EP1325281B1 - Verfahren und vorrichtung zur schusssimulation - Google Patents
Verfahren und vorrichtung zur schusssimulation Download PDFInfo
- Publication number
- EP1325281B1 EP1325281B1 EP01960586A EP01960586A EP1325281B1 EP 1325281 B1 EP1325281 B1 EP 1325281B1 EP 01960586 A EP01960586 A EP 01960586A EP 01960586 A EP01960586 A EP 01960586A EP 1325281 B1 EP1325281 B1 EP 1325281B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- laser beam
- target
- laser
- time
- trajectory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010304 firing Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims description 18
- 230000005540 biological transmission Effects 0.000 claims abstract description 18
- 238000004088 simulation Methods 0.000 claims description 20
- 238000004364 calculation method Methods 0.000 claims description 10
- NIOPZPCMRQGZCE-WEVVVXLNSA-N 2,4-dinitro-6-(octan-2-yl)phenyl (E)-but-2-enoate Chemical compound CCCCCCC(C)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1OC(=O)\C=C\C NIOPZPCMRQGZCE-WEVVVXLNSA-N 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims description 4
- 230000033001 locomotion Effects 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims 2
- 238000009987 spinning Methods 0.000 claims 1
- 239000002360 explosive Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 241000406607 Hypoaspis miles Species 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/26—Teaching or practice apparatus for gun-aiming or gun-laying
- F41G3/2616—Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
- F41G3/2622—Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
- F41G3/2655—Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile in which the light beam is sent from the weapon to the target
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/26—Teaching or practice apparatus for gun-aiming or gun-laying
- F41G3/2616—Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
- F41G3/2622—Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
- F41G3/2683—Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile with reflection of the beam on the target back to the weapon
Definitions
- the invention relates to a method and a device for simulating one of Ballistic projectile firing gun at a target, preferably at a target grounded, moving or standing target, fired shot in the Preamble of claim 1 and claim 10 defined genus.
- On Angular position calculator also determines the angular deviation between the Tube core axis of the shot tube and the center of gravity of the reflected laser radiation.
- a flight time calculator determines the theoretical floor flight time and when the Floor flight time, another laser pulse sequence is emitted by the laser transmitter, and the angular position calculator again calculates the angular deviation between the Tube core axis and the focus of the laser radiation.
- a range calculator calculates the correct setting of the from the target distance and the type of ammunition Gunshot.
- the target's elevation offset at the beginning and at the end of the projectile flight time, the leveling angle of the gun to the Time of shot and range from a detonator position calculator Altitude of the explosive point or hit point and in an analogous manner with the Lateral filing of the target at the beginning and end of the missile flight time, the Side pivot angle of the gun at the time of the shot and the Firing range calculated the lateral position of the explosive point.
- the explosive point position calculator is connected to an encoder programmed for weapon and ammunition type, the communicates with the distance calculator.
- the encoder controls the laser transmitter so that it encoded a second, different from the first laser pulse sequence
- Laser pulse train sends out the information about the distance to the target related lateral and height deviations of the explosive point and over Includes ammunition and weapon type.
- This laser pulse sequence hits one at the target Arranged detector on which a hit receiver, a decoder and a Hit data computers are connected.
- the hit data calculator determines from the transmitted information whether the weapon is effective in relation to the type of ammunition used was and calculated the effect of the detonation by comparing the extent the target in the direction of the shot and the deviation of the explosive point in the side and Height direction.
- the invention has for its object a method for simulating the shot of the beginning Specify the type mentioned, which if the regulations on eye safety of the used laser allows larger firing distances and also when shooting at a Group of closely spaced targets did not fail. In addition, one is said to this method working device for weft simulation inexpensive to produce his.
- the method according to the invention has the same as the device according to the invention Advantage that in addition to measuring the target with spatial resolution Distance measurement is dispensed with and therefore no complex, spatially resolving detector or a laser scanner on the barrel weapon is required.
- the goal is exclusive in terms of its distance from the barrel weapon - and with moderate accuracy - and not additionally measured with regard to the exact target position.
- the location information is there directly at the point of impact of the second laser beam corrected for the attachment and lead. This does not apply to a target cluster, i.e. a large number of closely adjacent targets problem of target separation occurring with a spatial resolution of the target and with the pure Distance measurement only creates a small measurement uncertainty, which is only too small Second order errors.
