[go: up one dir, main page]

EP1838854B1 - Antibodies that recognize Beta Amyloid Peptide - Google Patents

Antibodies that recognize Beta Amyloid Peptide Download PDF

Info

Publication number
EP1838854B1
EP1838854B1 EP05854278A EP05854278A EP1838854B1 EP 1838854 B1 EP1838854 B1 EP 1838854B1 EP 05854278 A EP05854278 A EP 05854278A EP 05854278 A EP05854278 A EP 05854278A EP 1838854 B1 EP1838854 B1 EP 1838854B1
Authority
EP
European Patent Office
Prior art keywords
antibody
antibodies
human
residue
binding fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05854278A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1838854A2 (en
Inventor
Guriq Basi
Jack Steven Jacobson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Sciences Ireland ULC
Wyeth LLC
Original Assignee
Janssen Alzheimer Immunotherapy
Wyeth LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36588573&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1838854(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Janssen Alzheimer Immunotherapy, Wyeth LLC filed Critical Janssen Alzheimer Immunotherapy
Publication of EP1838854A2 publication Critical patent/EP1838854A2/en
Application granted granted Critical
Publication of EP1838854B1 publication Critical patent/EP1838854B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the humanized immunoglobulin light chain comprises (i) the variable region complementarity determining regions (CDRs) from the 15C11 immunoglobulin light chain variable region sequence set forth as SEQ ID NO:2, and (ii) a variable framework region from a human acceptor immunoglobulin light chain sequence, optionally having at least one framework residue substituted with the corresponding amino acid residue from the mouse 15C11 light chain variable region sequence, wherein the framework residue is a residue capable of affecting light chain variable region conformation or function as identified by analysis of a three-dimensional model of the 15C11 immunoglobulin light chain variable region.
  • CDRs variable region complementarity determining regions
  • immunoglobulins of the invention comprise pegylated antibody fragments, e.g ., Fabs and Fab's. In yet other embodiments, immunoglobulins of the invention comprise an aglycosylated constant region. In an exemplary embodiment, an immunoglobulin includes an amino acid substitution of an asparagine at position 297 to an alanine, thereby preventing glycosylation of the immunoglobulin.
  • the antibody or antigen binding fragment specifically binds to beta amyloid peptide (A ⁇ ) with a binding affinity of at least 10 -7 M. In yet another embodiment, the antibody or antigen binding fragment specifically binds to beta amyloid peptide (A ⁇ ) with a binding affinity of at least 10 -8 M. In another embodiment, the antibody or antigen binding fragment specifically binds to beta amyloid peptide (A ⁇ ) with a binding affinity of at least 10 -9 M.
  • the invention pertains to a humanized antibody or fragment thereof comprising the complementarity determining regions (CDR1, CDR2 and CDR3) of the 15C11 variable light chain sequence set forth as SEQ ID NO:2 and comprising the complementarity determining regions (CDR1, CDR2 and CDR3) of the 15C11 variable heavy chain sequence set forth as SEQ ID NO:4.
  • the invention pertains to a chimeric immunoglobulin comprising variable region sequence substantially as set forth in SEQ ID NO:2 or SEQ ID NO:4, and constant region sequences from a human immunoglobulin.
  • the disclosure also pertains to a method of preventing or treating an amyloidogenic disease in a patient, comprising administering to the patient an effective dosage of the humanized immunoglobulin described herein.
  • the invention pertains to a pharmaceutical composition
  • a pharmaceutical composition comprising an immunoglobulin molecule described herein and a pharmaceutical carrier.
  • the first, second and third light chain CDRs comprise: amino acids 24-39 of SEQ ID NO:2, amino acids 55-61 of SEQ ID NO:2 and amino acids 94-101 of SEQ ID NO:2, respectively.
  • the first, second and third heavy chain CDRs comprise: amino acids 26-35 of SEQ ID NO:4, amino acids 50-66 of SEQ ID NO:4 and amino acids 99-101 of SEQ ID NO:4, respectively.
  • the disclosure also pertains to a method of imaging amyloid deposits in the brain of a patient comprising administering to the patient an agent that specifically binds to A ⁇ , and detecting the antibody bound to A ⁇ .
  • the agent is an antibody comprising a light chain variable sequence as set forth in SEQ ID NO:2 and a heavy chain variable region sequence as set forth in SEQ ID NO:4, or an antigen-binding fragment of said antibody.
  • the antigen-binding fragment is a Fab fragment
  • the patient has or is at risk for an A ⁇ -related disease or disorder. In another embodiment, the patient has or is at risk for an amyloidogenic disease or disorder. In another embodiment, the patient has or is at risk for Alzheimer's disease.
  • substantially from a human acceptor immunoglobulin means that the majority or key framework residues are from the human acceptor sequence, allowing however, for substitution of residues at certain positions with residues selected to improve or do not diminish activity of the humanized immunoglobulin (e.g ., alter activity such that it more closely mimics the activity of the donor immunoglobulin) or selected to decrease the immunogenicity of the humanized immunoglobulin.
  • the invention features, in addition to the substitutions described above, a substitution of at least one rare human framework residue.
  • a rare residue can be substituted with an amino acid residue which is common for human variable chain sequences at that position.
  • a rare residue can be substituted with a corresponding amino acid residue from a homologous germline variable chain sequence.
  • the immunoglobulins described herein are particularly suited for use in therapeutic methods aimed at preventing or treating amyloidogenic diseases and/or the symptoms and/or behavioral deficits associated with amyloidogenic diseases or disorders.
  • the invention features a method of preventing or treating an amyloidogenic disease (e.g ., Alzheimer's disease) that involves administering to the patient an effective dosage of a humanized immunoglobulin as described herein.
  • an amyloidogenic disease e.g ., Alzheimer's disease
  • the invention features pharmaceutical compositions that include a humanized immunoglobulin as described herein and a pharmaceutical carrier. Also featured are isolated nucleic acid molecules, vectors and host cells for producing the immunoglobulins or immunoglobulin fragments or chains described herein, as well as methods for producing said immunoglobulins, immunoglobulin fragments or immunoglobulin chains
  • the present disclosure further features a method for identifying 15C11 amino acid residues amenable to substitution when producing a humanized immunoglobulin.
  • a method for identifying variable framework region residues amenable to substitution involves modeling the three-dimensional structure of a variable region on a solved homologous immunoglobulin structure and analyzing said model for residues capable of affecting immunoglobulin variable region conformation or function, such that residues amenable to substitution are identified.
  • the disclosure further features use of the variable region sequence set forth as SEQ ID NO:2, 4, or any portion thereof ( or portions thereof), in producing a three-dimensional image of a immunoglobulin, immunoglobulin chain, or domain thereof.
  • ⁇ -amyloid protein includes peptides resulting from secretase cleavage of APP and synthetic peptides having the same or essentially the same sequence as the cleavage products.
  • a ⁇ peptides of the invention can be derived from a variety of sources, for example, tissues, cell lines, or body fluids (e.g. sera or cerebrospinal fluid).
  • neurodegenerative disease refers broadly to disorders or diseases associated with or characterized by degeneration of neurons and/or nervous tissues, e.g . an amyloidogenic disease.
  • ⁇ -amyloid protein e.g ., wild-type, variant, or truncated ⁇ -amyloid protein
  • ⁇ -amyloid protein is the principal polypeptide component of the amyloid deposit.
  • Alzheimer's disease is an example of a "disease characterized by deposits of A ⁇ " or a "disease associated with deposits of A ⁇ ", e.g ., in the brain of a subject or patient.
  • cognitive disorder refers to a deficiency or impairment in one or more cognitive mental processes of a patient.
  • Cognitive deficits may have a number of origins: a functional mechanism (anxiety, depression), physiological aging (age-associated memory impairment), brain injury, psychiatric disorders (e.g . schizophrenia), drugs, infections, toxicants, or anatomical lesions.
  • exemplary cognitive deficits include deficiency or impairment in learning or memory (e.g., in short-term or long term learning and/or memory loss of intellectual abilities, judgment, language, motor skills, and/or abstract thinking).
  • dementia disorder refers to a disorder characterized by dementia (i.e ., general deterioration or progressive decline of cognitive abilities or dementia-like symptoms).
  • Dementia disorders are often associated with, or caused by, one or more aberrant processes in the brain or central nervous system (e.g. neurodegeneration). Dementia disorders commonly progress from mild through severe stages and interfere with the ability of a patient to function independently in everyday life. Dementia may be classified as cortical or subcortical depending on the area of the brain affected. Dementia disorders do not include disorders characterized by a loss of consciousness (as in delirium) or depression, or other functional mental disorders (pseudodementia).
  • animal model or "model animal”, as used herein, includes a member of a mammalian species such as rodents, non-human primates, sheep, dogs, and cows that exhibit features or characteristics of a certain system of disease or disorder, e.g ., a human system, disease or disorder.
  • exemplary non-human animals selected from the rodent family include rabbits, guinea pigs, rats and mice, most preferably mice.
  • An "animal model” of, or “model animal” having, a dementia disorder exhibits, for example, prominent cognitive deficits associated with a dementia-related disorder (e.g ., AD).
  • the model animal Preferably the model animal exhibits a progressive worsening of the cognitive deficit with increasing age, such that the disease progression in the model animal parallels the disease progression in a patient suffering from the dementia disorder.
  • single-chain immunoglobulin or “single-chain antibody” (used interchangeably herein) refers to a protein having a two-polypeptide chain structure consisting of a heavy and a light chain, said chains being stabilized, for example, by interchain peptide linkers, which has the ability to specifically bind antigen.
  • domain refers to a globular region of a heavy or light chain polypeptide comprising peptide loops ( e.g ., comprising 3 to 4 peptide loops) stabilized, for example, by ⁇ -pleated sheet and/or intrachain disulfide bond.
  • Binding fragments are produced by recombinant DNA techniques, or by enzymatic or chemical cleavage of intact immunoglobulins. Binding fragments include Fab, Fab', F(ab') 2 , Fabc, Fv, single chains, and single-chain antibodies. Other than “bispecific” or “bifunctional” immunoglobulins or antibodies, an immunoglobulin or antibody is understood to have each of its binding sites identical. A “bispecific” or “bifunctional antibody” is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Bispecific antibodies can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. See, e.g. , Songsivilai & Lachmann, Clin. Exp. Immunol. 79:315-321 (1990 ); Kostelny et al., J. Immunol. 148, 1547-1553 (1992 ).
  • humanized variable region refers to a variable region that includes a variable framework region substantially from a human immunoglobulin or antibody and complementarity determining regions (CDRs) substantially from a non-human immunoglobulin or antibody.
  • CDRs complementarity determining regions
  • corresponding region refers to a region or residue on a second amino acid or nucleotide sequence which occupies the same ( i.e. , equivalent) position as a region or residue on a first amino acid or nucleotide sequence, when the first and second sequences are optimally aligned for comparison purposes.
  • significant identity means that two polypeptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 60-70% sequence identity, more preferably at least 70-80% sequence identity, more preferably at least 80-90% identity, even more preferably at least 90-95% identity, and even more preferably at least 95% sequence identity or more (e.g., 99% sequence identity or more).
  • substantially identity means that two polypeptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 80-90% sequence identity, preferably at least 90-95% sequence identity, and more preferably at least 95% sequence identity or more ( e.g. , 99% sequence identity or more).
  • sequence comparison typically one sequence acts as a reference sequence, to which test sequences are compared.
  • test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated.
  • sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.
  • a mutation e.g., a backmutation
  • a mutation is said to substantially affect the ability of a heavy or light chain to direct antigen binding if it affects (e.g., decreases) the binding affinity of an intact immunoglobulin or antibody (or antigen binding fragment thereof) comprising said chain by at least an order of magnitude compared to that of the antibody (or antigen binding fragment thereof) comprising an equivalent chain lacking said mutation.
  • epitopes refers to a site on an antigen to which an immunoglobulin or antibody (or antigen binding fragment thereof) specifically binds.
  • Epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents, whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents.
  • An epitope typically includes at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acids in a unique spatial conformation.
  • An epitope is also recognized by immunologic cells, for example, B cells and/or T cells.
  • Cellular recognition of an epitope can be determined by in vitro assays that measure antigen-dependent proliferation, as determined by 3 H-thymidine incorporation, by cytokine secretion, by antibody secretion, or by antigen-dependent killing (cytotoxic T lymphocyte assay).
  • N-terminal epitope is an epitope or antigenic determinant comprising residues located within the N-terminus of A ⁇ peptide.
  • Exemplary N-terminal epitopes include residues within amino acids 1-10 of A ⁇ , preferably from residues 1-3, 1-4, 1-5,1-6, 1-7, 2-6, 3-6, or 3-7 of A ⁇ 42.
  • Other exemplary N-terminal epitopes start at residues 1-3 and end at residues 7-11 of A ⁇ .
  • Additional exemplary N-terminal epitopes include residues 2-4, 5, 6, 7 or 8 of A ⁇ , residues 3-5, 6, 7, 8 or 9 of A ⁇ , or residues 4-7, 8, 9 or 10 of A ⁇ 42.
  • C-terminal epitopes are epitopes or antigenic determinants comprising residues located within the central or mid-portion of the A ⁇ peptide. Additional exemplary epitopes or antigenic determinants include residues 33-40 or 33-42 of A ⁇ . Such epitopes can be referred to as "C-terminal epitopes”.
  • Capturing soluble A ⁇ refers to binding of soluble A ⁇ which is present in the plasma, e.g. , as part of protein complexes or in the central nervous system, by an immunoglobulin, thereby preventing accumulation of A ⁇ and/or promoting removal of A ⁇ from the CNS.
  • effector function refers to an activity that resides in the Fc region of an antibody (e.g ., an IgG antibody) and includes, for example, the ability of the antibody to bind effector molecules such as complement and/or Fc receptors, which can control several immune functions of the antibody such as effector cell activity, lysis, complement-mediated activity, antibody clearance, and antibody half-life.
  • an antibody e.g ., an IgG antibody
  • effector function refers to an activity that resides in the Fc region of an antibody (e.g ., an IgG antibody) and includes, for example, the ability of the antibody to bind effector molecules such as complement and/or Fc receptors, which can control several immune functions of the antibody such as effector cell activity, lysis, complement-mediated activity, antibody clearance, and antibody half-life.
  • effector molecule refers to a molecule that is capable of binding to the Fc region of an antibody (e.g ., an IgG antibody) including, but not limited to, a complement protein or a Fc receptor.
  • Light chains are classified as either kappa or lambda and are about 230 residues in length.
  • Heavy chains are classified as gamma ( ⁇ ), mu ( ⁇ ), alpha ( ⁇ ), delta ( ⁇ ), or epsilon ( ⁇ ), are about 450-600 residues in length, and define the antibody's isotype as IgG, IgM, IgA, IgD and IgE, respectively.
  • Both heavy and light chains are folded into domains.
  • domain refers to a globular region of a protein, for example, an immunoglobulin or antibody.
  • Immunoglobulin or antibody domains include, for example, three or four peptide loops stabilized by ⁇ -pleated sheet and an interchain disulfide bond.
  • Intact light chains have, for example, two domains (V L and C L ) and intact heavy chains have, for example, four or five domains (V H , C H 1, C H 2, and C H 3).
  • Epitope specificity of an antibody can be determined, for example, by forming a phage display library in which different members of the library display different subsequences of A ⁇ . The phage display library is then screened for members specifically bind to an antibody under test. A family of sequences is selected and isolated. Typically, such a family contains a common core sequence, and varying lengths of flanking sequences in different members. The shortest core sequence showing specific binding to the antibody defines the epitope bound by the antibody. Antibodies can also be tested for epitope specificity in a competition assay with an antibody whose epitope specificity has already been determined.
  • Antibodies that specifically bind to a preferred segment of A ⁇ without binding to other regions of A ⁇ have a number of advantages relative to monoclonal antibodies binding to other regions or polyclonal sera to intact A ⁇ .
  • dosages of antibodies that specifically bind to preferred segments contain a higher molar dosage of antibodies effective in clearing amyloid plaques.
  • antibodies specifically binding to preferred segments can induce a clearing response against amyloid deposits without inducing a clearing response against intact APP polypeptide, thereby reducing the potential side effects.
  • Rabbits or guinea pigs are typically used for making polyclonal antibodies.
