EP1346422A1 - Organic field-effect transistor, method for structuring an ofet and integrated circuit - Google Patents
Organic field-effect transistor, method for structuring an ofet and integrated circuitInfo
- Publication number
- EP1346422A1 EP1346422A1 EP01999978A EP01999978A EP1346422A1 EP 1346422 A1 EP1346422 A1 EP 1346422A1 EP 01999978 A EP01999978 A EP 01999978A EP 01999978 A EP01999978 A EP 01999978A EP 1346422 A1 EP1346422 A1 EP 1346422A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- ofet
- structuring
- organic
- functional polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000005669 field effect Effects 0.000 title claims abstract description 6
- 229920001002 functional polymer Polymers 0.000 claims abstract description 22
- 238000000465 moulding Methods 0.000 claims description 14
- 239000011368 organic material Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 9
- 239000004020 conductor Substances 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 5
- 238000010924 continuous production Methods 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims description 2
- 238000010345 tape casting Methods 0.000 claims 1
- 229920000642 polymer Polymers 0.000 description 10
- 239000000463 material Substances 0.000 description 6
- 229920000767 polyaniline Polymers 0.000 description 6
- 239000004922 lacquer Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000007639 printing Methods 0.000 description 4
- 238000007606 doctor blade method Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/621—Providing a shape to conductive layers, e.g. patterning or selective deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/13—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/464—Lateral top-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/468—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/20—Changing the shape of the active layer in the devices, e.g. patterning
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/20—Changing the shape of the active layer in the devices, e.g. patterning
- H10K71/221—Changing the shape of the active layer in the devices, e.g. patterning by lift-off techniques
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/821—Patterning of a layer by embossing, e.g. stamping to form trenches in an insulating layer
Definitions
- the invention relates to an organic field-effect transistor, a method for structuring an OFET and an integrated circuit with improved structuring of the functional polymer layers.
- Organic integrated circuits based on OFETs are used for microelectronic mass applications and disposable products such as identification and product "tags".
- a "tag” is e.g. an electronic bar code as it is attached to goods or on suitcases.
- OFETs have a wide range of uses as RFID tags: radio frequency identification tags that do not only have to be arranged on the surface. OFETs for these applications can do without the excellent performance of silicon technology, but this should ensure low manufacturing costs and mechanical flexibility.
- the components such as Electronic bar codes are typically one-way products and are only economically interesting if they are manufactured in inexpensive processes.
- the structured layer can only be structured with other known methods (such as printing) in such a way that the length 1 is the distance between
- Designated source and drain electrode and thus represents a measure of the power density of the OFET is at least 30 to 50 microns. However, lengths 1 of less than 10 ⁇ m are aimed for, so that apart from the elaborate lithography method, currently no structuring method seems sensible.
- the object of the invention is therefore to provide a cost-effective and mass-production method for structuring OFETs with high resolution. Furthermore, it is an object of the invention to create a more powerful OFET, which is equipped with more structured layers, and a more compact OFET, which can be produced with a smaller distance 1.
- the invention relates to an organic field-effect transistor (OFET), comprising at least the following layers on a substrate: an organic semiconductor layer between and above at least one source and at least one drain electrode which are made of a conductive organic material, an organic insulation layer over the semiconducting layer and an organic conductor layer, the conductor layer and at least one of the other two layers being structured.
- OFET organic field-effect transistor
- the invention also relates to a method for structuring an OFET Squeegee at least one functional polymer into a negative form.
- the invention relates to an integrated circuit which comprises at least one OFET, which has at least one structured conductor layer and a further structured layer.
- a negative form is a structured layer or a part of a structured layer that contains depressions into which the functional polymer, which for example forms an electrode of an OFET or a semiconductor or an insulator layer, is filled by doctor blades.
- the method comprises the following steps a) on a substrate or a lower layer, a, if necessary. full-surface molded layer, which is not applied to the area to be structured.
- This molded layer is not the functional polymer (i.e. semiconducting, conductive or insulating layer), but another organic material that serves as a shape or cliché for the conductive organic electrode layer. This other organic material should have insulating properties.
- the molding layer receives depressions corresponding to the structures by imprinting (pressing in a stamp impression with subsequent hardening by exposure), c) the functional polymer is then knife-coated into these depressions in liquid form, as a solution and / or as a melt.
- the negative shape of the structure on the molding layer can be produced on the substrate or a lower layer by the imprint method, which is a technique which is mature in the field of electronic and microelectronic components.
- the material of the negative form can be a UV-curing lacquer that has indentations after imprinting and exposure. Varnishes suitable for this purpose are commercially available and the method of structuring them by imprinting is known from the literature.
- a stamp is pressed onto the uncured molded polymer, which is applied as a layer on the substrate or a lower layer, in such a way that indentations occur in the manner in which the structuring is to take place.
- the layer provided with depressions is then hardened either thermally or by irradiation, which creates the solid molded layer into which the functional polymer can be knife-coated.
- doctor blade method is that the difficult structuring of functional polymers is prepared by the well-established and proven imprint method. This means that a rich technical background can be used and extremely fine structures can be achieved.
- the doctor blade method is also not material-specific. Rather, with the doctor method, polyaniline, but also any other conductive organic material, such as Polypyrrol, can be used to manufacture electrodes. Likewise, any other organic material such as Polythiophenes as semiconductors and / or polyvinylphenol as insulators are knife-coated and thus structured, that is to say the entire OFET.
- the negative mold is removed after the functional polymer has cured, so that any difference in height between the functional polymer and the negative mold that may result from evaporation of the solvent or shrinkage is reduced.
- the functional polymers can largely be left in their optimal consistency.
- polyaniline as a conductive organic material has a certain viscosity with optimal conductivity. If, for example, polyaniline is to be printed and not coated, its viscosity must be based on one of the printing methods This usually means a loss in conductivity.
- the viscosity range for doctoring is much larger than for printing, so that there is generally no need to make any changes in the viscosity of the organic material.
- an advantage of the doctor blade method is the ability to apply thick layers.
- the conductivity of 1 ⁇ m thick polymer electrodes is effectively higher than with the usual 0.2 ⁇ m layer thickness.
- “Functional polymer” here means any organic, organometallic and / or inorganic material that is functionally involved in the construction of an OFET and / or an integrated circuit made up of several OFETs. These include, for example, the conductive component (eg polyaniline), the one Electrode forms the semiconducting component that the
- organic material Everything that is based on organic material is referred to here briefly as “organic”, the term “organic material” encompassing all types of organic, organometallic and / or inorganic plastics, which are referred to in English as “plastics”, for example. These are all types of substances with the exception of classic semiconductors (germanium, silicon) and the typical metallic leads. ter. A restriction in the dogmatic sense ' to organic material as carbon-containing material is therefore not intended, rather the broad use of, for example, silicones is also contemplated. Furthermore, the term should not be restricted to polymeric or oligomeric materials, but the use of “small molecules” is also conceivable.
- each layer of an OFET to which a layer to be structured is applied is referred to here as the “lower layer”.
- the molding layer made of the molding polymer adjoins the “lower layer” or the substrate.
- the shape polymer is not defined here by the term “polymer” to be in a polymeric state of aggregation; rather, this substance can also be any plastics that can be used in practice to form a negative shape.
- Figure 1.1 shows the substrate or a lower layer 1 onto which the molding layer of the negative mold 2, for example made of a molding polymer such as a UV-curable lacquer, is applied over the entire surface, for example.