- the second laser beam from encoded laser pulses always hits where the virtual floor hits, so that the target resolution from the target field is done naturally. By eliminating the need for Measuring the location of the target simplifies the device for the shot simulation and is to manufacture significantly cheaper.
- the device for the shot simulation according to the invention is compatible with 1-way codes and 1-way passive systems with a corresponding detector arrangement, as different from the well-known 2-way simulator does not drop targets from the explosive point to the target must be transferred.
- the device according to the invention is the only one to date Multi-way simulator for long shot ranges for the internationally widespread MILES code.
- the achievable range only from the power of the second laser beam coded laser pulses used limited laser for reasons of compatibility existing systems, e.g. MILES, preferably for a wavelength of 905 nm is designed and its performance is limited by the limit for eye safety.
- the laser generating the first laser beam can be independent of the laser of the second laser beam and are particularly eye-safe Wavelength, e.g. can be selected in a range between 1500 and 1800 nm.
- the limit for eye safety is about 15,000 times higher than the wavelength around The aforementioned 905 nm, and the power of the laser can be correspondingly high interpret.
- eye-safe laser can on the attachment of the multitude of otherwise usual reflectors at the target can be dispensed with has a positive effect on the production costs of the shot simulation device.
- the determination of the Deviations of the trajectory from the current line of sight, the so-called Target direction, at the time of shooting and the derived swivel angle values for the performed first laser beam in the vertical direction Only if with a more refined Flight path calculation also has a spin of the selected ballistic projectile should also be taken into account, the determination of the deviations of the Trajectory carried out from the target direction at the time of the shot in azimuth and out of it Swing angle values for swiveling the first laser beam also in Horizontal direction determined.
- the laser transmitter when using a Laser transmitter with two separate lasers to generate the two laser beams Beam cross section of the laser designed so that the target from the first laser beam illuminated area is significantly larger than that illuminated by the second laser beam Area. So you only need one retroreflector unit with four, for example Retroreflectors arranged diametrically to each other in pairs, their receiving sectors cover an all-round angle of 360 °. The divergence of the first laser beam for the Distance measurement is minimized to high radiation density at the target To enable ranges.
- a multiplicity of Retroreflectors arranged belt-like all around, the divergence is chosen so that at a predetermined minimum distance, the first illuminating the target at any point Laser beam hits at least one retroreflector.
- the need to use Retroreflectors depend on the type of laser used to generate the first laser beam. The power is not with the currently available 1550 nm diode lasers sufficient to enable ranges of 4000 m and more without retroreflectors. In contrast, with powerful Er: glass lasers or Raman shifted Nd: YAG lasers the retroreflectors can be omitted because the diffuse reflection of the target is sufficient, so that high savings potential is achieved by eliminating the expensive retroreflectors becomes.
- the divergence of the first laser beam is made very small to to get high intensities at the target. Its divergence can be smaller than that of the second laser beam.
- the low divergence has the advantage that only a few Interfering reflections from objects in the immediate vicinity of the target, such as trees, Shrubs and the like.
- the one with the launch tube firmly connected, gun side detector on a receiving optics, the Receive divergence is at least as large as that by the deflection device induced deflection area of the laser beams.
- the detector can be a have adjustable receiving optics, the receiving divergence of the effective Beam cross section of the first laser beam, i.e. the cross section of the illuminated area at the destination, and the receiving optics are coupled to the deflection device, that it is swiveled by the same swivel angle as the first laser beam.
- the advantage this alternative embodiment is a better S / N ratio because the Receive divergence can be chosen smaller. The bigger one is a disadvantage optomechanical effort.
- a highly sensitive avalanche photadiode can be used as the detection element in the detector or a PIN diode with bandpass filter can be used. Because of the narrow Reception angle and the large wavelength of the laser can measure distance run very sensitive.
- the two laser beams are generated with a single laser, its eye-safe Wavelength preferably at 905 nm for reasons of compatibility with other systems lies. Because of the small required for performance and accuracy reasons However, a large number of retroreflectors are required for larger targets. As an alternative to retroreflectors, the laser beam can be scanned in azimuth become.
- FIG. 1 is a terrain section with a tactical situation during a combat exercise shown, in which the aiming and shooting of a gun 10 on a Goal 11 should be practiced.