  • Exemplary preparation of polyclonal antibodies, e.g., for passive protection, can be performed as follows. 125 non-transgenic mice are immunized with 100 ⁇ g A ⁇ 1-42, plus CFA/IFA adjuvant, and euthanized at 4-5 months. Blood is collected from immunized mice. IgG is separated from other blood components. Antibody specific for the immunogen may be partially purified by affinity chromatography. An average of about 0.5-1 mg of immunogen-specific antibody is obtained per mouse, giving a total of 60-120 mg.
  • Residues which are "adjacent to a CDR region” include amino acid residues in positions immediately adjacent to one or more of the CDRs in the primary sequence of the humanized immunoglobulin chain, for example, in positions immediately adjacent to a CDR as defined by Kabat, or a CDR as defined by Chothia (See e.g., Chothia and Lesk JMB 196:901 (1987 )). These amino acids are particularly likely to interact with the amino acids in the CDRs and, if chosen from the acceptor, to distort the donor CDRs and reduce Affinity. Moreover, the adjacent amino acids may interact directly with the antigen ( Amit et al., Science, 233:747 (1986 ), ) and selecting these amino acids from the donor may be desirable to keep all the antigen contacts that provide affinity in the original antibody.
  • Residues that "otherwise interact with a CDR region” include those that are determined by secondary structural analysis to be in a spatial orientation sufficient to affect a CDR region.
  • residues that "otherwise interact with a CDR region” are identified by analyzing a three-dimensional model of the donor immunoglobulin (e.g ., a computer-generated model).
  • a three-dimensional model typically of the original donor antibody, shows that certain amino acids outside of the CDRs are close to the CDRs and have a good probability of interacting with amino acids in the CDRs by hydrogen bonding, Van der Waals forces, hydrophobic interactions, etc.
  • the donor immunoglobulin amino acid rather than the acceptor immunoglobulin amino acid may be selected.
  • Affinity maturation techniques can be used to alter the CDR region(s) followed by screening of the resultant binding molecules for the desired change in binding.
  • the method may also be used to alter the donor CDR, typically a mouse CDR, to be less immunogenic such that a potential human anti-mouse antibody (HAMA) response is minimized or avoided.
  • HAMA human anti-mouse antibody
  • changes in binding affinity as well as immunogenicity can be monitored and scored such that an antibody optimized for the best combined binding and low immunogenicity are achieved (see, e.g ., U.S. Pat. No. 6,656,467 and U.S. Pat. Pub. US20020164326A1 ).
  • acceptor human framework amino acids that are "rare" for a human immunoglobulin at that position. These amino acids can be substituted with amino acids from the equivalent position of the mouse donor antibody or from the equivalent positions of more typical human immunoglobulins. For example, substitution may be desirable when the amino acid in a human framework region of the acceptor immunoglobulin is rare for that position and the corresponding amino acid in the donor immunoglobulin is common for that position in human immunoglobulin sequences; or when the amino acid in the acceptor immunoglobulin is rare for that position and the corresponding amino acid in the donor immunoglobulin is also rare, relative to other human sequences.
  • Rare mouse residues are identified by comparing the donor VL and/or VH sequences with the sequences of other members of the subgroup to which the donor VL and/or VH sequences belong (according to Kabat) and identifying the residue positions which differ from the consensus. These donor specific differences may point to somatic mutations which enhance activity. Unusual or rare residues close to the binding site may possibly contact the antigen, making it desirable to retain the mouse residue. However, if the unusual mouse residue is not important for binding, use of the corresponding acceptor residue is preferred as the mouse residue may create immunogenic neoepitopes in the humanized antibody. In the situation where an unusual residue in the donor sequence is actually a common residue in the corresponding acceptor sequence, the preferred residue is clearly the acceptor residue.
  • a humanized antibody of the present invention has structural features as described herein, and specifically binds to an epitope within residues 13-28 of A ⁇ , e.g., comprising residues 19-22 of A ⁇ ).
  • nucleic acid sequences will encode each immunoglobulin amino acid sequence.
  • the desired nucleic acid sequences can be produced by de novo solid-phase DNA synthesis or by PCR mutagenesis of an earlier prepared variant of the desired polynucleotide.
  • Oligonucleotide-mediated mutagenesis is a preferred method for preparing substitution, deletion and insertion variants of target polypeptide DNA. See Adelman et al., DNA 2:183 (1983). Briefly, the target polypeptide DNA is altered by hybridizing an oligonucleotide encoding the desired mutation to a single-stranded DNA template. After hybridization, a DNA polymerase is used to synthesize an entire second complementary strand of the template that incorporates the oligonucleotide primer, and encodes the selected alteration in the target polypeptide DNA.
  • a humanized antibody of the invention includes the 15C11 VH region linked to an IgG1 constant region. In another embodiment, a humanized antibody of the invention includes the 15C11 VH region linked to an IgG4 constant region.
  • antibody fragments are also contemplated within the scope of the instant invention.
  • fragments of non-human, and/or chimeric antibodies are provided.
  • fragments of humanized antibodies are provided. Typically, these fragments exhibit specific binding to antigen with an affinity of at least 10 7 , and more typically 10 8 or 10 9 M -1 .
  • Humanized antibody fragments include separate heavy chains, light chains, Fab, Fab', F(ab')2, Fabc, and Fv. Fragments are produced by recombinant DNA techniques, or by enzymatic or chemical separation of intact immunoglobulins.
  • Profiles are likewise generated at successive positions along the antigenic peptide.
  • the combined profile, or epitope map, (reflecting substitution at each position with all 19 non-native residues) can then be compared to a map similarly generated for a second antibody.
  • Substantially similar or identical maps indicate that antibodies being compared have the same or similar epitope specificity.
  • mice are injected intraperitoneally as needed over a 4 month period to maintain a circulating antibody concentration measured by ELISA titer of greater than 1/1000 defined by ELISA to A ⁇ 42 or other immunogen. Titers are monitored and mice are euthanized at the end of 6 months of injections. Histochemistry, A ⁇ levels and toxicology are performed post mortem. Ten mice are used per group.
  • An antibody's ability to improve cognition in the CFC assay is further believed to be a strong indicator or predictor of the antibody's ultimate human therapeutic efficacy (in particular, efficacy in rapidly improving cognition in a patient). Accordingly, a comparison of A ⁇ antibody binding preferences and/or affinities leads to the identification of certain antibodies as candidates for use in the therapeutic methods of the invention, in particular, for use in method for effecting rapid improvement in cognition in a patient.
  • the binding of an antibody to one or more soluble, oligomeric A ⁇ species or to monomeric A ⁇ can be determined qualitatively, quantitatively, or combination of both.
  • any technique capable of distinguishing oligomeric A ⁇ species from monomeric A ⁇ in an A ⁇ preparation comprising the species can be used.
  • one or more of immunoprecipitation, electrophoretic separation, and chromatographic separation e.g ., liquid chromatography
  • chromatographic separation e.g ., liquid chromatography
  • the CFC assay provides a method for independently testing and/or validating the therapeutic effect of agents for preventing or treating a cognitive disease or disorder, and in particular, a disease or disorder affecting one or more regions of the brains, e.g., the hippocampus, subiculum, cingulated cortex, prefrontal cortex, perirhinal cortex, sensory cortex, and medial temporal lobe.
  • a cognitive disease or disorder e.g., the hippocampus, subiculum, cingulated cortex, prefrontal cortex, perirhinal cortex, sensory cortex, and medial temporal lobe.
  • the aversive response is usually characterized on the first day of testing to determine a baseline for unconditioned fear with aversive response results on subsequent test days (e.g ., freezing in the same context but in the absence of the aversive stimulus and/or freezing in presence of the cue but in the absence of the aversive experience) being characterized as contextually conditioned fear.
  • test animals are typically tested separately by independent technicians and scored over time. Additional experimental design details can be found in the art, for example, in Crawley, JN, What's Wrong with my Mouse; Behavioral Phenotyping of Transgenic and Knockout Mice, Wiley-Liss, NY (2000 ).
  • transgenic mouse strains are available that overexpress APP and develop amyloid plaque pathology and/or develop cognitive deficits that are characteristic of Alzheimer's disease (see for example, Games et al., supra, Johnson-Wood et al., Proc. Natl. Acad. Sci. USA 94:1550 (1997 ); Masliah E and Rockenstein E. (2000) JNeural Transm Suppl.;59:175-83 ) .
  • the animal model exhibits a prominent cognitive deficit associated with learning or memory in addition to the neurodegenerative pathology that associated with a amyloidogenic disorder. More preferably, the cognitive deficit progressively worsens with increasing age, such that the disease progression in the model animal parallels the disease progression in a subject suffering from the amyloidogenic disorder.
  • Conditional fear conditioning and other in vivo assays to test the functionality of the antibodies described herein may be performed using wild-type mice or mice having a certain genetic alteration leading to impaired memory or mouse models of neurodegenerative disease, e.g., Alzheimer's disease, including mouse models which display elevated levels of soluble A ⁇ in the cerebrospinal fluid (CSF) or plasma.
  • animal models for Alzheimer's disease include transgenic mice that overexpress the "Swedish" mutation of human amyloid precursor protein ( hAPPswe; Tg2576) which show age-dependent memory deficits and plaques ( Hsiao et al. (1996) Science 274:99-102 ).
  • the in vivo functionality of the antibodies described herein can also be tested using PDAPP transgenic mice, which express a mutant form of human APP (APP V71F ) and develop Alzheimer's disease at a young age ( Bard, et al. (2000) Nature Medicine 6:916-919 ; Masliah E, et al. (1996) JNeurosci. 15;16(18):5795-811 ).
  • Other mouse models for Alzheimer's disease include the PSAPP mouse, a doubly transgenic mouse (PSAPP) overexpressing mutant APP and PS1 transgenes, described in Holcomb, et al. (1998) Nature Medicine 4:97-110 , and the PS-1 mutant mouse, described in Duff, et al. (1996) Nature 383, 710-713 .
  • PSAPP doubly transgenic mouse
  • PSAPP a doubly transgenic mouse
  • PS-1 mutant mouse described in Duff, et al. (1996) Nature 383, 710-713 .
  • the effector function of an antibody resides in the constant or Fc region of the molecule which can mediate binding to various effector molecules, e.g., complement proteins or Fc receptors.
  • the binding of complement to the Fc region is important, for example, in the opsonization and lysis of cell pathogens and the activation of inflammatory responses.
  • the above-mentioned immune functions may be desirable.
  • various aspects of the effector function of the molecule including enhancing or suppressing various reactions of the immune system, with beneficial effects in diagnosis and therapy, are achieved.
  • Antibodies of the invention can be produced which react only with certain types of Fc receptors, for example, the antibodies of the invention can be modified to bind to only certain Fc receptors, or if desired, lack Fc receptor binding entirely, by deletion or alteration of the Fc receptor binding site located in the Fc region of the antibody.
  • Other desirable alterations of the Fc region of an antibody of the invention are cataloged below.
  • the EU numbering system ie . as in the EU index of Kabat et al., supra
  • amino acid residue(s) of the Fc region e.g ., of an IgG antibody
  • the numbering system is also employed to compare antibodies across species such that a desired effector function observed in, for example, a mouse antibody, can then be systematically engineered into a human, humanized, or chimeric antibody of the invention.
  • a comparison of the sequence of these proteins in the hinge-link region shows that the sequence from EU numbering positions 234 to 238, i.e., Leu-Leu-Gly-Gly-Pro in the strong binders becomes Leu-Glu-Gly-Gly-Pro in mouse gamma 2b, i.e., weak binders. Accordingly, a corresponding change in a human antibody hinge sequence can be made if reduced Fc ⁇ I receptor binding is desired. It is understood that other alterations can be made to achieve the same or similar results. For example, the affinity of FcyRI binding can be altered by replacing the specified residue with a residue having an inappropriate functional group on its sidechain, or by introducing a charged functional group (e.g. , Glu or Asp) or for example an aromatic non-polar residue ( e.g ., Phe, Tyr, or Trp).
  • a charged functional group e.g. , Glu or Asp
  • an aromatic non-polar residue e.g ., Phe, Tyr,
  • an antibody of the invention is a humanized antibody including amino acid alterations at one or more EU positions 234, 235, 236 and 237.
  • a humanized antibody includes amino acid alterations at EU positions 234 and 237 of the hinge link region derived from IgG1 (i.e., L234A and G237A).
  • the first component of the complement system, Cl comprises three proteins known as Clq, Clr and Cls which bind tightly together. It has been shown that Clq is responsible for binding of the three protein complex to an antibody.
  • the Clq binding activity of an antibody can be altered by providing an antibody with an altered CH 2 domain in which at least one of the amino acid residues at EU amino acid positions 318, 320, and 322 of the heavy chain has been changed to a residue having a different side chain.
  • suitable alterations for altering, e.g., reducing or abolishing specific Clq-binding to an antibody include changing any one of residues at EU positions 318 (Glu), 320 (Lys) and 322 (Lys), to Ala.
  • Immune responses against amyloid deposits can also be induced by administration of nucleic acids encoding antibodies and their component chains used for passive immunization.
  • nucleic acids can be DNA or RNA.
  • a nucleic acid segment encoding an immunogen is typically linked to regulatory elements, such as a promoter and enhancer, that allow expression of the DNA segment in the intended target cells of a patient.
  • regulatory elements such as a promoter and enhancer
  • exemplary promoter and enhancer elements include those from light or heavy chain immunoglobulin genes and/or the CMV major intermediate early promoter and enhancer ( Stinski, U.S. Patent Nos. 5,168,062 and 5,385,839 ).
  • the linked regulatory elements and coding sequences are often cloned into a vector.
  • the two chains can be cloned in the same or separate vectors.
  • the isotype of the antibody is IgG4.
  • an antibody of the invention is engineered to have an isotype having reduced effector function (e.g ., reduced Fc-mediated phagocytosis, reduced ability to opsonize plaques etc. ).
  • an antibody of the invention is a humanized 15C11 antibody having an IgG4 isotype.
  • the present invention provides antibodies for use in methods for effecting rapid improvement in cognition in a patient having or at risk for an suffering from an A ⁇ -related disease or disorder or amyloidogenic disease or disorder (e.g ., AD).
  • the methods feature administering an effective dose of an antibody agent such that rapid improvement in cognition is achieved.
  • improvement in one or more cognitive deficits in the patient e.g ., procedural learning and/or memory, deficits
  • the cognitive deficit can be an impairment in explicit memory (also known as "declarative" or "working" memory), which is defined as the ability to store and retrieve specific information that is available to consciousness and which can therefore be expressed by language ( e.g. the ability to remember a specific fact or event).
  • the cognitive deficit can be an impairment in procedural memory (also known as "implicit” or “contextual” memory), which is defined as the ability to acquire, retain, and retrieve general information or knowledge that is not available to consciousness and which requires the learning of skills, associations, habits, or complex reflexes to be expressed, e.g. the ability to remember how to execute a specific task.
  • procedural memory also known as "implicit” or “contextual” memory
  • Individuals suffering from procedural memory deficits are much more impaired in their ability to function normally. As such, treatments which are effective in improving deficits in procedural memory are highly desirable and advantageous.
  • Indicators of patients having probable AD include, but are not limited to, patients (1) having dementia, (2) of an age of 40-90 years old, (3) cognitive deficits, e.g., in two or more cognitive domains, (4) progression of deficits for more than six months, (5) consciousness undisturbed, and/or (6) absence of other reasonable diagnoses.
  • MRI three-dimensional magnetic resonance imaging
  • PET positron emission tomography
  • SPECT single-photon emission computed tomography
  • Indicators of patients having probable AD include, but are not limited to, patients (1) having dementia, (2) of an age of 40-90 years old, (3) cognitive deficits, e.g., in two or more cognitive domains, (4) progression of deficits for more than six months, (5) consciousness undisturbed, and/or (6) absence of other reasonable diagnoses.
  • AD Alzheimer's disease
  • Common symptoms of AD include cognitive deficits that affect the performance of routine skills or tasks, problems with language, disorientation to time or place, poor or decreased judgement, impairments in abstract thought, loss of motor control, mood or behaviour alteration, personality change, or loss of initiative.
  • the number deficits or the degree of the cognitive deficit displayed by the patient usually reflects the extent to which the disease has progressed. For example, the patient may exhibit only a mild cognitive impairment, such that the patient exhibits problems with memory (e.g. contextual memory) but is otherwise able to function well.
  • ADAS-Cog Alzheimer's disease Assessment Scale-Cognitive
  • the ADAS-Cog is 11-part test that takes 30 minutes to complete.
  • the ADAS-Cog is a preferred brief exam for the study of language and memory skills. See Rosen et al. (1984) Am J Psychiatry. 141(11):1356-64 ; Ihl et al. (2000) Neuropsychobiol. 41(2):102-7 ; and Weyer et al. (1997) Int Psychogeriatr. 9(2):123-38 .
