungsgemäßes Filterelement eingesetzt wird.
Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind der nachfolgenden Zeichnung, deren Beschreibung und den Patentansprüchen entnehmbar. Alle in der Zeichnung, deren Beschreibung und den Patentansprüchen genannten Vorteile können sowohl Einzeln als auch in beliebiger Kombination miteinander erfindungswesentlich sein .
Zeichnungen
Es zeigen:
Figur 1 eine schematische Darstellung einer
Brennkraftmaschine mit einer erfindungsgemäßen Abgasnachbehandlungseinrichtung,
Figur 2 ein Ausführungsbeispiel eines erfindungsgemäßen Filterelements im Längsschnitt und
Figur 3 einen vergrößerten Ausschnitt aus Figur 2,
Beschreibung der Ausführungsbeispiele
In Figur 1 trägt eine Brennkraftmaschine das Bezugszeichen 10. Die Abgase werden über ein Abgasrohr 12 abgeleitet, in dem eine Filtereinrichtung 14 angeordnet ist. Mit dieser werden Rußpartikel aus dem im Abgasrohr 12 strömenden Abgas herausgefiltert. Dies ist insbesondere bei Diesel- Brennkraftmaschinen erforderlich, um gesetzliche Bestimmungen einzuhalten.
Bei dem in Figur 1 dargestellten Ausführungsbeispiel umfasst die Filtereinrichtung 14 ein zylindrisches Gehäuse 16, in dem eine im vorliegenden Ausführungsbeispiel rotationssymmetrisches, insgesamt ebenfalls zylindrisches Filterelement 18 angeordnet ist. Selbstverständlich ist die Erfindung nicht auf diese Geometrien beschränkt.
In Figur 2 ist ein Querschnitt durch ein Filterelement 18 nach dem Stand der Technik dargestellt. Das Filterelement 18 ist als extrudierter Formkörper aus einem keramischen Material, wie zum Beispiel Cordierit, hergestellt. Das Filterelement 18 wird in Richtung der Pfeile 20 von nicht dargestelltem Abgas durchströmt. Eine Eintrittsfläche hat in Figur 2 das Bezugszeichen 22, während eine Austrittsfläche in Figur 2 das Bezugszeichen 24 hat.
Parallel zu einer Längsachse 26 des Filterelements 18 verlaufen mehrere Eintrittskanäle 28 im Wechsel mit Austrittskanälen 30. Die Eintrittskanäle 28 sind an der Austrittsfläche 24 verschlossen. Die Verschlussstopfen sind in Figur 2 ohne Bezugszeichen dargestellt. Im Gegensatz dazu sind die Austrittskanäle 30 an der Austrittsfläche 24 offen und im Bereich der Eintrittsfläche 22 verschlossen.
Der Strömungsweg des ungereinigten Abgases führt also in einen der Eintrittskanäle 28 und von dort durch eine Filterwand (ohne Bezugszeichen) in einen der
Austrittskanäle 30. Exemplarisch ist dies durch die Pfeile 32 dargestellt.
Der Außendurchmesser des Filterelements 18 ist in Figur 2 mit Da bezeichnet . In Figur 3 ist ein stark vergrößerter Ausschnitt des Filterelements 18 von Figur 2 nicht maßstäblich dargestellt. Aus der vergrößerten Darstellung des Filterelements 18 wird deutlich, dass die Innenwände der Eintrittskanäle 28 mit einer Beschichtung 36 überzogen sind. Diese Beschichtung 36 muss selbstverständlich, ebenso wie die Filterwände 34, porös sein, so dass die Abgase sowohl durch die Beschichtung 36 als auch durch Filterwände 34 von den Eintrittskanälen 28 in die Austrittskanäle 30 gelangen können. Da die Wärmebelastung des Filterelements im Bereich der Austrittsfläche 24 größer ist als im Bereich der Eintrittsfläche 22, nimmt die Dicke D der Beschichtung 36 in Richtung der Austrittsfläche 24 zu.