- a battle tank 12 serves as a movable target 11 and as Gun 10 the cannon 13 of a second main battle tank 14 or one Anti-tank weapon 15, which is operated by a shooter 16 lying in cover.
- a sight 17 (Fig. 2) is used with the Gun barrel 18 of the barrel weapon 10 is rigidly coupled, in such a way that the line of sight 171st of the visor 17 is aligned parallel to the tube core axis 181 of the shot tube 18.
- Fig. 2 is a schematic section of the shot tube 18 of the anti-tank weapon 15 shown, on which the visor 17 is arranged directly. Line of sight 171 and Tube core axis 181 are indicated by dash-dotted lines.
- the firing with the barrel weapon 10 is simulated by emitting a laser radiation to the target 11, what with actuating a trigger 19 (Fig. 3) or other Shot trigger member by the gunner in the main battle tank 14 or the gunner 16 is initiated. With correct alignment of the barrel weapon 10, the laser radiation strikes the Goal 11.
- a shot simulation device is used to generate the simulated shots 20, one component 201 (FIG. 3) attached to the barrel weapon 10 and one at the target 11 attached component 202 (Fig. 4). Since a main battle tank 12 or 14 in Exercise battle both actively shoots and is shot at, it forms simultaneously Gun 10 and target 11, so that he usually with both components 201, 202 of Shot simulation device 20 is equipped.
- a purely passive target 11 becomes only with the target component 202 and an exclusively active barrel weapon 10 only equipped with the gun component 201.
- the component 201 of the tubular weapon shown in the block diagram in FIG. 3 Shot simulation device 20 has a shot tube 18 (FIG. 2) connected laser transmitter 21 with two separate lasers 22, 23, of which the first Laser 22, hereinafter referred to as measuring laser 22, has a wavelength in the range between 1500 - 1800 nm and the second laser 23, hereinafter called code laser 23, one Has a wavelength of 905 nm.
- the measuring laser 22 is a laser pulse composed first laser beam 24 and with the code laser 23 from coded Existing second laser beam 25 is generated by laser pulses.
- the measuring laser 22 is e.g.
- the divergence of the first laser 24 is then chosen very low, which has the advantage that the goal is little or no Interfering reflections are generated and retroreflectors can be dispensed with on the target side.
- the divergence of the measuring laser 22 can be even smaller than that of the code laser 23 second laser beam 25 of the code laser 23 has an approximately circular beam profile, wherein the diameter of the effective beam cross section of the second laser beam 25, that is Diameter of the area illuminated at target 11, approximately 1.5 times the mutual Distance from detectors arranged at the target 11, which will be described in more detail later be, corresponds.
- the two laser beams 24, 25 always have the same at the time of their emission Direction of transmission, which by means of a deflection device 26 from a basic position in which it runs parallel to the line of sight 171, is pivoted, as dotted in FIG. 3 is indicated.
- the swiveling of the first laser beam 24 can Direction of transmission of the second laser beam 25 emitted with a delay, synchronously are also pivoted as well as the transmission direction of the second laser beam 25 Transmitting the second laser beam 25 abruptly to the last transmission direction of the first Laser beam 24 are switched on.
- the deflection device 26 can, for example by means of two swivel mirrors 261, 262 which are coupled to one another and each adjustable in azimuth and elevation by an actuator. One each Laser beam 24 or 25 is guided over a swivel mirror 261, 262. Alternatively, you can also used electro-optical or acousto-optical deflectors for beam deflection become.
- the gun component 20 of the gun simulation device 20 belongs to the gun furthermore a detector 27 for receiving the first reflected at the target 11 Laser beam 24 of the measuring laser 22.
- a detector 27 for receiving the first reflected at the target 11 Laser beam 24 of the measuring laser 22.
- the measuring detector 27 can e.g. a highly sensitive avelanche photodiode or a PIN diode with bandpass filter used become.
- the measuring detector 27 is firmly connected to the barrel 18 of the barrel weapon 10, so that its optical axis 271 is aligned parallel to the tube core axis 181 (Fig. 2).
- the receiving divergence of its receiving optics is as large as that by Deflection device 26 maximum deflection of the laser beams 24, 25 in elevation and if necessary in azimuth from its basic position.