  • the Cambridge Neuropsychological Test Automated Battery (CANTAB) is used for the assessment of cognitive deficits in humans with neurodegenerative diseases or brain damage. It consists of thirteen interrelated computerized tests of memory, attention, and executive function, and is administered via a touch sensitive screen from a personal computer. The tests are language and largely culture free, and have shown to be highly sensitive in the early detection and routine screening of Alzheimer's disease. See Swainson et al. (2001) Dement Geriatr Cogn Disord.;12:265-280 ; and Fray and Robbins (1996) Neurotoxicol Teratol. 18(4):499-504 . Robbins et al. (1994) Dementia 5(5):266-81 .
  • the Seven-Minute Screen is a screening tool to help identify patients who should be evaluated for Alzheimer's disease.
  • the screening tool is highly sensitive to the early signs of AD, using a series of questions to assess different types of intellectual functionality.
  • the test consists of 4 sets of questions that focus on orientation, memory, visuospatial skills and expressive language. It can distinguish between cognitive changes due to the normal aging process and cognitive deficits due to dementia. See Solomon and Pendlebury (1998) Fam Med. 30(4):265-71 , Solomon et al. (1998) Arch Neurol. 55(3):349-55 .
  • agent reduces or eliminates myocognitive impairment in patients that have not yet developed characteristic Alzheimer's pathology.
  • An amount adequate to accomplish therapeutic or prophylactic treatment is defined as a therapeutically- or prophylactically-effective dose.
  • agents are usually administered in several dosages until a sufficient immune response has been achieved.
  • the term "immune response” or "immunological response” includes the development of a humoral (antibody mediated) and/or a cellular (mediated by antigen-specific T cells or their secretion products) response directed against an antigen in a recipient subject.
  • Such a response can be an active response, i.e ., induced by administration of immunogen, or a passive response, i.e. , induced by administration of immunoglobulin or antibody or primed T-cells.
  • the immune response is monitored and repeated dosages are given if the immune response starts to wane.
  • Effective doses of the compositions of the present invention, for the treatment of the above described conditions vary depending upon many different factors, including means of administration, target site, physiological state of the patient, whether the patient is human or an animal, other medications administered, and whether treatment is prophylactic or therapeutic.
  • the patient is a human but non-human mammals including transgenic mammals can also be treated. Treatment dosages need to be titrated to optimize safety and efficacy.
  • the dosage ranges from about 0.0001 to 100 mg/kg, and more usually 0.01 to 5 mg/kg (e.g., 0.02 mg/kg, 0.25 mg/kg, 0.5 mg/kg, 0.75 mg/kg, 1mg/kg, 2 mg/kg, etc.), of the host body weight.
  • dosages can be 1 mg/kg body weight or 10 mg/kg body weight or within the range of 1-10 mg/kg, preferably at least 1 mg/kg.
  • dosages can be 0.5 mg/kg body weight or 15 mg/kg body weight or within the range of 0.5-15 mg/kg, preferably at least 1 mg/kg.
  • dosages can be 0.5 mg/kg body weight or 20 mg/kg body weight or within the range of 0.5-20 mg/kg, preferably at least 1 mg/kg. In another example, dosages can be 0.5 mg/kg body weight or 30 mg/kg body weight or within the range of 0.5-30 mg/kg, preferably at least 1 mg/kg. In a preferred example, dosages can be about 30 kg/mg. In a particularly preferred example, the 15C11 antibody is administered intraperitoneally at a dose range from approximately 0.3 mg/kg to approximately 30 mg/kg.
  • Antibody is usually administered on multiple occasions. Intervals between single dosages can be weekly, monthly or yearly. Intervals can also be irregular as indicated by measuring blood levels of antibody to A ⁇ in the patient. In some methods, dosage is adjusted to achieve a plasma antibody concentration of 1-1000 ⁇ g/ml and in some methods 25-300 ⁇ g/ml. Alternatively, antibody can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the antibody in the patient. In general, humanized antibodies show the longest half-life, followed by chimeric antibodies and nonhuman antibodies.
  • treatment can begin at any age (e.g., 10, 20, 30). Usually, however, it is not necessary to begin treatment until a patient reaches 40, 50, 60 or 70. Treatment typically involves multiple dosages over a period of time. Treatment can be monitored by assaying antibody levels over time. If the response falls, a booster dosage is indicated. In the case of potential Down's syndrome patients, treatment can begin antenatally by administering therapeutic agent to the mother or shortly after birth.
  • a relatively high dosage e.g., from about 1 to 200 mg of antibody per dose, with dosages of from 5 to 25 mg being more commonly used
  • a relatively short intervals is sometimes required until progression of the disease is reduced or terminated, and preferably until the patient shows partial or complete amelioration of symptoms of disease. Thereafter, the patient can be administered a prophylactic regime.
  • Doses for nucleic acids encoding antibodies range from about 10 ng to 1 g, 100 ng to 100 mg, 1 ⁇ g to 10 mg, or 30-300 ⁇ g DNA per patient.
  • Doses for infectious viral vectors vary from 10-100, or more, virions per dose.
  • Agents of the invention can also be administered in combination with other agents that enhance access of the therapeutic agent to a target cell or tissue, for example, liposomes and the like. Coadministering such agents can decrease the dosage of a therapeutic agent (e.g., therapeutic antibody or antibody chain) needed to achieve a desired effect.
  • a therapeutic agent e.g., therapeutic antibody or antibody chain
  • compositions or formulation may also include other carriers, adjuvants, or nontoxic, nontherapeutic, nonimmunogenic stabilizers and the like.
  • agents of the invention can be administered as injectable dosages of a solution or suspension of the substance in a physiologically acceptable diluent with a pharmaceutical carrier that can be a sterile liquid such as water oils, saline, glycerol, or ethanol.
  • a pharmaceutical carrier that can be a sterile liquid such as water oils, saline, glycerol, or ethanol.
  • auxiliary substances such as wetting or emulsifying agents, surfactants, pH buffering substances and the like can be present in compositions.
  • Other components of pharmaceutical compositions are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, and mineral oil.
  • glycols such as propylene glycol or polyethylene glycol are preferred liquid carriers, particularly for injectable solutions.
  • Antibodies can be administered in the form of a depot injection or implant preparation, which can be formulated in such a manner as to permit a sustained release of the active ingredient.
  • An exemplary composition comprises monoclonal antibody at 5 mg/mL, formulated in aqueous buffer consisting of 50 mM L-histidine, 150 mM NaCl, adjusted to pH 6.0 with HCl.
  • compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared.
  • the preparation also can be emulsified or encapsulated in liposomes or micro particles such as polylactide, polyglycolide, or copolymer for enhanced adjuvant effect, as discussed above (see Langer, Science 249: 1527 (1990 ) and Hanes, Advanced Drug Delivery Reviews 28:97 (1997 )).
  • the agents of this invention can be administered in the form of a depot injection or implant preparation, which can be formulated in such a manner as to permit a sustained or pulsatile release of the active ingredient.
  • binders and carriers include, for example, polyalkylene glycols or triglycerides; such suppositories can be formed from mixtures containing the active ingredient in the range of 0.5% to 10%, preferably 1%-2%.
  • Oral formulations include excipients, such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, and magnesium carbonate. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain 10%-95% of active ingredient, preferably 25%-70%.
  • Topical application can result in transdermal or intradermal delivery.
  • Topical administration can be facilitated by co-administration of the agent with cholera toxin or detoxified derivatives or subunits thereof or other similar bacterial toxins (See Glenn et al., Nature 391, 851 (1998 )).
  • Co-administration can be achieved by using the components as a mixture or as linked molecules obtained by chemical crosslinking or expression as a fusion protein.
  • the disclosure provides methods of monitoring treatment in a patient suffering from or susceptible to Alzheimer's, i.e ., for monitoring a course of treatment being administered to a patient.
  • the methods can be used to monitor both therapeutic treatment on symptomatic patients and prophylactic treatment on asymptomatic patients.
  • the methods are useful for monitoring passive immunization (e.g. , measuring level of administered antibody).
  • a patient who is not presently receiving treatment but has undergone a previous course of treatment is monitored for antibody levels or profiles to determine whether a resumption of treatment is required.
  • the measured level or profile in the patient can be compared with a value previously achieved in the patient after a previous course of treatment. A significant decrease relative to the previous measurement (i.e ., greater than a typical margin of error in repeat measurements of the same sample) is an indication that treatment can be resumed.
  • the value measured in a patient can be compared with a control value (mean plus standard deviation) determined in a population of patients after undergoing a course of treatment.
  • the measured value in a patient can be compared with a control value in populations of prophylactically treated patients who remain free of symptoms of disease, or populations of therapeutically treated patients who show amelioration of disease characteristics.
  • a significant decrease relative to the control level i.e ., more than a standard deviation is an indicator that treatment should be resumed in a patient.
  • Additional methods include monitoring, over the course of treatment, any art-recognized physiologic symptom (e.g., physical or mental symptom) routinely relied on by researchers or physicians to diagnose or monitor amyloidogenic diseases (e.g., Alzheimer's disease).
  • physiologic symptom e.g., physical or mental symptom
  • amyloidogenic diseases e.g., Alzheimer's disease
  • cognitive impairment can be monitored by determining a patient's score on the Mini-Mental State Exam in accordance with convention throughout the course of treatment.
  • kits for performing the monitoring methods described above.
  • such kits contain an agent that specifically binds to antibodies to A ⁇ .
  • the kit can also include a label.
  • the label is typically in the form of labeled anti-idiotypic antibodies.
  • the agent can be supplied prebound to a solid phase, such as to the wells of a microtiter dish.
  • Kits also typically contain labeling providing directions for use of the kit.
  • the labeling may also include a chart or other correspondence regime correlating levels of measured label with levels of antibodies to A ⁇ .
  • labeling refers to any written or recorded material that is attached to, or otherwise accompanies a kit at any time during its manufacture, transport, sale or use.
  • the term labeling encompasses advertising leaflets and brochures, packaging materials, instructions, audio or videocassettes, computer discs, as well as writing imprinted directly on kits.
  • an antibody or immunoglobulin sequence comprising a VL and/or VH sequence as set forth in any one of SEQ ID NOs: 1-9 can comprise (or encode) either the full sequence or can comprise the mature sequence (i.e., mature peptide without the signal or leader peptide).
  • antibodies including 15C11 were administered to wild type and Tg2576 mice at 3 mg/kg, 10 mg/kg, and 30 mg/kg. Mice were assayed for contextual fear conditioning as described herein.
  • mice displaying memory deficit reversal did so within a short time period. Without being bound by the following, this rapid improvement in cognition in mice administered 15C11 suggest a mechanism of action of 15C11 that involves the capture of soluble A ⁇ in the blood and the subsequent removal of A ⁇ from the CNS into the plasma.
  • the ability of various antibodies (including 15C11) to capture soluble A ⁇ was assayed as follows. Various concentrations of antibody (up to 10 ⁇ g/ml) were incubated with 50,000 CPM of 125 I-A ⁇ 1-42 (or 125 I-A ⁇ 1-40). The concentration of antibody sufficient to bind 25% of the radioactive counts was determined in a capture radioimmunoassay. Certain antibodies did not bind 25% of the counts at the highest concentration tested (i.e., 10 ⁇ g/ml). For such antibodies, the percentage of counts bound at 10 ⁇ g/ml was determined. At 3 ⁇ g/ml, 15C11 bound 25% of the radioactive counts ( i.e ., 125 I-A ⁇ ).
  • This capture was significant as compared to other monoclonal antibodies raised against central A ⁇ fragments ( e.g ., A ⁇ 13-28 or A ⁇ 17-28).
  • the range of concentrations necessary to capture 25% of the labeled A ⁇ for such antibodies is from about 0.1 ⁇ g/ml to 10 ⁇ g/ml with some antibodies capturing less than 25% labeled A ⁇ ( e.g. , 10-20%) when assayed at 10 ⁇ g/ml.
  • 15C11 exhibited preferential affinity for oligomeric A ⁇ species as compared to monomeric A ⁇ . This preferential binding correlates with efficacy in the CFC animal model described above and is predictive of therapeutic efficacy of the antibody ( e.g ., effecting rapid improvement in cognition) in vivo .
  • both light and heavy chains comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4.
  • Example IV In vitro Efficacy of a Various A ⁇ Antibodies: Binding Soluble, Oligomeric A ⁇
  • the A ⁇ preparation was derived from synthetic A ⁇ oligimers substantially as follows:
  • Portions of the A ⁇ preparation were then each contacted with a test immunological reagent, in this case antibodies, and the A ⁇ monomers and one or more A ⁇ oligomers which bound to the test immunological reagent were extracted from the A ⁇ preparation by immunoprecipitation.
  • the various immunoprecipitates were separated by gel electrophoresis and immunoblotted with the 3D6 antibody substantially as follows. Immunoprecipitate samples of Figure 6 were diluted in sample buffer and separated by SDS-PAGE on a 16% Tricine gel. The protein was transferred to nitrocellulose membranes, the membranes boiled in PBS, and then blocked overnight at 4°C in a solution of TBS/Tween/5% Carnation dry milk.
  • the membranes were then incubated with 3D6, a mouse monoclonal A ⁇ antibody to residues 1-5.
  • the membranes were incubated with anti-mouse Ig-HRP, developed using ECL Plus, and visualized using film.
  • Molecular mass was estimated by SeeBlueTM Plus2 molecular weight markers.
  • a “+” notation indicates an observation of increased cognition upon treatment with the antibody
  • a “-” notation indicates an observation of no change in cognition upon treatment with the antibody
  • a "+/-” notation indicates an observation of a trend of increased cognition upon treatment with the antibody but which is not statistically significant enough to be indicated as an observation of increased cognition
  • "ND” notation indicates no CFC assay data available or compared for this antibody.
  • an increased binding of an A ⁇ antibody for A ⁇ dimers or higher ordered oligomers in the A ⁇ preparation predicts that the A ⁇ antibody has therapeutic efficacy for the treatment of Alzheimer's disease.
  • a ⁇ antibodies 3D6, 15C11, 10D5, 12A11 and 266 exhibited preferential binding for oligomeric A ⁇ species as compared to monomeric A ⁇ with 12A11 exhibiting the most significant preferential binding to oligomeric A ⁇ . Accordingly, these antibodies are predicted to have therapeutic efficacy in the treatment cognitive deficits , e.g ., those associated with AD.
  • a phase II trial is performed to determine therapeutic efficacy.
  • Patients with early to mid Alzheimer's Disease defined using Alzheimer's disease and Related Disorders Association (ADRDA) criteria for probable AD are selected. Suitable patients score in the 12-26 range on the Mini-Mental State Exam (MMSE). Other selection criteria are whether patients are likely to survive for the duration of the study and lack complicating issues such as use of concomitant medications that may interfere.
  • Baseline evaluations of patient function are made using classic psychometric measures, such as the MMSE, and the ADAS, which is a comprehensive scale for evaluating patients with Alzheimer's Disease status and function. These psychometric scales provide a measure of progression of the Alzheimer's condition. Suitable qualitative life scales can also be used to monitor treatment. Disease progression can also be monitored by MRI. Blood profiles of patients can also be monitored including assays of immunogen-specific antibodies and T-cells responses.
  • patients Following baseline measurements, patients begin receiving treatment. They are randomized and treated with either therapeutic agent or placebo in a blinded fashion. Patients are monitored at least every six months. Efficacy is determined by a significant reduction in progression of a treatment group relative to a placebo group.
  • a second phase II trial is performed to evaluate conversion of patients from non-Alzheimer's Disease early memory loss, sometimes referred to as age-associated memory impairment (AAMI) or mild cognitive impairment (MCI), to probable Alzheimer's disease as defined as by ADRDA criteria.
  • Patients with high risk for conversion to Alzheimer's Disease are selected from a non-clinical population by screening reference populations for early signs of memory loss or other difficulties associated with pre-Alzheimer's symptomatology, a family history of Alzheimer's Disease, genetic risk factors, age, sex, and other features found to predict high-risk for Alzheimer's Disease.
  • Baseline scores on suitable metrics including the MMSE and the ADAS together with other metrics designed to evaluate a more normal population are collected.
  • patient populations are divided into suitable groups with placebo comparison against dosing alternatives with the agent. These patient populations are followed at intervals of about six months, and the endpoint for each patient is whether or not he or she converts to probable Alzheimer's Disease as defined by ADRDA criteria at the end of the observation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Neurosurgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Neurology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
EP05854278A 2004-12-15 2005-12-15 Antibodies that recognize Beta Amyloid Peptide Active EP1838854B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63668404P 2004-12-15 2004-12-15
PCT/US2005/045515 WO2006066049A2 (en) 2004-12-15 2005-12-15 Humanized antibodies that recognize beta amyloid peptide

