EP1793091A1 - Dampfturbine mit Lagerstreben - Google Patents
Dampfturbine mit Lagerstreben Download PDFInfo
- Publication number
- EP1793091A1 EP1793091A1 EP05026254A EP05026254A EP1793091A1 EP 1793091 A1 EP1793091 A1 EP 1793091A1 EP 05026254 A EP05026254 A EP 05026254A EP 05026254 A EP05026254 A EP 05026254A EP 1793091 A1 EP1793091 A1 EP 1793091A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bearing
- steam turbine
- struts
- shaft
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/06—Fluid supply conduits to nozzles or the like
- F01D9/065—Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/16—Arrangement of bearings; Supporting or mounting bearings in casings
- F01D25/162—Bearing supports
Definitions
- the invention relates to a steam turbine with an exhaust steam housing for guiding a Abdampfmassenstroms, a shaft bearing for supporting a turbine shaft and at least two bearing struts, by means of which the shaft bearing is attached to the exhaust steam housing.
- FIG. 4 shows a cross-sectional view of a bearing support strut 18 known from the prior art. It is designed as a solid body and has bores 34 for internal reception of supply lines, such as e.g. Sealing steam pipes on. Between the supply lines and the bearing strut 18 only a small clearance is provided, which is why an internal heat transfer between the supply lines, in particular sealing steam lines and the bearing strut 18 takes place. Also from the outside, there is a heat input to the bearing strut 18 by the direct application of turbine exhaust steam.
- supply lines such as e.g. Sealing steam pipes on.
- the temperature of the Abdampfmassenstroms can vary greatly depending on the operating point, whereby the deformation behavior of the bearing strut 18 is directly influenced.
- the bearing strut arrangements known in the prior art are therefore sensitive to temperature influences from inside and outside. In the prior art, therefore, sealing steam temperatures are limited to values below 150 ° C, and provided large radial clearance between the bearing struts and the exhaust steam housing or the shaft bearing.
- An object of the invention is to improve a steam turbine of the type mentioned in that thermodynamic efficiency advantages for the entire turbine arise.
- each of the at least two bearing struts has a arranged in the respective bearing strut cooling cavity for guiding a coolant and the cooling cavities of the at least two bearing struts are fluidly connected via a closed connection cavity in the region of the shaft bearing.
- Coolant for example, is cooling air in question, in which case the cooling cavities of the bearing struts are then designed as ventilation cavities through which cooling air flows.
- the bearing struts can be effectively cooled by passing a suitable coolant from the inside.
- a suitable coolant from the inside.
- convection can cause internal cooling air flow through the bearing struts.
- ambient air is sucked through at least one of the bearing struts, passed through the connecting cavity and discharged by another bearing strut back to the environment.
- the heat can be dissipated within the bearing struts and the influence of the temperature of the Abdampfmassenstroms outside the bearing struts and / or the temperature of running within the bearing struts supply media to the deformation behavior of the bearing struts are minimized.
- the radial clearance to the shaft bearing and Abdampfgephaseuse be designed smaller and less conservative.
- thermodynamic efficiency advantages for the entire turbine can be generated.
- the radial play can even be reduced so that the bearing struts can be welded directly between the outer Abdampfgephaseuse and an inner shaft seal housing of the shaft bearing.
- higher sealing steam temperatures can now be admitted in sealing steam lines laid within the bearing struts than was customary in the prior art. Sealing steam temperatures above 150 ° C are in the steam turbine according to the invention possible. This reduces the complexity of the sealing steam system and therefore saves costs in manufacture and maintenance.
- the cooling cavities of the at least two bearing struts each have an opening facing the exhaust steam housing.
- these openings are arranged on the exhaust steam housing facing the ends of the bearing struts.
- the cooling cavities of the at least two bearing struts and the connecting cavity form a pressure chamber enclosed by the exhaust steam flow of the steam turbine.
- the shaft bearing has a shaft seal housing and the connecting cavity is disposed within the shaft seal housing.
- the connection cavity is formed by means of leads routed outside a shaft seal housing.
- the connection cavity is formed within the shaft bearing.
- the connecting cavity is channel-shaped, in particular in the case of at least three bearing struts designed as a star-shaped channel system.
- the connection cavity can forward the coolant particularly well between the bearing struts.
- At least one of the bearing struts is arranged in the lower portion of the steam turbine and thus formed as a bearing bearing strut.
- the inventive cooling of this bearing bearing strut by means of a guided in a cooling cavity coolant is particularly advantageous in such a bearing bearing strut because of the large mechanical forces acting thereon.
- at least two bearing struts are designed as bearing bearing struts, and are thus arranged in the lower portion of the steam turbine.
- the weight of the turbine shaft mounted in the shaft bearing is thereby distributed over a plurality of bearing struts, which in turn enables a reduction of the radial play.
- the at least two bearing struts are each formed as a hollow body.
- the interior of the hollow body forms the corresponding cooling cavity.
- the cooling effect of the guided in the cooling cavity coolant to the bearing strut is particularly high, as it flows along the outer wall of the hollow body.
- the cooling cavities each extend along at least a portion of the corresponding strut surfaces in the longitudinal direction of the respective bearing strut.
- the coolant can be performed directly on the corresponding portion of the strut surface along, allowing optimal cooling of the same. Due to the extent of the cooling cavities in the longitudinal direction of the respective bearing strut, the coolant can be fluidly particularly easily guided by the contiguous, flowed through by the coolant pressure chamber.
