EP1342138A1 - Verfahren und vorrichtung zur berechnung von prozessgrössen eines industriellen prozesses - Google Patents
Verfahren und vorrichtung zur berechnung von prozessgrössen eines industriellen prozessesInfo
- Publication number
- EP1342138A1 EP1342138A1 EP01995542A EP01995542A EP1342138A1 EP 1342138 A1 EP1342138 A1 EP 1342138A1 EP 01995542 A EP01995542 A EP 01995542A EP 01995542 A EP01995542 A EP 01995542A EP 1342138 A1 EP1342138 A1 EP 1342138A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- variables
- empirical
- model
- core model
- process parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 230000006978 adaptation Effects 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000011478 gradient descent method Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004801 process automation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41885—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32017—Adapt real process as function of changing simulation model, changing for better results
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/42—Servomotor, servo controller kind till VSS
- G05B2219/42136—Fuzzy feedback adapts parameters model
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- the invention relates to a method and a device for calculating process variables.
- Predicting process variables with which the system is preset are optimized using measured process variables.
- Adaptive models which are used in the process automation of industrial processes, often consist of a physical core model.
- This core model describes the relationships that can be described mathematically and physically with the current level of knowledge with sufficient accuracy (DE 43 38 608 AI).
- Process variables for which a sufficiently precise mathematical-physical theory does not yet exist are nowadays determined using empirical models. These empirical models are either manually, e.g. B. during the commissioning of an industrial process plant, adjusted or adjusted from the direct comparison between measured and calculated process variables.
- the object of the invention is to provide a method or device which enables the empirical models to be adapted quickly and efficiently.
- the process according to the invention according to claim 1 u comprises a core model and one or more empirical models, the empirical models being adapted using what is known as a “partially inverse core model X ⁇ .
- Process variables for which no sufficiently precise mathematical-physical theory is known are calculated in the empirical model.
- only process variables are calculated in the physical core model for which, based on current knowledge, the mathematical-physical dependencies are known with sufficient accuracy.
- the input variables of the empirical models, the output variables of which are to be referred to as empirical variables are known process parameters.
- the empirical variables as well as known process parameters are used as input variables in the core model. In the output variables of the core model, a distinction is made between measurable process variables and other process variables. That for
- Core model of partially inversely constructed model (briefly referred to as "partially inverse core model” 1 ) has a suitable selection of measurable process variables as well as all known parameters that come into play in the core model.
- the output variables of the partially inverse core model are the empirical ones already mentioned above sizes.
- the core model and the inverse core model are compatible with one another except for numerical rounding errors and both models are online-compatible in terms of computing time.
- the Partially inverse core model exactly (except for the measurement accuracy of the selected measurable process variables) determine which values the empirical variables should have had at the time of measurement so that the model predictions of the core model match the selected measurement values as closely as possible. With this knowledge of the empirical quantities at the time of measurement, the empirical models can be adapted.
- Another advantageous embodiment of the invention is that by means of adaptation or training algorithms, such as. B. with a gradient descent method, an adaptation of the process variables in the sense of a reduction in the determined deviation.
- the inventive device comprises a computing system of an industrial process for calculating unknown process parameters, also referred to as empirical variables, depending on known process parameters in at least one empirical model, and for calculating process variables depending on the known process parameters and the empirical variables in a core model, the empirical model being adapted by means of a core model that is partially inverse to the core model.
- unknown process parameters also referred to as empirical variables
- empirical model being adapted by means of a core model that is partially inverse to the core model.
- the single figure shows an example of the execution of an empirical model, a core model and a partially inverse core model according to the invention.
- the exemplary embodiment shows the method according to the invention for calculating process variables 12 of an industrial process.
- the process model shown is e.g. B. used for the calculation of the rolling forces, the rolling moments, the rolling power and the advance for all rolling stands of a five-stand cold rolling mill (tandem mill).
- a five-stand cold rolling mill tilt mill
- the core model 9 and the partially inverse core model 14 are compatible with one another except for numerical rounding errors and that both models are online-compatible in terms of computing time.