Publications (2)

Publication Number Publication Date
EP1838854A2 EP1838854A2 (en) 2007-10-03
EP1838854B1 true EP1838854B1 (en) 2012-10-31

Family

ID=36588573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05854278A Active EP1838854B1 (en) 2004-12-15 2005-12-15 Antibodies that recognize Beta Amyloid Peptide

Country Status (8)

Country Link
US (1) US7625560B2 (es)
EP (1) EP1838854B1 (es)
AR (1) AR051528A1 (es)
ES (1) ES2396555T3 (es)
PE (1) PE20061152A1 (es)
TW (1) TW200636066A (es)
UY (1) UY29282A1 (es)
WO (1) WO2006066049A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12227567B2 (en) 2017-07-25 2025-02-18 Truebinding, Inc. Treating cancer by blocking the interaction of TIM-3 and its ligand

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6761888B1 (en) 2000-05-26 2004-07-13 Neuralab Limited Passive immunization treatment of Alzheimer's disease
TWI239847B (en) 1997-12-02 2005-09-21 Elan Pharm Inc N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease
US7790856B2 (en) 1998-04-07 2010-09-07 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize beta amyloid peptide
US20080050367A1 (en) 1998-04-07 2008-02-28 Guriq Basi Humanized antibodies that recognize beta amyloid peptide
US7964192B1 (en) * 1997-12-02 2011-06-21 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidgenic disease
US7588766B1 (en) 2000-05-26 2009-09-15 Elan Pharma International Limited Treatment of amyloidogenic disease
US7700751B2 (en) 2000-12-06 2010-04-20 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize β-amyloid peptide
US20160279239A1 (en) 2011-05-02 2016-09-29 Immunomedics, Inc. Subcutaneous administration of anti-cd74 antibody for systemic lupus erythematosus and autoimmune disease
MY139983A (en) 2002-03-12 2009-11-30 Janssen Alzheimer Immunotherap Humanized antibodies that recognize beta amyloid peptide
DE10303974A1 (de) 2003-01-31 2004-08-05 Abbott Gmbh & Co. Kg Amyloid-β(1-42)-Oligomere, Verfahren zu deren Herstellung und deren Verwendung
EP1594969B1 (en) * 2003-02-01 2015-05-20 Janssen Sciences Ireland UC Active immunization to generate antibodies to soluble a-beta
PE20050627A1 (es) * 2003-05-30 2005-08-10 Wyeth Corp Anticuerpos humanizados que reconocen el peptido beta amiloideo
US20070003977A1 (en) * 2003-08-20 2007-01-04 Amorfix Life Sciences Ltd Epitope protection assay and method for detecting protein conformations
US7807804B2 (en) * 2004-10-05 2010-10-05 Wyeth Llc Methods and compositions for improving recombinant protein production
ES2396555T3 (es) 2004-12-15 2013-02-22 Janssen Alzheimer Immunotherapy Anticuerpos que reconocen péptido beta amiloide
ES2434732T3 (es) 2004-12-15 2013-12-17 Janssen Alzheimer Immunotherapy Anticuerpos para beta-amiloide humanizados para su uso en mejorar la cognición
GT200600031A (es) 2005-01-28 2006-08-29 Formulacion anticuerpo anti a beta
US20160355591A1 (en) 2011-05-02 2016-12-08 Immunomedics, Inc. Subcutaneous anti-hla-dr monoclonal antibody for treatment of hematologic malignancies
BRPI0611599A2 (pt) 2005-06-17 2011-02-22 Elan Pharma Int Ltd método para purificar uma protéina de ligação a beta, e, proteìna de ligação a beta
AU2014277712B2 (en) * 2005-11-30 2017-07-13 AbbVie Deutschland GmbH & Co. KG Monoclonal antibodies against amyloid beta protein and uses thereof
ES2453941T5 (es) 2005-11-30 2017-05-31 Abbvie Inc. Anticuerpos monoclonales contra la proteína beta amiloide y usos de los mismos
BRPI0619249A2 (pt) 2005-11-30 2011-09-20 Abbott Lab anticorpos anti-globulÈmeros-aß, frações que se ligam a antìgeno destes, hibridomas correspondentes, ácidos nucléicos, vetores, células hospedeiras, métodos de produzir os ditos anticorpos, composições compreendendo os ditos anticorpos, usos dos ditos anticorpos e métodos de usar os ditos anticorpos
CN101325972B (zh) * 2005-12-12 2020-06-16 Ac免疫有限公司 具有治疗性质的Aβ1-42特异性单克隆抗体
KR101591206B1 (ko) * 2005-12-12 2016-02-04 에이씨 이뮨 에스.에이. 치료적 특성을 갖는 베타 1-42 특이적인 단일클론성 항체
US8784810B2 (en) 2006-04-18 2014-07-22 Janssen Alzheimer Immunotherapy Treatment of amyloidogenic diseases
EP2046833B9 (en) * 2006-07-14 2014-02-19 AC Immune S.A. Humanized antibody against amyloid beta
US8455626B2 (en) 2006-11-30 2013-06-04 Abbott Laboratories Aβ conformer selective anti-aβ globulomer monoclonal antibodies
IL199534A (en) 2007-01-05 2013-01-31 Univ Zuerich An isolated human antibody capable of detecting a neoepitope in a disease-related protein, a polynucleotide encoding an antibody, a vector containing the polynucleotide, a host cell containing the polynucleotide or vector, a preparation containing the antibody and related methods and uses.
WO2008104386A2 (en) 2007-02-27 2008-09-04 Abbott Gmbh & Co. Kg Method for the treatment of amyloidoses
EP2481408A3 (en) 2007-03-01 2013-01-09 Probiodrug AG New use of glutaminyl cyclase inhibitors
EP2142514B1 (en) 2007-04-18 2014-12-24 Probiodrug AG Thiourea derivatives as glutaminyl cyclase inhibitors
US8003097B2 (en) 2007-04-18 2011-08-23 Janssen Alzheimer Immunotherapy Treatment of cerebral amyloid angiopathy
US8613923B2 (en) * 2007-06-12 2013-12-24 Ac Immune S.A. Monoclonal antibody
US8048420B2 (en) * 2007-06-12 2011-11-01 Ac Immune S.A. Monoclonal antibody
PT2182983E (pt) 2007-07-27 2014-09-01 Janssen Alzheimer Immunotherap Tratamento de doenças amiloidogénicas com anticorpos anti-abeta humanizados
NZ601858A (en) * 2007-10-05 2014-03-28 Genentech Inc Methods and compositions for diagnosis and treatment of amyloidosis
US9403902B2 (en) 2007-10-05 2016-08-02 Ac Immune S.A. Methods of treating ocular disease associated with amyloid-beta-related pathology using an anti-amyloid-beta antibody
SG178809A1 (en) * 2007-10-05 2012-03-29 Genentech Inc Use of anti-amyloid beta antibody in ocular diseases
JO3076B1 (ar) 2007-10-17 2017-03-15 Janssen Alzheimer Immunotherap نظم العلاج المناعي المعتمد على حالة apoe
US9067981B1 (en) 2008-10-30 2015-06-30 Janssen Sciences Ireland Uc Hybrid amyloid-beta antibodies
WO2010069603A1 (en) 2008-12-19 2010-06-24 Neurimmune Therapeutics Ag Human anti-alpha-synuclein autoantibodies
US8614297B2 (en) 2008-12-22 2013-12-24 Hoffmann-La Roche Inc. Anti-idiotype antibody against an antibody against the amyloid β peptide
AU2010294214B2 (en) 2009-09-11 2015-05-07 Vivoryon Therapeutics N.V. Heterocylcic derivatives as inhibitors of glutaminyl cyclase
CA2791648A1 (en) 2010-03-01 2011-09-09 The J. David Gladstone Institutes Antibody specific for apolipoprotein and methods of use thereof
ES2586231T3 (es) 2010-03-03 2016-10-13 Probiodrug Ag Inhibidores de glutaminil ciclasa
EA201201227A1 (ru) 2010-03-03 2013-04-30 Бёрингер Ингельхайм Интернациональ Гмбх Бипаратопные а-бета-связывающие полипептиды
MX2012010470A (es) 2010-03-10 2012-10-09 Probiodrug Ag Inhibidores heterociclicos d ciclasa de glutaminilo (qc, ec .3 2. 5).
EP2558494B1 (en) 2010-04-15 2018-05-23 AbbVie Inc. Amyloid-beta binding proteins
EP2560953B1 (en) 2010-04-21 2016-01-06 Probiodrug AG Inhibitors of glutaminyl cyclase
NZ606357A (en) 2010-07-30 2015-05-29 Genentech Inc Safe and functional humanized anti beta-amyloid antibody
EP3533803B1 (en) 2010-08-14 2021-10-27 AbbVie Inc. Anti-amyloid-beta antibodies
EP2686313B1 (en) 2011-03-16 2016-02-03 Probiodrug AG Benzimidazole derivatives as inhibitors of glutaminyl cyclase
CA2834056A1 (en) * 2011-04-27 2012-11-01 Adlyfe, Inc. Ocular detection of amyloid proteins
JP6024025B2 (ja) * 2011-05-02 2016-11-09 イミューノメディクス、インコーポレイテッドImmunomedics, Inc. 少容量投与用のアロタイプ選択抗体の限外濾過濃縮
EP2723379B1 (en) 2011-06-23 2018-09-12 Biogen International Neuroscience GmbH Anti-alpha synuclein binding molecules
BR112014001120A2 (pt) 2011-07-20 2017-02-21 Zepteon Incorporated métodos de separação de polipeptídeos
CN104995209A (zh) * 2012-11-06 2015-10-21 米迪缪尼有限公司 使用抗假单胞菌Psl和PcrV结合分子的联合治疗
IL242088B2 (en) 2013-05-20 2023-12-01 Genentech Inc Anti-transferrin receptor antibodies and methods of use
US20150246963A1 (en) * 2014-02-08 2015-09-03 Genentech, Inc. Methods of treating alzheimer's disease
EP3221361B1 (en) 2014-11-19 2021-04-21 Genentech, Inc. Anti-transferrin receptor / anti-bace1 multispecific antibodies and methods of use
JP6779876B2 (ja) 2014-11-19 2020-11-04 ジェネンテック, インコーポレイテッド 抗トランスフェリン受容体抗体及びその使用方法
MA41115A (fr) 2014-12-02 2017-10-10 Biogen Int Neuroscience Gmbh Procédé de traitement de la maladie d'alzheimer
CN107207591A (zh) 2014-12-10 2017-09-26 豪夫迈·罗氏有限公司 血脑屏障受体抗体及使用方法
AU2016353553B2 (en) * 2015-11-09 2022-01-20 The University Of British Columbia Amyloid beta epitopes and antibodies thereto
AU2016353552B2 (en) 2015-11-09 2022-01-06 The University Of British Columbia N-terminal epitopes in Amyloid beta and conformationally-selective antibodies thereto
JP7448174B2 (ja) * 2015-11-09 2024-03-12 ザ・ユニバーシティ・オブ・ブリティッシュ・コロンビア アミロイドベータ中間領域エピトープおよびそれに対する立体配座選択的抗体
EP3484919A4 (en) 2016-07-18 2020-03-04 The University of British Columbia ANTI-BETA-AMYLOID ANTIBODIES
US20180125920A1 (en) 2016-11-09 2018-05-10 The University Of British Columbia Methods for preventing and treating A-beta oligomer-associated and/or -induced diseases and conditions
WO2018187074A1 (en) 2017-04-03 2018-10-11 Immunomedics, Inc. Subcutaneous administration of antibody-drug conjugates for cancer therapy
ES2945165T3 (es) 2017-08-22 2023-06-28 Biogen Ma Inc Composiciones farmacéuticas que contienen anticuerpos anti-beta-amiloides
PL3461819T3 (pl) 2017-09-29 2020-11-30 Probiodrug Ag Inhibitory cyklazy glutaminylowej
AU2019354965B2 (en) 2018-10-04 2025-03-27 University Of Rochester Improvement of glymphatic delivery by manipulating plasma osmolarity
JP2022514290A (ja) 2018-12-20 2022-02-10 ジェネンテック, インコーポレイテッド 改変抗体fcおよび使用方法
WO2020198390A1 (en) * 2019-03-25 2020-10-01 New York University Anti-galectin-9 antibodies and uses thereof
AU2020245031A1 (en) * 2019-03-26 2021-10-21 Janssen Pharmaceutica Nv Antibodies to pyroglutamate amyloid-β and uses thereof
TW202300517A (zh) 2021-03-12 2023-01-01 美商美國禮來大藥廠 抗類澱粉β抗體及其用途
WO2022251048A1 (en) 2021-05-24 2022-12-01 Eli Lilly And Company Anti-amyloid beta antibodies and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016467A2 (en) * 2001-08-17 2003-02-27 Eli Lilly And Company Use of antibodies having high affinity for soluble ass to treat conditions and diseases related to ass
WO2006066171A1 (en) * 2004-12-15 2006-06-22 Neuralab Limited Amyloid βετα antibodies for use in improving cognition