- the receiving optics of the measuring detector 27 are coupled to the deflection device 26 so that their optical axis is pivoted synchronously with the first laser beam 24.
- the receiving optics have a receiving divergence on the effective beam cross section the first laser beam 24, i.e. the one illuminated by the first laser beam 24 at the target 11 Area.
- the measuring detector 27 is a transit time meter 28 and a distance calculator 29 downstream, which are usually summarized a Entfemungemeßelektronik.
- the transit time of the reflected laser pulses of the first is in the transit time meter 28
- Laser beam 24 determines what the time from sending a laser pulse to measured and halved to receive the same reflected laser pulse.
- the Transmission frequency of the laser pulses of the measuring laser 22 is chosen so that the time The distance between successively emitted laser pulses is much larger than that Running time of the laser pulses from transmission to reception with maximum range.
- the distance calculator 29 calculates the time from the reflected laser pulses Target distance r.
- the gun component 20 of the firing simulation device 20 also includes a trajectory computer 30, which is connected on the input side to the removal computer 29, a self-motion sensor system 31, an ammunition selector 32 and a control unit 33 and on the output side to the deflection device 26 and the control unit 33.
- the control unit 33 is still connected on the input side to the trigger 19 of the barrel weapon 10 and controls the laser transmitter 21 and the trajectory computer 30 on the output side.
- the trajectory computer 30 is used to calculate the trajectory of a projectile selected by means of the ammunition selector 32, taking into account the alignment of the shot tube 18 in azimuth and Elevation, ie the position of the shot tube 18 at the moment of the fictitious firing of the ballistic projectile.
- a trajectory 34 is shown by way of example in FIG.
- the trajectory computer 30 calculates the deviations ⁇ z of the trajectory 34 from the current orientation of the line of sight 171 of the sight 17 by the shooter, hereinafter referred to as the target direction, at the time of the triggering of the simulated shot by the shooter in elevation, namely as a pivot angle ⁇ z an imaginary straight line drawn through the respective trajectory point from the coordinate origin relative to the target direction at the time of firing, and forms control signals for the deflection device 26 therefrom.
- the trajectory computer 30 additionally calculates the deviations ⁇ x Trajectory 34 from the target direction at the time of the shot in azimuth, namely as the swivel angle ⁇ x of the imaginary straight line drawn through the second trajectory point from the origin of the coordinator with respect to the target direction at the time of the shot, and likewise forms control signals for the deflection oroplasty.
- the Shot tube 18 in the time between triggering the simulated shot to the hit of the target 11 with the first laser beam 24, which e.g. by pursuing the moving target 11 'with the visor 17 can be caused by the shooter the self-motion components of the shot tube from a self-motion sensor system 31 18 in elevation and azimuth as deviations of the line of sight 171 from the target direction to Time of shot, e.g. by one or two-axis gyroscope, and in the trajectory computer 30, the control signals generated by this for the deflection device 26 with the Corrected data supplied by the own motion sensor system 31 so that the target direction is kept constant.
- the target-side component 202 of the simulation device 20 shown in FIG. 4 comprises a plurality of detectors 35 arranged on the surface of the target 11 and for receiving the coded laser pulses from the code laser 23 second laser beam 25 are formed.
- the detectors 35 surround in the case of Training the target 11 as a battle tank 12, the battle tank 12 belt-like in horizontal Direction, with the detectors 35 being approximately the same distance apart.
- the Detectors 35 are equipped with evaluation electronics 36 for decoding the code laser 23 transmitted information and for the calculation of hit damage connected in a display unit 37 are displayed.
- a retroreflector unit 38 is arranged, which consists of several, here four by 90 ° Circumferential angle offset from each other, there are retroreflectors, their receiving sectors cover an all-round angle of 360 °.
- the firing simulation device 20 described above with its gun side Component 201 and its target component 202 operates as follows Method:
- the line of sight 171 one estimated by the gunner of the main battle tank 14 or the gunner 16 Lead and attachment (horizontal and vertical placement of line of sight 171 from goal 11) is moved relative to the target point, the trigger 19 is operated by the shooter.
- the control unit 33 which on the one hand the laser transmitter 21, and here the measuring laser 22, and on the other hand the flight path computer 30 activated.