- the partially inverse core model 14 can be used to determine exactly which values the empirical variables 15 should have at the time of measurement so that the measurable process variables 10 calculated (selected) by the core model match the actually measured process variables 13 as closely as possible .
- the empirical models 3, 5 can be adapted or optimized using the calculated empirical variables 15.
- the adaptation or optimization of the empirical models 3, 5 takes place via adaptation or training algorithms 2, 4.
- the adaptation or training algorithms 2, 4 have the calculated empirical variables 16, 17 and the known process parameters 1 as input variables.
- the adaptation or training algorithms 2, 4 associated with the empirical models 3, 5 implemented in the form of neural networks are based on a gradient descent method, i. H. that, depending on the deviation, there is an adaptive change in the model parameters contained in the neuronets in the sense of a reduction in the determined deviation.
- the model parameters adapted in this way are available for the calculation of the empirical variables 6, 7 at the beginning of the next process sequence.
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Feedback Control In General (AREA)
- General Factory Administration (AREA)
Abstract
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Vorausberechnung von Prozessgrössen eines industriellen Prozesses. Das aus mindestens einem empirischen Modell und einem Kernmodell bestehende Verfahren wird mittels eines zum Kernmodell teilinvers aufgebauten Modells nachberechnet und optimiert. Die Optimierung der empirischen Modelle erfolgt mittels Adaptions- oder Trainingsalgorithmen, welche neben bekannten Prozessparametern als wesentliche Eingangsgrößen die vom teilinversen Kernmodell berechneten empirischen Größen besitzen.
Description
Verfahren und Vorrichtung zur Berechnung von Prozessgrößen eines industriellen Prozesses.
Die Erfindung betrifft ein Verfahren bzw. eine Vorrichtung zur Berechnung von Prozessgrößen.
Bei der Regelung bzw. Steuerung von industriellen Prozessen, insbesondere bei Anlagen der Grundstoffindustrie, wie z.B. Stahlwerken, ist es notwendig, Prozessgrößen oder Zustände vorausschauend zu ermitteln, da sie zu dem Zeitpunkt, an dem sie in der Regelung oder Steuerung gebraucht werden, nicht zur Verfügung stehen. Weiterhin ist es wünschenswert, die Be- rechnung dieser Prozessgrößen oder Zustände online, d. h. während des Produktionsablaufes, zu optimieren.
Es ist gängige Praxis, Prozessgrößen modellgestützt zu ermitteln. Vor Beginn eines jeden Prozessablaufes werden in Abhän- gigkeit von bekannten Prozessparametern benötigte unbekannte
Prozessgrößen vorausberechnet, mit denen eine Voreinstellung des Systems erfolgt. Während des Prozessablaufes werden die verwendeten Modelle mittels gemessener Prozessgrößen optimiert.
Adaptive Modelle, welche in der Prozessautomatisierung von industriellen Prozessen eingesetzt werden, bestehen häufig aus einem physikalischen Kernmodell. Dieses Kernmodell beschreibt die Zusammenhänge, die sich mathematisch-physika- lisch mit dem heutigen Kenntnisstand hinreichend genau beschreiben lassen (DE 43 38 608 AI) . Prozessgrößen, für die noch keine hinreichend genaue mathematisch-physikalische Theorie existiert, werden heutzutage mittels empirischer Modelle bestimmt. Diese empirischen Modelle werden entweder per Hand, z. B. während der Inbetriebsetzung einer industriellen Prozessanlage, eingestellt oder aus dem direkten Vergleich zwischen gemessenen und berechneten Prozessgrößen angepasst.
Aufgabe der Erfindung ist es, ein Verfahren bzw. Vorrichtung anzugeben, das bzw. die es ermöglicht, eine schnelle und effiziente Adaption der empirischen Modelle durchzuführen.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren gemäß Anspruch 1 gelöst. Vorteilhafte Weiterbildungen des Verfahrens sind in den weiteren Ansprüchen angegeben.
Das erfindungsgemäße VerfaKren nach Anspruch 1 u fasst ein Kernmodell sowie ein oder mehrere empirische Modelle, wobei mit einem sogenannten „teilinversen KernmodellXλ die empirischen Modelle adaptiert werden. In dem empirischen Modell werden Prozessgrößen berechnet, für die noch keine hinrei- chend genaue mathematisch-physikalische Theorie bekannt ist. Im Gegensatz zu den empirischen Modellen werden im physikalischen Kernmodell nur Prozessgrößen berechnet, für die nach heutigem Kenntnisstand die mathematisch-physikalischen Abhängigkeiten hinreichend genau bekannt sind. Die Eingangsgrößen der empirischen Modelle, deren Ausgangsgrößen als empirische Größen bezeichnet werden sollen, sind bekannte Prozessparameter. Die empirischen Größen sowie bekannte Prozessparameter gehen als Eingangsgrößen in das Kernmodell ein. Bei den Ausgangsgrößen des Kernmodells wird zwischen messbaren Prozess- großen und sonstigen Prozessgrößen unterschieden. Das zum
Kernmodell teilinvers konstruierte Modell (kurz als „teilin- verses Kernmodell"1 bezeichnet) besitzt als Eingangsgrößen eine geeignete Auswahl von messbaren Prozessgrößen, sowie alle in das Kernmodell eingehenden bekannten Parameter. Die Aus- gangsgrößen des teilinversen Kernmodells sind die bereits o- ben genannten empirischen Größen.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung sind das Kernmodell und das inverse Kernmodell zueinander bis auf numerische Rundungsfehler kompatibel und beide Modelle von der Rechenzeit her online-fähig. Für jeden gemessenen Datensatz von messbaren Prozessgrößen lässt sich mit Hilfe des
teilinversen Kernmodells exakt (bis auf die Messgenauigkeit der ausgewählten messbaren Prozessgrößen) bestimmen, welche Werte die empirischen Größen zum Messzeitpunkt hätten haben sollen, damit die Modellvorhersagen des Kernmodells mit den ausgewählten Messwerten bestmöglich übereinstimmen. Mit dieser Kenntnis der empirischen Größen zum Messzeitpunkt lassen sich die empirischen Modelle adaptieren.
Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass mittels Adaptions- oder Trainingsalgorithmen, wie z. B. mit einem Gradientenabstiegsverfahren, eine Anpassung der Prozessgrößen im Sinne einer Verringerung der ermittelten Abweichung erfolgt.
Die erfindungsgemäße Vorrichtung nach Anspruch 5 umfasst ein Rechensystem eines industriellen Prozesses zur Berechnung von unbekannten Prozessparametern, auch als empirische Größen bezeichnet, abhängig von bekannten Prozessparametern in mindestens einem empirischen Modell, und zur Berechnung von Pro- zessgrößen abhängig von den bekannten Prozessparametern und den empirischen Größen in einem Kernmodell, wobei das empirische Modell mittels eines zum Kernmodell teilinversen Kernmodells adaptiert wird.
Die Erfindung sowie weitere Vorteile und Details werden im folgenden anhand von einem schematisch dargestellten Ausführungsbeispiel in der Zeichnung näher erläutert. Die einzige Figur zeigt ein Beispiel für die erfindungsgemäße Ausführung eines empirischen Modells, eines Kernmodells und eines tei- linversen Kernmodells.
Das Ausführungsbeispiel zeigt das erfindungsgemäße Verfahren zur Berechnung von Prozessgrößen 12 eines industriellen Prozesses. Das dargestellte Prozessmodell wird z. B. für die Be- rechnung der Walzkräfte, der Walzmomente, der Walzleistung und der Voreilung für alle Walzgerüste einer fünfgerüstigen Kaltwalzstraße (Tandemstraße) herangezogen. Je ein e piri-
> ω r K3 t-> H1
Cn o (_π O Cπ O π t» ^ Λ φ Φ Φ
*• P» H a a Φ
3 a
Z O ω p. T) '
H φ n n P" O t- * N
Φ co Φ
CΛ l_l. CΛ CΛ φ P- sQ α P ι-i o 0- O: o EP tr P-. Φ
P- a ß> φ er > p- er CΛJ pt: Φ •
P H iQ Φ σ
P- P- P- tQ rr φ ω
O O P
P er CΛ
Φ ιQ α a ß>
Φ a
P iQ u cn sQ a ιQ
Φ ß> H a a O: φ a EP ω r+ Φ co φ a φ a
P φ Φ Cπ
P a
TS P-
>v P- Φ π H ω o P-
N cn P-
Φ O a co a- < co Φ
IQ a i-i l-i CΛ ■ Φ π Φ C l S! a H- rt l-i QA cn cn h-> tr a a EP ) H- Φ t-1 rt P> cn CΛ 0 H
O: Q Φ
EP H a
Φ O:
P 1
13 berechnet werden. Wesentlich ist, dass das Kernmodell 9 und das teilinverse Kernmodell 14 zueinander bis auf numerische Rundungsfehler kompatibel und beide Modelle von der Rechenzeit her online-fähig sind. Für jeden gemessenen Satz von messbaren Prozessgrößen 13 lässt sich mit Hilfe des teilinversen Kernmodells 14 exakt bestimmen, welche Werte die empirischen Größen 15 zum Messzeitpunkt hätten haben sollen, damit die vom Kernmodell berechneten (ausgewählten) messbaren Prozessgrößen 10 mit den tatsächlich gemessenen Prozessgrößen 13 bestmöglich übereinstimmen. Mit den berechneten empirischen Größen 15 lassen sich die empirischen Modelle 3, 5 anpassen bzw. optimieren. Die Anpassung bzw. Optimierung der empirischen Modelle 3, 5 erfolgt über Adaptions- oder Trainingsalgorithmen 2, 4. Die Adaptions- oder Trainingsalgorith- men 2, 4 haben die berechneten empirischen Größen 16, 17 sowie die bekannten Prozessparameter 1 als Eingangsgrößen. Die zu den in Form von neuronalen Netzen realisierten empirischen Modellen 3, 5 zugehörigen Adaptions- oder Trainingsalgorithmen 2, 4 basieren auf einem Gradientenabstiegsverfahren, d. h. dass in Abhängigkeit von der Abweichung eine adaptive Änderung der in den Neuronetzen enthaltenen Modellparameter im Sinne einer Verringerung der ermittelten Abweichung erfolgt. Die so adaptierten Modellparameter stehen für die Berechnung der empirischen Größen 6, 7 zu Beginn des nächsten Prozessab- laufes zur Verfügung.
Claims
1. Verfahren zur Berechnung von Prozessgrößen eines industriellen Prozesses, insbesondere einer Anlage der Grundstoff- industrie, wobei unbekannte Prozessparameter, auch als empirische Größen bezeichnet, aus bekannten Prozessparametern in mindestens einem empirischen Modell ermittelt werden und Prozessgrößen abhängig von den bekannten Prozessparametern und den empirischen Größen in einem Kernmodel bestimmt werden, wobei das empirische Modell mittels eines zum Kernmodell teilinversen Kernmodells adaptiert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das teilinverse Kernmodell kompatibel zum Kernmodel ausgebildet ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeic net, dass das teilinverse Kernmodell abhängig von bekannten Prozessparametern und von gemessenen Prozessgrößen, die zum Messzeitpunkt bestehenden empirischen Größen bestimmt.
4. Verfahren nach Anspruch 3 dadurch ge ennzeichnet, dass mindestens ein empirisches Modell über einen Adaptionsoder Trainingsalgorithmus mittels der vom teilinversen Kernmodell berechneten zum Messzeitpunkt bestehenden empirischen Größen adaptiert wird.
5. Vorrichtung zur Berechnung von Prozessgrößen eines industriellem Prozesses, wobei mit einem Rechensystem eine Berechnung von unbekannten Prozessparametern, auch als empirische Größen bezeichnet, abhängig von bekannten Prozessparametern in mindestens einem empirischen Modell durchgeführt wird und Prozessgrößen abhängig von den bekannten Prozessparametern und den empirischen Größen in einem Kernmodel bestimmt wer- den, wobei das empirische Modell mittels eines zum Kernmodell teilinversen Kernmodells adaptiert wird.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10059567A DE10059567A1 (de) | 2000-11-30 | 2000-11-30 | Verfahren und Vorrichtung zur Berechnung von Prozessgrößen eines industriellen Prozesses |
DE10059567 | 2000-11-30 | ||
PCT/DE2001/004467 WO2002044822A1 (de) | 2000-11-30 | 2001-11-28 | Verfahren und vorrichtung zur berechnung von prozessgrössen eines industriellen prozesses |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1342138A1 true EP1342138A1 (de) | 2003-09-10 |
Family
ID=7665306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01995542A Withdrawn EP1342138A1 (de) | 2000-11-30 | 2001-11-28 | Verfahren und vorrichtung zur berechnung von prozessgrössen eines industriellen prozesses |
Country Status (5)
Country | Link |
---|---|
US (1) | US20030208287A1 (de) |
EP (1) | EP1342138A1 (de) |
JP (1) | JP2004514998A (de) |
DE (1) | DE10059567A1 (de) |
WO (1) | WO2002044822A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004011236A1 (de) * | 2004-03-04 | 2005-09-29 | Bayerische Motoren Werke Ag | Prozesssteuersystem |
FR3024254B1 (fr) | 2014-07-25 | 2018-08-03 | Suez Environnement | Procede de detection d'anomalies dans un reseau de distribution, en particulier distribution d'eau |
WO2016012971A1 (fr) * | 2014-07-25 | 2016-01-28 | Suez Environnement | Procede de detection d'anomalies dans un reseau de distribution, en particulier distribution d'eau |
DE102019127550A1 (de) * | 2019-10-14 | 2021-04-15 | Windmöller & Hölscher Kg | Verfahren für eine modellbasierte Optimierung eines Folienproduktes bei einer Herstellung auf einer Folienextrusionsanlage |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04149663A (ja) * | 1990-10-09 | 1992-05-22 | Fujitsu Ltd | 逆モデル生成方法および該方法による制御システム |
DE4130164A1 (de) * | 1991-09-11 | 1993-03-18 | Bodenseewerk Geraetetech | Regler, insbesondere flugregler |
WO1994020887A2 (en) * | 1993-03-02 | 1994-09-15 | Pavilion Technologies, Inc. | Method and apparatus for analyzing a neural network within desired operating parameter constraints |
DE4316533C2 (de) * | 1993-05-18 | 1997-09-18 | Bodenseewerk Geraetetech | Neuronales Netz für dynamische Prozesse |
DE4338608B4 (de) * | 1993-11-11 | 2005-10-06 | Siemens Ag | Verfahren und Vorrichtung zur Führung eines Prozesses in einem geregelten System |
JPH08115103A (ja) * | 1994-10-18 | 1996-05-07 | Meidensha Corp | 制御系の制御方式 |
DE19545262B4 (de) * | 1995-11-25 | 2004-08-05 | Alstom Power Conversion Gmbh | Einrichtung zum Betrieb einer mehrgerüstigen Walzstraße |
US5933345A (en) * | 1996-05-06 | 1999-08-03 | Pavilion Technologies, Inc. | Method and apparatus for dynamic and steady state modeling over a desired path between two end points |
US6047221A (en) * | 1997-10-03 | 2000-04-04 | Pavilion Technologies, Inc. | Method for steady-state identification based upon identified dynamics |
DE19641432C2 (de) * | 1996-10-08 | 2000-01-05 | Siemens Ag | Verfahren und Einrichtung zur Vorausberechnung von vorab unbekannten Parametern eines industriellen Prozesses |
DE19642918C2 (de) * | 1996-10-17 | 2003-04-24 | Siemens Ag | System zur Berechnung des Enddickenprofils eines Walzbandes |