Family Cites Families (292)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704362A (en) 1977-11-08 1987-11-03 Genentech, Inc. Recombinant cloning vehicle microbial polypeptide expression
GB8308235D0 (en) * 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5208036A (en) * 1985-01-07 1993-05-04 Syntex (U.S.A.) Inc. N-(ω, (ω-1)-dialkyloxy)- and N-(ω, (ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4666829A (en) * 1985-05-15 1987-05-19 University Of California Polypeptide marker for Alzheimer's disease and its use for diagnosis
US5618920A (en) * 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
US4713366A (en) 1985-12-04 1987-12-15 The Ohio State University Research Foundation Antigenic modification of polypeptides
US5096706A (en) * 1986-03-25 1992-03-17 National Research Development Corporation Antigen-based treatment for adiposity
US6548640B1 (en) * 1986-03-27 2003-04-15 Btg International Limited Altered antibodies
US5225539A (en) * 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
JPS62267297A (ja) 1986-05-15 1987-11-19 Tokyo Met Gov Seishin Igaku Sogo Kenkyusho 老人斑反応性モノクロ−ナル抗体、それを産生する細胞株及び該モノクロ−ナル抗体の製造方法
US5278049A (en) * 1986-06-03 1994-01-11 Incyte Pharmaceuticals, Inc. Recombinant molecule encoding human protease nexin
US5231170A (en) * 1986-08-27 1993-07-27 Paul Averback Antibodies to dense microspheres
US5220013A (en) * 1986-11-17 1993-06-15 Scios Nova Inc. DNA sequence useful for the detection of Alzheimer's disease
US5187153A (en) 1986-11-17 1993-02-16 Scios Nova Inc. Methods of treatment using Alzheimer's amyloid polypeptide derivatives
US4879213A (en) 1986-12-05 1989-11-07 Scripps Clinic And Research Foundation Synthetic polypeptides and antibodies related to Epstein-Barr virus early antigen-diffuse
DE3702789A1 (de) 1987-01-30 1988-08-18 Bayer Ag Vorlaeuferprotein des apc-polypeptids, dafuer codierende dna und diagnostische verwendung der dna und des proteins
US4912206A (en) * 1987-02-26 1990-03-27 The United States Of America As Represented By The Department Of Health And Human Services CDNA clone encoding brain amyloid of alzheimer's disease
EP0307434B2 (en) * 1987-03-18 1998-07-29 Scotgen Biopharmaceuticals, Inc. Altered antibodies
JPS63245689A (ja) 1987-03-31 1988-10-12 Suntory Ltd ヒトアミロイド関連蛋白モノクロ−ナル抗体
US4883666A (en) 1987-04-29 1989-11-28 Massachusetts Institute Of Technology Controlled drug delivery system for treatment of neural disorders
US5258498A (en) 1987-05-21 1993-11-02 Creative Biomolecules, Inc. Polypeptide linkers for production of biosynthetic proteins
US5245015A (en) 1991-04-26 1993-09-14 Tanox Biosystems, Inc. Monoclonal antibodies which neutralize HIV-1 through reaction with a conformational epitope in vitro
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
US5583112A (en) 1987-05-29 1996-12-10 Cambridge Biotech Corporation Saponin-antigen conjugates and the use thereof
US5571500A (en) 1987-06-24 1996-11-05 Autoimmune, Inc. Treatment of autoimmune diseases through administration by inhalation of autoantigens
ATE130762T1 (de) 1987-06-24 1995-12-15 Autoimmune Inc Behandlung von autoimmun-erkrankungen durch orale verabreichung von autoantigenen.
US5641474A (en) * 1987-06-24 1997-06-24 Autoimmune, Inc. Prevention of autoimmune diseases by aerosol administration of autoantigens
US5849298A (en) * 1987-06-24 1998-12-15 Autoimmune Inc. Treatment of multiple sclerosis by oral administration of bovine myelin
US5571499A (en) 1987-06-24 1996-11-05 Autoimmune, Inc. Treatment of autoimmune diseases by aerosol administration of autoantigens
US5869054A (en) * 1987-06-24 1999-02-09 Autoimmune Inc. Treatment of multiple sclerosis by oral administration of autoantigens
US5645820A (en) * 1987-06-24 1997-07-08 Autoimmune, Inc. Treatment of autoimmune diseases by aerosol administration of autoantigens
US5004697A (en) 1987-08-17 1991-04-02 Univ. Of Ca Cationized antibodies for delivery through the blood-brain barrier
US5677425A (en) 1987-09-04 1997-10-14 Celltech Therapeutics Limited Recombinant antibody
CA1339014C (en) 1987-10-08 1997-03-25 Ronald E. Majocha Antibodies to a4 amyloid peptide
US5231000A (en) * 1987-10-08 1993-07-27 The Mclean Hospital Antibodies to A4 amyloid peptide
EP0382781B1 (en) 1987-10-23 1993-09-29 Genetics Institute, Inc. Composition for treating cancers characterized by over-expression of the c-fms proto-oncogene
US5089603A (en) 1989-06-21 1992-02-18 Tanox Biosystems, Inc. Antigenic epitopes present on membrane-bound but not secreted iga
WO1989006689A1 (en) 1988-01-13 1989-07-27 The Mclean Hospital Corporation Genetic constructs containing the alzheimer brain amyloid gene
US4912094B1 (en) 1988-06-29 1994-02-15 Ribi Immunochem Research Inc. Modified lipopolysaccharides and process of preparation
US5576184A (en) 1988-09-06 1996-11-19 Xoma Corporation Production of chimeric mouse-human antibodies with specificity to human tumor antigens
US5530101A (en) * 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5227159A (en) * 1989-01-31 1993-07-13 Miller Richard A Anti-idiotype antibodies reactive with shared idiotopes expressed by B cell lymphomas and autoantibodies
US5262332A (en) 1989-04-05 1993-11-16 Brigham And Women's Hospital Diagnostic method for Alzheimer's disease: examination of non-neural tissue
AU5525090A (en) 1989-04-14 1990-11-16 Research Foundation For Mental Hygiene, Inc. Monoclonal antibody to amyloid peptide
AU5439790A (en) 1989-04-14 1990-11-16 Research Foundation For Mental Hygiene, Inc. Cerebrovascular amyloid protein-specific monoclonal antibody sv17-6e10
JP2625253B2 (ja) 1989-12-20 1997-07-02 オートイミューン インク 吸入投与形態をとる自己免疫疾患および/または予防用薬剤
GB8928874D0 (en) * 1989-12-21 1990-02-28 Celltech Ltd Humanised antibodies
US5859205A (en) * 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
DK0594607T3 (da) 1990-03-02 1998-04-14 Autoimmune Inc Forøgelse af nedreguleringen af autoimmune sygdomme ved oral eller enteral indgivelse af autoantigener
EP0451700A1 (en) 1990-04-10 1991-10-16 Miles Inc. Recombinant APP minigenes for expression in transgenic mice as models for Alzheimers's disease
WO1991016628A1 (en) 1990-04-24 1991-10-31 The Regents Of The University Of California Purification, detection and methods of use of protease nexin-2
GB9009548D0 (en) 1990-04-27 1990-06-20 Celltech Ltd Chimeric antibody and method
ATE153534T1 (de) 1990-04-27 1997-06-15 John Mcmichael Verfahren und zusammensetzung zur behandlung von erkrankungen des zns hervorgerufen durch abnormales beta-amyloid-protein
US5753624A (en) * 1990-04-27 1998-05-19 Milkhaus Laboratory, Inc. Materials and methods for treatment of plaquing disease
ATE260974T1 (de) * 1990-06-15 2004-03-15 Scios Inc Transgenes, nicht-menschliches säugetier das die amyloidbildende pathologie der alzheimerschen krankheit zeigt
US5780587A (en) * 1990-08-24 1998-07-14 President And Fellows Of Harvard College Compounds and methods for inhibiting β-protein filament formation and neurotoxicity
US6506728B2 (en) 1990-09-25 2003-01-14 Genentech, Inc. Methods using a novel neurotrophic factor, NT-4
CA2092823A1 (en) 1990-09-28 1992-03-29 Barry D. Greenberg Transgenic animals with alzheimer's amyloid precursor gene
JP2635444B2 (ja) 1990-10-15 1997-07-30 オートイミューン インク 自己抗体の経口投与による自己免疫性疾患の治療
WO1992013069A1 (en) 1991-01-21 1992-08-06 Imperial College Of Science, Technology & Medicine Test and model for alzheimer's disease
US5192753A (en) * 1991-04-23 1993-03-09 Mcgeer Patrick L Anti-rheumatoid arthritic drugs in the treatment of dementia
DE122004000008I1 (de) 1991-06-14 2005-06-09 Genentech Inc Humanisierter Heregulin Antikörper.
WO1994004679A1 (en) * 1991-06-14 1994-03-03 Genentech, Inc. Method for making humanized antibodies
US5672805A (en) 1991-07-18 1997-09-30 The Regents Of The University Of California Transgenic mice expressing the neurotoxic C-terminus of β-amyloid precursor protein
JP2966592B2 (ja) 1991-07-20 1999-10-25 萩原 義秀 安定化されたヒトモノクローナル抗体製剤
US5434050A (en) 1991-08-13 1995-07-18 Regents Of The University Of Minnesota Labelled β-amyloid peptide and methods of screening for Alzheimer's disease
US5837268A (en) 1991-10-16 1998-11-17 University Of Saskatchewan GnRH-leukotoxin chimeras
AU671093B2 (en) 1992-01-07 1996-08-15 Elan Pharmaceuticals, Inc. Transgenic animal models for alzheimer's disease
US5679348A (en) 1992-02-03 1997-10-21 Cedars-Sinai Medical Center Immunotherapy for recurrent HSV infections
JP3917172B2 (ja) 1992-02-11 2007-05-23 ヘンリー エム.ジャクソン ファウンデーション フォー ザ アドバンスメント オブ ミリタリー メディスン 二重担体の免疫原性構成体
JP3712260B2 (ja) 1992-02-28 2005-11-02 オートイミューン インク 自己免疫疾患のバイスタンダー抑制
US5714350A (en) 1992-03-09 1998-02-03 Protein Design Labs, Inc. Increasing antibody affinity by altering glycosylation in the immunoglobulin variable region
EP0561087B1 (en) 1992-03-20 1999-08-04 N.V. Innogenetics S.A. Mutated form of the beta-amyloid precursor protein gene
US5441870A (en) * 1992-04-15 1995-08-15 Athena Neurosciences, Inc. Methods for monitoring cellular processing of β-amyloid precursor protein
US5604102A (en) 1992-04-15 1997-02-18 Athena Neurosciences, Inc. Methods of screening for β-amyloid peptide production inhibitors
US5851787A (en) * 1992-04-20 1998-12-22 The General Hospital Corporation Nucleic acid encoding amyloid precursor-like protein and uses thereof
WO1993022332A2 (en) 1992-04-24 1993-11-11 Board Of Regents, The University Of Texas System Recombinant production of immunoglobulin-like domains in prokaryotic cells
GB9209118D0 (en) 1992-04-28 1992-06-10 Sb 120 Amsterdam Bv Vaccine compositions
PT652758E (pt) * 1992-06-18 2000-04-28 Harvard College Vacinas de toxina da difteria
DK0761231T3 (da) 1992-06-25 2000-05-08 Smithkline Beecham Biolog Vaccinepræparat indeholdende adjuvanser
US6610493B1 (en) 1993-06-17 2003-08-26 Brigham And Women's Hospital Screening compounds for the ability to alter the production of amyloid-β peptide
US5837672A (en) 1992-07-10 1998-11-17 Athena Neurosciences, Inc. Methods and compositions for the detection of soluble β-amyloid peptide
US5766846A (en) * 1992-07-10 1998-06-16 Athena Neurosciences Methods of screening for compounds which inhibit soluble β-amyloid peptide production
WO1994001772A1 (en) 1992-07-13 1994-01-20 The Children's Medical Center Corporation SCREEN FOR ALZHEIMER'S DISEASE THERAPEUTICS BASED ON β-AMYLOID PRODUCTION
DE69322645T2 (de) 1992-07-31 1999-05-20 Medeva Holdings B.V., Amsterdam Expression rekombinanter fusionsproteine in attenuierten bakterien
JP4116072B2 (ja) * 1992-08-27 2008-07-09 バイオクローンズ(プロプライエタリー)リミテッド 逆向き、鏡像体および逆向き鏡像体合成ペプチド類似物
US5958883A (en) 1992-09-23 1999-09-28 Board Of Regents Of The University Of Washington Office Of Technology Animal models of human amyloidoses
AU5358494A (en) 1992-10-13 1994-05-09 Duke University Method of inhibiting binding of amyloid precursor protein to beta-amyloid protein
ES2203620T3 (es) 1992-10-26 2004-04-16 Elan Pharmaceuticals, Inc. Procedimientos para la identificacion de los inhibidores de la produccion del peptido beta-amiloide.
US5605811A (en) * 1992-10-26 1997-02-25 Athena Neurosciences, Inc. Methods and compositions for monitoring cellular processing of beta-amyloid precursor protein
US6210671B1 (en) * 1992-12-01 2001-04-03 Protein Design Labs, Inc. Humanized antibodies reactive with L-selectin
US5955317A (en) 1993-01-25 1999-09-21 Takeda Chemical Industries, Ltd. Antibodies to β-amyloids or their derivatives and use thereof
ATE239797T1 (de) 1993-01-25 2003-05-15 Takeda Chemical Industries Ltd Antikörper gegen beta-amyloid oder derivative davon und seine verwendung
US5358708A (en) 1993-01-29 1994-10-25 Schering Corporation Stabilization of protein formulations
CA2115811A1 (en) * 1993-02-17 1994-08-18 Claus Krebber A method for in vivo selection of ligand-binding proteins
CA2115900A1 (en) 1993-02-22 1994-08-23 Gerald W. Becker Pharmaceutical screens and antibodies
JPH08508252A (ja) * 1993-03-17 1996-09-03 アメリカ合衆国 小胞体シグナル配列ペプチドと少なくとも1個の他のペプチドをエンコードする核酸配列を含有する免疫原性キメラ、及びこのキメラのワクチン及び疾患の治療における使用
DE69405551T3 (de) * 1993-03-23 2005-10-20 Smithkline Beecham Biologicals S.A. 3-0-deazylierte monophosphoryl lipid a enthaltende impfstoff-zusammensetzungen
IT1270939B (it) 1993-05-11 1997-05-26 Angeletti P Ist Richerche Bio Procedimento per la preparazione di immunogeni e reagenti diagnostici,e immunogeni e reagenti diagnostici cosi' ottenibili.
AU7043894A (en) 1993-05-28 1994-12-20 Miriam Hospital, The Composition and method for (in vivo) imaging of amyloid deposits