- At least one sealing steam line is arranged within the ventilation channels.
- the steam turbine is designed as a low-pressure turbine with axial outflow.
- the heat transfer through the exhaust steam mass flow to the bearing struts has an especially negative effect on embodiments used in the prior art.
- the cooling device provided according to the invention for the bearing struts of the low-pressure steam turbine enables a particularly advantageous increase in the thermodynamic efficiency by reducing the radial play, both in normal operation and in transient operation of the turbine.
- the shaft bearing is designed as a rear shaft bearing of the low-pressure steam turbine.
- the rear shaft bearing and the supporting low-pressure steam turbine bearing struts are located directly in the low-pressure exhaust steam mass flow.
- the low-pressure steam turbine 10 has an outer exhaust steam housing 12 and an inner shaft seal housing 14.
- the shaft seal housing 14 includes a rear shaft bearing 16 for receiving a turbine shaft not shown in the drawing.
- the shaft seal housing 14 is attached to the exhaust steam housing 12 via three lower bearing bearing struts 18 and an upper bearing strut 20.
- the lower bearing bearing struts 18 and the upper bearing strut 20 are designed as a hollow body and welded directly between the outer Abdampfgephase 12 and the inner shaft seal housing 14.
- FIG. 2 shows a detail of the low-pressure steam turbine shown in FIG. 1 in the region of one of the three lower bearing bearing struts 18.
- the bearing strut 18 has a solid support bearing 22 connecting the exhaust steam housing 12 with the shaft seal housing 14. Furthermore, the bearing strut 18 is surrounded by a heat protection jacket 30, which has a compensator 32 to compensate for a change in length of the heat protection jacket 30. Via an access in the exhaust steam housing 12, cooling air 26 is sucked into the cooling cavity 24 of the bearing strut 18 via an opening 25 in the cooling cavity 24.
- the cooling air 26 enters into a connecting cavity 28 of the shaft seal housing 14 after flowing through the cooling cavity 24.
- the connecting cavity 28 in the shaft seal housing 14 connects star-shaped respective cooling cavities 24 of all bearing struts, ie both the three lower bearing struts 18 and the upper bearing strut 20. This creates a closed by Abdampfmassenstrom, with cooling air flowed through so-called Lagersterndruckraum, the cooling cavities 24 of all bearing struts 18 and 20 and the connecting cavity 28 of the shaft seal housing 14 includes.
- the lower supporting bearing struts 18 are all flowed through with shaft seal housing side sucked fresh air, which is then completely discharged through the non-supporting upper bearing strut 20 back to the environment.
- FIG. 3 also shows a section of the low-pressure steam turbine 10 in the region of the upper bearing strut 20.
- This also contains a massively designed bearing support 22 connecting the inner shaft seal housing 14 to the outer exhaust housing 12.
- a cooling cavity 24 designed as a ventilation channel is likewise guided along the latter an opening 25 opens into the exhaust steam housing 12. Since the cooling cavity 24 of the upper bearing strut 20 must accommodate the entire brought in the three supporting bearing struts 18 cooling air flow, the cross section of the cooling cavity 24 of the upper bearing strut 20 is dimensioned correspondingly larger.
- the cooling effect of guided in the cooling cavity 24 of the upper bearing bar 20 cooling air 26 is reduced compared to the cooling effect of the guided in the bearing bearing struts 18 cooling air 26, since the temperature of the cooling air 26 is already heated when passing through the lower bearing struts 18.
- the cooling requirement of the upper bearing brace 20 is, however, lower, since this is exposed as a non-bearing bearing strut lower mechanical loads and therefore less susceptible to deformation.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Support Of The Bearing (AREA)
Abstract
Eine Dampfturbine mit einem Abdampfgehäuse (12) zur Führung eines Abdampfmassenstroms, einem Wellenlager (16) zur Lagerung einer Turbinenwelle, sowie mindestens zwei Lagerstreben (18, 20), mittels welcher das Wellenlager (16) an dem Abdampfgehäuse (12) befestigt ist, ist erfindungsgemäß dadurch gekennzeichnet, dass jede der mindestens zwei Lagerstreben (18, 20) einen in der jeweiligen Lagerstrebe angeordneten Kühlhohlraum (24) zur Führung eines Kühlmittels (26) aufweist und die Kühlhohlräume (24) der mindestens zwei Lagerstreben (18, 20) über einen abgeschlossenen Verbindungshohlraum (28) im Bereich des Wellenlagers (16) fluidleitend verbunden sind.
Description
- Die Erfindung betrifft eine Dampfturbine mit einem Abdampfgehäuse zur Führung eines Abdampfmassenstroms, einem Wellenlager zur Lagerung einer Turbinenwelle sowie mindestens zwei Lagerstreben, mittels welcher das Wellenlager an dem Abdampfgehäuse befestigt ist.
