[go: up one dir, main page]

EP1626847B1 - Vorrichtung und verfahren zum ausrichten magnetisierbarer partikel in einem pastösen material - Google Patents

Vorrichtung und verfahren zum ausrichten magnetisierbarer partikel in einem pastösen material Download PDF

Info

Publication number
EP1626847B1
EP1626847B1 EP04732601A EP04732601A EP1626847B1 EP 1626847 B1 EP1626847 B1 EP 1626847B1 EP 04732601 A EP04732601 A EP 04732601A EP 04732601 A EP04732601 A EP 04732601A EP 1626847 B1 EP1626847 B1 EP 1626847B1
Authority
EP
European Patent Office
Prior art keywords
particles
magnetic field
field
zone
orienting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04732601A
Other languages
English (en)
French (fr)
Other versions
EP1626847A1 (de
Inventor
Shunli Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bakker Holding Son BV
Original Assignee
Bakker Holding Son BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP03014707A external-priority patent/EP1479496A1/de
Application filed by Bakker Holding Son BV filed Critical Bakker Holding Son BV
Priority to EP04732601A priority Critical patent/EP1626847B1/de
Publication of EP1626847A1 publication Critical patent/EP1626847A1/de
Application granted granted Critical
Publication of EP1626847B1 publication Critical patent/EP1626847B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/523Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement containing metal fibres