Da, wie bereits erwähnt, die Beschichtung 36 eine höhere spezifische Wärmekapazität als die Filterwände 34 aufweisen, ist durch die lokal unterschiedliche Dicke D der Beschichtung 36 die Wärmekapazität des Filterelements an die thermische Belastung desselben angepasst. Dadurch wird einerseits erreicht, dass auch im Bereich der Austrittsfläche 24 keine unzulässig hohen Temperaturen auftreten und andererseits im Bereich der Eintrittsfläche 22 keine unnötig dicke Beschichtung 36 vorhanden ist.
Die Beschichtung 36 kann auf verschiedene herkömmliche und aus dem Stand der Technik bekannte Verfahren aufgebracht werden. Ein mögliches Verfahren besteht darin, dass auf das Filterelement 18 in einer Suspension, welche die spätere Beschichtung 36 bildenden Stoffe enthält, getaucht wird und anschließend einer weiteren Wärmebehandlung unterzogen wird. In diesem Fall würden beide Seiten der Filterwände 34 beschichtet .
Eine einseitige Beschichtung, wie sie in Figur 3 dargestellt ist, und wie sie aus technischen und wirtschaftlichen Gründen vorteilhaft ist, kann beispielsweise dadurch erreicht werden, dass das Filterelement 18 an der Eintrittsfläche 22 mit einer Suspension gefüllt wird, und anschließend das Filterelement 18 einer Wärmebehandlung unterzogen wird.
Weil zwischen der Eintrittsfläche 22 und den Austrittskanälen 30 eine Verbindung nur über die porösen Filterwände möglich ist, kann auf diese Weise erreicht werden, dass lediglich die Innenflächen der Eintrittskanäle 28 beschichtet werden.
Alternativ ist es auch möglich, die Suspension an der Eintrittsfläche 22 einzufüllen und an der Austrittsfläche
24 einen Unterdruck anzulegen, so dass die Suspension durch die Filterwände 34 hindurchgesaugt wird. Dabei ist die Größe der in der Suspension enthaltenen Körner so auf die Größe der Poren des Filterelements 18 abzustimmen, dass die Körner an der Innenfläche der Eintrittskanäle 28 abgeschieden werden und die Flüssigkeit der Suspension durch die Filterwände 34 abgesaugt wird.
Alternativ wäre es auch denkbar, ein Pulver in Luft, durch Anlegen einer Druckdifferenz durch das Filterelement 18 zu saugen. Dabei ist der Druck auf der an der Eintrittsfläche 22 größer als an der Austrittsfläche 24 und es wird an der Eintrittsfläche 22 die mit Pulver versetzte Luft angesaugt bzw. in das Filterelement 18 eingeblasen.
Des Weiteren ist es auch möglich, das Filterelement 18 von der Eintrittsfläche 22 her mit der Suspension zu füllen und anschließend das Filterelement 18 in eine Drehbewegung zu versetzen, so dass die Suspension gegen die Filterwände 34 gepresst wird und sich auf diese Weise die in der Suspension enthaltenen Körner an der Innenfläche der Eintrittskanäle 28 absetzen.