- Bei derartigen Dampfturbinen befinden sich die Lagerstreben direkt im Abdampfmassenstrom. Fig. 4 zeigt eine Querschnittsansicht einer aus dem Stand der Technik bekannten tragenden Lagerstrebe 18. Diese ist als Vollkörper ausgeführt und weist Bohrungen 34 zur internen Aufnahme von Versorgungsleitungen, wie z.B. Sperrdampfleitungen auf. Zwischen den Versorgungsleitungen und der Lagerstrebe 18 ist nur ein geringes Spiel vorgesehen, weshalb eine interne Wärmeübertragung zwischen den Versorgungsleitungen, insbesondere Sperrdampfleitungen und der Lagerstrebe 18 stattfindet. Auch von außen findet eine Wärmezufuhr auf die Lagerstrebe 18 durch die direkte Beaufschlagung mit Turbinenabdampf statt. Die Temperatur des Abdampfmassenstroms kann je nach Betriebspunkt stark variieren, wodurch das Verformungsverhalten der Lagerstrebe 18 direkt beeinflusst wird. Die im Stand der Technik bekannten Lagerstrebenanordnungen sind daher empfindlich gegenüber Temperatureinflüssen von innen und von außen. Im Stand der Technik werden daher Sperrdampftemperaturen auf Werte von unterhalb 150°C begrenzt, sowie große Radialspiele zwischen den Lagerstreben und dem Abdampfgehäuse bzw. dem Wellenlager vorgesehen.
- Eine der Erfindung zugrunde liegende Aufgabe besteht darin, eine Dampfturbine der eingangs genannten Art dahingehend zu verbessern, dass sich thermodynamische Wirkungsgradvorteile für die Gesamtturbine ergeben.
- Diese Aufgabe ist erfindungsgemäß mit einer gattungsgemäßen Dampfturbine gelöst, bei der jede der mindestens zwei Lagerstreben einen in der jeweiligen Lagerstrebe angeordneten Kühlhohlraum zur Führung eines Kühlmittels aufweist und die Kühlhohlräume der mindestens zwei Lagerstreben über einen abgeschlossenen Verbindungshohlraum im Bereich des Wellenlagers fluidleitend verbunden sind. Als Kühlmittel kommt beispielsweise Kühlluft in Frage, in welchem Fall die Kühlhohlräume der Lagerstreben dann als von Kühlluft durchströmte Belüftungshohlräume ausgebildet sind.
- Durch das erfindungsgemäße Vorsehen von Kühlhohlräumen in den jeweiligen Lagerstreben und das Verbinden derselben über einen abgeschlossenen Verbindungshohlraum im Bereich des Wellenlagers können die Lagerstreben durch Hindurchleiten eines geeigneten Kühlmittels wirksam von innen her gekühlt werden. Im Fall von Kühlluft als Kühlmittel, kann sich durch Konvektion eine interne Kühlluftströmung durch die Lagerstreben hindurch einstellen. In diesem Fall wird durch mindestens eine der Lagerstreben Umgebungsluft angesaugt, durch den Verbindungshohlraum hindurch geführt und durch eine andere Lagerstrebe wieder an die Umgebung abgegeben. Auf diese Weise kann die Wärme innerhalb der Lagerstreben abgeführt und der Einfluss der Temperatur des Abdampfmassenstroms außerhalb der Lagerstreben und/oder der Temperatur von innerhalb der Lagerstreben geführten Versorgungsmedien auf das Verformungsverhalten der Lagerstreben minimiert werden. Als Folge können die Radialspiele zum Wellenlager sowie zum Abdampfgehäuse kleiner und weniger konservativ ausgelegt werden.
- Erfindungsgemäß können erhebliche thermodynamische Wirkungsgradvorteile für die Gesamtturbine erzeugt werden. Bei Verwirklichung des Kühlsystems nach der Erfindung können die Radialspiele sogar derart verringert werden, dass die Lagerstreben direkt zwischen dem äußeren Abdampfgehäuse und einem inneren Wellendichtungsgehäuse des Wellenlagers eingeschweißt werden können. Weiterhin können nun höhere Sperrdampftemperaturen in innerhalb der Lagerstreben verlegten Sperrdampfleitungen als bisher im Stand der Technik üblich zugelassen werden. Sperrdampftemperaturen oberhalb von 150°C sind bei der erfindungsgemäßen Dampfturbine möglich. Dies verringert die Komplexität des Sperrdampfsystems und spart daher Kosten in der Herstellung und bei der Wartung.
- In bevorzugter Ausführungsform weisen die Kühlhohlräume der mindestens zwei Lagerstreben jeweils eine dem Abdampfgehäuse zugewandte Öffnung auf. Vorzugsweise sind diese Öffnungen an den dem Abdampfgehäuse zugewandten Enden der Lagerstreben angeordnet. Damit kann Kühlmittel, wie etwa Kühlluft von außerhalb des Abdampfgehäuses über die jeweilige Öffnung einer oder mehrerer bestimmter Lagerstreben in das Kühlsystem eintreten und über eine entsprechende Öffnung an einer oder mehreren dafür vorgesehenen Lagerstreben wieder in die Umgebung austreten.
- Um die Kühlung der Lagerstreben besonders effizient zu betreiben, bilden die Kühlhohlräume der mindestens zwei Lagerstreben und der Verbindungshohlraum einen vom Abdampfmassenstrom der Dampfturbine abgeschlossenen Druckraum.