- the molding layer 2 is embossed with a stamp 4, as in FIG. 1.2. shown, provided with depressions, so there are 2 depressions with the stamp 4, which can be made of silicon dioxide (Si0 2 ), for example, in the molded layer. While the stamp 4 impresses the depressions 12, the molding layer 2 is irradiated with UV light, as a result of which the molding polymer 2 with permanent formation of the
- Wells 12 cures. This creates the depressions 12 in the molded layer 2, as shown in FIG. 1.3. are shown.
- the stamp 4 is pulled out of the molding layer 2 after the embossing has ended.
- the functional polymer 8 (for example polyaniline) is scraped into the recesses 12 using a doctor blade 9 (FIG. 1.4.).
- Figure 1.5 you can see how in the manufacture OFET the functional polymer 8. fills the depressions 12 of the molded layer 2.
- Figure 2 shows a further embodiment of the method in a continuous process or continuous web printing.
- the tape made of substrate or lower layer 1 with the molded polymer 2, which can be a UV-curable but also a thermally curable lacquer.
- This band is then subjected to 10 different work steps from left to right, as indicated by arrow 13, along several pressure rollers. First, it passes through the shadow plate 3, with which the not yet hardened molded polymer 2 is protected against radiation. Thereafter, depressions are embossed into the molded polymer 2 with the aid of the stamp roller 4, which are immediately hardened with the UV lamp 5 integrated in the stamp roller 4.
- the direction of the arrow from FIG. 5 indicates the direction of the light cone emitted from FIG. 5.
- the band provided with depressions 12 in the molding layer 2 then passes under a UV lamp or heater 6 for post-curing, so that a structured lacquer 7 is produced.
- the functional polymer 8 is then knife-coated into the structured lacquer 7 with the depressions 12, so that the finished structure 11 is produced.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Thin Film Transistor (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
Beschreibungdescription
Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte SchaltungOrganic field-effect transistor, method for structuring an OFET and integrated circuit
Die Erfindung betrifft einen Organischen Feld-Effekt-Transistor, ein Verfahren zur Strukturierung eines OFETs und eine integrierte Schaltung mit verbesserter Strukturierung der Funktionspolymerschichten.The invention relates to an organic field-effect transistor, a method for structuring an OFET and an integrated circuit with improved structuring of the functional polymer layers.
Organische integrierte Schaltkreise (integrated plastic circuits) auf der Basis von OFETs werden für mikroelektronische Massenanwendungen und Wegwerf-Produkte wie Identifikationsund Produkt-„tags" gebraucht. Ein „tag" ist z.B. ein elektro- nischer Streifencode, wie er auf Waren angebracht wird oder auf Koffern. OFETs haben ein weites Einsatzgebiet als RFID- tags : radio frequency identification - tags, die nicht nur auf der Oberfläche angeordnet sein müssen. Bei OFETs für diese Anwendungen kann auf das excellente Betriebsverhalten der Silizium-Technologie verzichtet werden, aber dafür sollten niedrige Herstellungskosten und mechanische Flexibilität gewährleistet sein. Die Bauteile wie z.B. elektronische Strich- Kodierungen, sind typischerweise Einwegeprodukte und sind wirtschaftlich nur interessant, wenn sie in preiswerten Pro- zessen hergestellt werden.Organic integrated circuits based on OFETs are used for microelectronic mass applications and disposable products such as identification and product "tags". A "tag" is e.g. an electronic bar code as it is attached to goods or on suitcases. OFETs have a wide range of uses as RFID tags: radio frequency identification tags that do not only have to be arranged on the surface. OFETs for these applications can do without the excellent performance of silicon technology, but this should ensure low manufacturing costs and mechanical flexibility. The components such as Electronic bar codes are typically one-way products and are only economically interesting if they are manufactured in inexpensive processes.
Bisher wird, wegen der Herstellungskosten, nur die Leiterschicht des OFETs strukturiert . Die Strukturierung kann nur über einen zweistufigen Prozess („Lithographiemethode" vgl. dazu Applied Physics Letters 73(1), 1998, S.108.110 undSo far, only the OFET conductor layer has been structured due to the manufacturing costs. The structuring can only be carried out using a two-stage process (“lithography method”, cf. Applied Physics Letters 73 (1), 1998, pp. 108.110 and
Mol.Cryst.Liq. Cryst . 189,1990, S.221-225) mit zunächst vollflächiger Beschichtung und darauffolgender Strukturierung, die zudem materialspezifisch ist, bewerkstelligt werden. Mit „Materialspezifität" ist gemeint, dass der beschriebene Pro- zess mit den genannten photochemischen Komponenten einzig an dem leitfähigen organischen Material Polyanilin funktioniert. Ein anderes leitfähiges organisches Material, z.B. Polypyr- rol, lässt sich so nicht ohne weiteres auf diese Art strukturieren.Mol.Cryst.Liq. Cryst. 189, 1990, pp. 221-225) with initially full-surface coating and subsequent structuring, which is also material-specific. By "material specificity" it is meant that the described process with the named photochemical components only works on the conductive organic material polyaniline. Another conductive organic material, for example polypyr- rol, can not be easily structured in this way.
Die fehlende Strukturierung der anderen Schichten, wie zumin- dest die der halbleitenden und der isolierenden Schicht aus Funktionspolymeren, führt zu einer deutlichen Leistungssenkung der erhaltenen OFETs, darauf wird aber trotzdem aus Kostengründen verzichtet . Die strukturierte Schicht kann mit anderen bekannten Verfahren (wie z.B. Drucken) nur so struktu- riert werden, dass die Länge 1, die den Abstand zwischenThe lack of structuring of the other layers, such as at least that of the semiconducting and insulating layers made of functional polymers, leads to a significant reduction in the performance of the OFETs obtained, but is nevertheless dispensed with for cost reasons. The structured layer can only be structured with other known methods (such as printing) in such a way that the length 1 is the distance between
Source und Drain Elektrode bezeichnet und damit ein Maß für die Leistungsdichte des OFETs darstellt zumindest 30 bis 50 μm beträgt. Angestrebt werden aber Längen 1 von unter 10 μm, so dass außer der aufwendigen Lithographie-Methode mo- entan keine Strukturierungsmethode sinnvoll erscheint.Designated source and drain electrode and thus represents a measure of the power density of the OFET is at least 30 to 50 microns. However, lengths 1 of less than 10 μm are aimed for, so that apart from the elaborate lithography method, currently no structuring method seems sensible.
Aufgabe der Erfindung ist daher ein kostengünstiges und massenfertigungstaugliches Verfahren zur Strukturierung von OFETs mit hoher Auflösung zur Verfügung zu stellen. Weiterhin ist Aufgabe der Erfindung, einen leistungsstärkeren, weil mit mehr strukturierten Schichten ausgestatteten sowie einen kompakteren OFET zu schaffen, der mit einem geringeren Abstand 1 herstellbar ist.The object of the invention is therefore to provide a cost-effective and mass-production method for structuring OFETs with high resolution. Furthermore, it is an object of the invention to create a more powerful OFET, which is equipped with more structured layers, and a more compact OFET, which can be produced with a smaller distance 1.