Definitions

  • the invention relates to a device for aligning magnetisable particles in a pasty material with an alignment body having a front surface portion and a rear surface portion comprising wall, wherein the alignment body with its front surface portion vorderst is movable relative to the pasty material, wherein the alignment body further comprises a within the Ausricht stressess has arranged on the inside of the front surface portion magnet unit, which generates a periodically variable, acting on the pasty material magnetic field for aligning the magnetizable particles. Furthermore, the invention relates to a method for aligning magnetisable particles in a pasty material.
  • the use of steel fibers in concrete to reinforce it has been known for about 20 years.
  • the steel fibers are evenly distributed in the concrete over its volume with random orientation.
  • it is desirable that the fibers are distributed in a plane perpendicular to the applied bending force so that they can maximally reinforce the concrete body according to its load.
  • Those fibers which are arranged obliquely or even parallel to the attacking force contribute to this reinforcing effect only reduced or not at.
  • Opposite concrete bodies with randomly distributed steel fibers Therefore, in a concrete body with aligned in the desired manner steel fibers whose dosage can be reduced without the specific load behavior of the concrete body deteriorates noticeably.
  • the device consists of a trained as a hollow profile alignment body, which in turn consists of a non-magnetic material.
  • the alignment body has in cross-section on a circular arc-shaped front surface portion which tapers rectilinearly over two flank portions in the direction of a rear surface portion.
  • a rotatably mounted roller is arranged in the alignment body, which has on its outer peripheral surface one or more, in particular three, arranged at a distance of 120 ° to each other, permanent magnets. Since the radius of the roller is only slightly smaller than the radius of curvature of the front surface portion, the gap is minimized between the inside of the front surface portion and the peripheral surface of the roller.
  • the device i. the alignment body with rotating roller, transversely to its longitudinal axis by the concrete body or the pasty, containing the fibers to be aligned containing concrete moves relative to the stationary alignment body, wherein the concrete flows around the alignment body along the curved front surface portion.
  • the magnetic field generated by the arranged on the rotating roller permanent magnet magnetic field By the magnetic field generated by the arranged on the rotating roller permanent magnet magnetic field, the fibers striking the front surface portion are moved around the alignment body according to the rotation direction of the roller.
  • the magnetic field of the rotating magnets on the wall of the alignment body weakens sharply, as they move away from the wall. As a result, the fibers remain in the aligned position. Due to the continuous relative movement between the concrete and the alignment body, a layer of aligned fibers thus forms along the path traveled by the alignment body relative to the concrete.
  • a second substantially smaller magnet roller is arranged in the region of the transition of the front surface section into the flank section within the magnet roller in addition to this.
  • the arrangement of on the The second roller magnet present and the ratio of the diameter of both rollers to each other is selected so that the fibers around the front surface portion around leading magnetic field of the first roller in the region of the second roller to the outside, ie in the direction of the fibers, shielded to a certain extent, so that the release of the aligned fibers at the desired position is improved.
  • a disadvantage of the described device or the method performed with this device is that only fibers can be aligned in the immediate vicinity of the device, so that more distant fibers maintain their random alignment.
  • the orientation of the fibers is not optimal due to the relatively high residual field strength at the release position. While merely increasing the magnetic field strength through the use of stronger magnets would limit the range of the magnetic field, it would significantly reduce the quality of the layer build-up due to degraded release of the oriented particles.
  • An object of the present invention is therefore to develop the device of the prior art so that an even more targeted alignment of a much larger number of particles contained in a pasty material is possible.
  • the device should also be able to realize without much technical effort and expense.
  • the previously derived object is achieved with a device of the type mentioned above in that the magnet unit is designed such that the magnetic field generated by it comprises at least two zones with subfields of different field strength and / or different field line course, wherein the subfield of the first zone a long-range attracting and directing force exerts on the particles and the subfield of the second zone releases the particles in aligned position again.
  • the division according to the invention of the magnetic field generated by the magnetic unit in at least two zones with subfields of different field strength and / or different field line course on the one hand ensures that the particles are aligned, which have a comparatively large distance from the alignment.
  • the inventively provided alignment body may consist of any material.
  • Non-magnetic materials are particularly suitable since they do not hinder the release of the aligned particles on the wall of the alignment body in the position provided as a result of their own magnetic field.
  • the attracting force generated by the subfield of the first zone acting on the particles to be aligned their range can be adjusted by appropriate selection of the field strength and the field line course of the subfield in this zone.
  • the proportion of the particles in the pasty material, which are to be aligned by the device according to the invention, or the proportion of particles, which should continue to remain in random alignment in the material can be adjusted exactly.
  • the material properties of the pasty material e.g. its viscosity or the size and shape of other fillers contained therein, taken into account.
  • the field line course in the magnet unit can be adjusted in various ways.
  • An advantageous setting consists in that the field lines of the magnetic field of the magnet unit extend exclusively in a plane perpendicular to the relative movement between the alignment body and the pasty material. There is thus an orientation of the particles exclusively in this plane. This has the consequence that the particles can be particularly easily released in the designated position on the wall of the alignment body, since there is no formation of a network of magnetized particles along the direction of relative movement, which is a strong cohesion between the magnetized particles causes and thus makes their release difficult.
  • Another possibility of setting the field line course is that the field lines in a plane parallel to the relative movement between the alignment body and the pasty material.
  • this can be effectively countered by a particularly variable shape field line course.
  • the alignment is still relatively far away from the Ausricht Eisen particles, on the other hand they are particularly precisely aligned by the generated by the subfield of the second zone moderate holding force and finally by the subfield of the third zone after reaching the desired location in the pasty material released again.
  • This division of the magnetic field thus makes it possible, despite the strong, long-range attraction of the sub-field of the first zone, the quality of the particle orientation and its controlled release is not affected at the designated position.
  • the field line course of the magnetic field of the magnet unit is combined composed of portions which extend in a plane perpendicular to the relative movement between the alignment body and the pasty material, and portions which are parallel to the relative movement.
  • This type of combined field line course makes it possible, in particular, for the aligned particles are evenly distributed in the target volume and have no tendency to accumulate accumulated along such field lines, which run exclusively parallel or perpendicular to the relative movement between the alignment body and the pasty material.
  • the local and temporal continuity of the alignment process can be achieved even if the relative speed between the alignment body and the pasty material and the frequency of the periodically changing magnetic field are not optimally matched.
  • the first and the second zones each cover approximately a 90 ° region and the third zone cover an approximately 180 ° region of the cross section of the magnet unit.
  • Expedient is also an approximately 120 ° coverage of the cross section of the magnet unit through the three zones.
  • the periodically changing magnetic field generating magnet unit is designed as a rotating body with static field distribution.
  • the alignment body is advantageously designed as a transverse to the direction of relative movement between the alignment and pasty material extending hollow profile whose cross-section in the manner of a Trag vomqueritess of the substantially semicircular curved front surface portion tapers taperingly over two flank surfaces to the rear surface portion. This shape promotes, on the one hand, the orientation of the particles as they are transported along the curved and, on the other hand, their controlled release at the transition between the one end of the front surface section and a flank surface.
  • the magnet unit By forming the magnet unit as a rotating cylindrical roller whose axis of rotation coincides with the center axis of the semicircularly curved front surface portion, it is ensured that the gap between the inside of the front surface portion of the aligning body and the magnet roller is minimal so that its magnetic field is low in loss on the alignment body surrounding pasty material can act.
  • the magnetic roller extends over the entire length of the alignment.
  • the field lines lying in a plane parallel to the relative movement between the alignment body and the pasty material extend in the axial direction of the magnet roller, while the field lines lying in a plane parallel to the relative movement extend in the circumferential direction of the magnet roller.
  • a high variability in the shaping of the magnetic field formed from the three subfields is given when this is generated by permanent magnets.
  • Particularly high field strengths can be generated with permanent magnets made of an NdFeB alloy.
  • the function of the third zone of the magnetic field is to release the particles in the aligned position.
  • This can be achieved particularly effectively in that the sub-field of the third zone of a soft magnetic material, in particular a low-carbon steel is generated.
  • This leads to a limited to the soft magnetic material reflux of the magnetic field lines, with the result that radially outside this zone, the field strength of the magnetic field almost disappears and the particles learn in this area practically no attractive force.
  • the object is achieved by a method using the device described above.
  • the advantages of this device apply to the same extent for the inventive method. This has in particular a wide range of applications, when not used as pasty material hardened concrete and the particles are formed as steel fibers.
  • the particles may also be formed as steel rings.
  • Their use proves to be particularly advantageous if, for example, a thin layer is to be produced in a loaded on bending concrete slab.
  • steel rings a particularly high degree of overlap of the individual particles in the layer plane is achieved, whereby the effectiveness of the structural reinforcement is increased. This allows, inter alia compared to the use of conventional one-dimensionally shaped steel chips or fibers, a reduction in the use of material without a noticeable deterioration of the load behavior of the reinforced component.