- Vorteilhafterweise weist das Wellenlager ein Wellendichtungsgehäuse auf und der Verbindungshohlraum ist innerhalb des Wellendichtungsgehäuses angeordnet. Damit wird die Strömungsdynamik des Abdampfmassenstroms nicht beeinflusst. In einer alternativen Ausführungsform wird der Verbindungshohlraum mittels außerhalb eines Wellendichtungsgehäuses geführten Leitungen gebildet. In einer darüber hinausgehend weiteren Ausführungsform ist der Verbindungshohlraum innerhalb des Wellenlagers ausgebildet.
- In einer zweckmäßigen Ausführungsform ist der Verbindungshohlraum kanalförmig, insbesondere im Fall von mindestens drei Lagerstreben als sternförmiges Kanalsystem ausgebildet. In dieser Ausführungsform kann der Verbindungshohlraum das Kühlmittel besonders gut zwischen den Lagerstreben weiterleiten.
- Vorteilhafterweise ist mindestens eine der Lagerstreben im unteren Abschnitt der Dampfturbine angeordnet und somit als tragende Lagerstrebe ausgebildet. Die erfindungsgemäße Kühlung dieser tragenden Lagerstrebe mittels eines in einem Kühlhohlraum geführten Kühlmittels ist bei einer solchen tragenden Lagerstrebe wegen der großen darauf einwirkenden mechanischen Kräfte besonders vorteilhaft. In dem Fall, in dem das Wellenlager mittels mindestens dreier Lagerstreben gehalten wird, ist es vorteilhaft, wenn mindestens zwei Lagerstreben als tragende Lagerstreben ausgebildet sind, und damit im unteren Abschnitt der Dampfturbine angeordnet sind. Das Gewicht der in dem Wellenlager gelagerten Turbinenwelle wird dadurch auf mehrere Lagerstreben verteilt, was wiederum eine Verringerung der Radialspiele ermöglicht.
- In vorteilhafter Ausführungsform sind die mindestens zwei Lagerstreben jeweils als Hohlkörper ausgebildet. Dabei bildet das Innere des Hohlkörpers den entsprechenden Kühlhohlraum. In diesem Fall ist die Kühlwirkung des in dem Kühlhohlraum geführten Kühlmittels auf die Lagerstrebe besonders hoch, da dieses entlang der Außenwand des Hohlkörpers strömt.
- In einer weiteren vorteilhaften Ausführungsform verlaufen die Kühlhohlräume jeweils entlang zumindest eines Abschnitts der entsprechenden Strebenoberflächen in Längsrichtung der jeweiligen Lagerstrebe. Damit kann das Kühlmittel direkt an dem entsprechenden Abschnitt der Strebenoberfläche entlang geführt werden, was eine optimale Kühlung derselben ermöglicht. Durch die Erstreckung der Kühlhohlräume in Längsrichtung der jeweiligen Lagerstrebe lässt sich das Kühlmittel strömungstechnisch besonders einfach durch den zusammenhängenden, vom Kühlmittel durchströmten Druckraum führen.
- Um die tragenden Teile der Lagerstreben von, von einer Sperrdampfleitung abgegebener Wärme abzuschirmen, ist es vorteilhaft, wenn innerhalb der Belüftungskanäle mindestens eine Sperrdampfleitung angeordnet ist.
- In vorteilhafter Ausführungsform ist die Dampfturbine als Niederdruckturbine mit axialer Abströmung ausgebildet. Bei derartigen Dampfturbinen wirkt sich die Wärmeübertragung durch den Abdampfmassenstrom auf die Lagerstreben bei im Stand der Technik verwendeten Ausführungsformen besonders negativ aus. Die gemäß der Erfindung vorgesehene Kühleinrichtung für die Lagerstreben der Niederdruckdampfturbine ermöglicht eine durch Verringerung der Radialspiele besonders vorteilhafte Steigerung des thermodynamischen Wirkungsgrades, sowohl im Normalbetrieb als auch im instationären Betrieb der Turbine.
- In einer weiteren vorteilhaften Ausführungsform ist das Wellenlager als ein hinteres Wellenlager der Niederdruckdampfturbine ausgebildet. Das hintere Wellenlager sowie die tragenden Niederdruckdampfturbinenlagerstreben befinden sich direkt im Niederdruck-Abdampfmassenstrom. Damit wirken sich die erfindungsgemäßen Maßnahmen besonders vorteilhaft auf den thermodynamischen Wirkungsgrad der Dampfturbine aus.
- Nachfolgend wird ein Ausführungsbeispiel einer erfindungsgemäßen Dampfturbine anhand der beigefügten schematischen Zeichnungen näher erläutert. Es zeigt:
- Fig. 1
- eine Querschnittsansicht einer erfindungsgemäßen Niederdruckdampfturbine mit einem hinteren Wellenlager,
- Fig. 2
- eine Detailansicht der in Fig. 1 gezeigten Schnittansicht einer Niederdruckdampfturbine im Bereich einer unteren tragenden Lagerstrebe,
- Fig. 3
- eine Detailansicht der in Fig.1 gezeigten Schnittansicht einer Niederdruckdampfturbine im Bereich einer oberen Lagerstrebe, sowie
- Fig. 4
- eine Querschnittsansicht einer aus dem Stand der Technik bekannten tragenden Lagerstrebe.