Claims

Ansprüche
1. Filterelement, insbesondere zur Filterung von Abgasen einer Dieselbrennkraftmaschine, mit einer parallel zur Hauptströmungsrichtung des Abgases verlaufenden Längsachse (26), mit einer Vielzahl von parallel zur Längsachse (26) verlaufenden Eintrittskanälen (28), und mit einer Vielzahl von parallel zur Längsachse (26) verlaufenden Austrittskanälen (30), wobei die Eintrittskanäle (28) und/oder die Austrittskanäle (30) durch Filterwände (34) begrenzt werden, dadurch gekennzeichnet, dass die Filterwände (34) mindestens teilweise beschichtet sind.
2. Filterelement nach Anspruch 1, dadurch gekennzeichnet, dass die Filterwände (34) auf der Innenseite der Eintrittskanäle (28) beschichtet sind.
3. Filterelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Beschichtung (36) der Filterwände
(34) aus einem chemisch stabilen und gegenüber dem Filtermaterial, insbesondere Cordierit, inerten Material mit großer volumen- und/oder massespezifischer Wärmekapazität besteht.
4. Filterelement nach Anspruch 3, dadurch gekennzeichnet, dass die Beschichtung (36) der Filterwände (34) aus Oxiden der Metalle Zirkonium (Zr) , Cer (Ce) , Lanthan (La) , Titan (Ti) und/oder Aluminium (Al) besteht.
5. Filterelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dicke der Beschichtung (36) zwischen 12 μm und 150 μm, bevorzugt zwischen 12 μm und 50 μm, beträgt.
6. Filterelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dicke der Beschichtung
(36) lokal unterschiedlich ist.
7. Filterelement nach Anspruch 6, dadurch gekennzeichnet, dass die Dicke der Beschichtung (36) im Bereich einer Eintrittsfläche (22) minimal ist und im Bereich einer Austrittsfläche (24) maximal ist.
8. Filterelement nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Dicke der Beschichtung (36) im
Bereich der Längsachse (26) maximal ist und im Bereich des Außendurchmessers minimal ist.
9. Filterelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dicke der Filterwände (34) zwischen 12 mil (1 mil= 25,4 mm/1000) und 25 mil, bevorzugt zwischen 17 mil und 22 mil, beträgt.
10. Filterelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Porosität der Filterwände
(34) zwischen 40% und 65%, bevorzugt zwischen 45% und 55%, liegt.
11. Filterelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zelldichte der Filterwände
(34) zwischen 100 cpsi und 300 cpsi, bevorzugt zwischen 180 cpsi und 240 cpsi, beträgt.
12. Filterelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Filterwände (34) aus Aluminium-Magnesium-Silikat, bevorzugt Cordierit, Titanoxid
(TiO2), Siliziumcarbid (SiC) und/oder Aluminiumtitanat bestehen.
13. Filterelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Eintrittskanäle (28) an der Eintrittsfläche (22) des Filterelements (18) beginnen und an einer Austrittsfläche (24) des Filterelements (18) verschlossen sind, und dass die Austrittskanäle (30) an der Eintrittsfläche (22) verschlossen sind und an der Austrittsfläche (24) enden.
14. Filterelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Querschnittsflächen (Ae) der Eintrittskanäle (21) und die Querschnittsflächen
(Aa) der Austrittskanäle (23) ein Verhältnis (Ae/Aa) zwischen 2,0 und 1,0, bevorzugt zwischen 1,7 und 1,1, bilden.
15. Filtereinrichtung mit einem Filterelement (18), mit einem Gehäuse (16) und mit einem Abgasrohr (12), dadurch gekennzeichnet, dass das Filterelement ein Filterelement (18) nach einem der vorhergehenden Ansprüche ist.
EP06819064A 2005-10-05 2006-09-29 Filterelement und filter zur abgasnachbehandlung Withdrawn EP1941133A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005047598A DE102005047598A1 (de) 2005-10-05 2005-10-05 Filterelement und Filter zur Abgasnachbehandlung
PCT/EP2006/066921 WO2007039579A1 (de) 2005-10-05 2006-09-29 Filterelement und filter zur abgasnachbehandlung

Publications (1)

Publication Number Publication Date
EP1941133A1 true EP1941133A1 (de) 2008-07-09

Family

ID=37397373

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06819064A Withdrawn EP1941133A1 (de) 2005-10-05 2006-09-29 Filterelement und filter zur abgasnachbehandlung

Country Status (5)

Country Link
US (1) US20080314008A1 (de)
EP (1) EP1941133A1 (de)
JP (1) JP2009511242A (de)
DE (1) DE102005047598A1 (de)
WO (1) WO2007039579A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649945B2 (ja) * 2009-12-25 2015-01-07 日本碍子株式会社 表面捕集層付き担体及び触媒担持表面捕集層付き担体
EP2556871B1 (de) * 2010-03-31 2016-09-07 NGK Insulators, Ltd. Wabenstrukturfilter
WO2013145320A1 (ja) * 2012-03-30 2013-10-03 イビデン株式会社 ハニカムフィルタ及びハニカムフィルタの製造方法
EP3673997B1 (de) 2017-10-19 2022-03-09 Cataler Corporation Abgasreinigungskatalysator und dessen verwendung