Gegenstand der Erfindung ist ein Organischer Feld-Effekt- Transistor (OFET) , zumindest folgende Schichten auf einem Substrat umfassend: eine organische Halbleiterschicht zwischen und über zumindest einer Source- und zumindest einer Drain-Elek- trode, die aus einem leitenden organischen Material sind, eine organische Isolationsschicht über der halbleitenden Schicht und eine organische Leiterschicht, wobei die Leiterschicht und zumindest eine der beiden anderen Schichten strukturiert ist. Außerdem ist Gegenstand der Erfindung ein Verfahren zur Strukturierung eines OFETs durch Rakeln von zumindest einem Funktionspolymer in eine Negativ- Form. Schließlich ist Gegenstand der Erfindung eine integrierte Schaltung, die zumindest einen OFET, der zumindest eine strukturierte Leiterschicht und eine weitere struktu- rierte Schicht hat, umfasst.The invention relates to an organic field-effect transistor (OFET), comprising at least the following layers on a substrate: an organic semiconductor layer between and above at least one source and at least one drain electrode which are made of a conductive organic material, an organic insulation layer over the semiconducting layer and an organic conductor layer, the conductor layer and at least one of the other two layers being structured. The invention also relates to a method for structuring an OFET Squeegee at least one functional polymer into a negative form. Finally, the invention relates to an integrated circuit which comprises at least one OFET, which has at least one structured conductor layer and a further structured layer.
~ Als Negativ-Form wird eine strukturierte Schicht oder ein Teil einer strukturierten Schicht bezeichnet, die Vertiefungen enthält, in die das Funktionspolymer, das z.B. eine Elektrode eines OFETs oder eine Halbleiter- oder eine Isolatorschicht bildet, durch Rakeln eingefüllt wird. ~ A negative form is a structured layer or a part of a structured layer that contains depressions into which the functional polymer, which for example forms an electrode of an OFET or a semiconductor or an insulator layer, is filled by doctor blades.
Das Verfahren umfasst folgende Arbeitsschritteϊ a) auf einem Substrat oder einer unteren Schicht wird eine, ggf . vollflächige Formschicht, die nicht auf den Bereich, der strukturiert werden soll beschränkt sein muss, aufgebracht. Diese Formschicht ist nicht das Funktionspolymer (also halbleitende, leitende oder isolierende Schicht) , sondern ein anderes organisches Material, das als Form oder Klischee für die leitende organische Elektrodenschicht dient. Dieses andere organische Material sollte isolierende Eigenschaften haben. b) die Formschicht erhält durch Imprinting (Eindrücken eines Stempelabdrucks mit nachfolgender Aushärtung durch Belich- ten) Vertiefungen, die den Strukturen entsprechen, c) in diese Vertiefungen wird dann das Funktionspolymer flüssig, als Lösung und/oder als Schmelze hineingerakelt .The method comprises the following steps a) on a substrate or a lower layer, a, if necessary. full-surface molded layer, which is not applied to the area to be structured. This molded layer is not the functional polymer (i.e. semiconducting, conductive or insulating layer), but another organic material that serves as a shape or cliché for the conductive organic electrode layer. This other organic material should have insulating properties. b) the molding layer receives depressions corresponding to the structures by imprinting (pressing in a stamp impression with subsequent hardening by exposure), c) the functional polymer is then knife-coated into these depressions in liquid form, as a solution and / or as a melt.
Die Negativ-Form der Struktur auf der Formschicht kann durch die Imprintmethode, die eine auf dem Gebiet der elektronischen und mikroelektronischen Bauteile ausgereifte Technik darstellt, auf dem Substrat oder einer unteren Schicht erzeugt werden. Das Material der Negativ-Form kann ein UV- härtender Lack sein, der nach Imprinting und Belichten Ver- tiefungen besitzt. Dafür geeigneten Lacke sind kommerziell erhältlich und die Methode sie durch Imprinting zu strukturieren, ist literaturbekannt. Allgemein wird bei dem Imprinting auf das ungehärtete Formpolymer, das als Schicht auf dem Substrat oder einer unteren Schicht aufgebracht ist, ein Stempel so eingedrückt, dass Vertiefungen in der Art, wie die Strukturierung erfolgen soll, entstehen. Die mit Vertiefungen versehene Schicht wird dann entweder thermisch oder durch Bestrahlung gehärtet, wodurch die feste Formschicht entsteht, in die das Funktionspo- lymer eingerakelt werden kann.The negative shape of the structure on the molding layer can be produced on the substrate or a lower layer by the imprint method, which is a technique which is mature in the field of electronic and microelectronic components. The material of the negative form can be a UV-curing lacquer that has indentations after imprinting and exposure. Varnishes suitable for this purpose are commercially available and the method of structuring them by imprinting is known from the literature. In general, a stamp is pressed onto the uncured molded polymer, which is applied as a layer on the substrate or a lower layer, in such a way that indentations occur in the manner in which the structuring is to take place. The layer provided with depressions is then hardened either thermally or by irradiation, which creates the solid molded layer into which the functional polymer can be knife-coated.
Der Vorteil der Rakel-Methode besteht darin, dass die schwierige Strukturierung von Funktionspolymeren durch die eingefahrene und bewährte Imprintmethode vorbereitet wird. Dadurch kann auf einen reichen technischen Hintergrund zurückgegriffen werden und es können extrem feine Strukturen erzielt werden. Die Rakel-Methode ist zudem nicht materialspezifisch. Mit der Rakelmethode kann vielmehr Polyanilin, aber auch jedes andere leitfähige organisches Material, wie z.B. Polypyr- rol, zur Herstellung von Elektroden eingesetzt werden. Ebenso kann damit jedes andere organische Material wie z.B. Polythi- ophen als Halbleiter und/oder Polyvinylphenol als Isolator eingerakelt und somit strukturiert werden, also der gesamte OFET.The advantage of the doctor blade method is that the difficult structuring of functional polymers is prepared by the well-established and proven imprint method. This means that a rich technical background can be used and extremely fine structures can be achieved. The doctor blade method is also not material-specific. Rather, with the doctor method, polyaniline, but also any other conductive organic material, such as Polypyrrol, can be used to manufacture electrodes. Likewise, any other organic material such as Polythiophenes as semiconductors and / or polyvinylphenol as insulators are knife-coated and thus structured, that is to say the entire OFET.
Nach einer Ausführungsform des Verfahrens wird die Negativ- Form nach erfolgter Aushärtung des Funktionspolymers entfernt, so dass ein eventuell durch Verdunstung des Lösungsmittels oder Schrumpfung entstandener Höhenunterschied zwi- sehen Funktionspolymer und Negativ-Form vermindert wird.According to one embodiment of the method, the negative mold is removed after the functional polymer has cured, so that any difference in height between the functional polymer and the negative mold that may result from evaporation of the solvent or shrinkage is reduced.
Ein anderer Ansatz, einen gegebenenfalls entstandenen Höhenunterschied zwischen Negativ-Form und Funktionspolymer zu vermeiden, liegt in der Wiederholung des Einrakelvorgangs, wodurch das Volumen der Negativ-Form einfach weiter aufgefüllt wird. In der Regel" kann man die Funktionspolymere weitgehend in ihrer optimalen Konsistenz belassen. So besitzt z.B. Polyanilin als leitfähiges organisches Material bei optimaler Leitfähigkeit eine bestimmte Viskosität. Wenn Polyanilin beispielswei- se gedruckt werden soll und nicht eingerakelt, so muss seine Viskosität auf einen der Druckmethode angepassten Wert eingestellt werden. Das bedeutet meistens Einbusse der Leitfähig- eit. Für das Rakeln ist die Viskositätsspanne ungleich größer als für das Drucken, so dass in aller Regel keine Visko- sitätsänderungen am organischen Material vorgenommen werden ' müssen.Another approach to avoid a possible difference in height between the negative mold and the functional polymer is to repeat the doctoring process, as a result of which the volume of the negative mold is simply filled up further. As a rule, " the functional polymers can largely be left in their optimal consistency. For example, polyaniline as a conductive organic material has a certain viscosity with optimal conductivity. If, for example, polyaniline is to be printed and not coated, its viscosity must be based on one of the printing methods This usually means a loss in conductivity. The viscosity range for doctoring is much larger than for printing, so that there is generally no need to make any changes in the viscosity of the organic material.