- Fig. 1 zeigt den Aufbau einer erfindungsgemäßen Niederdruckdampfturbine 10. Die Niederdruckdampfturbine 10 weist ein äußeres Abdampfgehäuse 12 und ein inneres Wellendichtungsgehäuse 14 auf. Das Wellendichtungsgehäuse 14 enthält ein hinteres Wellenlager 16 zur Aufnahme einer nicht in der Zeichnung dargestellten Turbinenwelle. Das Wellendichtungsgehäuse 14 ist über drei untere tragende Lagerstreben 18 sowie eine obere Lagerstrebe 20 am Abdampfgehäuse 12 befestigt. Dazu sind die unteren tragenden Lagerstreben 18 sowie die obere Lagerstrebe 20 als Hohlkörper ausgeführt und direkt zwischen dem äußeren Abdampfgehäuse 12 und dem inneren Wellendichtungsgehäuse 14 verschweißt.
- Der innere Aufbau einer der Lagerstreben 18, der Lagerstrebe 20 als auch des Wellendichtungsgehäuses 14 ist in den Fig. 2 und 3 näher dargestellt. In Fig. 2 ist ein Ausschnitt der in Fig. 1 gezeigten Niederdruckdampfturbine im Bereich einer der drei unteren tragenden Lagerstreben 18 gezeigt. Die Lagerstrebe 18 weist eine das Abdampfgehäuse 12 mit dem Wellendichtungsgehäuse 14 verbindende, massiv ausgeführte Lagerstütze 22 auf. Entlang dieser Lagerstütze 22 verläuft in Längsrichtung derselben ein als Belüftungskanal ausgeführter Kühlhohlraum 24. Weiterhin ist die Lagerstrebe 18 mit einem Wärmeschutzmantel 30 umgeben, der einen Kompensator 32 zum Ausgleich einer Längenänderung des Wärmeschutzmantels 30 aufweist. Über einen Zugang im Abdampfgehäuse 12 wird über eine Öffnung 25 im Kühlhohlraum 24 Kühlluft 26 in den Kühlhohlraum 24 der Lagerstrebe 18 gesaugt. Die Kühlluft 26 tritt nach Durchströmen des Kühlhohlraums 24 in einen Verbindungshohlraum 28 des Wellendichtungsgehäuses 14 ein. Der Verbindungshohlraum 28 im Wellendichtungsgehäuse 14 verbindet sternförmig jeweilige Kühlhohlräume 24 aller Lagerstreben, d.h. sowohl der drei unteren Lagerstreben 18 als auch der oberen Lagerstrebe 20. Damit entsteht ein vom Abdampfmassenstrom abgeschlossener, mit Kühlluft durchströmter so genannter Lagersterndruckraum, der die Kühlhohlräume 24 aller Lagerstreben 18 sowie 20 als auch den Verbindungshohlraum 28 des Wellendichtungsgehäuses 14 umfasst. Wie in Fig. 1 gezeigt, werden die unteren tragenden Lagerstreben 18 allesamt mit wellendichtungsgehäuseseitig angesaugter Frischluft durchströmt, welche dann vollständig über die nicht tragende obere Lagerstrebe 20 wieder an die Umgebung abgegeben wird.
- Fig. 3 zeigt einen Ausschnitt der Niederdruckdampfturbine 10 im Bereich der oberen Lagerstrebe 20. Auch diese enthält eine das innere Wellendichtungsgehäuse 14 mit dem äußeren Abdampfgehäuse 12 verbindende massiv ausgeführte Lagerstütze 22. An dieser ist ebenfalls ein als Belüftungskanal ausgeführter Kühlhohlraum 24 entlang geführt, der über eine Öffnung 25 in das Abdampfgehäuse 12 mündet. Da der Kühlhohlraum 24 der oberen Lagerstrebe 20 den gesamten in den drei tragenden Lagerstreben 18 herangeführten Kühlluftstrom aufnehmen muss, ist der Querschnitt des Kühlhohlraums 24 der oberen Lagerstrebe 20 entsprechend größer dimensioniert. Die Kühlwirkung der im Kühlhohlraum 24 der oberen Lagerstrebe 20 geführten Kühlluft 26 ist gegenüber der Kühlwirkung der in den tragenden Lagerstreben 18 geführten Kühlluft 26 verringert, da die Temperatur der Kühlluft 26 bereits beim Durchlaufen der unteren Lagerstreben 18 aufgeheizt wird. Der Kühlbedarf der oberen Lagerstrebe 20 ist allerdings geringer, da diese als nicht tragende Lagerstrebe geringeren mechanischen Belastungen ausgesetzt ist und daher weniger verformungsanfällig ist. Um seine beabsichtigte Wirkung vollständig entfalten zu können, ist das erfindungsgemäße Kühlsystem wie in Fig. 1 gezeigt, zu betreiben. D.h., der Kühlluftstrom 26 sollte von unten nach oben gerichtet sein, d.h. zunächst die unteren tragenden Lagerstreben 18 und erst danach die obere Lagerstrebe 20 durchlaufen.