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390355A (en) * 1982-02-02 1983-06-28 General Motors Corporation Wall-flow monolith filter
JPH0333419A (ja) * 1989-06-29 1991-02-13 Mitsubishi Motors Corp 触媒コンバータ
DE3923985C1 (de) * 1989-07-20 1990-06-28 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
DE69328202T2 (de) * 1992-09-28 2000-07-20 Ford France S.A., Rueil-Malmaison Filterelement zur Steuerung der Abgasemission von Brennkraftmaschinen
US5492679A (en) * 1993-03-08 1996-02-20 General Motors Corporation Zeolite/catalyst wall-flow monolith adsorber
US5396764A (en) * 1994-02-14 1995-03-14 Ford Motor Company Spark ignition engine exhaust system
US20010026838A1 (en) * 1996-06-21 2001-10-04 Engelhard Corporation Monolithic catalysts and related process for manufacture
GB9919013D0 (en) * 1999-08-13 1999-10-13 Johnson Matthey Plc Reactor
US6428755B1 (en) * 1999-10-04 2002-08-06 Ford Global Technologies, Inc. Catalyst assembly for an exhaust gas system
US6846466B2 (en) * 2000-03-22 2005-01-25 Cataler Corporation Catalyst for purifying an exhaust gas
JP3925154B2 (ja) * 2000-12-25 2007-06-06 株式会社デンソー 排ガス浄化フィルタ
JP4393039B2 (ja) * 2001-07-18 2010-01-06 イビデン株式会社 触媒つきフィルタ、その製造方法及び排気ガス浄化システム
US20040001781A1 (en) * 2002-06-27 2004-01-01 Engelhard Corporation Multi-zone catalytic converter
FR2849670B1 (fr) * 2003-01-07 2007-04-13 Peugeot Citroen Automobiles Sa Filtre a particules pour ligne d'echappement d'un moteur a combustion interne et ligne d'echappement le comprenant
ATE340920T1 (de) * 2003-01-07 2006-10-15 Peugeot Citroen Automobiles Sa System zur regeneration eines partikelfilters in einer auspuffanlage
DE10308287B4 (de) * 2003-02-26 2006-11-30 Umicore Ag & Co. Kg Verfahren zur Abgasreinigung
US7119044B2 (en) * 2003-06-11 2006-10-10 Delphi Technologies, Inc. Multiple washcoats on filter substrate
JP4285096B2 (ja) * 2003-06-16 2009-06-24 株式会社デンソー 内燃機関の排ガス浄化装置
US7247184B2 (en) * 2003-09-25 2007-07-24 Corning Incorporated Asymmetric honeycomb wall-flow filter having improved structural strength

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007039579A1 *

Also Published As

Publication number Publication date
WO2007039579A1 (de) 2007-04-12
DE102005047598A1 (de) 2007-04-12
US20080314008A1 (en) 2008-12-25
JP2009511242A (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
DE602004011971T3 (de) Wabenstruktur
EP2027373B1 (de) Filtereinrichtung, insbesondere für ein abgassystem einer brennkraftmaschine
DE60311930T2 (de) Filterkatalysator für die Reinigung von Dieselabgasen und Herstellungsverfahren dafür
EP2247385B1 (de) Verfahren zur beschichtung eines dieselpartikelfilters und damit hergestelltes dieselpartikelfilter
US10653998B2 (en) Honeycomb structure
EP3981493A1 (de) Partikelfilter
WO2007057253A1 (de) Filterelement und filter zur abgasnachbehandlung
DE102004040548A1 (de) Verfahren zum Beschichten eines Wandflußfilters mit feinteiligen Feststoffen und damit erhaltenes Partikelfilter und seine Verwendung
KR20160041945A (ko) 파티큘레이트 필터
EP1941133A1 (de) Filterelement und filter zur abgasnachbehandlung
EP2554235B1 (de) Wabenstrukturfilter
EP1759762A2 (de) Verfahren zur Herstellung eines Filterelements und einer Trägerstruktur für einen Katalysator mit verbesserter Beständigkeit gegen Alkali- und Erdalkaliionen
DE102018205711B4 (de) Wabenfilter
DE102017002529A1 (de) Wabenfilter
DE102006061685A1 (de) Filterelement und Filter zur Abgasnachbehandlung einer Brennkraftmaschine
EP2026894B1 (de) Filtereinrichtung, insbesondere für ein abgassystem einer brennkraftmaschine
EP1687086A1 (de) Abgassystem für eine brennkraftmaschine
WO2007028743A1 (de) Verfahren zur herstellung eines filterelements und einer trägerstruktur für einen katalysator mit verbesserter temperaturbeständigkeit
DE102020001577B4 (de) Verfahren zur Herstellung einer Wabenstruktur
DE102006061693A1 (de) Abgasnachbehandlungsanordnung zur Behandlung von Abgasen einer Brennkraftmaschine
EP2162204B1 (de) Filterelement und filtereinrichtung zur abgasnachbehandlung einer brennkraftmaschine
WO2008122524A2 (de) Verfahren zur herstellung eines filterelements und einer trägerstruktur für einen katalysator mit verbesserter beständigkeit gegen potentiell schädigende substanzen
DE102006026769A1 (de) Filter zur Entfernung von Partikeln aus einem Gasstrom sowie Verfahren zu seiner Herstellung
DE102006041979A1 (de) Filterelement, insbesondere zur Filterung von Abgasen einer Brennkraftmaschine
DE102007003119A1 (de) Filterelement, insbesondere für einen Rußpartikelfilter einer Brennkraftmaschine, und Verfahren zur Herstellung eines Filterelements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT PL

17Q First examination report despatched

Effective date: 20081104

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090811