Schließlich ist ein Vorteil der Rakelmethode die Fähigkeit zu dicken Schichten. So ist z.B. die Leitfähigkeit von 1 μm di- cken Polymerelektroden effektiv höher als bei üblicherweise 0,2 μm Schichtdicke. Ein OFET mit einer Schichtdicke im Bereich von bis zu Iμm, insbesondere im Bereich von 0,3 bis 0,7 μm ist deshalb vorteilhaft.Finally, an advantage of the doctor blade method is the ability to apply thick layers. For example, the conductivity of 1 μm thick polymer electrodes is effectively higher than with the usual 0.2 μm layer thickness. An OFET with a layer thickness in the range of up to 1 μm, in particular in the range from 0.3 to 0.7 μm, is therefore advantageous.
Als „Funktionspolymer" wird hier jedes organische, metallorganische und/oder anorganische Material bezeichnet, das funk- tionell am Aufbau eines OFET und/oder einer integrierten Schaltung aus mehreren OFETs beteiligt ist. Dazu zählen beispielhaft die leitende Komponente (z.B. Polyanilin), das eine Elektrode bildet, die halbleitende Komponente, die die“Functional polymer” here means any organic, organometallic and / or inorganic material that is functionally involved in the construction of an OFET and / or an integrated circuit made up of several OFETs. These include, for example, the conductive component (eg polyaniline), the one Electrode forms the semiconducting component that the
Schicht zwischen den Elektroden bildet und die isolierende Komponente. Es sei ausdrücklich darauf hingewiesen, dass die Bezeichnung „Funktionspolymer" demnach auch nicht polymere Komponenten, wie z.B. oligomere Verbindungen, umfasst.Layer between the electrodes forms and the insulating component. It is expressly pointed out that the term “functional polymer” accordingly also includes non-polymeric components, such as, for example, oligomeric compounds.
Als „organisch" wird hier kurz alles, was „auf organischem Material basiert" bezeichnet, wobei der Begriff „organisches Material" alle Arten von organischen, metallorganischen und/oder anorganischen Kunststoffen, die im Englischen z.B. mit „plastics" bezeichnet werden, umfasst. Es handelt sich um alle Arten von Stoffen mit Ausnahme der klassischen Halbleiter (Germanium, Silizium) und der typischen metallischen Lei- ter. Eine Beschränkung im dogmatischen Sinn' auf organisches Material als Kohlenstoff-enthaltendes Material ist demnach nicht vorgesehen, vielmehr ist auch an den breiten Einsatz von z.B. Siliconen gedacht. Weiterhin soll der Term keiner Beschränkung auf polyme-re oder oligomere Materialien unterliegen, sondern es ist durchaus auch der Einsatz von „small molecules" denkbar.Everything that is based on organic material is referred to here briefly as “organic”, the term “organic material” encompassing all types of organic, organometallic and / or inorganic plastics, which are referred to in English as “plastics”, for example. These are all types of substances with the exception of classic semiconductors (germanium, silicon) and the typical metallic leads. ter. A restriction in the dogmatic sense ' to organic material as carbon-containing material is therefore not intended, rather the broad use of, for example, silicones is also contemplated. Furthermore, the term should not be restricted to polymeric or oligomeric materials, but the use of “small molecules” is also conceivable.
Als „untere Schicht" wird hier jede Schicht eines OFETs be- zeichnet, auf die eine zu strukturierende Schicht aufgebracht wird. Die Formschicht aus dem Formpolymer schließt an die „untere Schicht" oder das Substrat an. Das Formpolymer wird hier durch die Bezeichnung „polymer" auch nicht auf einen po- lymeren Aggregatszustand festgelegt, vielmehr kann es sich bei dieser Substanz auch um alle praktisch einsetzbaren Kunststoffe zur Ausbildung einer Negativ-Form handeln.Each layer of an OFET to which a layer to be structured is applied is referred to here as the “lower layer”. The molding layer made of the molding polymer adjoins the “lower layer” or the substrate. The shape polymer is not defined here by the term “polymer” to be in a polymeric state of aggregation; rather, this substance can also be any plastics that can be used in practice to form a negative shape.
Im Folgenden wird eine Ausführungsform des Verfahrens noch ' anhand von schematischen Figuren näher erläutert.An embodiment of the method is explained in more detail below with the aid of schematic figures.
Figur 1.1. zeigt das Substrat oder eine untere Schicht 1 auf die die Formschicht der Negativ-Form 2, beispielsweise aus einem Formpolymer wie einem UV-härtbaren Lack, z.B. vollflächig aufgebracht ist. Die Formschicht 2 wird mit einem Präge- Stempel 4, wie in Figur 1.2. gezeigt, mit Vertiefungen versehen, also es werden in die Formschicht 2 Vertiefungen mit dem Stempel 4, der beispielsweise aus Siliziumdioxid (Si02) sein kann, eingeprägt. Während der Stempel 4 die Vertiefungen 12 einprägt wird die Formschicht 2 mit UV-Licht bestrahlt, wo- durch das Formpolymer 2 unter permantenter Ausbildung derFigure 1.1. shows the substrate or a lower layer 1 onto which the molding layer of the negative mold 2, for example made of a molding polymer such as a UV-curable lacquer, is applied over the entire surface, for example. The molding layer 2 is embossed with a stamp 4, as in FIG. 1.2. shown, provided with depressions, so there are 2 depressions with the stamp 4, which can be made of silicon dioxide (Si0 2 ), for example, in the molded layer. While the stamp 4 impresses the depressions 12, the molding layer 2 is irradiated with UV light, as a result of which the molding polymer 2 with permanent formation of the
Vertiefungen 12 aushärtet. Dadurch entstehen die Vertiefungen 12 in der Formschicht 2, wie sie in Figur 1.3. gezeigt sind. Der Stempel 4 wird nach beendigter Prägung aus der Formschicht 2 herausgezogen. In die Vertiefungen 12 wird das Funktionspolymer 8 (z.B. Polyanilin) mit einem Rakel 9 hin- eingerakelt (Figur 1.4.). In Figur 1.5. erkennt man, wie im fertigen OFET das Funktionspolymer 8. die Vertiefungen 12 der Formschicht 2 ausfüllt.Wells 12 cures. This creates the depressions 12 in the molded layer 2, as shown in FIG. 1.3. are shown. The stamp 4 is pulled out of the molding layer 2 after the embossing has ended. The functional polymer 8 (for example polyaniline) is scraped into the recesses 12 using a doctor blade 9 (FIG. 1.4.). In Figure 1.5. you can see how in the manufacture OFET the functional polymer 8. fills the depressions 12 of the molded layer 2.