Claims (11)
- Dampfturbine mit einem Abdampfgehäuse (12) zur Führung eines Abdampfmassenstroms, einem Wellenlager (16) zur Lagerung einer Turbinenwelle, sowie mindestens zwei Lagerstreben (18, 20), mittels welcher das Wellenlager (16) an dem Abdampfgehäuse (12) befestigt ist,
dadurch gekennzeichnet, dass
jede der mindestens zwei Lagerstreben (18, 20) einen in der jeweiligen Lagerstrebe (18, 20) angeordneten Kühlhohlraum (24) zur Führung eines Kühlmittels (26) aufweist und die Kühlhohlräume (24) der mindestens zwei Lagerstreben (18, 20) über einen abgeschlossenen Verbindungshohlraum (28) im Bereich des Wellenlagers (16) fluidleitend verbunden sind. - Dampfturbine nach Anspruch 1,
dadurch gekennzeichnet, dass
die Kühlhohlräume (24) der mindestens zwei Lagerstreben (18, 20) jeweils einen dem Abdampfgehäuse (12) zugewandte Öffnung (25) aufweisen. - Dampfturbine nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Kühlhohlräume (24) der mindestens zwei Lagerstreben (18, 20) und der Verbindungshohlraum (28) einen vom Abdampfmassenstrom der Dampfturbine (10) abgeschlossenen Druckraum bilden. - Dampfturbine nach einem der vorausgehenden Ansprüche,
dadurch gekennzeichnet, dass
das Wellenlager (16) ein Wellendichtungsgehäuse (14) aufweist sowie der Verbindungshohlraum (28) innerhalb des Wellendichtungsgehäuses (14) angeordnet ist. - Dampfturbine nach einem der vorausgehenden Ansprüche,
dadurch gekennzeichnet, dass
der Verbindungshohlraum (28) kanalförmig, insbesondere im Fall von mindestens drei Lagerstreben (18, 20) als sternförmiges Kanalsystem (28) ausgebildet ist. - Dampfturbine nach einem der vorausgehenden Ansprüche,
dadurch gekennzeichnet, dass
mindestens eine der Lagerstreben (18, 20) im unteren Abschnitt der Dampfturbine (10) angeordnet ist und somit als tragende Lagerstrebe (18) ausgebildet ist. - Dampfturbine nach einem der vorausgehenden Ansprüche,
dadurch gekennzeichnet, dass
die mindestens zwei Lagerstreben (18, 20) jeweils als Hohlkörper ausgebildet sind. - Dampfturbine nach einem der vorausgehenden Ansprüche,
dadurch gekennzeichnet, dass
die Kühlhohlräume (24) jeweils entlang zumindest eines Abschnitts der entsprechenden Strebenoberfläche in Längsrichtung der jeweiligen Lagerstrebe (18, 20) verlaufen. - Dampfturbine nach einem der vorausgehenden Ansprüche,
dadurch gekennzeichnet, dass
innerhalb der Kühlhohlräume (24) mindestens eine Sperrdampfleitung angeordnet ist. - Dampfturbine nach einem der vorausgehenden Ansprüche,
dadurch gekennzeichnet, dass
die Dampfturbine (10) als Niederdruckdampfturbine mit axialer Abströmung ausgebildet ist. - Dampfturbine nach Anspruch 10,
dadurch gekennzeichnet, dass
das Wellenlager (16) als ein hinteres Wellenlager der Niederdruckdampfturbine (10) ausgebildet ist.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05026254A EP1793091A1 (de) | 2005-12-01 | 2005-12-01 | Dampfturbine mit Lagerstreben |
CN2006800450030A CN101321929B (zh) | 2005-12-01 | 2006-11-30 | 配有轴承支撑体的汽轮机 |
EP06819859A EP1954922B1 (de) | 2005-12-01 | 2006-11-30 | Dampfturbine mit lagerstreben |
AT06819859T ATE474998T1 (de) | 2005-12-01 | 2006-11-30 | Dampfturbine mit lagerstreben |
PL06819859T PL1954922T3 (pl) | 2005-12-01 | 2006-11-30 | Turbina parowa z zastrzałami łożyskowymi |
JP2008542757A JP4792507B2 (ja) | 2005-12-01 | 2006-11-30 | 軸受支柱付き蒸気タービン |
RU2008126725/06A RU2392450C2 (ru) | 2005-12-01 | 2006-11-30 | Паровая турбина с распорками для подшипника |
ES06819859T ES2348678T3 (es) | 2005-12-01 | 2006-11-30 | Turbina de vapor con barras de apoyo. |
DE502006007506T DE502006007506D1 (de) | 2005-12-01 | 2006-11-30 | Dampfturbine mit lagerstreben |
PCT/EP2006/069094 WO2007063088A1 (de) | 2005-12-01 | 2006-11-30 | Dampfturbine mit lagerstreben |
US12/085,699 US8550773B2 (en) | 2005-12-01 | 2006-11-30 | Steam turbine having bearing struts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05026254A EP1793091A1 (de) | 2005-12-01 | 2005-12-01 | Dampfturbine mit Lagerstreben |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1793091A1 true EP1793091A1 (de) | 2007-06-06 |
Family
ID=36593748
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05026254A Withdrawn EP1793091A1 (de) | 2005-12-01 | 2005-12-01 | Dampfturbine mit Lagerstreben |