US5464823A (en) 1993-07-20 1995-11-07 The Regents Of The University Of California Mammalian antibiotic peptides
ATE215124T1 (de) 1993-07-30 2002-04-15 Medeva Holdings Bv Rekombinante tetc-fusionsprotein enthaltene impfstoffzusammensetzungen
JPH08503490A (ja) 1993-08-18 1996-04-16 モルフォシス・ゲゼルシャフト・フュア・プロタインオプティミールング・ミット・ベシュレンクテル・ハフツング リポ多糖結合性および中和能のあるペプチド
CA2169635C (en) 1993-08-26 2002-11-12 Dennis A. Carson Method, compositions and devices for administration of naked polynucleotides which encode biologically active peptides
AU707083B2 (en) 1993-08-26 1999-07-01 Bavarian Nordic Inc. Inducing antibody response against self-proteins with the aid of foreign T-cell epitopes
DK96493D0 (da) 1993-08-26 1993-08-26 Mouritsen Og Elsner Aps Fremgangsmaade til at inducere antistofresponser mod selvproteiner og autovaccine fremstillet ved fremgangsmaaden
WO1995006407A1 (en) 1993-08-30 1995-03-09 The Regents Of The University Of California Novel component of amyloid in alzheimer's disease and methods for use of same
DE69434223T2 (de) 1993-09-07 2005-12-22 Smithkline Beecham P.L.C., Brentford In der Behandlung von IL4 auslösenden Krankheiten nützliche rekombinante IL4-Antikörper
US5652334A (en) * 1993-09-08 1997-07-29 City Of Hope Method for design of substances that enhance memory and improve the quality of life
US5385887A (en) * 1993-09-10 1995-01-31 Genetics Institute, Inc. Formulations for delivery of osteogenic proteins
DE69435171D1 (de) * 1993-09-14 2009-01-08 Pharmexa Inc Pan dr-bindeproteinen zur erhöhung der immunantwort
US5470951A (en) 1993-09-29 1995-11-28 City Of Hope Peptides for antagonizing the effects of amyloid βprotein
US5858981A (en) 1993-09-30 1999-01-12 University Of Pennsylvania Method of inhibiting phagocytosis
ATE213507T1 (de) 1993-10-20 2002-03-15 Univ Duke Methode zur bindung von material an das beta- amyloid-peptid
EP0724431B1 (en) 1993-10-22 2002-09-11 Genentech, Inc. Methods and compositions for microencapsulation of adjuvants
JP3504963B2 (ja) 1993-10-22 2004-03-08 智靖 羅 抗ヒト高親和性IgE受容体モノクローナル抗体に係るアミノ酸配列をコードするDNA断片
US5744368A (en) * 1993-11-04 1998-04-28 Research Foundation Of State University Of New York Methods for the detection of soluble amyloid β-protein (βAP) or soluble transthyretin (TTR)
JPH07132033A (ja) 1993-11-12 1995-05-23 Hoechst Japan Ltd アルツハイマー病モデルトランスジェニック動物
US5827690A (en) 1993-12-20 1998-10-27 Genzyme Transgenics Corporatiion Transgenic production of antibodies in milk
GB9326253D0 (en) 1993-12-23 1994-02-23 Smithkline Beecham Biolog Vaccines
US5434170A (en) * 1993-12-23 1995-07-18 Andrulis Pharmaceuticals Corp. Method for treating neurocognitive disorders
US5877399A (en) * 1994-01-27 1999-03-02 Johns Hopkins University Transgenic mice expressing APP-Swedish mutation develop progressive neurologic disease
JPH09511388A (ja) * 1994-01-27 1997-11-18 リージェンツ オブ ザ ユニバーシティー オブ ミネソタ 進行性神経疾患を持つヒト以外のトランスジェニック哺乳類
AU692237B2 (en) 1994-02-03 1998-06-04 Picower Institute For Medical Research, The Compositions and methods for advanced glycosylation endproduct-mediated modulation of amyloidosis
AUPM411994A0 (en) 1994-02-25 1994-03-24 Deakin Research Limited Epitopes
US5795954A (en) 1994-03-04 1998-08-18 Genentech, Inc. Factor VIIa inhibitors from Kunitz domain proteins
US6270757B1 (en) 1994-04-21 2001-08-07 Genetics Institute, Inc. Formulations for IL-11
US6372716B1 (en) * 1994-04-26 2002-04-16 Genetics Institute, Inc. Formulations for factor IX
ATE202940T1 (de) 1994-05-25 2001-07-15 John Mcmichael Mittel und methoden zur behandlung von plaque- krankheiten
US5622701A (en) * 1994-06-14 1997-04-22 Protein Design Labs, Inc. Cross-reacting monoclonal antibodies specific for E- and P-selectin
US6417178B1 (en) * 1994-07-19 2002-07-09 University Of Pittsburgh Amyloid binding nitrogen-linked compounds for the antemortem diagnosis of alzheimer's disease, in vivo imaging and prevention of amyloid deposits
DE4432382A1 (de) 1994-09-12 1996-03-14 Schaeffler Waelzlager Kg Übertragungselement für eine Getriebeschaltung
US6114133A (en) 1994-11-14 2000-09-05 Elan Pharmaceuticals, Inc. Methods for aiding in the diagnosis of Alzheimer's disease by measuring amyloid-β peptide (x-≧41)
US5589154A (en) 1994-11-22 1996-12-31 Rutgers, The State University Of New Jersey Methods for the prevention or treatment of vascular hemorrhaging and Alzheimer's disease
US5688651A (en) 1994-12-16 1997-11-18 Ramot University Authority For Applied Research And Development Ltd. Prevention of protein aggregation
ATE216590T1 (de) * 1995-02-06 2002-05-15 Genetics Inst Arzneimittelformulierungen für il-12
US5786180A (en) 1995-02-14 1998-07-28 Bayer Corporation Monoclonal antibody 369.2B specific for β A4 peptide
US5624937A (en) 1995-03-02 1997-04-29 Eli Lilly And Company Chemical compounds as inhibitors of amyloid beta protein production
US5817626A (en) 1995-03-14 1998-10-06 Praecis Pharmaceuticals Incorporated Modulators of beta-amyloid peptide aggregation
US5854215A (en) 1995-03-14 1998-12-29 Praecis Pharmaceuticals Incorporated Modulators of β-amyloid peptide aggregation
US6303567B1 (en) 1995-03-14 2001-10-16 Praecis Pharmaceuticals, Inc . Modulators of β-amyloid peptide aggregation comprising D-amino acids
JPH11514333A (ja) 1995-03-14 1999-12-07 プレーシス ファーマスーティカルズ インコーポレイテッド アミロイドの凝集の調節剤
US5869046A (en) * 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6121022A (en) 1995-04-14 2000-09-19 Genentech, Inc. Altered polypeptides with increased half-life
WO1996037621A2 (en) 1995-05-23 1996-11-28 Morphosys Gesellschaft Für Proteinoptimierung Mbh Multimeric proteins
AU6113896A (en) 1995-06-05 1996-12-24 Brigham And Women's Hospital Use of oral tolerance to suppress both th1 and th2 immune re sponses and to suppress antibody production
DE69619894T2 (de) 1995-06-30 2002-11-14 American Cyanamid Co., Madison Stabile Makrolide und Makrolide Imptstoff-Zusammensetzungen
CA2226255A1 (en) 1995-07-07 1997-01-30 Darwin Molecular Corporation Chromosome 1 gene and gene products related to alzheimer's disease
US6267958B1 (en) * 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
US6685940B2 (en) 1995-07-27 2004-02-03 Genentech, Inc. Protein formulation
PT859841E (pt) 1995-08-18 2002-11-29 Morphosys Ag Bibliotecas de proteinas/ (poli) peptidos
WO1997006809A1 (en) 1995-08-21 1997-02-27 Cytrx Corporation Compositions and methods for growth promotion
WO1997010505A1 (en) * 1995-09-14 1997-03-20 The Regents Of The University Of California ANTIBODIES SPECIFIC FOR NATIVE PrP?Sc¿
US5731284A (en) 1995-09-28 1998-03-24 Amgen Inc. Method for treating Alzheimer's disease using glial line-derived neurotrophic factor (GDNF) protein product
US5985242A (en) 1995-10-27 1999-11-16 Praecis Pharmaceuticals, Inc. Modulators of β-amyloid peptide aggregation comprising D-amino acids
US5750361A (en) * 1995-11-02 1998-05-12 The Regents Of The University Of California Formation and use of prion protein (PRP) complexes
WO1997017614A1 (en) 1995-11-10 1997-05-15 Elan Corporation, Plc Peptides which enhance transport across tissues and methods of identifying and using the same
WO1997021728A1 (en) 1995-12-12 1997-06-19 Karolinska Innovations Ab PEPTIDE BINDING THE KLVFF-SEQUENCE OF AMYLOID $g(b)
JPH09178743A (ja) 1995-12-27 1997-07-11 Oriental Yeast Co Ltd 可溶性appの定量法
US6015662A (en) * 1996-01-23 2000-01-18 Abbott Laboratories Reagents for use as calibrators and controls
US5770700A (en) * 1996-01-25 1998-06-23 Genetics Institute, Inc. Liquid factor IX formulations
WO1997032017A1 (en) 1996-02-26 1997-09-04 Morphosys Gesellschaft Für Proteinoptimierung Mbh Novel method for the identification of nucleic acid sequences encoding two or more interacting (poly)peptides
US6150091A (en) 1996-03-06 2000-11-21 Baylor College Of Medicine Direct molecular diagnosis of Friedreich ataxia
DE69731357T2 (de) 1996-03-23 2006-02-02 The Research Foundation For Microbial Diseases Of Osaka University, Suita Funktionelles antigenfragment von tetanustoxin und tetanusvakzine
US6284533B1 (en) 1996-05-01 2001-09-04 Avant Immunotherapeutics, Inc. Plasmid-based vaccine for treating atherosclerosis
EP0938506B1 (en) 1996-07-16 2003-11-05 Plückthun, Andreas, Prof. Dr. Immunoglobulin superfamily domains and fragments with increased solubility
CA2183901A1 (en) 1996-08-22 1998-02-23 Johanna E. Bergmann Targets for therapy and diagnosis of alzheimer's disease and down syndrome in humans
ATE298765T1 (de) 1996-08-27 2005-07-15 Praecis Pharm Inc Beta-amyloid peptidaggregation regulierende peptide mit d-aminosäuren
US6057367A (en) * 1996-08-30 2000-05-02 Duke University Manipulating nitrosative stress to kill pathologic microbes, pathologic helminths and pathologically proliferating cells or to upregulate nitrosative stress defenses
US6797495B2 (en) 1996-11-05 2004-09-28 The Regents Of The University Of California Somatic cells with ablated PrP gene and methods of use
US6022859A (en) * 1996-11-15 2000-02-08 Wisconsin Alumni Research Foundation Inhibitors of β-amyloid toxicity
WO1998022120A1 (en) 1996-11-19 1998-05-28 The Wistar Institute Of Anatomy & Biology Diagnostic and therapeutic reagents for alzheimer's disease
US6962984B2 (en) 1996-12-05 2005-11-08 Nihon University IgA nephropathy-related DNA
US6218506B1 (en) * 1997-02-05 2001-04-17 Northwestern University Amyloid β protein (globular assembly and uses thereof)
US20030068316A1 (en) * 1997-02-05 2003-04-10 Klein William L. Anti-ADDL antibodies and uses thereof
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
US5798102A (en) 1997-03-04 1998-08-25 Milkhaus Laboratory, Inc. Treatment of cardiomyopathy
DK0994728T3 (da) 1997-04-09 2008-12-01 Intellect Neurosciences Inc Rekombinante antistoffer, som er specifikke for beta-amyloide ender, DNA, der koder derfor, samt fremgangsmåder til anvendelse heraf
US8173127B2 (en) * 1997-04-09 2012-05-08 Intellect Neurosciences, Inc. Specific antibodies to amyloid beta peptide, pharmaceutical compositions and methods of use thereof
US20020086847A1 (en) * 1997-04-09 2002-07-04 Mindset Biopharmaceuticals (Usa) Recombinant antibodies specific for beta-amyloid ends, DNA encoding and methods of use thereof
US6787319B2 (en) * 1997-04-16 2004-09-07 American Home Products Corp. β-amyloid peptide-binding proteins and polynucleotides encoding the same
US6339068B1 (en) 1997-05-20 2002-01-15 University Of Iowa Research Foundation Vectors and methods for immunization or therapeutic protocols
DE69810481T2 (de) 1997-06-13 2003-09-25 Genentech Inc., San Francisco Stabilisierte antikörperformulierung
WO1999000150A2 (en) 1997-06-27 1999-01-07 Regents Of The University Of California Drug targeting of a peptide radiopharmaceutical through the primate blood-brain barrier in vivo with a monoclonal antibody to the human insulin receptor
IT1293511B1 (it) 1997-07-30 1999-03-01 Gentili Ist Spa Anticorpi monoclonali catalitici ad attivita' proteasica per la lisi selettiva della componente proteica di placche e aggregati correlati
EP1005569A2 (en) 1997-08-01 2000-06-07 MorphoSys AG Novel method and phage for the identification of nucleic acid sequences encoding members of a multimeric (poly)peptide complex
WO1999006545A2 (en) 1997-08-01 1999-02-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Composition and method for the detection of diseases associated with amyloid-like fibril or protein aggregate formation
JP5220248B2 (ja) 1997-08-29 2013-06-26 アンチジェニックス・インコーポレイテッド アジュバントqs−21および賦形剤としてポリソルベートまたはシクロデキストリンを含む組成物
US6175057B1 (en) * 1997-10-08 2001-01-16 The Regents Of The University Of California Transgenic mouse model of alzheimer's disease and cerebral amyloid angiopathy
US6118044A (en) 1997-11-14 2000-09-12 Sankyo Company, Limited Transgenic animal allergy models and methods for their use
US6787523B1 (en) 1997-12-02 2004-09-07 Neuralab Limited Prevention and treatment of amyloidogenic disease
US7179892B2 (en) 2000-12-06 2007-02-20 Neuralab Limited Humanized antibodies that recognize beta amyloid peptide
US7964192B1 (en) 1997-12-02 2011-06-21 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidgenic disease
TWI239847B (en) 1997-12-02 2005-09-21 Elan Pharm Inc N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease
US6710226B1 (en) * 1997-12-02 2004-03-23 Neuralab Limited Transgenic mouse assay to determine the effect of Aβ antibodies and Aβ Fragments on alzheimer's disease characteristics