  • FIGS. 1a and 1b show a device for aligning magnetic particles in a pasty material.
  • the device has an alignment body 1 in the form of a hollow profile, which consists of a non-magnetic material.
  • the hollow profile comprises a circular arc-shaped front surface portion 1a, which tapers rectilinearly over two flank portions 1c in the direction of a rear surface portion 1b.
  • a magnet unit 2 is arranged, which is formed as a rotatably mounted, concentrically arranged with the circular arc-shaped front surface portion 1a, cylindrical roller.
  • Magnetic roller 2 is equipped with permanent magnets along its longitudinal axis and is set in rotation, for example, by one or more electric motors (not shown).
  • a produces rotating, ie periodically variable, acting on the particles contained in the pasty material magnetic field, which is divided into three zones I, II, III with subfields of different field strength and / or different field line course.
  • the first and the second zone each cover a 90 ° region and the third zone cover the remaining 180 ° region of the circular cross section of the magnet unit.
  • the radius of the magnetic roller 2 is only slightly smaller than the radius of curvature of the front surface portion 1 a, so that the gap between the inside of the front surface portion 1 a and the peripheral surface of the magnetic roller 2 is minimal and the magnetic field of the magnetic roller 2 loss effect on the pasty material surrounding the alignment body 1 can.
  • the magnet unit after which it is fixedly arranged in the alignment body and the periodically variable magnetic field is realized by an arrangement of individually controllable electromagnet within the alignment.
  • the alignment body 1 with the rotating magnetic roller 2 arranged therein is moved transversely to its longitudinal axis 1f by a pasty material 3 in the form of a non-bonded concrete layer which contains magnetizable particles 4 in the form of steel fibers or steel rings.
  • the pasty concrete 3 can be moved relative to the stationary alignment body 1.
  • the concrete 3 flows around the alignment body 1 along its curved front surface portion 1a.
  • the magnetic roller 2 rotates counterclockwise, so that the magnetizable particles 4 in the manner described below be arranged in a layer 6 below the alignment body 1.
  • the field lines extend in a plane parallel to the relative movement between the alignment body 1 and the pasty material 3.
  • the subfield of the first zone I exerts on the steel fibers 4 a long-range attractive force, so that the fibers 4 in an elongated area 7 in front of the front surface portion 1 a of the alignment body 1 to move to this.
  • the sub-field of the second zone II exerts a holding force on the attracted particles 4, by which they are transported down along the front surface portion 1a along the direction of rotation of the magnetic roller 2 and thereby aligned.
  • the subfield of the third zone III whose field strength almost disappears due to the closed magnetic field lines within this zone radially outside the alignment body 1, releases the particles 4 in the aligned position approximately at the point 1e of the transition of the circularly curved front surface portion 1a in the lower edge portion 1c again ,
  • the rotation of the composite of the three sub-fields total magnetic field of the magnetic roller 2 means that regularly the sub-field of the first zone I acts at the point of release of the particles 4. Accordingly, the detachment of the particles from the wall of the alignment body 1 is regularly hindered for a short time, which would lead to an undesirable wave-shaped structure of the particle layer 6 to be formed. However, this can be effectively counteracted by the fact that the rotational frequency of the magnetic roller chosen to be very high relative to the movement of the alignment body 1 in the concrete layer , whereby a possible wave structure of the layer 6 is smoothed.
  • FIGS. 3-7 Various arrangements of the permanent magnets in the magnetic roller 2 are shown in FIGS. 3-7.
  • a strong permanent magnet 8 preferably made of NdFeB alloy, extends radially outward from a point near the rotation axis of the magnet roller 2. Its outer end surface 8a, at which the magnetic north pole is located, is shaped in accordance with the curvature of the magnet roller, so that the magnet roller can rotate with minimal gap to the inner surface of the front surface portion 1a of the alignment body 1.
  • a pole piece 9 made of a soft magnetic material; preferably a soft unalloyed steel.
  • the pole piece 9 comprises a central portion 9a, which is flush with the inner end surface of the permanent magnet 8, at which its magnetic south pole is located, and surrounds the axis of rotation of the magnetic roller 2.
  • Both end portions 9b are slightly angled in the direction of the permanent magnet 8 and extend to the outer periphery of the magnetic roller 2, wherein their respective outer end surfaces 9c are also adapted to the circumferential curvature of the magnetic roller.
  • the magnetic field generated by this magnet arrangement is divided into two zones I, II and is represented graphically by its field lines.
  • the first zone I is formed by the permanent magnet 8 and the pole piece 9.
  • the pole piece 9 by the strong permanent magnet. 8 magnetized, so that in each case forms a magnetic south pole at its end portions 9b.
  • the field lines run from the north pole of the permanent magnet 8 by the space surrounding the magnetic roller or the enclosing Ausricht analyses space to the end portions 9b of the pole piece 9, with the result that with respect to the magnet assembly rear region 10 of the magnetic roller, which the second zone II forms and can be filled, for example, with aluminum or steel, is interspersed by a field of only low field strength.
  • the magnet arrangement of FIG. 3 is characterized in particular by low production costs and thus low costs.
  • the magnet arrangement according to FIG. 4 comprises two of the rotation axis of the magnet roller 2 radially outwardly extending permanent magnets 11, 12 of substantially the same size and strength.
  • Both magnets 11, 12 are preferably made of a NdFeB alloy.
  • the magnets 11, 12 are at an acute angle of about 60 ° to each other and extend approximately from the axis of rotation of the magnetic roller 2 to its peripheral surface, the outer faces of the magnets 11, 12 are in turn adapted to the circumferential curvature of the magnetic roller 2 to the gap between Magnet roller and front surface portion of the alignment body (not shown here) to minimize.
  • Both magnets 11, 12 are oppositely oriented, so that in the case of the first magnet 11, the north pole facing outward and in the case of the second magnet 12 of the south pole.
  • an area 13 of a soft magnetic material preferably a soft unalloyed steel, which extends over 180 ° and thus over half the cross-sectional area of the magnetic roller 2.
  • the magnetic field generated by this magnet arrangement is in turn divided into two zones I, II and is visualized by its field line profile.
  • the subfield of the first zone is generated by the angled magnets 11, 12. Due to their opposite orientation, a magnetic field projecting deep into the room and thus creating a far-reaching attraction is generated.
  • the rearwardly disposed soft magnetic material region 13 represents the second zone II, in which the field lines are returned almost completely. Consequently, the residual field strength in the area surrounding the second zone on the outside is vanishingly small, which is a precondition for the fact that the attracted and aligned particles can be released again at the desired location.
  • the magnetic roller 2 itself is divided into two 180 ° sectors 14, 15 with a mean sectional area D.
  • the sector 14 is in turn subdivided into two 90 ° sectors 14a, 14b.
  • a strong permanent magnet 16 is arranged, which extends at right angles from the cutting surface D in the direction of the opposite peripheral surface of the magnetic roller 2, so that its north pole is in the region of the peripheral surface of the magnetic roller 2.
  • a second weaker permanent magnet 17 is arranged parallel to the first magnet 16, but oppositely oriented.
  • Both magnets 16, 17 are preferably made of a NdFeB alloy and with respect to their outer faces of the curvature of the peripheral surface of the magnetic roller 2 adapted.
  • the interspaces between the magnets 16, 17 are coated with a non-magnetic material, e.g. Aluminum filled.
  • the second 180 ° sector 15 is made entirely of a soft magnetic material, preferably a soft unalloyed steel.
  • the subfield produced by the strong magnet 16 in the first zone I * exerts a particularly long-range attractive force on the magnetizable particles contained in the material surrounding the magnet roller 2 and the alignment body 1, respectively.
  • the sub-field of the second zone II * is weaker than that of the first zone I *, but is thereby preferably adapted to transport the particles attracted by the magnetic field of the first zone I * to the release position and thereby align in the desired manner.
  • the soft magnetic material of the sector 15 ensures that the returning field lines of the poles of Magnets 16, 17 are almost completely enclosed in the sub-field of the third zone III *, so that outside virtually no force acts on the particles and they can thus be easily released in the aligned position.
  • FIGS. 6 and 7 show advantageous developments of the magnet arrangement of FIG. 5.
  • FIG. 7 is likewise based on the asymmetrical magnet arrangement of FIG. 5.
  • two further transversely arranged magnets 20, 21 are provided in the 180 ° sector 14 to the respective outer longitudinal sides of the magnets 16, 17 abut and are aligned so that the strong magnet 16 each of the north pole, the weaker magnet 17 each facing the south pole.
  • the total of five magnets 16, 17, 19, 20, 21 existing arrangement corresponds to that of a linear Halbach array. It is beneficial in two ways.
  • the range of the attractive force of the subfield of the first zone I * is maximized in comparison to the arrangement with bucking poles.
  • it allows a complete shielding of the back area (zone III *), so that the field strength of the subfield of the third zone III * disappears. This optimizes the release of the magnetizable particles in the desired position.
  • the arrangement with bucking pole or with a Halbach array can also be realized in the two-pole arrangement with radial magnetic alignment, for example, according to FIG. 4 and improves their effect with respect to the attraction and orientation of the magnetizable particles.
  • FIGS. 8 and 9 show a further embodiment of the invention.
  • the magnetic roller 2 * is preferably equipped with a number of permanent magnets 22a-22e arranged one behind the other in the axial direction of the roller 2 *, preferably made of NdFeB.
  • the block-shaped and thus particularly inexpensive to produce magnets 22a-22e in turn form a linear Halbach array, which is aligned in this embodiment, in contrast to those described above in the axial direction of the magnetic roller 2 *.
  • the field lines run strictly in the axial direction of the roller 2 *, ie in a plane perpendicular to the relative movement between alignment body 1 and pasty material 3 (see Fig. 2).
  • a magnetic field consisting of two zones I **, II ** is formed by the magnetic roller according to FIG. 8, in which the subfield of the first zone I ** exerts a long-range force on the particles present in the pasty material and the disappearing subfield the second zone II ** again releases the particles at position 1e of the alignment body.
  • the magnets 22a-22e are mounted on a roller block 23 of semicircular cross-section.
  • the roller block 23 is preferably made of a magnetic steel of high permeability.
  • the particular advantage of this axial arrangement of the magnets which can also be arranged in the form of a bucking pole, consists in the fact that due to the axial course of the magnetic field lines (see Fig. 9) they do not scatter in the circumferential direction of the magnetic roller, i. the magnetic field is strictly limited in the circumferential direction.
  • the magnetic field is strictly limited in the circumferential direction.
  • the axial field line profile results in a particularly extended zone in which the magnetic field disappears, which in turn facilitates release of the aligned particles.
  • FIGS. 10 and 11 show a further embodiment of the invention.
  • the magnetic roller 2 ** in a recurring order with permanent magnets 24a, 24b, 25 preferably made of NdFeB in such a way that along the longitudinal axis of the magnet unit in each case two juxtaposed symmetrically to the longitudinal axis magnets 24a, 24b with identical orientation with a stronger, centrally located magnet 25 alternate with opposite orientation.
  • the magnets 24a, 24b, 25 are in turn mounted on a roller block 26 of semicircular cross-section.
  • the roller block 23 preferably consists of a high permeability magnetic steel.
  • FIG. 11 shows the field line profile of the magnet unit 2 ** according to the invention projected onto the viewing plane.
  • the field lines run from the north pole of the central magnet 25 to the south poles of the magnets 24a, 24b arranged next to one another and offset from the magnet 25.
  • the field lines on the one hand perpendicular to the longitudinal axis of the magnet unit 2 ** aligned shares and thus extend in a plane parallel to the relative movement between the alignment and the pasty material.
  • they also have portions extending in the axial direction, whereby the axial offset between the magnet pairs 24a, 24b and the central magnet 25 is bridged.
  • the particular advantage of such a magnet arrangement is that the aligned particles are distributed particularly uniformly in the target volume and have no tendency to accumulate along exclusively parallel or perpendicular to the relative movement between the alignment and the pasty material extending field lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum Ausrichten magnetisierbarer Partikel in einem pastösen Material mit einem Ausrichtkörper mit einer einen Frontflächenabschnitt und einen hinteren Flächenabschnitt umfassenden Wand, wobei der Ausrichtkörper mit seinem Frontflächenabschnitt zuvorderst relativ zu dem pastösen Material bewegbar ist, wobei der Ausrichtkörper ferner eine innerhalb des Ausrichtkörpers an der Innenseite des Frontflächenabschnittes angeordnete Magneteinheit aufweist, welche zum Ausrichten der magnetisierbaren Partikel ein periodisch veränderliches, auf das pastöse Material wirkendes Magnetfeld erzeugt. Weiterhin betrifft die Erfindung ein Verfahren zum Ausrichten magnetisierbarer Partikel in einem pastösen Material.
  • Die Verwendung von Stahlfasern in Beton zu dessen Verstärkung ist seit ca. 20 Jahren bekannt. Dabei sind die Stahlfasern im Beton über sein Volumen gleichmäßig mit zufälliger Ausrichtung verteilt. Bei einer beispielsweise auf Biegung belasteten Betonplatte ist es wünschenswert, daß die Fasern in einer Ebene senkrecht zur angreifenden Biegekraft verteilt sind, so daß sie den Betonkörper entsprechend seiner Belastung maximal verstärken können. Diejenigen Fasern, die schräg oder gar parallel zur angreifenden Kraft angeordnet sind, tragen zu diesem Verstärkungseffekt nur vermindert oder gar nicht bei. Gegenüber Betonkörpern mit regellos verteilten Stahlfasern kann daher bei einem Betonkörper mit in der gewünschten Weise ausgerichteten Stahlfasern deren Dosierung reduziert werden, ohne daß sich das spezifische Belastungsverhalten des Betonkörpers merklich verschlechtert.
  • Neben dem Vorteil einer gezielten strukturellen Verstärkung des jeweiligen Betonbauteils durch das Ausrichten der enthaltenen Fasern, beispielsweise bei Industriefußböden, sind auch weitere Anwendungen solcher Betonbauteile denkbar. So läßt sich durch die Ausrichtung der Stahlfasern in einer Ebene beispielsweise eine elektrisch leitende Schicht in einer Betonwand erzeugen, wodurch diese beheizt oder eine elektromagnetische Abschirmung realisiert werden kann.
  • Aus dem Stand der Technik der offengelegten US-Patentanmeldung US 2002/0182395 A1 und der veröffentlichten Internationalen Anmeldung WO/9967072 ist, gemäß dem Oberbegriff des Anspruchs 1, ein Verfahren und eine Vorrichtung zum Ausrichten magnetisierbarer Fasern in einem viskosen Körper, insbesondere von Stahlfasern in nichtabgebundenem Beton, bekannt. Die Vorrichtung besteht aus einem als Hohlprofil ausgebildeten Ausrichtkörper, welcher seinerseits aus einem nichtmagnetischen Material besteht. Der Ausrichtkörper weist im Querschnitt einen kreisbogenförmigen Frontflächenabschnitt auf, welcher über zwei Flankenabschnitte in Richtung eines hinteren Flächenabschnitts geradlinig spitz zuläuft. Konzentrisch mit dem kreisbogenförmigen Frontflächenabschnitt ist in dem Ausrichtkörper eine drehbar gelagerte Walze angeordnet, welche auf ihrer äußeren Umfangsfläche einen oder mehrere, insbesondere drei in einem Abstand von jeweils 120° zueinander angeordnete, Permanentmagneten aufweist. Da der Radius der Walze nur geringfügig kleiner ist als der Krümmungsradius des Frontflächenabschnittes, ist der Spalt zwischen der Innenseite des Frontflächenabschnittes und der Umfangsfläche der Walze minimiert. Durch Drehung der Magnetwalze wird ein rotierendes Magnetfeld erzeugt, welches die nichtmagnetische Wand des Ausrichtkörpers durchdringt und auf das den Ausrichtkörper umgebende Material wirkt.
  • Gemäß dem angegebenen Verfahren zum Ausrichten der Fasern im nichtabgebundenen Beton wird die Vorrichtung, d.h. der Ausrichtkörper mit rotierender Walze, quer zu seiner Längsachse durch den Betonkörper bzw. der pastöse, die auszurichtenden Fasern enthaltende Beton relativ zum stationären Ausrichtkörper bewegt, wobei der Beton den Ausrichtkörper entlang dessen gebogenen Frontflächenabschnitts umfließt. Durch das von den auf der rotierenden Walze angeordneten Permanentmagneten erzeugte Magnetfeld werden die auf den Frontflächenabschnitt treffenden Fasern entsprechend der Rotationsrichtung der Walze um den Ausrichtkörper herumbewegt. Beim Übergang des kreisförmig gebogenen Frontflächenabschnittes in den geradlinigen Flankenabschnitt schwächt sich das Magnetfeld der rotierenden Magneten an der Wand des Ausrichtkörpers stark ab, da diese sich von der Wand wieder entfernen. Folglich bleiben die Fasern in ausgerichteter Position zurück. Aufgrund der kontinuierlichen Relativbewegung zwischen Beton und Ausrichtkörper bildet sich somit entlang des vom Ausrichtkörper relativ zum Beton zurückgelegten Weges eine Schicht ausgerichteter Fasern.
  • Gemäß einer speziellen Ausführungsform der bekannten Vorrichtung ist innerhalb der Magnetwalze zusätzlich zu dieser eine zweite wesentlich kleinere Magnetwalze im Bereich des Übergangs des Frontflächenabschnittes in den Flankenabschnitt angeordnet. Die Anordnung des auf der zweiten Walze vorhandenen Magneten sowie das Verhältnis der Durchmesser beider Walzen zueinander ist derart gewählt, daß das die Fasern um den Frontflächenabschnitt herumführende Magnetfeld der ersten Walze im Bereich der zweiten Walze nach außen, d.h. in Richtung der Fasern, zu einem gewissen Grade abgeschirmt ist, so daß die Freigabe der ausgerichteten Fasern an der gewünschten Position verbessert ist.
  • Nachteilig an der beschriebenen vorrichtung bzw. dem mit dieser Vorrichtung durchgeführten Verfahren ist, daß lediglich Fasern in unmittelbarer Nähe der Vorrichtung ausgerichtet werden können, so daß weiter entfernt liegende Fasern ihre regellose Ausrichtung beibehalten. Zudem ist die Ausrichtung der Fasern aufgrund der vergleichsweise hohen Restfeldstärke an der Freigabeposition nicht optimal. Eine bloße Erhöhung der Magnetfeldstärke durch den Einsatz stärkerer Magneten würde zwar die Reichweite des Magnetfeldes begrenzt erhöhen, dabei die Qualität des Schichtaufbaus jedoch infolge einer verschlechterten Freigabe der ausgerichteten Partikel erheblich vermindern.
  • Eine Aufgabe der vorliegenden Erfindung besteht daher darin, die Vorrichtung des Standes der Technik so weiterzubilden, daß eine noch gezieltere Ausrichtung einer wesentlich größeren Zahl in einem pastösen Material enthaltener Partikel möglich wird. Die Vorrichtung soll sich ferner ohne großen technischen Aufwand und Kosten realisieren lassen. Weitere Aufgaben der Erfindung ergeben sich aus der nachfolgenden Beschreibung der Erfindung und den Ausführungsbeispielen.
  • Die zuvor hergeleitete Aufgabe wird mit einer Vorrichtung der eingangs genannten Art dadurch gelöst, daß die Magneteinheit derart ausgebildet ist, daß das durch sie erzeugte Magnetfeld mindestens zwei Zonen mit Teilfeldern unterschiedlicher Feldstärke und/oder unterschiedlichen Feldlinienverlaufs umfasst, wobei das Teilfeld der ersten Zone eine langreichweitige anziehende und ausrichtende Kraft auf die Partikel ausübt und das Teilfeld der zweiten Zone die Partikel in ausgerichteter Position wieder freigibt.
  • Durch die erfindungsgemäße Einteilung des durch die Magneteinheit erzeugten Magnetfeldes in mindestes zwei Zonen mit Teilfeldern unterschiedlicher Feldstärke und/oder unterschiedlichen Feldlinienverlaufs wird einerseits erreicht, daß auch die Partikel ausgerichtet werden, die einen vergleichsweise großen Abstand zum von Ausrichtkörper aufweisen. Andererseits wird durch das Teilfeld der zweiten Zone erreicht, daß die Partikel präzise in der dafür vorgesehenen Position an der Wand des Ausrichtkörpers wieder freigegeben werden, wodurch beispielsweise eine aus ausgerichteten Partikeln zu formende Schicht in dem pastösen Material die gewünschten Eigenschaften, insbesondere eine hohe Faserdichte in der Schichtebene bei gleichzeitig möglichst geringer Schichtdicke, erhält.
  • Der erfindungsgemäß vorgesehene Ausrichtkörper kann aus einem beliebigen Material bestehen. Besonders geeignet sind nichtmagnetische Materialien, da diese die Freigabe der ausgerichteten Partikel an der Wand des Ausrichtkörpers in der dafür vorgesehenen Position infolge eines eigenen Magnetfeld nicht behindern.
  • Hinsichtlich der durch das Teilfeld der ersten Zone erzeugten, auf die auszurichtenden Partikel wirkenden anziehenden Kraft kann deren Reichweite durch entsprechende Wahl des Feldstärke und des Feldlinienverlaufs des Teilfeldes in dieser Zone eingestellt werden. Somit kann der Anteil der Partikel in dem pastösen Material, die durch die erfindungsgemäße Vorrichtung mit ausgerichtet werden sollen, bzw. der Anteil der Partikel, die weiterhin in regelloser Ausrichtung in dem Material verbleiben sollen, exakt eingestellt werden. Dabei werden ebenso die Materialeigenschaften des pastösen Materials, so z.B. dessen Viskosität bzw. die Größe und Form weiterer darin enthaltener Füllstoffe, berücksichtigt.
  • Der Feldlinienverlauf in der Magneteinheit lässt sich in verschiedener Weise einstellen. Eine vorteilhafte Einstellung besteht darin, dass die Feldlinien des Magnetfelds der Magneteinheit ausschließlich in einer Ebene senkrecht zur Relativbewegung zwischen dem Ausrichtkörper und dem pastösen Material verlaufen. Es erfolgt somit eine Ausrichtung der Partikel ausschließlich in dieser Ebene. Dies hat zur Folge, daß die Partikel besonders leicht in der dafür vorgesehenen Position an der Wand des Ausrichtkörpers wieder freigegeben werden können, da es nicht zu einer Ausbildung eines Netzwerks magnetisierter Partikel entlang der Richtung der Relativbewegung kommt, die einen starken Zusammenhalt zwischen den magnetisierten Partikeln bewirkt und somit deren Freigabe erschwert.
  • Eine weitere Möglichkeit der Einstellung des Feldlinienverlaufs besteht darin, dass die Feldlinien in einer Ebene parallel zur Relativbewegung zwischen dem Ausrichtkörper und dem pastösen Material verlaufen. Hier kommt es zwar zu der bereits geschilderten Netzwerkbildung. Dieser kann aber durch einen besonders variabel gestaltbaren Feldlinienverlauf wirksam begegnet werden. Hierbei ist es beispielsweise möglich, das Magnetfeld der Magneteinheit in drei Zonen mit Teilfeldern unterschiedlicher Feldstärke und/oder unterschiedlichen Feldlinienverlaufs einzuteilen, wobei das Teilfeld der ersten Zone eine langreichweitige anziehende Kraft auf die Partikel ausübt, das der zweiten Zone eine Haltekraft auf die Partikel ausübt, durch welche diese ausgerichtet werden, und das der dritten Zone die Partikel in ausgerichteter Position wieder freigibt. Durch die Einteilung des Magnetfeldes in drei Zonen ist einerseits weiterhin auch die Ausrichtung relativ weit vom Ausrichtkörper entfernt liegender Partikel gewährleistet, andererseits werden diese durch die durch das Teilfeld der zweiten Zone erzeugte moderate Haltekraft besonders präzise ausgerichtet und schließlich durch das Teilfeld der dritten Zone nach Erreichen der gewünschten Lage in dem pastösen Material wieder freigegeben. Diese Einteilung des Magnetfeldes ermöglicht es folglich, daß trotz der starken, langreichweitigen Anziehungskraft des Teilfeldes der ersten Zone die Qualität der Partikelausrichtung und deren kontrollierte Freigabe an der dafür vorgesehenen Position nicht beeinträchtigt wird.
  • Bei einer besonders bevorzugten Ausführungsform der Vorrichtung ist der Feldlinienverlauf des Magnetfelds der Magneteinheit kombiniert aus Anteilen, welche in einer Ebene senkrecht zur Relativbewegung zwischen dem Ausrichtkörper und dem pastösen Material verlaufen, und Anteilen, welche parallel zur Relativbewegung verlaufen, zusammengesetzt. Durch diese Art des kombinierten Feldlinienverlaufs wird insbesondere ermöglicht, dass die ausgerichteten Partikel besonders gleichmäßig in dem Zielvolumen verteilt sind und keinerlei Tendenz mehr zur gehäuften Ansammlung entlang solcher Feldlinien aufweisen, welche ausschließlich parallel bzw. senkrecht zur Relativbewegung zwischen dem Ausrichtkörper und dem pastösen Material verlaufen. Zudem ist die örtliche und zeitliche Stetigkeit des Ausrichtprozesses auch dann erreichbar, wenn die Relativgeschwindigkeit zwischen dem Ausrichtkörper und dem pastösen Material und die Frequenz des periodisch veränderlichen Magnetfeldes nicht optimal aufeinander abgestimmt sind.
  • Bei der Einteilung des von der Magneteinheit erzeugten Magnetfeldes, dessen Feldlinien in einer Ebene parallel zur Relativbewegung zwischen dem Ausrichtkörper und dem pastösen Material verlaufen, in die unterschiedlichen Zonen haben sich insbesondere zwei Lösungen als besonders vorteilhaft erwiesen. So kann einerseits die erste und die zweite Zone jeweils etwa einen 90°-Bereich und die dritte Zone einen etwa 180°-Bereich des Querschnitts der Magneteinheit überdecken. Zweckmäßig ist jedoch auch jeweils eine etwa 120°-Überdeckung des Querschnitts der Magneteinheit durch die drei Zonen.
  • Die Vorrichtung läßt sich insbesondere dadurch ohne zu großen technischen Aufwand und Kosten realisieren, daß die das periodisch veränderliche Magnetfeld erzeugende Magneteinheit als rotierender Körper mit statischer Feldverteilung ausgebildet ist. Wie bereits beim Stand der Technik gezeigt, ist der Ausrichtkörper vorteilhafterweise als ein sich quer zur Richtung der Relativbewegung zwischen Ausrichtkörper und pastösem Material erstreckendes Hohlprofil ausgebildet, dessen Querschnitt nach Art eines Tragflächenquerschnitts von dem im wesentlichen halbkreisförmig gebogenen Frontflächenabschnitt sich verjüngend über zwei Flankenflächen zum hinteren Flächenabschnitt zuläuft. Diese Form begünstigt einerseits die Ausrichtung der Partikel bei ihrem Transport entlang des gebogenen und andererseits ihre kontrollierte Freigabe am Übergang zwischen dem einen Ende des Frontflächenabschnittes und einer Flankenfläche.
  • Durch die Ausbildung der Magneteinheit als eine rotierende zylindrische Walze, deren Rotationsachse mit der Mittelachse des halbkreisförmig gebogenen Frontflächenabschnitts zusammenfällt, ist gewährleistet, daß der Spalt zwischen der Innenseite des Frontflächenabschnittes des Ausrichtkörpers und der Magnetwalze minimal ist, so daß deren Magnetfeld verlustarm auf das den Ausrichtkörper umgebende pastöse Material wirken kann. Zweckmäßigerweise erstreckt sich die Magnetwalze dabei über die gesamte Länge des Ausrichtkörpers. Entsprechend verlaufen die in einer Ebene parallel zur Relativbewegung zwischen dem Ausrichtkörper und dem pastösen Material liegenden Feldlinien in axialer Richtung der Magnetwalze, während die in einer Ebene parallel zur Relativbewegung liegenden Feldlinien in Umfangsrichtung der Magnetwalze verlaufen.
  • Eine hohe Variabilität bei der Formung des aus den drei Teilfeldern gebildeten Magnetfeldes ist dann gegeben, wenn dieses von Permanentmagneten erzeugt wird. Besonders hohe Feldstärken lassen sich mit Permanentmagneten aus einer NdFeB-Legierung erzeugen. Dazu ist es zweckmäßig, wenn mindestens einer der Permanentmagneten aus dieser Legierung besteht.
  • Im Falle eines in drei Zonen eingeteilten Magnetfeldes besteht die Funktion der dritten Zone des Magnetfeldes darin, die Partikel in ausgerichteter Position wieder freizugeben. Dies läßt sich besonders effektiv dadurch erreichen, daß das Teilfeld der dritten Zone von einem weichmagnetischen Material, insbesondere einem kohlenstoffarmen Stahl, erzeugt wird. Dies führt zu einem räumlich auf das weichmagnetische Material beschränkten Rückfluß der Magnetfeldlinien mit der Folge, daß radial außerhalb dieser Zone die Feldstärke des Magnetfelds annähernd verschwindet und die Partikel in diesem Bereich praktisch keine anziehende Kraft mehr erfahren.
  • Weiterhin ist es Aufgabe der Erfindung, ein verbessertes Verfahren zum Ausrichten magnetisierbarer Partikel in einem pastösen Material anzugeben.
  • Die Aufgabe wird durch ein Verfahren unter Verwendung der vorstehend beschriebenen Vorrichtung gelöst. Die Vorteile dieser Vorrichtung gelten in gleichem Maße auch für das erfindungsgemäße Verfahren. Dieses hat insbesondere dann ein großes Anwendungsspektrum, wenn als pastöses Material nicht abgebundener Beton verwendet wird und die Partikel als Stahlfasern ausgebildet sind.
  • Alternativ können die Partikel auch als Stahlringe ausgebildet sein. Deren Einsatz erweist sich als besonders vorteilhaft, wenn beispielsweise eine dünne Schicht in einer auf Biegung belasteten Betonplatte erzeugt werden soll. Bei der Verwendung von Stahlringen wird dabei ein besonders hoher Überlappungsgrad der einzelnen Partikel in der Schichtebene erreicht, wodurch die Effektivität der strukturellen Verstärkung erhöht wird. Dies ermöglicht u.a. gegenüber der Verwendung konventioneller eindimensional geformter Stahlspäne- oder fasern eine Reduzierung des Materialeinsatzes ohne eine sprürbare Verschlechterung des Belastungsverhaltens des verstärkten Bauteils.
  • Im folgenden wird die Erfindung anhand einer lediglich Ausführungsbeispiele darstellenden Zeichnung näher erläutert. Es zeigen:
  • Fig. 1 a,b
    eine Vorrichtung zum Ausrichten magnetisierbarer Partikel in einem pastösen Material in schematischer Darstellung im Querschnitt und perspektivisch,
    Fig. 2
    das Funktionsprinzips der Vorrichtung der Fig. 1 in schematischer Darstellung,
    Fig. 3
    die Magneteinheit der Vorrichtung der Fig. 1 in einer Dreipol-Anordnung,
    Fig. 4
    die Magneteinheit der Vorrichtung der Fig. 1 in einer Zweipol-Anordnung mit radialer Magnetausrichtung,
    Fig. 5 a,b
    die Magneteinheit der Vorrichtung der Fig. 1 in asymmetrischer Magnetanordnung,
    Fig. 6
    die Magneteinheit der Vorrichtung der Fig. 1 in asymmetrischer Magnetanordnung mit Bucking Pol,
    Fig. 7
    die Magneteinheit der Vorrichtung der Fig. 1 in asymmetrischer Magnetanordnung mit linearem Halbach-Array.
    Fig. 8
    die Magneteinheit der Vorrichtung der Fig. 1 in einer alternativen Ausführung mit axial ausgerichtetem linearen Halbbach-Array,
    Fig. 9
    der Feldlinienverlauf in der Magneteinheit der Fig. 8 ausschnittsweise,
    Fig. 10
    die Magneteinheit der Vorrichtung der Fig. 1 in einer weiteren alternativen Ausführung mit kombiniert axial und radial versetzter Anordnung der Magnete ausschnittsweise und
    Fig. 11
    die Magneteinheit der Fig. 10 im Querschnitt entlang der Linie XI-XI der Fig. 10 mit eingezeichnetem Feldlinienverlauf.
  • In den Fig. 1a und 1b ist eine Vorrichtung zum Ausrichten magnetischer Partikel in einem pastösen Material dargestellt. Die Vorrichtung weist einen Ausrichtkörper 1 in Form eines Hohlprofils auf, welches aus einem nichtmagnetischen Material besteht. Gemäß der Querschnittsansicht der Fig. 1a umfaßt das Hohlprofil einen kreisbogenförmigen Frontflächenabschnitt 1a, welcher über zwei Flankenabschnitte 1c in Richtung eines hinteren Flächenabschnitts 1b geradlinig spitz zuläuft. Innerhalb des Ausrichtkörpers 1 ist eine Magneteinheit 2 angeordnet, die als drehbar gelagerte, konzentrisch mit dem kreisbogenförmigen Frontflächenabschnitt 1a angeordnete, zylindrische Walze ausgebildet ist. Die Magnetwalze 2 ist entlang ihrer Längsachse mit Permanentmagneten bestückt und wird beispielsweise durch einen oder mehrere Elektromotoren (nicht dargestellt) in Rotation versetzt. Somit wird ein rotierendes, d.h. periodisch veränderliches, auf die in dem pastösen Material enthaltenen Partikel wirkendes Magnetfeld erzeugt, welches in drei Zonen I, II, III mit Teilfeldern unterschiedlicher Feldstärke und/oder unterschiedlichen Feldlinienverlaufs eingeteilt ist. Dabei überdecken die erste und die zweite Zone jeweils einen 90°-Bereich sowie die dritte Zone den verbleibenden 180°-Bereich des kreisförmigen Querschnitts der Magneteinheit. Der Radius der Magnetwalze 2 ist nur geringfügig kleiner als der Krümmungsradius des Frontflächenabschnittes 1a, so daß der Spalt zwischen der Innenseite des Frontflächenabschnittes 1a und der Umfangsfläche der Magnetwalze 2 minimal ist und das Magnetfeld der Magnetwalze 2 verlustarm auf das den Ausrichtkörper 1 umgebende pastöse Material wirken kann.
  • Nicht dargestellt ist eine alternative Ausführungsform der Magneteinheit, nach der diese fest in dem Ausrichtkörper angeordnet und das periodisch veränderliche Magnetfeld durch eine Anordnung einzeln ansteuerbarer Elektromagneten innerhalb des Ausrichtkörpers realisiert ist.
  • Das Funktionsprinzip der Vorrichtung ist in Fig. 2 schematisch dargestellt. Demnach wird der Ausrichtkörper 1 mit der darin angeordneten rotierenden Magnetwalze 2 quer zu seiner Längsachse 1f durch ein pastöses Material 3 in Form einer nichabgebundenen Betonschicht bewegt, welche magnetisierbare Partikel 4 in Form von Stahlfasern oder Stahlringen enthält. Ebenso kann der pastöse Beton 3 relativ zum stationären Ausrichtkörper 1 bewegt werden. In beiden Fällen umfließt der Beton 3 den Ausrichtkörper 1 entlang dessen gebogenen Frontflächenabschnitts 1a. Dabei rotiert die Magnetwalze 2 gegen den Uhrzeigersinn, so daß die magnetisierbaren Partikel 4 in der unten beschriebenen Weise in einer Schicht 6 unterhalb des Ausrichtkörpers 1 angeordnet werden. Wie in Fig. 2 leicht erkennbar, verlaufen die Feldlinien in einer Ebene parallel zur Relativbewegung zwischen dem Ausrichtkörper 1 und dem pastösen Material 3.
  • Das Teilfeld der ersten Zone I übt auf die Stahlfasern 4 eine langreichweitige anziehende Kraft aus, so daß sich die Fasern 4 in einem langgestreckten Bereich 7 vor dem Frontflächenabschnitt 1a des Ausrichtkörpers 1 auf diesen zubewegen. Das Teilfeld der zweiten Zone II übt eine Haltekraft auf die angezogenen Partikel 4 aus, durch welche diese entsprechend der Rotationsrichtung der Magnetwalze 2 entlang des Frontflächenabschnittes 1a nach unten transportiert und dabei ausgerichtet werden. Das Teilfeld der dritten Zone III, dessen Feldstärke infolge der geschlossenen Magnetfeldlinien innerhalb dieser Zone radial außerhalb des Ausrichtkörpers 1 annähernd verschwindet, gibt die Partikel 4 in ausgerichteter Position ungefähr an der Stelle 1e des Übergangs des kreisförmig gebogenen Frontflächenabschnittes 1a in den unteren Flankenabschnitt 1c wieder frei.
  • Die Rotation des sich aus den drei Teilfeldern zusammensetzenden Gesamtmagnetfeldes der Magnetwalze 2 bedeutet, daß regelmäßig auch das Teilfeld der ersten Zone I an der Stelle der Freigabe der Partikel 4 wirkt. Dementsprechend ist die Ablösung der Partikel von der Wand des Ausrichtkörpers 1 regelmäßig kurzzeitig erschwert, was zu einer unerwünschten wellenförmigen Struktur der auszubildenden Partikelschicht 6 führen würde. Dem kann jedoch wirkungsvoll dadurch begegnet werden, daß die Rotationsfrequenz der Magnetwalze relativ zur Bewegung des Ausrichtkörpers 1 in der Betonschicht sehr hoch gewählt wird, wodurch eine etwaige Wellenstruktur der Schicht 6 geglättet wird.
  • In den Fig. 3 - 7 sind verschiedenen Anordnungen der Permanentmagneten in der Magnetwalze 2 dargestellt.
  • Gemäß der Fig. 3 erstreckt sich ein starker, vorzugsweise aus einer NdFeB-Legierung bestehender Permanentmagnet 8 von einem Punkt nahe der Rotationsachse der Magnetwalze 2 radial nach außen. Seine äußere Stirnfläche 8a, an der sich der magnetischen Nordpol befindet, ist dabei entsprechend der Krümmung der Magnetwalze geformt, so daß die Magnetwalze mit minimalem Spalt zur Innenfläche des Frontflächenabschnittes 1a des Ausrichtkörpers 1 rotieren kann. Weiterhin ist innerhalb der Magnetwalze 2 ein Polschuh 9 aus einem weichmagnetischen Material; vorzugsweise einem weichen unlegierten Stahl, vorgesehen. Der Polschuh 9 umfaßt einen Mittelabschnitt 9a, welcher an die innere Stirnfläche des Permanentmagneten 8, an der sich dessen magnetischer Südpol befindet, bündig angrenzt und die Rotationsachse der Magnetwalze 2 umgibt. Von dem Mittelabschnitt 9a steht zu beiden Seiten jeweils ein Endabschnitt 9b ab. Beide Endabschnitte 9b sind in Richtung des Permanentmagneten 8 leicht abgewinkelt und erstrecken sich bis zum Außenumfang der Magnetwalze 2, wobei ihre jeweiligen äußeren Stirnflächen 9c ebenso der Umfangskrümmung der Magnetwalze angepaßt sind.
  • Das von dieser Magnetanordnung erzeugte Magnetfeld ist in zwei Zonen I, II eingeteilt und wird durch seine Feldlinien grafisch dargestellt. Die erste Zone I wird von dem Permanentmagneten 8 und dem Polschuh 9 gebildet. Hierbei ist der Polschuh 9 durch den starken Permanentmagneten 8 magnetisiert, so daß sich an dessen Endabschnitten 9b jeweils ein magnetischer Südpol ausbildet. Dementsprechend verlaufen die Feldlinien vom Nordpol des Permanentmagneten 8 durch den die Magnetwalze bzw. den sie einschließenden Ausrichtkörper umgebenden Raum zu den Endabschnitten 9b des Polschuhs 9 mit der Folge, daß der in bezug auf die Magnetanordnung rückwärtige Bereich 10 der Magnetwalze, welcher die zweite Zone II bildet und beispielsweise mit Aluminium oder Stahl ausgefüllt sein kann, von einem Feld von nur geringer Feldstärke durchsetzt ist. Durch das vom Nordpol des Permanentmagneten 8 erzeugte Feld wird eine anziehende Kraft insbesondere auf magnetisierbares Material, welches sich in einem Bereich in Verlängerung seiner Längsachse befindet, ausgeübt. Die Magnetanordnung der Fig. 3 zeichnet sich insbesondere durch geringen Fertigungsaufwand und damit niedrige Kosten aus.
  • Die Magnetanordnung gemäß Fig. 4 umfaßt zwei von der Rotationsachse der Magnetwalze 2 sich radial nach außen erstreckende Permanentmagneten 11, 12 im wesentlichen gleicher Größe und Stärke. Beide Magneten 11, 12 bestehen vorzugsweise aus einer NdFeB-Legierung. Die Magneten 11, 12 stehen in spitzem Winkel von ca. 60° zueinander und verlaufen annähernd von der Rotationsachse der Magnetwalze 2 zu ihrer Umfangsfläche, wobei die äußeren Stirnflächen der Magneten 11, 12 wiederum der Umfangskrümmung der Magnetwalze 2 angepaßt sind, um das Spaltmaß zwischen Magnetwalze und Frontflächenabschnitt des Ausrichtkörpers (hier nicht eingezeichnet) zu minimieren. Beide Magneten 11, 12 sind entgegengesetzt ausgerichtet, so daß im Falle des ersten Magneten 11 der Nordpol nach außen weist und im Falle des zweiten Magneten 12 der Südpol.
  • Jenseits der Rotationsachse der Magnetwalze 2 in gleichem Winkelabstand zu den beiden Magneten 11, 12 befindet sich ein aus einem weichmagnetischen Material, vorzugsweise einem weichen unlegierten Stahl, bestehender Bereich 13, welcher sich über 180° und damit über die halbe Querschnittsfläche der Magnetwalze 2 erstreckt.
  • Das von dieser Magnetanordnung erzeugte Magnetfeld ist wiederum in zwei Zonen I, II eingeteilt und wird durch seine Feldlinienverlauf visualisiert. Das Teilfeld der ersten Zone wird durch die winklig angeordneten Magneten 11, 12 erzeugt. Durch ihre entgegengesetzte Ausrichtung wird ein tief in den Raum ragendes und damit eine weitreichende Anziehungskraft ausübendes Magnetfeld erzeugt. Der rückwärtig angeordnete aus dem weichmagnetischen Material bestehende Bereich 13 repräsentiert die zweite Zone II, in der die Feldlinien praktisch vollständig zurückgeführt werden. Folglich ist die Restfeldstärke in dem die zweite Zone außen umgebenden Bereich verschwindend gering, was Voraussetzung dafür ist, daß die angezogenen und ausgerichteten Partikel an der gewünschten Stelle wieder freigegeben werden können.
  • Durch die asymmetrische Magnetanordnung der in Fig. 5 dargestellten Magnetwalze 2 wird ein in drei Zonen I*, II*, III* eingeteiltes Magnetfeld (s. Fig. 5b) erzeugt. Im Vergleich zu der prinzipiellen Darstellung der Vorrichtung in Fig. 1 ist hierbei die Reihenfolge der Anordnung der Zonen I*, II*, III* umgekehrt. Folglich rotiert die Magnetwalze 2 der Fig. 5 im Betrieb im Uhrzeigersinn und die auszurichtenden Partikel 4 werden oberhalb des Ausrichtkörpers 1 in der pastösen Material 3 angeordnet.
  • Die Magnetwalze 2 selbst ist in zwei 180°-Sektoren 14, 15 mit einer mittleren Schnittfläche D unterteilt. Der Sektor 14 ist wiederum in zwei 90°-Sektoren 14a, 14b unterteilt. Im Sektor 14a ist ein starker Permanentmagnet 16 angeordnet, welcher sich rechtwinklig von der Schnittfläche D in Richtung der gegenüberliegenden Umfangsfläche der Magnetwalze 2 erstreckt, so daß sich sein Nordpol im Bereich der Umfangsfläche des Magnetwalze 2 befindet. In dem dazu benachbart gelegenen Sektor 14b ist parallel zum ersten Magneten 16, aber entgegengesetzt orientiert ein zweiter schwächerer Permanentmagnet 17 angeordnet. Beide Magneten 16, 17 bestehen vorzugsweise aus einer NdFeB-Legierung und sind bezüglich ihrer äußeren Stirnflächen der Krümmung der Umfangsfläche der Magnetwalze 2 angepaßt. Die zwischen den Magneten 16, 17 befindlichen Zwischenräume sind mit einem nichtmagnetischen Material, wie z.B. Aluminium ausgefüllt. Der zweite 180°-Sektor 15 besteht vollständig aus einem weichmagnetischen Material, vorzugsweise einem weichen unlegierten Stahl.
  • Die Wirkung dieser Magnetanordnung in bezug auf den Feldlinienverlauf ist in Fig. 5b dargestellt. Demnach übt das von dem starken Magneten 16 in der ersten Zone I* erzeugte Teilfeld eine besonders langreichweitige Anziehungskraft auf die magnetisierbaren Partikel aus, welche in dem die Magnetwalze 2 bzw. den Ausrichtkörper 1 umgebenden Material enthalten sind. Das Teilfeld der zweiten Zone II* ist schwächer als das der ersten Zone I*, ist dadurch jedoch vorzugsweise geeignet, die vom Magnetfeld der ersten Zone I* angezogenen Partikel zur Freigabeposition zu transportieren und dabei in der gewünschten Weise auszurichten. Das weichmagnetische Material des Sektors 15 sorgt dafür, daß die zurücklaufenden Feldlinien der Pole der Magneten 16, 17 annähernd vollständig im Teilfeld der dritten Zone III* eingeschlossen sind, so daß außerhalb praktisch keinerlei Kraft mehr auf die Partikel wirkt und diese somit leicht in ausgerichteter Position freigegeben werden können.
  • Der besondere Vorteil dieser asymmetrischen Magnetanordnung ist die hohe Reichweite der Anziehungskraft bei einem vergleichsweise einfach und kostengünstig zu realisierenden Aufbau.
  • Die Fig. 6 und 7 zeigen vorteilhafte Weiterbildungen der Magnetanordnung der Fig. 5.
  • In der in Fig. 6 dargestellten Anordnung mit Bucking Pol sind die Magneten 16, 17 durch einen weiteren quer angeordneten Magneten 19 räumlich verbunden, wobei der Nordpol dieses Magneten 19 zum starken Magneten 16 der ersten Zone I* weist. Durch diese Anordnung läßt sich die Reichweite des Teilfeldes der ersten Zone I* noch weiter steigern, so daß magnetisierbare Partikel aus noch größerer Entfernung angezogen werden können.
  • Die Anordnung der Fig. 7 basiert ebenfalls auf der asymmetrischen Magnetanordnung der Fig. 5. Zusätzlich zu den beiden Magneten 16, 17 sowie dem quer angeordneten Magneten 19 sind in dem 180°-Sektor 14 zwei weitere quer angeordnete Magneten 20, 21 vorgesehen, die an die jeweiligen äußeren Längsseiten der Magneten 16, 17 stoßen und so ausgerichtet sind, daß dem starken Magneten 16 jeweils der Nordpol, dem schwächeren Magneten 17 jeweils der Südpol zugewandt ist. Die somit insgesamt aus fünf Magneten 16, 17, 19, 20, 21 bestehende Anordnung entspricht der eines linearen Halbach-Arrays. Sie ist in zweierlei Hinsicht vorteilhaft. So wird einerseits die Reichweite der Anziehungskraft des Teilfeldes der ersten Zone I* gegenüber der Anordnung mit Bucking Pole maximiert. Andererseits ermöglicht sie eine vollständige Abschirmung des rückseitigen Bereichs (Zone III*), so daß die Feldstärke des Teilfeldes der dritten Zone III* verschwindet. Dadurch wird die Freigabe der magnetisierbaren Partikel in der gewünschten Position optimiert.
  • Die Anordnung mit Bucking Pol bzw. mit Halbach-Array läßt sich ebenfalls bei der Zweipol-Anordnung mit radialer Magnetausrichtung beispielsweise gemäß Fig. 4 realisieren und verbessert deren Wirkung in bezug auf die Anziehung und Ausrichtung der magnetisierbaren Partikel.
  • In den Fig. 8 und 9 ist eine weitere Ausführungsform der Erfindung dargestellt. Bei dieser ist die Magnetwalze 2* mit einer Anzahl von in axialer Richtung der Walze 2* hintereinander angeordneten Permanentmagneten 22a - 22e vorzugsweise aus NdFeB bestückt. Die blockförmig geformten und damit besonders kostengünstig herstellbaren Magneten 22a - 22e bilden wiederum einen linearen Halbach-Array aus, welcher bei diesem Ausführungsbeispiel im Unterschied zu den vorstehend beschriebenen in axialer Richtung der Magnetwalze 2* ausgerichtet ist. Entsprechend verlaufen die Feldlinien streng in axialer Richtung der Walze 2*, also in einer Ebene senkrecht zur Relativbewegung zwischen Ausrichtkörper 1 und pastösem Material 3 (s. Fig. 2). Durch die Magnetwalze gemäß der Fig. 8 wird ein aus zwei Zonen I**, II** bestehendes Magnetfeld geformt, bei dem das Teilfeld der ersten Zone I** eine langreichweitige Kraft auf die in dem pastösen Material vorhandenen Partikel ausübt und das verschwindende Teilfeld der zweiten Zone II** die Partikel etwa an der Position 1e des Ausrichtkörpers wieder freigibt.
  • Die Magneten 22a - 22e sind auf einem Walzenblock 23 mit halbkreisförmigem Querschnitt befestigt. Der Walzenblock 23 besteht dabei bevorzugt aus einem magnetischen Stahl hoher Permeabilität.
  • Der besondere Vorteil dieser axialen Anordnung der Magnete, welche ebenso auch in Form eines Bucking Pols angeordnet sein können, besteht nun darin, dass aufgrund des axialen Verlaufs der Magnetfeldlinien (s. Fig. 9) diese in Umfangsrichtung der Magnetwalze nicht streuen, d.h. das Magnetfeld ist in Umfangsrichtung streng begrenzt. Dadurch kommt es nicht zu einer Netzwerkbildung unter den magnetisierten Partikeln in Umfangsrichtung der Magnetwalze, was die Ablösung der ausgerichteten Partikel regelmäßig erschwert. Weiterhin ergibt sich durch den axialen Feldlinienverlauf eine besonders ausgedehnte Zone, in der das Magnetfeld verschwindet, was wiederum eine Freigabe der ausgerichteten Partikel erleichtert.
  • In den Fig. 10 und 11 ist schließlich eine weitere Ausführungsform der Erfindung dargestellt. Bei dieser ist die Magnetwalze 2** in wiederkehrender Reihenfolge mit Permanentmagneten 24a, 24b, 25 vorzugsweise aus NdFeB in der Weise bestückt, dass sich entlang der Längsachse der Magneteinheit jeweils zwei nebeneinander, symmetrisch zur Längsachse angeordnete Magnete 24a, 24b mit identischer Orientierung mit einem stärkeren, zentral stehenden Magneten 25 mit entgegen gerichteter Orientierung abwechseln. Die Magneten 24a, 24b, 25 sind wiederum auf einem Walzenblock 26 mit halbkreisförmigem Querschnitt befestigt. Der Walzenblock 23 besteht dabei bevorzugt aus einem magnetischen Stahl hoher Permeabilität. In Fig. 11 ist der Feldlinienverlauf der erfindungsgemäßen Magneteinheit 2** projiziert auf die Betrachtungsebene dargestellt. Wie dargestellt ist, verlaufen die Feldlinien vom Nordpol des zentral stehenden Magneten 25 zu den Südpolen der nebeneinander und zum Magneten 25 versetzt angeordneten Magnete 24a, 24b. Damit weisen die Feldlinien einerseits, wie in Fig. 11 erkennbar, senkrecht zur Längsachse der Magneteinheit 2** ausgerichtete Anteile auf und verlaufen somit in einer Ebene parallel zur Relativbewegung zwischen dem Ausrichtkörper und dem pastösen Material. Andererseits weisen sie auch in axialer Richtung verlaufende Anteile auf, wodurch der axiale Versatz zwischen den Magnetpaaren 24a, 24b und dem zentralen Magneten 25 überbrückt wird.
  • Der besondere Vorteil einer solchen Magnetanordnung besteht darin, dass die ausgerichteten Partikel besonders gleichmäßig im Zielvolumen verteilt sind und keinerlei Tendenz mehr zur gehäuften Ansammlung entlang ausschließlich parallel bzw. senkrecht zur Relativbewegung zwischen dem Ausrichtkörper und dem pastösen Material verlaufender Feldlinien aufweisen.
  • Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt, vielmehr ergeben sich für den Fachmann im Rahmen der Erfindung vielfältige Abwandlungs- und Modifikationsmöglichkeiten. Insbesondere wird der Schutzumfang der Erfindung durch die Ansprüche festgelegt.

Claims (20)

  1. Vorrichtung zum Ausrichten magnetisierbarer Partikel (4) in einem pastösen Material (3) mit einem Ausrichtkörper (1) mit einer einen Frontflächenabschnitt (1a) und einen hinteren Flächenabschnitt (1b) umfassenden Wand, wobei der Ausrichtkörper (1) mit seinem Frontflächehabschnitt (1a) zuvorderst relativ zu dem pastösen Material (3) bewegbar ist, wobei der Ausrichtkörper (1) ferner einen innerhalb des Ausrichtkörpers (1) an der Innenseite des Frontflächenabschnitts (1a) angeordnete Magneteinheit (2) aufweist, welche zum Ausrichten der magnetisierbaren Partikel (4) ein periodisch veränderliches, auf das pastöse Material (3) einwirkendes Magnetfeld erzeugt, dadurch gekennzeichnet, dass die Magneteinheit (4) derart ausgebildet ist, dass das durch sie erzeugte Magnetfeld mindestens zwei Zonen (I, I**, II, II**) mit Teilfeldern unterschiedlicher Feldstärke und/oder Feldlinienverlauf umfasst, wobei das Teilfeld der ersten Zone (I, I**) eine langreichweitige anziehende und ausrichtende Kraft auf die Partikel ausübt und das Teilfeld der zweiten Zone (II, II**) die Partikel in ausgerichteter Position wieder freigibt.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, daß
    die Feldlinien des Magnetfelds der Magneteinheit (2) in einer Ebene senkrecht zur Relativbewegung zwischen dem Ausrichtkörper (1) und dem pastösen Material (3) verlaufen.
  3. Vorrichtung nach einem der Ansprüche 1 bis 2,
    dadurch gekennzeichnet, daß
    die Feldlinien des Magnetfelds der Magneteinheit (2) in einer Ebene parallel zur Relativbewegung zwischen dem Ausrichtkörper (1) und dem pastösen Material (3) verlaufen.
  4. Vorrichtung nach Anspruch 3,
    dadurch gekennzeichnet, daß
    das Magnetfeld in drei Zonen (I*, II*, III*) mit Teilfeldern unterschiedlicher Feldstärke und/oder unterschiedlichen Feldlinienverlaufs eingeteilt ist, wobei das Teilfeld der ersten Zone (I*) eine langreichweitige anziehende Kraft auf die Partikel (4) ausübt, das der zweiten Zone (II*) eine Haltekraft auf die Partikel (4) ausübt, durch welche diese ausgerichtet werden, und das der dritten Zone (III*) die Partikel in ausgerichteter Position wieder freigibt.
  5. Vorrichtung nach Anspruch 4,
    dadurch gekennzeichnet, daß
    die erste und die zweite Zone (I*, II*) jeweils etwa einen 90°-Bereich und die dritte Zone (III*) etwa einen 180°-Bereich des Querschnitts der Magneteinheit (2) überdecken.
  6. Vorrichtung nach Anspruch 4,
    dadurch gekennzeichnet, daß
    die drei Zonen (I*, II*, III*) jeweils etwa einen 120°-Sektor des Querschnitts der Magneteinheit (2) überdecken.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, daß
    die das periodisch veränderliche Magnetfeld erzeugende Magneteinheit (2) als rotierender Körper mit statischer Feldverteilung ausgebildet ist.
  8. Vorrichtung nach einem der Ansprüche nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, daß
    der Ausrichtkörper (1) als ein sich quer zur Richtung der Relativbewegung zwischen Ausrichtkörper (1) und pastösem Material (3) erstreckendes Hohlprofil ausgebildet ist, dessen Querschnitt nach Art eines Tragflächenquerschnitts von dem im wesentlichen halbkreisförmig gebogenen Frontflächenabschnitt (1a) sich verjüngend über zwei Flankenflächen (1c) zum hinteren Flächenabschnitt (1b) zuläuft.
  9. Vorrichtung nach Anspruch 7 und 8,
    dadurch gekennzeichnet, daß
    die Magneteinheit (2) als eine sich über die gesamte Länge des Ausrichtkörpers (1) erstreckende rotierende zylindrische Walze ausgebildet ist, deren Rotationsachse mit der Mittelachse (1f) des halbkreisförmig gebogenen Frontflächenabschnitts (1a) zusammenfällt.
  10. Vorrichtung nach einem der Ansprüche 7 bis 9,
    dadurch gekennzeichnet, daß
    das Magnetfeld der Magneteinheit (2) von Permanentmagneten (8, 11, 12, 16, 17, 19, 20, 21) erzeugt wird.
  11. Vorrichtung nach Anspruch 10,
    dadurch gekennzeichnet, daß
    mindestens einer der Permanentmagneten (8, 11, 12, 16, 17, 19, 20, 21) aus einer NdFeB-Legierung besteht.
  12. Vorrichtung nach einem der Ansprüche 7 bis 11,
    dadurch gekennzeichnet, daß
    das Teilfeld der dritten Zone (III*) von einem weichmagnetischen Material, insbesondere einem kohlenstoffarmen Stahl, erzeugt wird.
  13. Vorrichtung nach einem der Ansprüche 3 bis 12,
    dadurch gekennzeichnet, daß
    das Magnetfeld von einem Dreipol-System erzeugt wird.
  14. Vorrichtung nach einem der Ansprüche 3 bis 12,
    dadurch gekennzeichnet, daß
    das Magnetfeld von einem Zweipolsystem mit radialer Anordnung erzeugt wird.
  15. Vorrichtung nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet, daß das Magnetfeld von einer Anordnung mit Bucking Pol erzeugt wird.
  16. Vorrichtung nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet, daß
    das Magnetfeld von einem Halbach-Array erzeugt wird.
  17. Verfahren zum Ausrichten magnetisierbarer Partikel in einem pastösen Material unter Verwendung der Vorrichtung nach einem der Ansprüche 1 bis 14.
  18. Verfahren nach Anspruch 17,
    dadurch gekennzeichnet, daß
    als pastöses Material (3) nicht abgebundener Beton verwendet wird.
  19. Verfahren nach Anspruch 17 oder 18,
    dadurch gekennzeichnet, daß
    die Partikel (4) als Stahlfasern ausgebildet sind.
  20. Verfahren nach Anspruch 17 oder 18,
    dadurch gekennzeichnet, daß
    die Partikel als Stahlringe ausgebildet sind.
EP04732601A 2003-05-22 2004-05-13 Vorrichtung und verfahren zum ausrichten magnetisierbarer partikel in einem pastösen material Expired - Lifetime EP1626847B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04732601A EP1626847B1 (de) 2003-05-22 2004-05-13 Vorrichtung und verfahren zum ausrichten magnetisierbarer partikel in einem pastösen material

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP03011664 2003-05-22
EP03014707A EP1479496A1 (de) 2003-05-22 2003-06-27 Vorrichtung und Verfahren zum Ausrichten magnetisierbarer Partikel in einem pastösen Material
EP03029732 2003-12-23
PCT/EP2004/005114 WO2004103661A1 (de) 2003-05-22 2004-05-13 Vorrichtung und verfahren zum ausrichten magnetisierbarer partikel in einem pastösen material
EP04732601A EP1626847B1 (de) 2003-05-22 2004-05-13 Vorrichtung und verfahren zum ausrichten magnetisierbarer partikel in einem pastösen material

Publications (2)

Publication Number Publication Date
EP1626847A1 EP1626847A1 (de) 2006-02-22
EP1626847B1 true EP1626847B1 (de) 2006-12-13

Family

ID=33479411

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04732601A Expired - Lifetime EP1626847B1 (de) 2003-05-22 2004-05-13 Vorrichtung und verfahren zum ausrichten magnetisierbarer partikel in einem pastösen material

Country Status (8)

Country Link
US (1) US20060244168A1 (de)
EP (1) EP1626847B1 (de)
JP (1) JP2007511381A (de)
AT (1) ATE347983T1 (de)
CA (1) CA2526705A1 (de)
DE (1) DE502004002312D1 (de)
MX (1) MXPA05012582A (de)
WO (1) WO2004103661A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7708748B2 (en) * 2005-03-30 2010-05-04 Ethicon Endo-Surgery, Inc. Anastomosis device
TWI330550B (en) * 2006-04-05 2010-09-21 Inoue Mtp Kk Pattern forming apparatus and pattern forming method
US8057889B2 (en) * 2007-05-21 2011-11-15 Corning Incorporated Method for producing anisoptropic bulk materials
US8440128B2 (en) * 2007-11-26 2013-05-14 Thomas G. Love Flexible magnetic sheet systems
EP3084780A1 (de) * 2013-12-20 2016-10-26 Condalign AS Körper mit einer partikelstruktur und verfahren zur herstellung davon
JP6620340B2 (ja) * 2014-11-27 2019-12-18 シクパ ホルディング ソシエテ アノニムSicpa Holding Sa 小板形状の磁性又は磁化可能な顔料粒子を配向させるためのデバイス及び方法
CN110774413B (zh) * 2019-11-06 2020-11-03 西南石油大学 一种用于混凝土的钢纤维布料机
DE102022123334A1 (de) * 2022-09-13 2024-03-14 Kuka Deutschland Gmbh Verfahren zum magnetischen Herausgreifen eines einzelnen ferromagnetischen Gegenstandes aus einem Behälter und zugehöriger Magnetgreifer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062913A (en) * 1975-07-17 1977-12-13 Ab Institutet For Innovationsteknik Method of reinforcing concrete with fibres
US5628955A (en) * 1995-04-26 1997-05-13 Houk; Edward E. Method of manufacture of structural products
US5742223A (en) * 1995-12-07 1998-04-21 Raychem Corporation Laminar non-linear device with magnetically aligned particles
SE512228C2 (sv) * 1998-06-24 2000-02-14 Bjoern Svedberg Förfarande och anordning för magnetisk orientering av fibrer
SE518458C2 (sv) * 1999-12-23 2002-10-08 Bjoern Svedberg Kropp bildad av hårdnat,initialt pastaformigt material innefattande en elektriskt ledande bana av ett koncentrerat skikt av fibrer- eller kornformiga element, samt ett sätt att framställa en sådan kropp

Also Published As

Publication number Publication date
MXPA05012582A (es) 2006-02-02
JP2007511381A (ja) 2007-05-10
CA2526705A1 (en) 2004-12-02
EP1626847A1 (de) 2006-02-22
WO2004103661A1 (de) 2004-12-02
US20060244168A1 (en) 2006-11-02
ATE347983T1 (de) 2007-01-15
DE502004002312D1 (de) 2007-01-25

Similar Documents

Publication Publication Date Title
EP2622113B1 (de) Beschichten von substraten mit einer legierung mittels kathodenzerstäubung
DE69404483T2 (de) Permanentmagnet-Vorrichtung zur Verwendung in Magnetron-Plasma-Prozessen
DE102007043575A1 (de) Fluiddynamische Lagerstruktur und fluiddynamisches Lager
EP1626847B1 (de) Vorrichtung und verfahren zum ausrichten magnetisierbarer partikel in einem pastösen material
EP3646438B1 (de) Permanentmagnet-erregter motor mit verdrehbaren magnetstäben
DE4339791C2 (de) Antriebsvorrichtung mit veränderlichem Luftspalt
DE102012024759A1 (de) Wickelvorrichtung für strangförmiges Wickelgut
EP2161643A2 (de) Bedieneinrichtung
EP1443181A2 (de) Turbinenrad zum Antrieb schnell rotierender Werkzeuge
DE102011050730A1 (de) Nockenwellenverstellvorrichtung
EP1710829A1 (de) Magnetanordnung für ein Planar-Magnetron
DE10004824B4 (de) Verfahren zur Herstellung von Substraten, Magnetronquelle, Sputterbeschichtungskammer und Verwendung des Verfahrens
DE102005056823A1 (de) Verfahren zur Herstellung einer magnetischen Einrichtung einer elektrischen Maschine und elektrische Maschine
EP3484024B1 (de) Aktuator
EP0522390A1 (de) Doppelschneckenextruder
EP1479496A1 (de) Vorrichtung und Verfahren zum Ausrichten magnetisierbarer Partikel in einem pastösen Material
DE1613069A1 (de) Schwingender Elektromotor
EP2150716B1 (de) Wellenschalter
EP0388992A2 (de) Bewehrungsanschluss sowie Halter für einen Bewehrungsanschluss
DE2811376C3 (de) Rotor für Prallmühlen, insbesondere für Sandprallmühlen
EP2390990B1 (de) Linearmotor
AT391431B (de) Vorrichtung zum entzundern von flachstahl
DE4020275C2 (de) Stellenantrieb zur Einstellung von zwei selbsthaltenden Lagen
DE19834393A1 (de) Plattenelement für eine Schutzeinrichtung
DE102011077297A1 (de) Magnetronsputtereinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004002312

Country of ref document: DE

Date of ref document: 20070125

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070324

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20070405

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070530

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070531

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070612

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070720

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070919

Year of fee payment: 4

BERE Be: lapsed

Owner name: BAKKER HOLDING SON B.V.

Effective date: 20080531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081201

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080513

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080602

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070513

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070614

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080514