EP06819859A Not-in-force EP1954922B1 (de) | 2005-12-01 | 2006-11-30 | Dampfturbine mit lagerstreben |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06819859A Not-in-force EP1954922B1 (de) | 2005-12-01 | 2006-11-30 | Dampfturbine mit lagerstreben |
Country Status (10)
Country | Link |
---|---|
US (1) | US8550773B2 (de) |
EP (2) | EP1793091A1 (de) |
JP (1) | JP4792507B2 (de) |
CN (1) | CN101321929B (de) |
AT (1) | ATE474998T1 (de) |
DE (1) | DE502006007506D1 (de) |
ES (1) | ES2348678T3 (de) |
PL (1) | PL1954922T3 (de) |
RU (1) | RU2392450C2 (de) |
WO (1) | WO2007063088A1 (de) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8979477B2 (en) * | 2011-03-09 | 2015-03-17 | General Electric Company | System for cooling and purging exhaust section of gas turbine engine |
US9194246B2 (en) | 2011-09-23 | 2015-11-24 | General Electric Company | Steam turbine LP casing cylindrical struts between stages |
PL220729B1 (pl) | 2011-10-03 | 2015-12-31 | Gen Electric | Układ turbiny gazowej |
US9039346B2 (en) * | 2011-10-17 | 2015-05-26 | General Electric Company | Rotor support thermal control system |
US9085995B2 (en) * | 2012-04-18 | 2015-07-21 | Hamilton Sundstrand Corporation | Anti-vortex shedding generator for APU support |
US9376934B2 (en) | 2012-08-24 | 2016-06-28 | General Electric Company | Cooling circuit for reducing thermal growth differential of turbine rotor and shell supports |
EP2938863B1 (de) | 2012-12-29 | 2019-09-25 | United Technologies Corporation | Mechanische verbindung für segmentierten hitzeschild |
WO2014105603A1 (en) | 2012-12-29 | 2014-07-03 | United Technologies Corporation | Multi-piece heat shield |
US9631517B2 (en) | 2012-12-29 | 2017-04-25 | United Technologies Corporation | Multi-piece fairing for monolithic turbine exhaust case |
WO2014105602A1 (en) | 2012-12-29 | 2014-07-03 | United Technologies Corporation | Heat shield for a casing |
EP2938857B2 (de) * | 2012-12-29 | 2020-11-25 | United Technologies Corporation | Hitzeschild zur kühlung einer strebe |
EP2853759A1 (de) | 2013-09-30 | 2015-04-01 | Siemens Aktiengesellschaft | Öllager mit Ölabflusssystem, Gasturbine mit einem solchen Öllager |
US20150354382A1 (en) * | 2014-06-06 | 2015-12-10 | General Electric Company | Exhaust frame cooling via strut cooling passages |
US10920612B2 (en) | 2015-07-24 | 2021-02-16 | Pratt & Whitney Canada Corp. | Mid-turbine frame spoke cooling system and method |
US10247035B2 (en) | 2015-07-24 | 2019-04-02 | Pratt & Whitney Canada Corp. | Spoke locking architecture |
US10443449B2 (en) | 2015-07-24 | 2019-10-15 | Pratt & Whitney Canada Corp. | Spoke mounting arrangement |
CN105275511B (zh) * | 2015-11-17 | 2018-01-19 | 上海电气电站设备有限公司 | 轴承座落地支撑的轴向排汽排汽缸 |
CN105257347B (zh) * | 2015-11-17 | 2019-01-15 | 上海电气电站设备有限公司 | 轴向排汽排汽缸轴承座冷却结构 |
CN113914946A (zh) * | 2021-10-29 | 2022-01-11 | 华能上海燃机发电有限责任公司 | 一种联合循环机组的透平端轴承热控线缆冷却装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB623615A (en) * | 1947-05-06 | 1949-05-19 | Frederick William Walton Morle | Improvements in or relating to gas-turbine-engines |
GB819111A (en) * | 1957-10-25 | 1959-08-26 | Blackburn & Gen Aircraft Ltd | Improvements in and relating to the supporting members of the shaft bearing of fluidengines |
GB1455974A (en) * | 1974-04-09 | 1976-11-17 | Bbc Sulzer Turbomaschinen | Gas turbine plant |
EP0509802A1 (de) * | 1991-04-16 | 1992-10-21 | General Electric Company | Spielkontrollvorrichtung für Schaufelspitzen |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2646469B1 (fr) * | 1989-04-28 | 1991-07-05 | Alsthom Gec | Systeme de supportage du rotor dans une turbine a echappement axial avec le palier cote echappement integre a la fondation |
CH685448A5 (de) | 1991-03-28 | 1995-07-14 | Asea Brown Boveri Ag Ansaldo C | Dampfturbogruppe. |
JP2954797B2 (ja) * | 1992-10-05 | 1999-09-27 | 株式会社東芝 | 蒸気タ−ビンの強制冷却装置 |
DE19615011A1 (de) * | 1995-07-19 | 1997-01-23 | Siemens Ag | Bauteil für einen Abgasstutzen einer Strömungsmaschine, insbesondere einer Dampfturbine |
US5819525A (en) * | 1997-03-14 | 1998-10-13 | Westinghouse Electric Corporation | Cooling supply manifold assembly for cooling combustion turbine components |
US6430931B1 (en) * | 1997-10-22 | 2002-08-13 | General Electric Company | Gas turbine in-line intercooler |
CA2262050C (en) * | 1998-02-17 | 2003-07-08 | Mitsubishi Heavy Industries, Ltd. | Steam-cooling type gas turbine |