US6750324B1 (en) * 1997-12-02 2004-06-15 Neuralab Limited Humanized and chimeric N-terminal amyloid beta-antibodies
US6913745B1 (en) 1997-12-02 2005-07-05 Neuralab Limited Passive immunization of Alzheimer's disease
US20080050367A1 (en) 1998-04-07 2008-02-28 Guriq Basi Humanized antibodies that recognize beta amyloid peptide
US7790856B2 (en) 1998-04-07 2010-09-07 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize beta amyloid peptide
US6905686B1 (en) * 1997-12-02 2005-06-14 Neuralab Limited Active immunization for treatment of alzheimer's disease
US6923964B1 (en) 1997-12-02 2005-08-02 Neuralab Limited Active immunization of AScr for prion disorders
US6761888B1 (en) 2000-05-26 2004-07-13 Neuralab Limited Passive immunization treatment of Alzheimer's disease
IL136251A0 (en) 1997-12-03 2001-05-20 Fujisawa Pharmaceutical Co Soft pellet drug composition and methods for the preparation thereof
ES2253839T3 (es) 1997-12-03 2006-06-01 Neuralab, Ltd. Supresion de cambios relacionados con amiloide beta en la enfermedad de alzheimer.
FR2777015B3 (fr) 1998-02-23 2000-09-15 Financ De Biotechnologie Procede et moyens pour l'obtention de modeles cellulaires et animaux de maladies neurodegeneratives
US6528624B1 (en) * 1998-04-02 2003-03-04 Genentech, Inc. Polypeptide variants
US6194551B1 (en) * 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
US20050059591A1 (en) * 1998-04-07 2005-03-17 Neuralab Limited Prevention and treatment of amyloidogenic disease
US20050059802A1 (en) * 1998-04-07 2005-03-17 Neuralab Ltd Prevention and treatment of amyloidogenic disease
ES2230848T3 (es) 1998-04-28 2005-05-01 Smithkline Beecham Corporation Anticuerpos monoclonales con inmunogenicidad reducida.
NO314086B1 (no) 1998-05-08 2003-01-27 Gemvax As Peptider og farmasöytiske sammensetninger inneholdende disse, nukleinsyresekvenser som koder for slike peptider, plasmider og virusvektoreromfattende slike DNA-sekvenser samt anvendelse av disse for fremstilling avfarmasöytiske preparater til
WO1999060021A2 (en) 1998-05-19 1999-11-25 Yeda Research And Development Co. Ltd. Use of activated t cells, nervous system-specific antigens for treating disorders of the nevrous system
IL139095A0 (en) 1998-05-21 2001-11-25 Univ Tennessee Res Corp Methods for amyloid removal using anti-amyloid antibodies
US20030147882A1 (en) 1998-05-21 2003-08-07 Alan Solomon Methods for amyloid removal using anti-amyloid antibodies
US6727349B1 (en) * 1998-07-23 2004-04-27 Millennium Pharmaceuticals, Inc. Recombinant anti-CCR2 antibodies and methods of use therefor
ES2222728T3 (es) 1998-10-05 2005-02-01 Pharmexa A/S Procedimiento de vacunacion terapeutica.
CA2354862A1 (en) 1998-10-19 2000-04-27 Yeda Research And Development Co. Ltd. Treatment of systemic lupus erythematosus by down-regulating the autoimmune response to autoantigens
GB2348203B (en) 1998-11-04 2002-06-19 Imp College Innovations Ltd Solube beta-forms of prion proteins, methods of preparation and use
WO2000043049A1 (en) 1999-01-19 2000-07-27 Pharmacia & Upjohn Company Gamma-irradiation sterilized polyethylene packaging
AU775525B2 (en) 1999-01-22 2004-08-05 Auckland Technology Enabling Corporation Limited Vaccine-mediated treatment of neurological disorders
ATE384077T1 (de) 1999-05-05 2008-02-15 Neurochem Int Ltd Stereoselektive antifibrillogene peptide
US6787637B1 (en) 1999-05-28 2004-09-07 Neuralab Limited N-Terminal amyloid-β antibodies
UA81216C2 (en) 1999-06-01 2007-12-25 Prevention and treatment of amyloid disease
PE20010212A1 (es) 1999-06-01 2001-02-22 Neuralab Ltd Composiciones del peptido a-beta y procesos para producir las mismas
US6582945B1 (en) 1999-06-16 2003-06-24 Boston Biomedical Research Institute Immunological control of β-amyloid levels in vivo
EP1368486A4 (en) 1999-07-15 2009-04-01 Genetics Inst Llc IL-11 FORMULATIONS
AU6524500A (en) 1999-08-04 2001-03-05 Northwestern University Amyloid beta protein (globular assembly and uses thereof)
AU784568B2 (en) 1999-09-03 2006-05-04 Ramot At Tel-Aviv University Ltd Agents and compositions and methods utilizing same useful in diagnosing and/or treating or preventing plaque forming diseases
US6294171B2 (en) 1999-09-14 2001-09-25 Milkhaus Laboratory, Inc. Methods for treating disease states comprising administration of low levels of antibodies
KR20020073341A (ko) 1999-11-29 2002-09-23 뉴로켐, 인크. 알츠하이머 및 아밀로이드 관련 질병의 예방 및 치료용 백신
US20020094335A1 (en) 1999-11-29 2002-07-18 Robert Chalifour Vaccine for the prevention and treatment of alzheimer's and amyloid related diseases
US7901689B2 (en) 1999-12-08 2011-03-08 Intellect Neurosciences, Inc. Chimeric peptides as immunogens, antibodies thereto, and methods for immunization using chimeric peptides or antibodies
US6399314B1 (en) * 1999-12-29 2002-06-04 American Cyanamid Company Methods of detection of amyloidogenic proteins
EE200200444A (et) 2000-02-21 2003-12-15 Pharmexa A/S Meetod autoloogse beeta-amüloidvaigu in vivo mahasurumiseks, amüloidogeense polüpeptiidi analoog, seda kodeeriv nukleiinhappefragment ning kasutamineimmunogeense kompositsiooni valmistamiseks
AU783144B2 (en) 2000-02-21 2005-09-29 H. Lundbeck A/S Novel method for down-regulation of amyloid
EP3070100B1 (en) 2000-02-24 2021-07-07 Washington University St. Louis Humanized antibodies that sequester amyloid beta peptide
AU2001253158A1 (en) 2000-04-05 2001-10-23 University Of Tennessee Research Corporation Methods of investigating, diagnosing, and treating amyloidosis
PT1284998E (pt) * 2000-05-22 2005-06-30 Univ New York Eptideos imunogenicos sinteticos mas nao-amiloidogenicos homologos a beta-amiloides, destinados a induzir uma reaccao imunitaria contra os beta-amiloides e os depositos amiloides
EP2082749A3 (en) 2000-07-07 2010-06-30 Bioarctic Neuroscience AB Prevention and treatment of Alzheimer's disease
EP1172378A1 (en) 2000-07-12 2002-01-16 Richard Dr. Dodel Human beta-amyloid antibody and use thereof for treatment of alzheimer's disease
US20020009445A1 (en) * 2000-07-12 2002-01-24 Yansheng Du Human beta-amyloid antibody and use thereof for treatment of alzheimer's disease
US20030092145A1 (en) 2000-08-24 2003-05-15 Vic Jira Viral vaccine composition, process, and methods of use
AU9063801A (en) 2000-09-06 2002-03-22 Aventis Pharma Sa Methods and compositions for diseases associated with amyloidosis
IT1319277B1 (it) 2000-10-24 2003-09-26 Chiesi Farma Spa Proteine di fusione utili per il trattamento di immunizzazione dellamalattia di alzheimer.
IL139308A0 (en) 2000-10-26 2001-11-25 Marikovsky Moshe Peptides from amyloid precursor protein which inhibit tumor growth and metastasis
DE60126980T2 (de) 2000-11-27 2007-11-08 Praecis Pharmaceuticals Inc., Waltham Therapeutische agentien und methoden ihrer verwendung zur behandlung von amyloidogenen erkrankungen
US7700751B2 (en) 2000-12-06 2010-04-20 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize β-amyloid peptide
TWI255272B (en) 2000-12-06 2006-05-21 Guriq Basi Humanized antibodies that recognize beta amyloid peptide
US6900036B2 (en) 2000-12-27 2005-05-31 University Of Texas Health Science Center Houston Prion isomers, methods of making, methods of using, and compositions and products comprising prion isomers
US20020160394A1 (en) 2001-01-24 2002-10-31 Bayer Corporation Regulation of transthyretin to treat obesity
EP1251138B1 (en) 2001-04-19 2006-07-26 Hermann Dr. Schätzl Prion protein dimers useful for vaccination
ES2318006T3 (es) 2001-04-30 2009-05-01 Eli Lilly And Company Anticuerpos humanizados que reconocen el peptido beta-amiloide.
DE60229051D1 (de) 2001-04-30 2008-11-06 Lilly Co Eli Humanisierte antikörper
US6906169B2 (en) 2001-05-25 2005-06-14 United Biomedical, Inc. Immunogenic peptide composition comprising measles virus Fprotein Thelper cell epitope (MUFThl-16) and N-terminus of β-amyloid peptide
GB0113179D0 (en) 2001-05-31 2001-07-25 Novartis Ag Organic compounds
AU2002345843A1 (en) 2001-06-22 2003-01-08 Panacea Pharmaceuticals, Inc. Compositions and methods for preventing protein aggregation in neurodegenerative diseases
JP4317010B2 (ja) 2001-07-25 2009-08-19 ピーディーエル バイオファーマ,インコーポレイティド IgG抗体の安定な凍結乾燥医薬製剤
US20030135035A1 (en) 2001-08-09 2003-07-17 Mark Shannon Human ZZAP1 protein
US20060073149A1 (en) * 2001-08-17 2006-04-06 Bales Kelly R Rapid improvement of cognition in condition related to abeta
US20040192898A1 (en) 2001-08-17 2004-09-30 Jia Audrey Yunhua Anti-abeta antibodies
US20030082191A1 (en) 2001-08-29 2003-05-01 Poduslo Joseph F. Treatment for central nervous system disorders
US7781413B2 (en) 2001-10-31 2010-08-24 Board Of Regents, The University Of Texas System SEMA3B inhibits tumor growth and induces apoptosis in cancer cells
US20030138417A1 (en) 2001-11-08 2003-07-24 Kaisheva Elizabet A. Stable liquid pharmaceutical formulation of IgG antibodies
EP1572894B1 (en) 2001-11-21 2016-04-13 New York University Synthetic immunogenic but non-deposit-forming polypeptides and peptides homologous to amyloid beta, prion protein, amylin, alpha synuclein, or polyglutamine repeats for induction of an immune response thereto
AU2002366355A1 (en) 2001-12-17 2003-06-30 New York State Office Of Mental Health SEQUESTRATION OF ABeta IN THE PERIPHERY IN THE ABSENCE OF IMMUNOMODULATING AGENT AS A THERAPEUTIC APPROACH FOR THE TREATMENT OR PREVENTION OF BETA-AMYLOID RELATED DISEASES
AR038568A1 (es) 2002-02-20 2005-01-19 Hoffmann La Roche Anticuerpos anti-a beta y su uso
JP2005526501A (ja) * 2002-02-21 2005-09-08 デューク・ユニヴァーシティ 自己免疫疾患用の試薬および治療方法
MY139983A (en) * 2002-03-12 2009-11-30 Janssen Alzheimer Immunotherap Humanized antibodies that recognize beta amyloid peptide
US7132100B2 (en) 2002-06-14 2006-11-07 Medimmune, Inc. Stabilized liquid anti-RSV antibody formulations
EP1911765A3 (en) 2002-07-24 2008-04-23 Innogenetics N.V. Prevention, treatment and diagnosis of diseases associated with Beta-Amyloid formation and/or aggregation
JP2006508072A (ja) 2002-10-01 2006-03-09 ノースウエスタン ユニバーシティ アミロイドベータ由来拡散性リガンド(ADDLs)、ADDL代替物、ADDL結合性分子、およびそれらの使用
FR2846667B1 (fr) * 2002-11-06 2004-12-31 Pasteur Institut Fragments variables d'anticorps de camelides a chaine unique diriges contre le peptide beta-amyloide 1-42 et leurs applications pour le diagnostic et le traitement des maladies neuroagregatives
AU2003293543A1 (en) 2002-12-13 2004-07-09 Abgenix, Inc. System and method for stabilizing antibodies with histidine
EP1594969B1 (en) 2003-02-01 2015-05-20 Janssen Sciences Ireland UC Active immunization to generate antibodies to soluble a-beta
US7575747B2 (en) 2003-02-10 2009-08-18 Applied Molecular Evolution Aβ binding molecules
DK2335725T3 (en) 2003-04-04 2017-01-23 Genentech Inc Highly concentrated antibody and protein formulations
EP1480041A1 (en) 2003-05-22 2004-11-24 Innogenetics N.V. Method for the prediction, diagnosis and differential diagnosis of Alzheimer's disease
PE20050627A1 (es) 2003-05-30 2005-08-10 Wyeth Corp Anticuerpos humanizados que reconocen el peptido beta amiloideo
WO2005014041A2 (en) 2003-07-24 2005-02-17 Novartis Ag Use of an amyloid beta dna vaccine for the treatment and/or prevention of amyloid diseases
EP1670827A2 (en) * 2003-09-05 2006-06-21 Eli Lilly And Company Anti-ghrelin antibodies
KR101158147B1 (ko) 2003-12-17 2012-07-17 와이어쓰 엘엘씨 Aβ 면역원성 펩티드 캐리어 컨쥬게이트 및 이의 제조방법
KR101157694B1 (ko) 2003-12-17 2012-06-20 와이어쓰 엘엘씨 면역원성 펩티드 캐리어 컨쥬게이트 및 이의 제조 방법
US7807804B2 (en) 2004-10-05 2010-10-05 Wyeth Llc Methods and compositions for improving recombinant protein production
WO2006047670A2 (en) 2004-10-26 2006-05-04 Wyeth Methods for assessing antibodies to neurodegenerative disease-associated antigens
ES2434732T3 (es) 2004-12-15 2013-12-17 Janssen Alzheimer Immunotherapy Anticuerpos para beta-amiloide humanizados para su uso en mejorar la cognición
ES2396555T3 (es) 2004-12-15 2013-02-22 Janssen Alzheimer Immunotherapy Anticuerpos que reconocen péptido beta amiloide
US20060153772A1 (en) 2004-12-15 2006-07-13 Wyeth Contextual fear conditioning for predicting immunotherapeutic efficacy
WO2006066233A1 (en) 2004-12-15 2006-06-22 Neuralab Limited An immunoprecipitation-based assay for predicting in vivo efficacy of beta-amyloid antibodies
PA8661401A1 (es) 2005-01-28 2006-09-08 Wyeth Corp Formulaciones del liquido polipeptido estabilizado
GT200600031A (es) 2005-01-28 2006-08-29 Formulacion anticuerpo anti a beta
BRPI0611599A2 (pt) 2005-06-17 2011-02-22 Elan Pharma Int Ltd método para purificar uma protéina de ligação a beta, e, proteìna de ligação a beta