Figur 2 zeigt eine weitere Ausführungsform des Verfahrens im kontinuierlichen Prozess oder kontinuierlichen Rollendruck. Zu sehen ist das Band aus Substrat oder unterer Schicht 1 mit dem Formpolymer 2, das ein UV-härtbarer, aber auch ein t er- ..misch härtbarer Lack sein kann. Dieses Band wird nun von links nach rechts, wie durch den Pfeil 13 angedeutet, entlang mehrerer Andruckrollen 10 verschiedenen Arbeitsschritten unterworfen. Zunächst passiert es das Schattenblech 3, mit dem das noch nicht gehärtete Formpolymer 2 gegen -Bestrahlung geschützt wird. Danach werden in das Formpolymer 2 mit Hilfe der Stempelrolle 4 Vertiefungen eingeprägt, die mit der in der Stempelrolle 4 integrierten UV-Lampe 5 gleich angehärtet werden. Die von 5 ausgehende Pfeilrichtung zeigt die Richtung des Lichtkegels, der von 5 ausgestrahlt wird, an. Das mit Vertiefungen 12 in der Formschicht 2 versehene Band zieht dann unter einer UV-Lampe oder Heizung 6 zur Nachhärtung vor- bei, so dass ein strukturierter Lack 7 entsteht. In den strukturierten Lack 7 mit den Vertiefungen 12 wird dann mit dem Rakel 9 das Funktionspolymer 8 eingerakelt, so dass die _ fertige Struktur 11 entsteht. Figure 2 shows a further embodiment of the method in a continuous process or continuous web printing. What can be seen is the tape made of substrate or lower layer 1 with the molded polymer 2, which can be a UV-curable but also a thermally curable lacquer. This band is then subjected to 10 different work steps from left to right, as indicated by arrow 13, along several pressure rollers. First, it passes through the shadow plate 3, with which the not yet hardened molded polymer 2 is protected against radiation. Thereafter, depressions are embossed into the molded polymer 2 with the aid of the stamp roller 4, which are immediately hardened with the UV lamp 5 integrated in the stamp roller 4. The direction of the arrow from FIG. 5 indicates the direction of the light cone emitted from FIG. 5. The band provided with depressions 12 in the molding layer 2 then passes under a UV lamp or heater 6 for post-curing, so that a structured lacquer 7 is produced. The functional polymer 8 is then knife-coated into the structured lacquer 7 with the depressions 12, so that the finished structure 11 is produced.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10061297 | 2000-12-08 | ||
DE10061297A DE10061297C2 (en) | 2000-12-08 | 2000-12-08 | Procedure for structuring an OFET |
PCT/DE2001/004611 WO2002047183A1 (en) | 2000-12-08 | 2001-12-07 | Organic field-effect transistor, method for structuring an ofet and integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1346422A1 true EP1346422A1 (en) | 2003-09-24 |
Family
ID=7666421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01999978A Withdrawn EP1346422A1 (en) | 2000-12-08 | 2001-12-07 | Organic field-effect transistor, method for structuring an ofet and integrated circuit |
Country Status (5)
Country | Link |
---|---|
US (1) | US7229868B2 (en) |
EP (1) | EP1346422A1 (en) |
JP (1) | JP2004515928A (en) |
DE (1) | DE10061297C2 (en) |
WO (1) | WO2002047183A1 (en) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002015264A2 (en) | 2000-08-18 | 2002-02-21 | Siemens Aktiengesellschaft | Encapsulated organic-electronic component, method for producing the same and use thereof |
DE10043204A1 (en) | 2000-09-01 | 2002-04-04 | Siemens Ag | Organic field-effect transistor, method for structuring an OFET and integrated circuit |
DE10045192A1 (en) | 2000-09-13 | 2002-04-04 | Siemens Ag | Organic data storage, RFID tag with organic data storage, use of an organic data storage |
DE10126860C2 (en) * | 2001-06-01 | 2003-05-28 | Siemens Ag | Organic field effect transistor, process for its manufacture and use for the construction of integrated circuits |
DE10212639A1 (en) * | 2002-03-21 | 2003-10-16 | Siemens Ag | Device and method for laser structuring functional polymers and uses |
DE10226370B4 (en) | 2002-06-13 | 2008-12-11 | Polyic Gmbh & Co. Kg | Substrate for an electronic component, use of the substrate, methods for increasing the charge carrier mobility and organic field effect transistor (OFET) |
WO2004017439A2 (en) | 2002-07-29 | 2004-02-26 | Siemens Aktiengesellschaft | Electronic component comprising predominantly organic functional materials and method for the production thereof |
DE10240105B4 (en) * | 2002-08-30 | 2005-03-24 | Infineon Technologies Ag | Production of organic electronic circuits by contact printing techniques |
CN100454602C (en) | 2002-10-02 | 2009-01-21 | 雷恩哈德库兹两合公司 | Thin films with organic semiconductors |
US20060118778A1 (en) * | 2002-11-05 | 2006-06-08 | Wolfgang Clemens | Organic electronic component with high-resolution structuring and method for the production thereof |
ES2282708T3 (en) | 2002-11-19 | 2007-10-16 | POLYIC GMBH & CO. KG | ORGANIC ELECTRONIC COMPONENT WITH STRUCTURED SEMI-CONDUCTING FUNCTIONAL COAT AND METHOD TO PRODUCE THE SAME. |
GB0229191D0 (en) * | 2002-12-14 | 2003-01-22 | Plastic Logic Ltd | Embossing of polymer devices |
DE10302149A1 (en) | 2003-01-21 | 2005-08-25 | Siemens Ag | Use of conductive carbon black / graphite blends for the production of low-cost electronics |
US7708958B2 (en) | 2003-06-26 | 2010-05-04 | Tersano Inc. | System and containers for water filtration and item sanitization |
DE10330062A1 (en) * | 2003-07-03 | 2005-01-27 | Siemens Ag | Method and device for structuring organic layers |
DE10339036A1 (en) * | 2003-08-25 | 2005-03-31 | Siemens Ag | Organic electronic component with high-resolution structuring and manufacturing method |
DE10340609A1 (en) * | 2003-08-29 | 2005-04-07 | Infineon Technologies Ag | Polymer formulation and method of making a dielectric layer |
DE10340608A1 (en) | 2003-08-29 | 2005-03-24 | Infineon Technologies Ag | Polymer formulation and method of making a dielectric layer |
DE10340643B4 (en) | 2003-09-03 | 2009-04-16 | Polyic Gmbh & Co. Kg | Printing method for producing a double layer for polymer electronics circuits, and thereby produced electronic component with double layer |
DE10349963A1 (en) | 2003-10-24 | 2005-06-02 | Leonhard Kurz Gmbh & Co. Kg | Process for producing a film |
DE102004005247A1 (en) * | 2004-01-28 | 2005-09-01 | Infineon Technologies Ag | Imprint-lithographic process for manufacturing e.g. MOSFET, involves structuring polymerized gate dielectric layer by imprint stamp that is used to form hole on layer, and etching base of hole till preset thickness of layer is reached |
JP2005353725A (en) * | 2004-06-09 | 2005-12-22 | Shinko Electric Ind Co Ltd | Method for forming active device on substrate and substrate |
JP4549751B2 (en) * | 2004-06-17 | 2010-09-22 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
TWI253193B (en) * | 2004-08-06 | 2006-04-11 | Ind Tech Res Inst | Method for manufacturing organic thin-film transistor with plastic substrate |
DE102004040831A1 (en) | 2004-08-23 | 2006-03-09 | Polyic Gmbh & Co. Kg | Radio-tag compatible outer packaging |
DE102004059465A1 (en) | 2004-12-10 | 2006-06-14 | Polyic Gmbh & Co. Kg | recognition system |
DE102004059464A1 (en) | 2004-12-10 | 2006-06-29 | Polyic Gmbh & Co. Kg | Electronic component with modulator |
DE102004059467A1 (en) * | 2004-12-10 | 2006-07-20 | Polyic Gmbh & Co. Kg | Gate made of organic field effect transistors |
DE102004063435A1 (en) | 2004-12-23 | 2006-07-27 | Polyic Gmbh & Co. Kg | Organic rectifier |
CN100468810C (en) * | 2004-12-29 | 2009-03-11 | 财团法人工业技术研究院 | Method for manufacturing organic thin film transistor with plastic substrate |
DE102005009819A1 (en) | 2005-03-01 | 2006-09-07 | Polyic Gmbh & Co. Kg | electronics assembly |
US7595502B2 (en) | 2005-03-04 | 2009-09-29 | Samsung Mobile Display Co., Ltd. | Method of manufacturing thin film transistor, thin film transistor manufactured by the method, and display device employing the same |
DE102005017655B4 (en) | 2005-04-15 | 2008-12-11 | Polyic Gmbh & Co. Kg | Multilayer composite body with electronic function |
EP1727219B1 (en) | 2005-05-25 | 2014-05-07 | Samsung SDI Germany GmbH | Organic thin film transistor and method for producing the same |
KR100647695B1 (en) * | 2005-05-27 | 2006-11-23 | 삼성에스디아이 주식회사 | Organic thin film transistor, manufacturing method thereof and flat panel display device having same |
GB2427509A (en) * | 2005-06-21 | 2006-12-27 | Seiko Epson Corp | Organic electronic device fabrication by micro-embossing |
DE102005031448A1 (en) | 2005-07-04 | 2007-01-11 | Polyic Gmbh & Co. Kg | Activatable optical layer |
DE102005035590A1 (en) * | 2005-07-29 | 2007-02-01 | Polyic Gmbh & Co. Kg | Electronic component has flexible substrate and stack of layers including function layer on substratesurface |
DE102005035589A1 (en) | 2005-07-29 | 2007-02-01 | Polyic Gmbh & Co. Kg | Manufacturing electronic component on surface of substrate where component has two overlapping function layers |
JP2007042905A (en) * | 2005-08-04 | 2007-02-15 | Sony Corp | Semiconductor device and its manufacturing method |
DE102005042166A1 (en) * | 2005-09-06 | 2007-03-15 | Polyic Gmbh & Co.Kg | Organic device and such a comprehensive electrical circuit |
DE102005044306A1 (en) | 2005-09-16 | 2007-03-22 | Polyic Gmbh & Co. Kg | Electronic circuit and method for producing such |
JP2007123773A (en) * | 2005-10-31 | 2007-05-17 | Fuji Electric Holdings Co Ltd | Thin-film transistor and its manufacturing method |
KR101308435B1 (en) | 2006-06-30 | 2013-09-16 | 엘지디스플레이 주식회사 | Method For Forming Patterns And Method For Fabricating Liquid Crystal Display Device By Applying Said Method |
US7935566B2 (en) * | 2007-05-14 | 2011-05-03 | Nanyang Technological University | Embossing printing for fabrication of organic field effect transistors and its integrated devices |
US8071277B2 (en) * | 2007-12-21 | 2011-12-06 | 3M Innovative Properties Company | Method and system for fabricating three-dimensional structures with sub-micron and micron features |
US8206537B2 (en) * | 2008-08-27 | 2012-06-26 | Carnegie Mellon University | Method for forming a conducting multi-polymer nanostructure |
Family Cites Families (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3512052A (en) | 1968-01-11 | 1970-05-12 | Gen Motors Corp | Metal-insulator-semiconductor voltage variable capacitor with controlled resistivity dielectric |
US3769096A (en) * | 1971-03-12 | 1973-10-30 | Bell Telephone Labor Inc | Pyroelectric devices |
JPS543594B2 (en) | 1973-10-12 | 1979-02-24 | ||
JPS54101176A (en) | 1978-01-26 | 1979-08-09 | Shinetsu Polymer Co | Contact member for push switch |
US4442019A (en) | 1978-05-26 | 1984-04-10 | Marks Alvin M | Electroordered dipole suspension |
US4340657A (en) * | 1980-02-19 | 1982-07-20 | Polychrome Corporation | Novel radiation-sensitive articles |
DE3338597A1 (en) | 1983-10-24 | 1985-05-02 | GAO Gesellschaft für Automation und Organisation mbH, 8000 München | DATA CARRIER WITH INTEGRATED CIRCUIT AND METHOD FOR PRODUCING THE SAME |
JPS60117769A (en) | 1983-11-30 | 1985-06-25 | Fujitsu Ltd | semiconductor memory device |
DE3768112D1 (en) * | 1986-03-03 | 1991-04-04 | Toshiba Kawasaki Kk | RADIATION DETECTOR. |
JP2728412B2 (en) | 1987-12-25 | 1998-03-18 | 株式会社日立製作所 | Semiconductor device |
GB2215307B (en) | 1988-03-04 | 1991-10-09 | Unisys Corp | Electronic component transportation container |
US5364735A (en) * | 1988-07-01 | 1994-11-15 | Sony Corporation | Multiple layer optical record medium with protective layers and method for producing same |
US4937119A (en) * | 1988-12-15 | 1990-06-26 | Hoechst Celanese Corp. | Textured organic optical data storage media and methods of preparation |
US5892244A (en) * | 1989-01-10 | 1999-04-06 | Mitsubishi Denki Kabushiki Kaisha | Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor |
US6331356B1 (en) * | 1989-05-26 | 2001-12-18 | International Business Machines Corporation | Patterns of electrically conducting polymers and their application as electrodes or electrical contacts |
US5487897A (en) * | 1989-07-24 | 1996-01-30 | Atrix Laboratories, Inc. | Biodegradable implant precursor |
US5206525A (en) * | 1989-12-27 | 1993-04-27 | Nippon Petrochemicals Co., Ltd. | Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials |
FI91573C (en) * | 1990-01-04 | 1994-07-11 | Neste Oy | Method for manufacturing electronic and electro-optical components and circuits |
FR2664430B1 (en) * | 1990-07-04 | 1992-09-18 | Centre Nat Rech Scient | THIN FILM FIELD EFFECT TRANSISTOR WITH MIS STRUCTURE, IN WHICH THE INSULATION AND THE SEMICONDUCTOR ARE MADE OF ORGANIC MATERIALS. |
FR2673041A1 (en) | 1991-02-19 | 1992-08-21 | Gemplus Card Int | METHOD FOR MANUFACTURING INTEGRATED CIRCUIT MICROMODULES AND CORRESPONDING MICROMODULE. |
US5408109A (en) * | 1991-02-27 | 1995-04-18 | The Regents Of The University Of California | Visible light emitting diodes fabricated from soluble semiconducting polymers |
JPH0580530A (en) | 1991-09-24 | 1993-04-02 | Hitachi Ltd | Production of thin film pattern |
US5173835A (en) | 1991-10-15 | 1992-12-22 | Motorola, Inc. | Voltage variable capacitor |
WO1993009469A1 (en) * | 1991-10-30 | 1993-05-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Exposure device |
US5219462A (en) * | 1992-01-13 | 1993-06-15 | Minnesota Mining And Manufacturing Company | Abrasive article having abrasive composite members positioned in recesses |
JP2709223B2 (en) * | 1992-01-30 | 1998-02-04 | 三菱電機株式会社 | Non-contact portable storage device |
DE4243832A1 (en) | 1992-12-23 | 1994-06-30 | Daimler Benz Ag | Push button arrangement |
JP3457348B2 (en) * | 1993-01-15 | 2003-10-14 | 株式会社東芝 | Method for manufacturing semiconductor device |
FR2701117B1 (en) * | 1993-02-04 | 1995-03-10 | Asulab Sa | Electrochemical measurement system with multizone sensor, and its application to glucose measurement. |
US5567550A (en) * | 1993-03-25 | 1996-10-22 | Texas Instruments Incorporated | Method of making a mask for making integrated circuits |
JPH0722669A (en) * | 1993-07-01 | 1995-01-24 | Mitsubishi Electric Corp | Plastic functional element |
WO1995006240A1 (en) * | 1993-08-24 | 1995-03-02 | Metrika Laboratories, Inc. | Novel disposable electronic assay device |
JP3460863B2 (en) * | 1993-09-17 | 2003-10-27 | 三菱電機株式会社 | Method for manufacturing semiconductor device |
FR2710413B1 (en) * | 1993-09-21 | 1995-11-03 | Asulab Sa | Measuring device for removable sensors. |
US5556706A (en) * | 1993-10-06 | 1996-09-17 | Matsushita Electric Industrial Co., Ltd. | Conductive layered product and method of manufacturing the same |
IL111151A (en) | 1994-10-03 | 1998-09-24 | News Datacom Ltd | Secure access systems |
JP3246189B2 (en) * | 1994-06-28 | 2002-01-15 | 株式会社日立製作所 | Semiconductor display device |
US5574291A (en) * | 1994-12-09 | 1996-11-12 | Lucent Technologies Inc. | Article comprising a thin film transistor with low conductivity organic layer |
US5630986A (en) * | 1995-01-13 | 1997-05-20 | Bayer Corporation | Dispensing instrument for fluid monitoring sensors |
JP3068430B2 (en) | 1995-04-25 | 2000-07-24 | 富山日本電気株式会社 | Solid electrolytic capacitor and method of manufacturing the same |
US5652645A (en) * | 1995-07-24 | 1997-07-29 | Anvik Corporation | High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates |
US5625199A (en) * | 1996-01-16 | 1997-04-29 | Lucent Technologies Inc. | Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors |
GB2310493B (en) | 1996-02-26 | 2000-08-02 | Unilever Plc | Determination of the characteristics of fluid |
JP3080579B2 (en) | 1996-03-06 | 2000-08-28 | 富士機工電子株式会社 | Manufacturing method of air rear grid array package |
DE19629656A1 (en) * | 1996-07-23 | 1998-01-29 | Boehringer Mannheim Gmbh | Diagnostic test carrier with multilayer test field and method for the determination of analyte with its aid |
US6344662B1 (en) * | 1997-03-25 | 2002-02-05 | International Business Machines Corporation | Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages |
KR100248392B1 (en) * | 1997-05-15 | 2000-09-01 | 정선종 | Organic Active Driving Electroluminescent Device Combined with Organic Field Effect Transistor and Fabrication Method |
EP0968537B1 (en) * | 1997-08-22 | 2012-05-02 | Creator Technology B.V. | A method of manufacturing a field-effect transistor substantially consisting of organic materials |
WO1999013441A2 (en) * | 1997-09-11 | 1999-03-18 | Precision Dynamics Corporation | Radio frequency identification tag on flexible substrate |
US6251513B1 (en) * | 1997-11-08 | 2001-06-26 | Littlefuse, Inc. | Polymer composites for overvoltage protection |
JPH11142810A (en) | 1997-11-12 | 1999-05-28 | Nintendo Co Ltd | Portable information processor |
JP2001510670A (en) * | 1997-12-05 | 2001-07-31 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Identification transponder |
US5997817A (en) * | 1997-12-05 | 1999-12-07 | Roche Diagnostics Corporation | Electrochemical biosensor test strip |
US5998805A (en) * | 1997-12-11 | 1999-12-07 | Motorola, Inc. | Active matrix OED array with improved OED cathode |
US6083104A (en) * | 1998-01-16 | 2000-07-04 | Silverlit Toys (U.S.A.), Inc. | Programmable toy with an independent game cartridge |
CN1187793C (en) * | 1998-01-28 | 2005-02-02 | 薄膜电子有限公司 | Method for generation of electrical conducting or semicnducting structures in three dimensionsand methods for earasure of the same structures |
US6087196A (en) * | 1998-01-30 | 2000-07-11 | The Trustees Of Princeton University | Fabrication of organic semiconductor devices using ink jet printing |
US6045977A (en) * | 1998-02-19 | 2000-04-04 | Lucent Technologies Inc. | Process for patterning conductive polyaniline films |
DE19816860A1 (en) | 1998-03-06 | 1999-11-18 | Deutsche Telekom Ag | Chip card, especially credit card |
US6033202A (en) * | 1998-03-27 | 2000-03-07 | Lucent Technologies Inc. | Mold for non - photolithographic fabrication of microstructures |
GB9808061D0 (en) * | 1998-04-16 | 1998-06-17 | Cambridge Display Tech Ltd | Polymer devices |
GB9808806D0 (en) | 1998-04-24 | 1998-06-24 | Cambridge Display Tech Ltd | Selective deposition of polymer films |
JP3780700B2 (en) * | 1998-05-26 | 2006-05-31 | セイコーエプソン株式会社 | Pattern forming method, pattern forming apparatus, pattern forming plate, pattern forming plate manufacturing method, color filter manufacturing method, conductive film manufacturing method, and liquid crystal panel manufacturing method |
TW410478B (en) * | 1998-05-29 | 2000-11-01 | Lucent Technologies Inc | Thin-film transistor monolithically integrated with an organic light-emitting diode |
US5967048A (en) * | 1998-06-12 | 1999-10-19 | Howard A. Fromson | Method and apparatus for the multiple imaging of a continuous web |
US6215130B1 (en) * | 1998-08-20 | 2001-04-10 | Lucent Technologies Inc. | Thin film transistors |
ATE394662T1 (en) * | 1998-08-26 | 2008-05-15 | Sensors For Med & Science Inc | OPTICALLY BASED SENSOR DEVICES |
DE19851703A1 (en) * | 1998-10-30 | 2000-05-04 | Inst Halbleiterphysik Gmbh | Electronic structure, e.g. FET, is produced by plotting, spraying, spin coating or spreading of insulating, semiconducting and-or conductive layers onto a substrate |
US6384804B1 (en) * | 1998-11-25 | 2002-05-07 | Lucent Techonologies Inc. | Display comprising organic smart pixels |
US6506438B2 (en) * | 1998-12-15 | 2003-01-14 | E Ink Corporation | Method for printing of transistor arrays on plastic substrates |
US6321571B1 (en) * | 1998-12-21 | 2001-11-27 | Corning Incorporated | Method of making glass structures for flat panel displays |
US6114088A (en) * | 1999-01-15 | 2000-09-05 | 3M Innovative Properties Company | Thermal transfer element for forming multilayer devices |
GB2347013A (en) * | 1999-02-16 | 2000-08-23 | Sharp Kk | Charge-transport structures |
WO2000052457A1 (en) * | 1999-03-02 | 2000-09-08 | Helix Biopharma Corporation | Card-based biosensor device |
US6180956B1 (en) | 1999-03-03 | 2001-01-30 | International Business Machine Corp. | Thin film transistors with organic-inorganic hybrid materials as semiconducting channels |
US6207472B1 (en) * | 1999-03-09 | 2001-03-27 | International Business Machines Corporation | Low temperature thin film transistor fabrication |
US6498114B1 (en) * | 1999-04-09 | 2002-12-24 | E Ink Corporation | Method for forming a patterned semiconductor film |
US6072716A (en) * | 1999-04-14 | 2000-06-06 | Massachusetts Institute Of Technology | Memory structures and methods of making same |
DE19921024C2 (en) | 1999-05-06 | 2001-03-08 | Wolfgang Eichelmann | Video game system |
US6383664B2 (en) * | 1999-05-11 | 2002-05-07 | The Dow Chemical Company | Electroluminescent or photocell device having protective packaging |
CN100461486C (en) * | 1999-06-21 | 2009-02-11 | 剑桥企业有限公司 | Polymerase alignes for organic TFT |
US6272275B1 (en) * | 1999-06-25 | 2001-08-07 | Corning Incorporated | Print-molding for process for planar waveguides |
DE19933757A1 (en) | 1999-07-19 | 2001-01-25 | Giesecke & Devrient Gmbh | Manufacturing chip card with integral battery involves applying first conducting track structure, electrolyte and second conducting track structure to form opposite polarity electrodes |
DE19935527A1 (en) | 1999-07-28 | 2001-02-08 | Giesecke & Devrient Gmbh | Active film for chip cards with display |
DE19937262A1 (en) | 1999-08-06 | 2001-03-01 | Siemens Ag | Arrangement with transistor function |
US6593690B1 (en) * | 1999-09-03 | 2003-07-15 | 3M Innovative Properties Company | Large area organic electronic devices having conducting polymer buffer layers and methods of making same |
US6517995B1 (en) * | 1999-09-14 | 2003-02-11 | Massachusetts Institute Of Technology | Fabrication of finely featured devices by liquid embossing |
US6340822B1 (en) * | 1999-10-05 | 2002-01-22 | Agere Systems Guardian Corp. | Article comprising vertically nano-interconnected circuit devices and method for making the same |
EP1149420B1 (en) * | 1999-10-11 | 2015-03-04 | Creator Technology B.V. | Integrated circuit |
US6335539B1 (en) * | 1999-11-05 | 2002-01-01 | International Business Machines Corporation | Method for improving performance of organic semiconductors in bottom electrode structure |
US6284562B1 (en) * | 1999-11-17 | 2001-09-04 | Agere Systems Guardian Corp. | Thin film transistors |
US6621098B1 (en) * | 1999-11-29 | 2003-09-16 | The Penn State Research Foundation | Thin-film transistor and methods of manufacturing and incorporating a semiconducting organic material |
US6197663B1 (en) * | 1999-12-07 | 2001-03-06 | Lucent Technologies Inc. | Process for fabricating integrated circuit devices having thin film transistors |
WO2001046987A2 (en) * | 1999-12-21 | 2001-06-28 | Plastic Logic Limited | Inkjet-fabricated integrated circuits |
US6706159B2 (en) * | 2000-03-02 | 2004-03-16 | Diabetes Diagnostics | Combined lancet and electrochemical analyte-testing apparatus |
DE10012204A1 (en) | 2000-03-13 | 2001-09-20 | Siemens Ag | Electronic postage stamp for identifying postal articles |
US6329226B1 (en) * | 2000-06-01 | 2001-12-11 | Agere Systems Guardian Corp. | Method for fabricating a thin-film transistor |
DE10033112C2 (en) | 2000-07-07 | 2002-11-14 | Siemens Ag | Process for the production and structuring of organic field-effect transistors (OFET), OFET produced thereafter and its use |
WO2002015264A2 (en) * | 2000-08-18 | 2002-02-21 | Siemens Aktiengesellschaft | Encapsulated organic-electronic component, method for producing the same and use thereof |
DE10043204A1 (en) * | 2000-09-01 | 2002-04-04 | Siemens Ag | Organic field-effect transistor, method for structuring an OFET and integrated circuit |
KR20020036916A (en) | 2000-11-11 | 2002-05-17 | 주승기 | Method of crystallizing a silicon thin film and semiconductor device fabricated thereby |
KR100390522B1 (en) | 2000-12-01 | 2003-07-07 | 피티플러스(주) | Method for fabricating thin film transistor including a crystalline silicone active layer |
US20020170897A1 (en) | 2001-05-21 | 2002-11-21 | Hall Frank L. | Methods for preparing ball grid array substrates via use of a laser |
US6870180B2 (en) | 2001-06-08 | 2005-03-22 | Lucent Technologies Inc. | Organic polarizable gate transistor apparatus and method |
JP2003089259A (en) * | 2001-09-18 | 2003-03-25 | Hitachi Ltd | Pattern forming method and pattern forming apparatus |
US7351660B2 (en) | 2001-09-28 | 2008-04-01 | Hrl Laboratories, Llc | Process for producing high performance interconnects |
US6946332B2 (en) * | 2002-03-15 | 2005-09-20 | Lucent Technologies Inc. | Forming nanoscale patterned thin film metal layers |
US6812509B2 (en) | 2002-06-28 | 2004-11-02 | Palo Alto Research Center Inc. | Organic ferroelectric memory cells |
US6870183B2 (en) * | 2002-11-04 | 2005-03-22 | Advanced Micro Devices, Inc. | Stacked organic memory devices and methods of operating and fabricating |
-
2000
- 2000-12-08 DE DE10061297A patent/DE10061297C2/en not_active Expired - Fee Related
-
2001
- 2001-12-07 JP JP2002548799A patent/JP2004515928A/en active Pending
- 2001-12-07 US US10/433,959 patent/US7229868B2/en not_active Expired - Fee Related
- 2001-12-07 EP EP01999978A patent/EP1346422A1/en not_active Withdrawn
- 2001-12-07 WO PCT/DE2001/004611 patent/WO2002047183A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO0247183A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2004515928A (en) | 2004-05-27 |
WO2002047183A1 (en) | 2002-06-13 |
US7229868B2 (en) | 2007-06-12 |
DE10061297A1 (en) | 2002-06-27 |
DE10061297C2 (en) | 2003-05-28 |
US20040063267A1 (en) | 2004-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002047183A1 (en) | Organic field-effect transistor, method for structuring an ofet and integrated circuit | |
EP1316116B1 (en) | Method for structuring an organic field effect transistor | |
DE10126860C2 (en) | Organic field effect transistor, process for its manufacture and use for the construction of integrated circuits | |
DE10140666C2 (en) | Process for producing a conductive structured polymer film and use of the process | |
DE10033112C2 (en) | Process for the production and structuring of organic field-effect transistors (OFET), OFET produced thereafter and its use | |
DE60029445T2 (en) | METHOD FOR STRUCTURING POLYMER LAYERS, AND USE OF THE METHODS | |
US7271098B2 (en) | Method of fabricating a desired pattern of electronically functional material | |
DE10349963A1 (en) | Process for producing a film | |
EP1559147B1 (en) | Film comprising organic semiconductors | |
DE10229118A1 (en) | Process for the inexpensive structuring of conductive polymers by definition of hydrophilic and hydrophobic areas | |
DE60118843T2 (en) | STAMP FOR A LITHOGRAPHIC PROCESS, METHOD FOR STAMP MAKING, AND METHOD FOR PRODUCING A PATTERNED LAYER ON A SUBSTRATE | |
WO2004114371A2 (en) | Compound used to form a self-assembled monolayer, layer structure, semiconductor component having a layer structure, and method for producing a layer structure | |
DE10047171A1 (en) | Electrode and/or conductor track used for components of OFETs and OLEDs is produced by treating an organic functional polymer with a chemical compound | |
DE10349027B4 (en) | Organic circuit with small structures and process for their preparation | |
WO2005006462A1 (en) | Method and device for structuring organic layers | |
EP1704606B1 (en) | Method for the production of an organic transistor comprising a self-adjusting gate electrode | |
DE102007002119A1 (en) | Organic thin film transistor i.e. top gate-organic thin film transistor, manufacturing method, involves bringing semiconductor layer that is made of organic semiconductor material, on intermediate layer between source- and drain electrodes | |
DE102004058209A1 (en) | Method and device for producing structures from functional materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030509 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: VRATZOV, BORISLAV Inventor name: KURZ, HEINRICH Inventor name: HARING, PETER Inventor name: CLEMENS, WOLFGANG Inventor name: BERNDS, ADOLF |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AMO GMBH Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH DE FR GB LI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AMO GMBH Owner name: POLYIC GMBH & CO. KG |
|
17Q | First examination report despatched |
Effective date: 20060915 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AMO GMBH Owner name: POLYIC GMBH & CO. KG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AMO GMBH Owner name: POLYIC GMBH & CO. KG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20090613 |