DE19756877A1 (de) * | 1997-12-19 | 1999-07-01 | Siemens Ag | Verfahren und Einrichtung zum Beschichten eines Metallbandes |
-
2000
- 2000-11-30 DE DE10059567A patent/DE10059567A1/de not_active Ceased
-
2001
- 2001-11-28 WO PCT/DE2001/004467 patent/WO2002044822A1/de active Application Filing
- 2001-11-28 EP EP01995542A patent/EP1342138A1/de not_active Withdrawn
- 2001-11-28 JP JP2002546924A patent/JP2004514998A/ja active Pending
-
2003
- 2003-05-30 US US10/449,625 patent/US20030208287A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO0244822A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE10059567A1 (de) | 2002-06-13 |
WO2002044822A1 (de) | 2002-06-06 |
JP2004514998A (ja) | 2004-05-20 |
US20030208287A1 (en) | 2003-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2376783B1 (de) | Simulationsgestütztes verfahren zur steuerung bzw. regelung von druckluftstationen | |
WO2014121863A1 (de) | Verfahren und vorrichtung zur steuerung einer mit einer erneuerbaren energiequelle betreibbaren energieerzeugungsanlage | |
EP0421063A2 (de) | Verfahren zur Verbesserung der adaptiven stochastischen Dosiergenauigkeit einer geregelten Differentialdosierwaage | |
DE4338615A1 (de) | Verfahren und Vorrichtung zur Führung eines Prozesses in einem geregelten System | |
EP3642372B1 (de) | Verfahren zum betreiben eines glühofens | |
EP3448798A1 (de) | Verfahren zum optimieren des abfüllens eines behälters | |
WO2002044822A1 (de) | Verfahren und vorrichtung zur berechnung von prozessgrössen eines industriellen prozesses | |
DE102020207792A1 (de) | Training eines künstlichen neuronalen Netzwerkes, künstliches neuronales Netzwerk, Verwendung, Computerprogramm, Speichermedium und Vorrichtung | |
EP2915926A2 (de) | Verfahren zur Bestimmung der Systemkennlinie eines Verteilernetzes | |
DE102013212889A1 (de) | Verfahren und Vorrichtung zum Erstellen einer Regelungfür eine physikalische Einheit | |
EP3542229B1 (de) | Einrichtung und verfahren zur bestimmung der parameter einer regeleinrichtung | |
EP2128726A1 (de) | Verfahren und Simulator zur Echtzeitberechnung der Zustandsgrössen eines Prozessmodells | |
EP3918429B1 (de) | Verfahren und vorrichtung zum steuern eines wasserversorgungsnetzes | |
DE1294712B (de) | Analogrechner zur Ermittlung der proportionalen Belastung von Flugzeugen | |
WO2017050659A1 (de) | Verfahren und vorrichtung zum betreiben eines technischen systems | |
DE102019206541A1 (de) | Verfahren zum Durchführen von computerunterstützten XiL-Simulationen | |
DE102013214967A1 (de) | Verfahren und Vorrichtung zum Adaptieren eines datenbasierten Funktionsmodells | |
DE19624301B4 (de) | Lernverfahren für ein neuronales Netz | |
WO2017084780A1 (de) | Verfahren zum rechnergestützten ermitteln von parametern eines elektrochemischen energiespeichers | |
WO2007080128A1 (de) | Verfahren zur messtechnischen bestimmung des intervallendes eines prüfintervalls sowie vorrichtung zur durchführung des verfahrens | |
DE102022203386B4 (de) | Regelverfahren, Regelsystem, Kraftfahrzeug, Computerprogrammprodukt und computerlesbares Medium | |
WO2019174880A1 (de) | Verfahren zum rechnergestützten steuern eines technischen systems | |
EP1483633B1 (de) | Verfahren zur simulation eines technischen systems und simulator | |
DE19527521C1 (de) | Lernverfahren für ein neuronales Netz | |
DE102017206242A1 (de) | Verfahren zum Überwachen und/oder Steuern des Betriebs einer Energieerzeugungsanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030401 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20060918 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20100601 |