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016467A2 (en) * 2001-08-17 2003-02-27 Eli Lilly And Company Use of antibodies having high affinity for soluble ass to treat conditions and diseases related to ass
WO2006066171A1 (en) * 2004-12-15 2006-06-22 Neuralab Limited Amyloid βετα antibodies for use in improving cognition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12227567B2 (en) 2017-07-25 2025-02-18 Truebinding, Inc. Treating cancer by blocking the interaction of TIM-3 and its ligand

Also Published As

Publication number Publication date
AR051528A1 (es) 2007-01-17
WO2006066049A3 (en) 2006-10-05
PE20061152A1 (es) 2006-10-13
EP1838854A2 (en) 2007-10-03
ES2396555T3 (es) 2013-02-22
US7625560B2 (en) 2009-12-01
UY29282A1 (es) 2006-06-30
WO2006066049A2 (en) 2006-06-22
TW200636066A (en) 2006-10-16
US20060165682A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
EP1838854B1 (en) Antibodies that recognize Beta Amyloid Peptide
EP1838348B1 (en) Humanized amyloid beta antibodies for use in improving cognition
US20060257396A1 (en) Abeta antibodies for use in improving cognition
US8128928B2 (en) Humanized antibodies that recognize beta amyloid peptide
US7871615B2 (en) Humanized antibodies that recognize beta amyloid peptide
KR20030066695A (ko) 베타 아밀로이드 펩티드를 인식하는 인간화된 항체
JP2012233002A (ja) 認知の改善における使用のためのアミロイドβ抗体
JP2012050437A (ja) ベータアミロイドペプチドを認識するヒト化抗体

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070716

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20071218

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WYETH LLC

Owner name: NEURALAB, LTD.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NEURALAB, LTD.

Owner name: WYETH LLC

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WYETH LLC

Owner name: ELAN PHARMA INTERNATIONAL LIMITED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WYETH LLC

Owner name: JANSSEN ALZHEIMER IMMUNOTHERAPY

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602005036847

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C12N0015130000

Ipc: C07K0016180000

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C07K 16/18 20060101AFI20120322BHEP

Ipc: A61K 39/395 20060101ALI20120322BHEP

Ipc: A61P 25/28 20060101ALI20120322BHEP

RTI1 Title (correction)

Free format text: ANTIBODIES THAT RECOGNIZE BETA AMYLOID PEPTIDE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WYETH LLC

Owner name: JANSSEN ALZHEIMER IMMUNOTHERAPY

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 581985

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005036847

Country of ref document: DE

Effective date: 20130103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005036847

Country of ref document: DE

Owner name: WYETH LLC, US

Free format text: FORMER OWNER: JANSSEN ALZHEIMER IMMUNOTHERAPY, WYETH LLC, , US

Effective date: 20121121

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005036847

Country of ref document: DE

Owner name: WYETH LLC, US

Free format text: FORMER OWNER: NEURALAB LTD., WYETH, , US

Effective date: 20121031

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005036847

Country of ref document: DE

Owner name: JANSSEN ALZHEIMER IMMUNOTHERAPY, IE

Free format text: FORMER OWNER: NEURALAB LTD., WYETH, , US

Effective date: 20121031

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005036847

Country of ref document: DE

Owner name: JANSSEN ALZHEIMER IMMUNOTHERAPY, IE

Free format text: FORMER OWNER: JANSSEN ALZHEIMER IMMUNOTHERAPY, WYETH LLC, , US

Effective date: 20121121

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005036847

Country of ref document: DE

Owner name: WYETH LLC, MADISON, US

Free format text: FORMER OWNER: NEURALAB LTD., WYETH, , US

Effective date: 20121031

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005036847

Country of ref document: DE

Owner name: WYETH LLC, MADISON, US

Free format text: FORMER OWNER: JANSSEN ALZHEIMER IMMUNOTHERAPY, WYETH LLC, , US

Effective date: 20121121

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005036847

Country of ref document: DE

Owner name: WYETH LLC, MADISON, US

Free format text: FORMER OWNERS: JANSSEN ALZHEIMER IMMUNOTHERAPY, LITTLE ISLAND, COUNTY CORK, IE; WYETH LLC, MADISON, N.J., US

Effective date: 20121121

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005036847

Country of ref document: DE

Owner name: JANSSEN ALZHEIMER IMMUNOTHERAPY, IE

Free format text: FORMER OWNERS: JANSSEN ALZHEIMER IMMUNOTHERAPY, LITTLE ISLAND, COUNTY CORK, IE; WYETH LLC, MADISON, N.J., US

Effective date: 20121121

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005036847

Country of ref document: DE

Owner name: WYETH LLC, MADISON, US

Free format text: FORMER OWNERS: NEURALAB LTD., FLATTS, SMITHS, BM; WYETH, MADISON, N.J., US

Effective date: 20121031

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005036847

Country of ref document: DE

Owner name: JANSSEN ALZHEIMER IMMUNOTHERAPY, IE

Free format text: FORMER OWNERS: NEURALAB LTD., FLATTS, SMITHS, BM; WYETH, MADISON, N.J., US

Effective date: 20121031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2396555

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130222

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 581985

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121031

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130201

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130131

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005036847

Country of ref document: DE

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20161209

Year of fee payment: 12

Ref country code: FR

Payment date: 20161111

Year of fee payment: 12

Ref country code: GB

Payment date: 20161214

Year of fee payment: 12

Ref country code: DE

Payment date: 20161206

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161111

Year of fee payment: 12

Ref country code: IT

Payment date: 20161221

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005036847

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171215

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171215

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171215

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171216