JP4527824B2 (ja) * | 1998-12-22 | 2010-08-18 | ゼネラル・エレクトリック・カンパニイ | タービンロータの軸受用冷却系 |
JP2002309906A (ja) * | 2001-04-11 | 2002-10-23 | Mitsubishi Heavy Ind Ltd | 蒸気冷却型ガスタービン |
JP2003206701A (ja) * | 2002-01-11 | 2003-07-25 | Mitsubishi Heavy Ind Ltd | ガスタービンのタービンローターおよびガスタービン |
DE10355738A1 (de) * | 2003-11-28 | 2005-06-16 | Alstom Technology Ltd | Rotor für eine Turbine |
-
2005
- 2005-12-01 EP EP05026254A patent/EP1793091A1/de not_active Withdrawn
-
2006
- 2006-11-30 CN CN2006800450030A patent/CN101321929B/zh not_active Expired - Fee Related
- 2006-11-30 DE DE502006007506T patent/DE502006007506D1/de active Active
- 2006-11-30 JP JP2008542757A patent/JP4792507B2/ja not_active Expired - Fee Related
- 2006-11-30 PL PL06819859T patent/PL1954922T3/pl unknown
- 2006-11-30 EP EP06819859A patent/EP1954922B1/de not_active Not-in-force
- 2006-11-30 WO PCT/EP2006/069094 patent/WO2007063088A1/de active Application Filing
- 2006-11-30 AT AT06819859T patent/ATE474998T1/de active
- 2006-11-30 ES ES06819859T patent/ES2348678T3/es active Active
- 2006-11-30 US US12/085,699 patent/US8550773B2/en not_active Expired - Fee Related
- 2006-11-30 RU RU2008126725/06A patent/RU2392450C2/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB623615A (en) * | 1947-05-06 | 1949-05-19 | Frederick William Walton Morle | Improvements in or relating to gas-turbine-engines |
GB819111A (en) * | 1957-10-25 | 1959-08-26 | Blackburn & Gen Aircraft Ltd | Improvements in and relating to the supporting members of the shaft bearing of fluidengines |
GB1455974A (en) * | 1974-04-09 | 1976-11-17 | Bbc Sulzer Turbomaschinen | Gas turbine plant |
EP0509802A1 (de) * | 1991-04-16 | 1992-10-21 | General Electric Company | Spielkontrollvorrichtung für Schaufelspitzen |
Also Published As
Publication number | Publication date |
---|---|
JP4792507B2 (ja) | 2011-10-12 |
RU2392450C2 (ru) | 2010-06-20 |
ATE474998T1 (de) | 2010-08-15 |
EP1954922A1 (de) | 2008-08-13 |
CN101321929B (zh) | 2011-01-26 |
WO2007063088A1 (de) | 2007-06-07 |
US8550773B2 (en) | 2013-10-08 |
JP2009517592A (ja) | 2009-04-30 |
PL1954922T3 (pl) | 2010-12-31 |
DE502006007506D1 (de) | 2010-09-02 |
RU2008126725A (ru) | 2010-01-10 |
EP1954922B1 (de) | 2010-07-21 |
ES2348678T3 (es) | 2010-12-10 |
US20100054927A1 (en) | 2010-03-04 |
CN101321929A (zh) | 2008-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1954922B1 (de) | Dampfturbine mit lagerstreben | |
EP1945911B1 (de) | Dampfturbine | |
DE69604120T2 (de) | Vorkühlungswärmetauscher, integriert mit stromlinienförmiger Befestigungsvorrichtung einer Gasturbine | |
DE69837068T2 (de) | Interner Zwischenkühler für Gasturbinenkompressoren | |
EP1320661B1 (de) | Gasturbinenschaufel | |
DE60203959T2 (de) | Luftgekühltes Abgasgehäuse für eine Gasturbine | |
DE60015233T2 (de) | Turbinenschaufel mit interner Kühlung | |
DE69018338T2 (de) | Gasturbine. | |
DE2320581C2 (de) | Gasturbine mit luftgekühlten Turbinenlaufschaufeln | |
DE3345263C2 (de) | Gekühlte Turbinenschaufel | |
EP1105623A1 (de) | Turbinengehäuse | |
DE102010016620A1 (de) | Turbinenleitapparat mit Seitenwandkühlplenum | |
EP1452688A1 (de) | Dampfturbinenrotor sowie Verfahren und Verwendung einer aktiven Kühlung eines Dampfturbinenrotors | |
DE60035247T2 (de) | Gasturbinenschaufel | |
DE602004001532T2 (de) | Verfahren zur Kühlung einer tannenbaumförmigen Befestigung zwischen einer Turbinenscheibe und ihrer Schaufel | |
DE3424138A1 (de) | Luftspeichergasturbine | |
EP2148045A1 (de) | Gehäuseabschnitt für eine Gasturbine | |
DE1601563A1 (de) | Gekuehlte Schaufel fuer mit hohen Temperaturen arbeitende Turbinen | |
EP1905950A1 (de) | Laufschaufel für eine Turbine | |
EP1431662A1 (de) | Geschlossen gekühlte Brennkammer für eine Turbine | |
EP0838595A2 (de) | Schaufelträger für einen Verdichter | |
EP1167721B1 (de) | Verfahren zum Kühlen einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens | |
EP1165942B1 (de) | Strömungsmaschine mit einer kühlbaren anordnung von wandelementen und verfahren zur kühlung einer anordnung von wandelementen | |
DE4030200A1 (de) | Motorkuehlsystem | |
DE69200622T2 (de) | Mantelturbinenleitapparat. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
AKX | Designation fees paid | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20071207 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |