EP1431406A1 - Stahlzusammensetzung zur Herstellung von mehrphasigen kaltgewalzten Stahlprodukten - Google Patents
Stahlzusammensetzung zur Herstellung von mehrphasigen kaltgewalzten Stahlprodukten Download PDFInfo
- Publication number
- EP1431406A1 EP1431406A1 EP02447265A EP02447265A EP1431406A1 EP 1431406 A1 EP1431406 A1 EP 1431406A1 EP 02447265 A EP02447265 A EP 02447265A EP 02447265 A EP02447265 A EP 02447265A EP 1431406 A1 EP1431406 A1 EP 1431406A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel
- substrate
- maximum
- temperature
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 80
- 239000010959 steel Substances 0.000 title claims abstract description 80
- 239000000203 mixture Substances 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 56
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 38
- 230000008569 process Effects 0.000 claims abstract description 36
- 229910000794 TRIP steel Inorganic materials 0.000 claims abstract description 20
- 238000005097 cold rolling Methods 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims description 48
- 229910001566 austenite Inorganic materials 0.000 claims description 38
- 238000001816 cooling Methods 0.000 claims description 37
- 230000000717 retained effect Effects 0.000 claims description 24
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- 238000005246 galvanizing Methods 0.000 claims description 19
- 238000005096 rolling process Methods 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 18
- 230000009467 reduction Effects 0.000 claims description 18
- 229910000734 martensite Inorganic materials 0.000 claims description 16
- 238000002791 soaking Methods 0.000 claims description 15
- 229910000859 α-Fe Inorganic materials 0.000 claims description 12
- 238000005098 hot rolling Methods 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 229910001563 bainite Inorganic materials 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 238000005554 pickling Methods 0.000 claims description 5
- 238000005482 strain hardening Methods 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 239000004411 aluminium Substances 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 8
- 239000011574 phosphorus Substances 0.000 abstract description 4
- 239000000047 product Substances 0.000 description 41
- 239000011572 manganese Substances 0.000 description 17
- 229910052710 silicon Inorganic materials 0.000 description 16
- 238000000137 annealing Methods 0.000 description 15
- 229910018125 Al-Si Inorganic materials 0.000 description 14
- 229910018520 Al—Si Inorganic materials 0.000 description 14
- 238000007792 addition Methods 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 229910052748 manganese Inorganic materials 0.000 description 11
- 239000010955 niobium Substances 0.000 description 11
- 239000010936 titanium Substances 0.000 description 11
- 238000001556 precipitation Methods 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 238000005266 casting Methods 0.000 description 9
- 241000219307 Atriplex rosea Species 0.000 description 7
- 230000001627 detrimental effect Effects 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 238000005275 alloying Methods 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000005802 health problem Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003303 reheating Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 229910006639 Si—Mn Inorganic materials 0.000 description 3
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000003019 stabilising effect Effects 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005244 galvannealing Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- PYLLWONICXJARP-UHFFFAOYSA-N manganese silicon Chemical compound [Si].[Mn] PYLLWONICXJARP-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 102220068392 rs6921145 Human genes 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
Definitions
- the present invention is related to a steel composition comprising phosphor, to be used for the production of TRIP steel' products.
- the invention is equally related to the process of production of said products, and to the end products themselves.
- Ultra high strength steel (UHSS) sheet products and in particular TRIP steel products showing a remarkable combination of high strength and good formability, can provide the solution for this problem. Additionally, an increased corrosion resistance of these steel sheet products by means of electro or hot dip galvanising, is frequently asked for.
- EP-A-1096029 is related to the production of a tempered martensite TRIP steel, whose chemical composition is silicon-manganese based and contains (in wt%) 0.05-0.20% C, 0.3-1.8% Si and 1.0-3.0% Mn as well as one or more of the following additions (in wt%): 0.05-1% Cr+Mo, ⁇ 0.003% B, 0.01-0.1% Ti+Nb+V and ⁇ 0.01% Ca+REM.
- the cold rolling production process consists of three consecutive annealing steps.
- the sheet is completely austenised during at least 5 seconds and subsequently rapidly cooled (>10°C/s) below the Ms (Martensite start) temperature in order to produce lath martensite.
- the second and third step are combined in a continuous annealing or galvanising line and consist of reheating the sheet in the intercritical region (Ac1 ⁇ T ⁇ Ac3) during 5 to 120 seconds, cooling (>5°C/s) to 500°C or lower and than subjecting the sheet to a galvanising or galvannealing treatment.
- the first one being the additional annealing step that is required to produce the lath martensite starting micro-structure.
- EP-A-0922782 also describes the production of a cold rolled Si-Mn based TRIP steel which contains (in wt%) 0.05-0.40%C, 1.0-3.0% Si, 0.6-3.0% Mn, 0.02-1.5% Cr, 0.01-0.20%P and 0.01-0.3% Al.
- this product does not require the use of an additional annealing step.
- Cr is added to the analysis in order to retard the bainite formation and promote acicular ferrite and martensite formation as it is thought by the inventors that bainite is detrimental to the crushing behaviour in Si-Mn based TRIP steels.
- P is added to avoid pearlite formation and to increase the strength of the ferritic phase.
- the maximal P content is limited to 0.2% because of weldability.
- the high Si content in this invention will however again impair hot dip galvanisability resulting in an insufficient surface appearance and a very high risk on bare spots.
- the occurrence of red scale which is difficult to remove, on the hot strip, due to the higher Si content, is also expected to cause processing difficulties.
- EP-A-0796928 describes the production of an Al-based Dual Phase steel which contains (in wt%) 0.05-0.3% C, 0.8-3.0% Mn, 0.4-2.5% Al and 0.01-0.2% Si. Additionally the steel can contain one of the following elements (in wt%) ⁇ 0.05% Ti, ⁇ 0.8% Cr, ⁇ 0.5% Mo, ⁇ 0.5% Ni, ⁇ 0.05% Nb and ⁇ 0.08% P. After cold rolling with a reduction rate higher than 40%, the material is intercritically annealed at temperatures between 740 and 850°C and subsequently cooled at a cooling rate of 10 to 50 K/s to the Zn-bath temperature.
- EP-A-1170391 describes the production of a low carbon ( ⁇ 0.08wt%), low silicon ( ⁇ 0.5wt%) and low aluminium ( ⁇ 0.3wt%) TRIP steel obtained by adding a nitriding step to the processing (0.03-2wt%N).
- the Al and Si contents have to be kept low in order to avoid nitride precipitation and thus loss of free N.
- the Si content is preferably lower than 0.2wt% because of hot dip galvanisability.
- the carbon content is kept very low because of weldability and because of the fact that the presence of nitrogen in the steel also stabilises the retained austenite.
- This nitrogen is incorporated in the steel sheet either during or immediately after hot finish rolling, during recrystallisation annealing, during intercritical annealing or via a combination of one or more of these processes. All of them require the steel sheet to be held for 2sec to 10min. in an atmosphere containing not less than 2% ammonia in the temperature range 550-800°C. It is clear that this nitriding step makes processing a lot more difficult and requires complicated technical modifications to existing installations. At the moment this process is internationally not considered to be industrially feasible. Furthermore the very low alloying content of this steel grade, does not allow to reach tensile strength levels above 650MPa.
- US-A-5470529 deals with the production of cold rolled TRIP steels based upon a wide variety of combined Al-Si analyses.
- the carbon content range is set as 0.05-0.3wt%, but more preferably is 0.1-0.2wt%.
- the Si-content is kept below 1.0wt% in order to avoid red scale formation, but more preferably is in the range 0.2-0.9wt%.
- Manganese is added in 0.005 to 4.0wt%, but more preferably 0.5-2.0wt%.
- part of the Si is replaced by Al for various reasons.
- Al also avoids cementite precipitation during bainitic holding. This enables to use lower Si-levels and thus avoid red scale formation.
- Al-range is set as 0.1-2.0wt% and more preferably as 0.5-1.5wt%.
- Al and Si are both ferrite stabilizers, their sum is limited in order to avoid over-stabilizing the retained austenite.
- the Al+Si content should be in the range 0.5-3.0wt% and more preferably in the range 1.5-2.5wt%.
- P is considered as an incidental impurity that should be limited as much as possible.
- the P-limit is set at 0.1wt% or less and preferably less than 0.02wt%.
- Cu is added to the analysis to facilitate the removal of red scale, to improve the corrosion resistance of the as cold rolled product and to improve the wettability by molten Zn. Therefore the Cu-range is 0.1-2.0wt% and more preferably 0.1-0.6wt%.
- Ni is added as well. For economics its content is limited to 1.0wt% and preferably 0.5wt%. The following constraints also apply: Ni(wt%)>Cu(wt%)/3 when Cu>0.5wt% and Mn+Ni>0.5wt%. Cr may be added as well to stabilise the retained austenite and to further improve corrosion resistance.
- Nb and V might be added as well.
- Their upper limit is preferably 0.05wt% for Nb and Ti and 0.10wt% for V.
- Si-content in this invention is limited to ⁇ 1wt% in order to avoid red scale formation, most of the cold rolled example steels have a Si-content in the range 0.5-1.1wt%. The latter is considered to give rise to hot dip galvanising difficulties (bad wettability by molten Zn) and a deteriorated surface appearance (bare spots).
- EP-A-1154028 describes the manufacturing of a P-alloyed low-Al, low-Si TRIP steel, which contains (in wt%): 0.06-0.17%C, 1.35-1.80%Mn, 0.35-0.50%Si, 0.02-0.12%P, 0.05-0.50%Al, max. 0.07%Nb, max. 0.2%V, max. 0.05%Ti, max. 30ppm B and 100-350ppm N.
- the carbide forming elements Ti, Nb or V are added, the carbon content is preferably 0.16wt%.
- the amount of residual austenite is limited to a maximum of 10%.
- the combination of low Si-content and rather low C-content results in tensile strength values which are quite low ( ⁇ 600MPa).
- low-Al steel 0.19% C, 1.5% Mn, 0.26% Si, 0.086% P and 0.52% Al
- high-Al steel 0.17% C, 1.46% Mn, 0.26% Si, 0.097% P and 1.81% Al.
- the low-Al steel will suffer from mechanical properties that are very sensitive to process parameter variations such as line speed and overageing temperature. This can lead to a non-compatibility between different galvanising lines or even to strongly thickness-dependent mechanical properties.
- the high-Al steel on the other hand again requires the use of an adapted casting powder that can give rise to health problems. Furthermore the weldability will be impaired due to the presence of Al-oxides in the welded area.
- the present invention is related to a cold rolled Al-Si P-alloyed TRIP steel composition intended to be used as uncoated, electro-galvanised or hot dip galvanised material.
- Said composition is characterised by the following contents :
- the novelty and inventive step of this compostion lies in the specific combination of elements P, Si, Al and C.
- adding P in excess of prior art levels whilst limiting the maximum Si- and Al-content, allows to decrease the C-content for reaching a certain strength level, in combination with better weldability.
- Three specific embodiments are related to the same chemical composition, but having three different subranges for carbon which are related to the strength level that is aimed at:
- the present invention is equally related to a process for manufacturing a cold rolled TRIP steel product, comprising the steps of:
- the process of the invention further comprises the steps of:
- the process of the invention further comprises an electrolytic zinc coating step.
- the process of the invention further comprises the following processing steps after the cold rolling step:
- the process comprising a hot dip galvanising step may further comprise the step of subjecting said substrate to a skinpass reduction of maximum 1.5%.
- the invention is equally related to a steel product produced according to the process of the invention and having a microstructure comprising 30-75% ferrite, 10-40% bainite, 0-20% retained austenite and possibly 0-10% martensite.
- the invention is equally related to a steel product produced according to the process of the invention and having a carbon content between 1300ppm and 1900ppm.
- Said product has a yield strength between 320MPa and 480MPa, a tensile strength above 590MPa, an elongation A80 higher than 26% and a n-value (this is the strain hardening coefficient, calculated between 10% and uniform elongation) higher than 0.2.
- the invention is further related to a steel product produced according to the process of the invention and having a carbon content between 1700 and 2300ppm.
- Said product has a yield strength between 350MPa and 510MPa, a tensile strength above 700MPa, an elongation A80 higher than 24% and a n-value (calculated between 10% and uniform elongation) higher than 0.19.
- the invention is further related to a steel product produced according to the process of the invention and having a carbon content between 2000ppm and 2600ppm.
- Said product has a yield strength between 400MPa and 600MPa, a tensile strength above 780MPa, an elongation A80 higher than 22% and a n-value (calculated between 10% and uniform elongation) higher than 0.18.
- the invention is also related to a steel product produced according to the process of the invention and having a carbon content between 2000 and 2600ppm.
- Said product has a yield strength between 450MPa and 700MPa, a tensile strength above 980MPa, an elongation A80 higher than 18% and a n-value (calculated between 10% and uniform elongation) higher than 0.14.
- a steel product according to the invention may have a bake hardening BH2 higher than 40MPa in both longitudinal and transversal directions.
- a steel composition is proposed for the production of a P-alloyed Al-Si TRIP steel product.
- Application of the broadest chemical composition ranges which are indicated, will be able, in combination with the right process parameters, to result in products having a desired TRIP microstructure, good weldability as well as excellent mechanical properties, with very high values of the product of tensile strength and total elongation (this value is characteristic for a high energy absorption potential in case of a crash).
- the preferred ranges are related to more narrow ranges of mechanical properties, for example a guaranteed minimum tensile strength of 780MPa, or to more stringent requirements on weldability (maximum of C-range, see next paragraph).
- a first preferred subrange is 1300-1900ppm.
- a second preferred subrange is 1700-2300ppm.
- a third preferred subrange is 2000-2600ppm.
- the minimum carbon content per sub-range is needed in order to ensure the strength level as carbon is the most important element for the hardenability.
- the maximum of the claimed range per sub-range is related to weldability.
- the effect of carbon on mechanical properties is illustrated by exemplary composition A, E and F and reference compositions B, C and D (tables 1, 3-8).
- the effect of carbon content on spot weldability is illustrated by reference compositions B, C and D (table 2).
- Mn between 10000ppm and 22000ppm, preferably between 13000-22000ppm.
- Manganese acts as an austenite stabiliser and thus decreases the Ms temperature of the retained austenite. Furthermore Mn suppresses pearlite formation and also contributes to the overall strength level of the steel by solid solution hardening. Adding excess Mn results on the other hand in insufficient ferrite formation upon cooling from the soaking temperature and thus to insufficient carbon concentration in the retained austenite, rendering the latter less stable. Too much Mn will also increase the hardness of the weld and will enhance the formation of detrimental banded microstructures.
- Al between 8000ppm and 15000ppm, preferably between 8000-14000ppm and most preferably between 9000-13000ppm. Aluminium is added because, to an even stronger degree than Si, it is a ferrite stabiliser and thus enhances the ferrite formation during soaking and during cooling from the soaking temperature, thereby stabilising the retained austenite. The latter is stabilised even more by the fact that Al also suppresses the precipitation of carbon from the retained austenite during the overageing stage. Unlike Si, Al has no detrimental effect on galvanisability. Al-contents above 15000ppm are however known to require the use of an adapted very fine casting powder that can cause health problems. Furthermore weldability can deteriorate due to the presence of Al-oxides in the welded area. A minimum Al content is however required to allow the material to be processed on different hot dip galvanising lines with different lengths of the levelling zones and to ensure a high process robustness.
- Si between 2000ppm and 6000ppm, preferably between 2500-4500ppm. Silicon has essentially the same function as Al, albeit slightly less pronounced. That is: Si is a ferrite stabiliser and prevents carbide precipitation during the overageing stage, thereby stabilising the retained austenite at room temperature. Besides this, Si also contributes to the overall strength level of the steel by solid solution hardening. The maximum Si-content is however limited as Si is well known to provoke problems as to surface quality because of the presence of Si-oxides which after pickling create a surface with irregular and very high roughness. Moreover, in view of corrosion protection, hot dip galvanising of high Si-containing substrates in general leads to insufficient surface appearance for automotive applications, with moreover a high risk on the presence of bare spots on the surface.
- P between 400ppm and 1000ppm, preferably between 600-1000ppm.
- Phosphorous is added primarily to allow the carbon content to be decreased to obtain improved weldability, while maintaining the same tensile strength level.
- P in combination with Si is known to enhance the retained austenite stability by suppressing carbide precipitation during the overageing stage.
- P additions below 400ppm do not allow a sufficiently large reduction of C-content.
- S maximum 120ppm.
- the S-content has to be limited because a too high inclusion level can deteriorate the formability.
- Ti maximum 1000ppm, preferably below 200ppm for products produced according to the present invention having a tensile strength below 980MPa. Titanium can be added in order to increase the tensile strength of the steel by grain refinement and precipitation strengthening. However for tensile strengths below 980MPa, even without adding Ti, using the appropriate processing parameters, will result in the targeted mechanical properties per carbon sub-range and thus avoid an increase in analysis cost or extra processing difficulties (e.g. rolling forces).
- Nb maximum 1000ppm, preferably below 100ppm for products produced according to the present invention having a tensile strength below 980MPa.
- Niobium can be added in order to increase the tensile strength of the steel by grain refinement and precipitation strengthening.
- tensile strengths below 980MPa even without adding Nb, using the appropriate processing parameters, will result in the targeted mechanical properties per carbon sub-range and thus avoid an increase in analysis cost or extra processing difficulties (e.g. rolling forces).
- V maximum 1000ppm, preferably below 100ppm for products produced according to the present invention having a tensile strength below 980MPa.
- Vanadium can be added in order to increase the tensile strength of the steel by grain refinement and precipitation strengthening.
- tensile strengths below 980MPa even without adding V, using the appropriate processing parameters, will result in the targeted mechanical properties per carbon sub-range and thus avoid an increase in analysis cost.
- the present invention is equally related to the process for producing said steel product. This process comprises the steps of:
- these steps are followed by an annealing treatment in a continuous annealing line, comprising the following steps:
- a second preferred embodiment comprises the same processing steps mentioned above, but additionally also comprises an electrolytic zinc coating step.
- the cold rolling step is followed by an annealing treatment in a continuous hot dip galvanising line, comprising the following steps:
- the thickness of the steel substrates of the invention after cold rolling can be lower than 1mm according to the initial hot rolled sheet thickness and the capability of the cold rolling mill to perform the cold rolling at a sufficiently high level. Thus, thicknesses between 0.3 and 2.5mm are feasible.
- the resulting cold rolled product has a multiphase structure with 30-75% ferrite, 10-40% bainite, 0-20% retained austenite and possibly amounts of martensite (0-10%) present at room temperature.
- the amount of martensite at room temperature should however be limited in order to maintain an n-value behaviour (constant or increasing with strain) and mechanical properties that are characteristic for TRIP-steels. Specific mechanical properties as a function of processing parameter values are given in the examples.
- the cold rolled non-temper rolled product showed in all cases a yield point elongation, which is typical for TRIP-steels and indicates that no or only very small amounts of martensite are present in the microstructure.
- This yield point elongation can be suppressed by temper rolling the final product. Small temper rolling reductions are sufficient to avoid the occurrence of a yield point elongation and temper rolling reductions above 1.5% should be avoided in order to prevent a too large yield strength increase.
- the final cold rolled product furthermore preferably exhibits a constant or increasing n-value with increasing strain. This behaviour implies that the retained austenite is gradually transformed into martensite as the tensile test progresses thereby postponing the occurrence of necking, leading to an excellent combination of tensile strength and total elongation.
- the robustness of TRIP steel products produced according to this invention is ensured by the minimum Al-content specified in the preferred Al-range: 8000-14000ppm and most preferably in the range 9000-13000ppm. Adding less Al will render the retained austenite less stable. This will increase the risk of loss of mechanical properties by austenite decomposition through carbon precipitation and on the other hand the less stable retained austenite will more easily transform into martensite during straining, limiting the formability of the material. Adding less Al will also retard the bainite transformation kinetics. As a consequence the mechanical properties will become more dependent on processing conditions such as line speed and overageing temperature as well on the actual line lay-out (short or long overageing section). Using an Al-content within the preferred range, avoids such line dependency and loss of robustness.
- Table 1 shows examples of compositions of laboratory castings of the P-alloyed Al-Si TRIP steel product according to the present invention (codes A, E and F), and of reference compositions (B,C and D) having either a C-content which is higher than the claimed range and/or no intentionally added phosphor.
- Laboratory thermal cycle simulations and tensile tests were performed to obtain the mechanical properties of the test specimens of these example compositions. It is to be noted that in what follows, all mentioned tensile test mechanical properties are measured according to the standard EN10002-1.
- Table 8 contains the mechanical properties obtained after applying several hot dip galvanising simulations on steel samples of compositions E and F. Looking at the data in table 6 and 8 (in particular E compared to B), it is clear that the tensile strength is even higher for the composition of the invention, as compared to the reference composition which has 600ppm more carbon and no intentionally added phosphor.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Electroplating Methods And Accessories (AREA)
- Coating With Molten Metal (AREA)
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02447265A EP1431406A1 (de) | 2002-12-20 | 2002-12-20 | Stahlzusammensetzung zur Herstellung von mehrphasigen kaltgewalzten Stahlprodukten |
EP10180139A EP2264207A1 (de) | 2002-12-20 | 2003-11-06 | Stahlzusammensetzung zur Herstellung von mehrphasigen kaltgewalzten Stahlprodukten |
CNB2003801069574A CN100537813C (zh) | 2002-12-20 | 2003-11-06 | 用于制备冷轧多相钢产品的钢组合物 |
KR1020057011585A KR20050094408A (ko) | 2002-12-20 | 2003-11-06 | 냉간압연 다상조직 스틸 제품의 제조를 위한 스틸 조성물 |
PCT/BE2003/000188 WO2004057048A1 (en) | 2002-12-20 | 2003-11-06 | A steel composition for the production of cold rolled multiphase steel products |
CA002507378A CA2507378A1 (en) | 2002-12-20 | 2003-11-06 | A steel composition for the production of cold rolled multiphase steel products |
AU2003283135A AU2003283135A1 (en) | 2002-12-20 | 2003-11-06 | A steel composition for the production of cold rolled multiphase steel products |
BR0316905-7A BR0316905A (pt) | 2002-12-20 | 2003-11-06 | Composição de aço para a produção de produtos de aço multifase laminados a frio |
US10/539,758 US20060140814A1 (en) | 2002-12-20 | 2003-11-06 | Steel composition for the production of cold rolled multiphase steel products |
RU2005123361/02A RU2328545C2 (ru) | 2002-12-20 | 2003-11-06 | Композиция стали для производства холоднокатаных изделий из многофазной стали |
MXPA05006801A MXPA05006801A (es) | 2002-12-20 | 2003-11-06 | Composicion de acero para la produccion de productos de acero multifase laminados en frio. |
EP03775002A EP1579020A1 (de) | 2002-12-20 | 2003-11-06 | Stahlzusammensetzung für die herstellung von mehrphasigen kaltgewalzten stahlprodukten |
KR1020117024664A KR20110127283A (ko) | 2002-12-20 | 2003-11-06 | 냉간압연 다상조직 스틸 제품의 제조를 위한 스틸 조성물 |
JP2004560925A JP4856876B2 (ja) | 2002-12-20 | 2003-11-06 | 冷間圧延多相鋼製品の製造のための鋼組成物 |
JP2011125041A JP2011231406A (ja) | 2002-12-20 | 2011-06-03 | 冷間圧延多相鋼製品の製造のための鋼組成物 |
US13/243,295 US20120018058A1 (en) | 2002-12-20 | 2011-09-23 | Process for manufacturing a cold rolled trip steel product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02447265A EP1431406A1 (de) | 2002-12-20 | 2002-12-20 | Stahlzusammensetzung zur Herstellung von mehrphasigen kaltgewalzten Stahlprodukten |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1431406A1 true EP1431406A1 (de) | 2004-06-23 |
Family
ID=32338263
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02447265A Withdrawn EP1431406A1 (de) | 2002-12-20 | 2002-12-20 | Stahlzusammensetzung zur Herstellung von mehrphasigen kaltgewalzten Stahlprodukten |
EP10180139A Withdrawn EP2264207A1 (de) | 2002-12-20 | 2003-11-06 | Stahlzusammensetzung zur Herstellung von mehrphasigen kaltgewalzten Stahlprodukten |
EP03775002A Withdrawn EP1579020A1 (de) | 2002-12-20 | 2003-11-06 | Stahlzusammensetzung für die herstellung von mehrphasigen kaltgewalzten stahlprodukten |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10180139A Withdrawn EP2264207A1 (de) | 2002-12-20 | 2003-11-06 | Stahlzusammensetzung zur Herstellung von mehrphasigen kaltgewalzten Stahlprodukten |
EP03775002A Withdrawn EP1579020A1 (de) | 2002-12-20 | 2003-11-06 | Stahlzusammensetzung für die herstellung von mehrphasigen kaltgewalzten stahlprodukten |
Country Status (11)
Country | Link |
---|---|
US (2) | US20060140814A1 (de) |
EP (3) | EP1431406A1 (de) |
JP (2) | JP4856876B2 (de) |
KR (2) | KR20110127283A (de) |
CN (1) | CN100537813C (de) |
AU (1) | AU2003283135A1 (de) |
BR (1) | BR0316905A (de) |
CA (1) | CA2507378A1 (de) |
MX (1) | MXPA05006801A (de) |
RU (1) | RU2328545C2 (de) |
WO (1) | WO2004057048A1 (de) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1642990A1 (de) * | 2003-06-19 | 2006-04-05 | Nippon Steel Corporation | Hochfeste stahlplatte mit hervorragender verformbarkeit und herstellungsverfahren dafür |
DE102006001628A1 (de) * | 2006-01-11 | 2007-07-26 | Thyssenkrupp Steel Ag | Verzinktes walzhartes kaltgewalztes Flachprodukt und Verfahren zu seiner Herstellung |
WO2008102009A1 (en) * | 2007-02-23 | 2008-08-28 | Corus Staal Bv | Cold rolled and continuously annealed high strength steel strip and method for producing said steel |
EP2098600A1 (de) * | 2008-02-19 | 2009-09-09 | JFE Steel Corporation | Hochfestes Stahlblech mit erhöhter Verformbarkeit und Herstellungsverfahren dafür |
EP2439290A1 (de) * | 2010-10-05 | 2012-04-11 | ThyssenKrupp Steel Europe AG | Mehrphasenstahl, aus einem solchen Mehrphasenstahl hergestelltes kaltgewalztes Flachprodukt und Verfahren zu dessen Herstellung |
WO2012168564A1 (fr) * | 2011-06-07 | 2012-12-13 | Arcelormittal Investigación Y Desarrollo Sl | Tôle d'acier laminée à froid et revêtue de zinc ou d'alliage de zinc, procédé de fabrication et utilisation d'une telle tôle |
WO2016005061A1 (en) * | 2014-07-07 | 2016-01-14 | Tata Steel Ijmuiden B.V. | Steel strip having high strength and high formability, the steel strip having a hot dip zinc based coating |
EP3390040B1 (de) | 2015-12-15 | 2020-08-26 | Tata Steel IJmuiden B.V. | Hochfester feuerverzinkter bandstahl |
CN115181899A (zh) * | 2021-04-02 | 2022-10-14 | 宝山钢铁股份有限公司 | 980MPa级别低碳低合金TRIP钢及其快速热处理制造方法 |
DE102022104228A1 (de) | 2022-02-23 | 2023-08-24 | Thyssenkrupp Steel Europe Ag | Verfahren zur Herstellung eines kaltgewalzten Stahlflachprodukts mit niedrigem Kohlenstoffgehalt |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1431406A1 (de) * | 2002-12-20 | 2004-06-23 | Sidmar N.V. | Stahlzusammensetzung zur Herstellung von mehrphasigen kaltgewalzten Stahlprodukten |
EP1918403B1 (de) * | 2006-10-30 | 2009-05-27 | ThyssenKrupp Steel AG | Verfahren zum Herstellen von Stahl-Flachprodukten aus einem ein martensitisches Gefüge bildenden Stahl |
US8435363B2 (en) | 2007-10-10 | 2013-05-07 | Nucor Corporation | Complex metallographic structured high strength steel and manufacturing same |
CN101899619B (zh) * | 2010-08-14 | 2012-04-25 | 武汉钢铁(集团)公司 | 高应变硬化指数的热镀锌高强钢及其生产方法 |
CN102321854A (zh) * | 2011-09-21 | 2012-01-18 | 首钢总公司 | 一种trip钢及其生产方法 |
JP2013072108A (ja) * | 2011-09-27 | 2013-04-22 | Jfe Steel Corp | 成形後の表面品質に優れる冷延鋼板及びその製造方法 |
JP5310968B1 (ja) * | 2011-09-30 | 2013-10-09 | 新日鐵住金株式会社 | 高強度溶融亜鉛めっき鋼板及びその製造方法 |
FR2986598B1 (fr) | 2012-02-03 | 2015-03-27 | Freudenberg Carl Kg | Joint d'etancheite |
US20140102604A1 (en) * | 2012-10-11 | 2014-04-17 | Thyssenkrupp Steel Usa, Llc | Cold rolled recovery annealed mild steel and process for manufacture thereof |
WO2015001367A1 (en) * | 2013-07-04 | 2015-01-08 | Arcelormittal Investigación Y Desarrollo Sl | Cold rolled steel sheet, method of manufacturing and vehicle |
WO2016001701A1 (en) | 2014-07-03 | 2016-01-07 | Arcelormittal | Polyvalent processing line for heat treating and hot dip coating a steel strip |
RU2556445C1 (ru) * | 2014-11-05 | 2015-07-10 | Юлия Алексеевна Щепочкина | Сталь |
CN107849667B (zh) * | 2015-07-13 | 2020-06-30 | 日本制铁株式会社 | 钢板、热浸镀锌钢板和合金化热浸镀锌钢板、以及它们的制造方法 |
EP3323907B1 (de) * | 2015-07-13 | 2020-03-04 | Nippon Steel Corporation | Stahlblech, feuerverzinktes stahlblech, nach dem verzinken wärmebehandeltes stahlblech und herstellungsverfahren dafür |
EP3437750A1 (de) | 2017-08-02 | 2019-02-06 | Autotech Engineering A.I.E. | Pressverfahren für beschichtete stähle |
US10329639B2 (en) * | 2017-08-04 | 2019-06-25 | Gm Global Technology Operations Llc. | Multilayer steel and method of reducing liquid metal embrittlement |
JP6697728B1 (ja) * | 2018-10-04 | 2020-05-27 | 日本製鉄株式会社 | 冷延鋼板 |
CN115181896B (zh) * | 2021-04-02 | 2023-09-12 | 宝山钢铁股份有限公司 | 980MPa级低碳低合金热镀锌TRIP钢及快速热处理热镀锌制造方法 |
CN113549821A (zh) * | 2021-06-29 | 2021-10-26 | 鞍钢股份有限公司 | 一种低屈强比高扩孔率800MPa级热轧酸洗复相钢及其生产方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07252592A (ja) * | 1994-03-15 | 1995-10-03 | Nippon Steel Corp | 成形性、低温靭性及び疲労特性に優れた熱延高強度鋼板 |
EP0707087A1 (de) * | 1994-04-26 | 1996-04-17 | Nippon Steel Corporation | Hochfestes stahlblech zum tiefziehen und dessen herstellung |
JPH10219387A (ja) * | 1997-02-04 | 1998-08-18 | Sumitomo Metal Ind Ltd | 加工性に優れた熱延高張力鋼板及びその製造方法 |
JPH11310828A (ja) * | 1998-04-30 | 1999-11-09 | Nippon Steel Corp | 形状凍結性と成形性に優れた高張力複合組織熱延鋼板の製造方法 |
JPH11315328A (ja) * | 1998-05-06 | 1999-11-16 | Nippon Steel Corp | 形状凍結性に優れた良加工性熱延高張力鋼板の製造方法 |
JP2000160278A (ja) * | 1998-11-20 | 2000-06-13 | Nippon Steel Corp | 表面品質の良好な高張力熱延鋼板 |
EP1154028A1 (de) * | 2000-05-12 | 2001-11-14 | Corus Staal BV | Mehrphasiger Stahl und Herstellungsverfahren |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU43211A1 (de) * | 1962-04-24 | 1963-04-18 | ||
US4388122A (en) * | 1980-08-11 | 1983-06-14 | Kabushiki Kaisha Kobe Seiko Sho | Method of making high strength hot rolled steel sheet having excellent flash butt weldability, fatigue characteristic and formability |
JPS59211591A (ja) * | 1983-05-14 | 1984-11-30 | Kawasaki Steel Corp | 耐食性などに優れたZn−Fe−P系合金電気めつき鋼板 |
DE69323441T2 (de) * | 1992-03-06 | 1999-06-24 | Kawasaki Steel Corp., Kobe, Hyogo | Herstellung von hoch zugfestem Stahlblech mit ausgezeichneter Streckbördel-Verformfähigkeit |
JPH05295433A (ja) * | 1992-04-20 | 1993-11-09 | Sumitomo Metal Ind Ltd | 溶融亜鉛メッキ高張力熱延鋼板の製造方法 |
US5470529A (en) * | 1994-03-08 | 1995-11-28 | Sumitomo Metal Industries, Ltd. | High tensile strength steel sheet having improved formability |
DE19610675C1 (de) | 1996-03-19 | 1997-02-13 | Thyssen Stahl Ag | Mehrphasenstahl und Verfahren zu seiner Herstellung |
JP3530353B2 (ja) * | 1997-09-24 | 2004-05-24 | 新日本製鐵株式会社 | 高い動的変形抵抗を有する衝突時衝撃吸収用高強度冷延鋼板とその製造方法 |
JP3530356B2 (ja) * | 1997-09-24 | 2004-05-24 | 新日本製鐵株式会社 | 高い動的変形抵抗を有する衝突時衝撃吸収用良加工性高強度冷延鋼板とその製造方法 |
JP3320014B2 (ja) | 1997-06-16 | 2002-09-03 | 川崎製鉄株式会社 | 耐衝撃特性に優れた高強度高加工性冷延鋼板 |
JP3619357B2 (ja) * | 1997-12-26 | 2005-02-09 | 新日本製鐵株式会社 | 高い動的変形抵抗を有する高強度鋼板とその製造方法 |
KR100638543B1 (ko) | 1999-04-21 | 2006-10-26 | 제이에프이 스틸 가부시키가이샤 | 연성이 우수한 고장력 용융아연도금강판 및 그 제조방법 |
KR100441414B1 (ko) * | 2000-04-21 | 2004-07-23 | 신닛뽄세이테쯔 카부시키카이샤 | 버링 가공성이 우수한 고피로강도 강판 및 그의 제조방법 |
JP3661559B2 (ja) * | 2000-04-25 | 2005-06-15 | 住友金属工業株式会社 | 加工性とめっき密着性に優れた合金化溶融亜鉛めっき高張力鋼板とその製造方法 |
US6364968B1 (en) * | 2000-06-02 | 2002-04-02 | Kawasaki Steel Corporation | High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same |
WO2001094655A1 (fr) * | 2000-06-07 | 2001-12-13 | Nippon Steel Corporation | Tuyau d'acier a haute aptitude au formage et son procede de fabrication |
JP4414563B2 (ja) * | 2000-06-12 | 2010-02-10 | 新日本製鐵株式会社 | 成形性並びに穴拡げ性に優れた高強度鋼板およびその製造方法 |
JP3542946B2 (ja) | 2000-06-29 | 2004-07-14 | 新日本製鐵株式会社 | 加工性及びめっき密着性に優れた高強度鋼板及びその製造方法 |
EP1288322A1 (de) * | 2001-08-29 | 2003-03-05 | Sidmar N.V. | Ultrahochfester Stahl, Produkt aus diesem Stahl und Verfahren zu seiner Herstellung |
JP3828466B2 (ja) * | 2002-07-29 | 2006-10-04 | 株式会社神戸製鋼所 | 曲げ特性に優れた鋼板 |
EP1431406A1 (de) * | 2002-12-20 | 2004-06-23 | Sidmar N.V. | Stahlzusammensetzung zur Herstellung von mehrphasigen kaltgewalzten Stahlprodukten |
-
2002
- 2002-12-20 EP EP02447265A patent/EP1431406A1/de not_active Withdrawn
-
2003
- 2003-11-06 EP EP10180139A patent/EP2264207A1/de not_active Withdrawn
- 2003-11-06 KR KR1020117024664A patent/KR20110127283A/ko not_active Application Discontinuation
- 2003-11-06 KR KR1020057011585A patent/KR20050094408A/ko active IP Right Grant
- 2003-11-06 AU AU2003283135A patent/AU2003283135A1/en not_active Abandoned
- 2003-11-06 CA CA002507378A patent/CA2507378A1/en not_active Abandoned
- 2003-11-06 US US10/539,758 patent/US20060140814A1/en not_active Abandoned
- 2003-11-06 JP JP2004560925A patent/JP4856876B2/ja not_active Expired - Fee Related
- 2003-11-06 RU RU2005123361/02A patent/RU2328545C2/ru not_active IP Right Cessation
- 2003-11-06 CN CNB2003801069574A patent/CN100537813C/zh not_active Expired - Fee Related
- 2003-11-06 MX MXPA05006801A patent/MXPA05006801A/es active IP Right Grant
- 2003-11-06 BR BR0316905-7A patent/BR0316905A/pt active Search and Examination
- 2003-11-06 WO PCT/BE2003/000188 patent/WO2004057048A1/en active Application Filing
- 2003-11-06 EP EP03775002A patent/EP1579020A1/de not_active Withdrawn
-
2011
- 2011-06-03 JP JP2011125041A patent/JP2011231406A/ja active Pending
- 2011-09-23 US US13/243,295 patent/US20120018058A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07252592A (ja) * | 1994-03-15 | 1995-10-03 | Nippon Steel Corp | 成形性、低温靭性及び疲労特性に優れた熱延高強度鋼板 |
EP0707087A1 (de) * | 1994-04-26 | 1996-04-17 | Nippon Steel Corporation | Hochfestes stahlblech zum tiefziehen und dessen herstellung |
JPH10219387A (ja) * | 1997-02-04 | 1998-08-18 | Sumitomo Metal Ind Ltd | 加工性に優れた熱延高張力鋼板及びその製造方法 |
JPH11310828A (ja) * | 1998-04-30 | 1999-11-09 | Nippon Steel Corp | 形状凍結性と成形性に優れた高張力複合組織熱延鋼板の製造方法 |
JPH11315328A (ja) * | 1998-05-06 | 1999-11-16 | Nippon Steel Corp | 形状凍結性に優れた良加工性熱延高張力鋼板の製造方法 |
JP2000160278A (ja) * | 1998-11-20 | 2000-06-13 | Nippon Steel Corp | 表面品質の良好な高張力熱延鋼板 |
EP1154028A1 (de) * | 2000-05-12 | 2001-11-14 | Corus Staal BV | Mehrphasiger Stahl und Herstellungsverfahren |
Non-Patent Citations (4)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 02 29 February 1996 (1996-02-29) * |
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 13 30 November 1998 (1998-11-30) * |
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 02 29 February 2000 (2000-02-29) * |
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 09 13 October 2000 (2000-10-13) * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8262818B2 (en) | 2003-06-19 | 2012-09-11 | Nippon Steel Corporation | Method for producing high strength steel sheet excellent in formability |
EP1642990A4 (de) * | 2003-06-19 | 2006-11-29 | Nippon Steel Corp | Hochfeste stahlplatte mit hervorragender verformbarkeit und herstellungsverfahren dafür |
EP1642990A1 (de) * | 2003-06-19 | 2006-04-05 | Nippon Steel Corporation | Hochfeste stahlplatte mit hervorragender verformbarkeit und herstellungsverfahren dafür |
US7922835B2 (en) | 2003-06-19 | 2011-04-12 | Nippon Steel Corporation | High strength steel sheet excellent in formability |
DE102006001628A1 (de) * | 2006-01-11 | 2007-07-26 | Thyssenkrupp Steel Ag | Verzinktes walzhartes kaltgewalztes Flachprodukt und Verfahren zu seiner Herstellung |
WO2008102009A1 (en) * | 2007-02-23 | 2008-08-28 | Corus Staal Bv | Cold rolled and continuously annealed high strength steel strip and method for producing said steel |
EP3421634A1 (de) * | 2007-02-23 | 2019-01-02 | Tata Steel IJmuiden B.V. | Kaltgewalzter, kontinuierlich getemperter und hochfester stahlstreifen und verfahren zur herstellung des stahls |
RU2464338C2 (ru) * | 2007-02-23 | 2012-10-20 | Тата Стил Эймейден Б.В. | Холоднокатаная и полученная с непрерывным отжигом полоса высокопрочной стали и способ производства упомянутой стали |
US7919194B2 (en) | 2008-02-19 | 2011-04-05 | Jfe Steel Corporation | High strength steel sheet having superior ductility |
EP2098600A1 (de) * | 2008-02-19 | 2009-09-09 | JFE Steel Corporation | Hochfestes Stahlblech mit erhöhter Verformbarkeit und Herstellungsverfahren dafür |
US9970088B2 (en) | 2010-10-05 | 2018-05-15 | Thyssenkrupp Steel Europe Ag | Multi-phase steel, cold-rolled flat product produced from such a multi-phase steel and method for producing it |
EP2439290A1 (de) * | 2010-10-05 | 2012-04-11 | ThyssenKrupp Steel Europe AG | Mehrphasenstahl, aus einem solchen Mehrphasenstahl hergestelltes kaltgewalztes Flachprodukt und Verfahren zu dessen Herstellung |
WO2012045595A1 (de) * | 2010-10-05 | 2012-04-12 | Thyssenkrupp Steel Europe Ag | Mehrphasenstahl, aus einem solchen mehrphasenstahl hergestelltes kaltgewalztes flachprodukt und verfahren zu dessen herstellung |
WO2012168567A1 (fr) * | 2011-06-07 | 2012-12-13 | Arcelormittal Investigación Y Desarrollo Sl | Tôle d'acier laminée à froid et revêtue de zinc ou d'alliage de zinc, procede de fabrication et utilisation d'une telle tôle |
RU2579320C2 (ru) * | 2011-06-07 | 2016-04-10 | Арселормитталь Инвестигасьон И Десарролло Сл | Холоднокатаный стальной лист с покрытием из цинка или цинкового сплава, способ его производства и применение такого стального листа |
WO2012168564A1 (fr) * | 2011-06-07 | 2012-12-13 | Arcelormittal Investigación Y Desarrollo Sl | Tôle d'acier laminée à froid et revêtue de zinc ou d'alliage de zinc, procédé de fabrication et utilisation d'une telle tôle |
WO2016005061A1 (en) * | 2014-07-07 | 2016-01-14 | Tata Steel Ijmuiden B.V. | Steel strip having high strength and high formability, the steel strip having a hot dip zinc based coating |
US10577682B2 (en) | 2014-07-07 | 2020-03-03 | Tata Steel Ijmuiden B.V. | Steel strip having high strength and high formability, the steel strip having a hot dip zinc based coating |
EP3390040B1 (de) | 2015-12-15 | 2020-08-26 | Tata Steel IJmuiden B.V. | Hochfester feuerverzinkter bandstahl |
EP3390040B2 (de) † | 2015-12-15 | 2023-08-30 | Tata Steel IJmuiden B.V. | Hochfester feuerverzinkter bandstahl |
CN115181899A (zh) * | 2021-04-02 | 2022-10-14 | 宝山钢铁股份有限公司 | 980MPa级别低碳低合金TRIP钢及其快速热处理制造方法 |
CN115181899B (zh) * | 2021-04-02 | 2023-07-07 | 宝山钢铁股份有限公司 | 980MPa级别低碳低合金TRIP钢及其快速热处理制造方法 |
DE102022104228A1 (de) | 2022-02-23 | 2023-08-24 | Thyssenkrupp Steel Europe Ag | Verfahren zur Herstellung eines kaltgewalzten Stahlflachprodukts mit niedrigem Kohlenstoffgehalt |
Also Published As
Publication number | Publication date |
---|---|
KR20050094408A (ko) | 2005-09-27 |
EP2264207A1 (de) | 2010-12-22 |
WO2004057048A1 (en) | 2004-07-08 |
US20060140814A1 (en) | 2006-06-29 |
CN1729307A (zh) | 2006-02-01 |
CN100537813C (zh) | 2009-09-09 |
AU2003283135A1 (en) | 2004-07-14 |
JP4856876B2 (ja) | 2012-01-18 |
KR20110127283A (ko) | 2011-11-24 |
JP2006510802A (ja) | 2006-03-30 |
RU2005123361A (ru) | 2006-01-20 |
EP1579020A1 (de) | 2005-09-28 |
BR0316905A (pt) | 2005-10-18 |
RU2328545C2 (ru) | 2008-07-10 |
CA2507378A1 (en) | 2004-07-08 |
JP2011231406A (ja) | 2011-11-17 |
US20120018058A1 (en) | 2012-01-26 |
MXPA05006801A (es) | 2006-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120018058A1 (en) | Process for manufacturing a cold rolled trip steel product | |
EP1979500B1 (de) | Bänder aus manganreichem stahl mit hervorragender beschichtbarkeit und überlegener oberflächeneigenschaft, beschichtete stahlbänder unter verwendung von stahlbändern und verfahren zur herstellung der stahlbänder | |
US8715427B2 (en) | Ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained | |
KR102196079B1 (ko) | 실리콘을 함유하는 750 MPa의 최소 인장 강도 및 개선된 특성을 갖는 마이크로-합금된 고강도 다상 강 및 상기 강으로부터 스트립을 제조하기 위한 방법 | |
US10640855B2 (en) | High-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel | |
US10626478B2 (en) | Ultra high-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel | |
KR102708307B1 (ko) | 고강도 열간 압연 또는 냉간 압연 및 어닐링된 강 및 그 제조 방법 | |
US20180044759A1 (en) | High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel | |
US20130118647A1 (en) | Method of producing an austenitic steel | |
CN111247258B (zh) | 高强度多相钢和用于由这种多相钢制造钢带的方法 | |
US20200392596A1 (en) | Cold rolled and coated steel sheet and a method of manufacturing thereof | |
EP4114994B1 (de) | Hochfestes kaltgewalztes und verzinktes stahlblech und verfahren zu seiner herstellung | |
US20220033925A1 (en) | Cold rolled and coated steel sheet and a method of manufacturing thereof | |
JP3473480B2 (ja) | 強度と延性に優れる溶融亜鉛めっき鋼板およびその製造方法 | |
CA2624390C (en) | Cold-rolled steel sheet excellent in paint bake hardenability and ordinary-temperature non-aging property and method of producing the same | |
KR101489243B1 (ko) | 가공성 및 도금밀착성이 우수한 고강도 합금화 용융 아연도금강판 및 그 제조방법 | |
JP3908964B2 (ja) | 成形性に優れた溶融亜鉛メッキ高強度鋼板およびその製造方法 | |
JP2007063604A (ja) | 伸びと穴拡げ性に優れた溶融亜鉛めっき高強度鋼板およびその製造方法 | |
JPH06145893A (ja) | 延性と耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
KR20220139882A (ko) | 고플랜지성 초고강도 연성 열간압연 강, 열간압연 강 제조방법 및 그 용도 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20041224 |