- the measuring laser 22 transmits the first laser beam 24 composed of laser pulses.
- the trajectory 34 of the fired virtual projectile is calculated in the trajectory computer 30 in accordance with the orientation of the sight 17 and thus of the shoe tube 18 at the time of the firing for the selected type of projectile, and the ballistic deviation ⁇ z and possibly the lateral deviation ⁇ x (FIG. 5) of the trajectory are continuously calculated 34 determined from the target direction at the time of shooting.
- the flight path computer 30 determines - as explained above - these deviations as the swivel angle ⁇ z in elevation and possibly ⁇ x in azimuth and forms control signals therefrom which are applied to the deflection device 26.
- the first laser beam 24 of the measuring laser 22 is continuously pivoted downwards by the deflection device 26, as is shown in FIG.
- the laser beam 24 hits the target 11 during the flight time of the virtual projectile, the laser pulses are reflected at the target 11 and received by the measurement detector 27.
- the transit time of the reflected laser pulses is measured (transit time meter 28) and the target distance r is determined therefrom (distance calculator 29).
- the theoretical swivel angle values of the first laser beam 24 resulting from the flight path data for the measured target distance r are calculated with respect to the target direction at the time of the shot and are calculated with the actual swivel angle values ⁇ z belonging to the target distance r and possibly ⁇ x of the first laser beam 24 compared to the target direction at the time of the shot, which the laser beam 24 has in real time at the time it strikes the target 11.
- the flight time of the virtual projectile required for the measured target distance r is calculated in the flight path computer 30 and with the time elapsed since the shot was fired, i.e. the time from the time of the shot, i.e.
- the control unit 33 activates the code laser 23, which emits the second laser beam 25, in the same transmission direction as the measurement laser 22 shows last.
- the coding of the second laser beam 25 contains information about the type of projectile and weapon and the identity of the shooter. If the gunner has aimed the gun 10 largely correctly with reference and attachment at the target 11, one of the detectors 35 of the target 11 will be hit by the laser pulses of the second laser beam 25.
- the evaluation electronics 36 determines the damage caused at the destination 11 from the position of the hit detector 35 on the target 11 and the information transmitted with the laser pulses and decoded in the evaluation electronics 36.
- the second laser beam 25 is emitted by the code laser 23
- the thrust simulation is ended, and the control unit 33 switches off the flight path computer 30, the control signals at the deflection device 26 being eliminated and the deflection device 26 returning to its starting position, so that the transmission directions of the lasers 22, 23 are again aligned parallel to the line of sight 171.
- Retroreflektoriser 38 (Fig. 4) mentioned above can be provided to the To increase the range of the measuring laser 22 or the power of the same range Measuring laser 22 to reduce.
- the beam cross sections of the two Laser beams 24, 25 designed so that the target 10 at a predetermined Minimum distance from the first laser beam 24 illuminated area is significantly greater than the area illuminated by the second laser beam.
- the dimensions of the first Laser beam 24 illuminated area then becomes little larger than the horizontal dimension of the largest target 11 and slightly larger than twice the vertical dimension of the target 11 designed at the still permitted minimum distance.
- a diode laser is used, such a retroreflector unit 38 is absolutely necessary you want to reach ranges of 4000 m and more.
- the two can be delayed emitted laser beams 24, 25 with a single laser which is made up of Compatibility reasons with other systems of a battlefield training center with an eye-safe wavelength of 905 nm works.
- the Optoelectrical effort on the transmitter side is lower, but due to the Regulations on eye safety without additional optical effort at the target only relatively short ranges for distance measurement can be realized.
- a plurality of retroreflectors is also Goal 11 essential. The divergence of the laser beam is then chosen so that at a permitted minimum target distance that illuminates target 11 at any point Laser beam hits at least one retroreflector.
- the set target height angle using a suitable sensor measured and included in the trajectory calculation.
- a tilting of the barrel weapon 10 can be detected and in the trajectory calculation be taken into account.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- General Engineering & Computer Science (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Thermistors And Varistors (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Photoreceptors In Electrophotography (AREA)
- Manipulator (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Ceramic Capacitors (AREA)
- Glass Compositions (AREA)
Description
- Fig. 1
- ein Lagebild eines Geländeausschnitts mit einer taktischen Situation während einer Gefechtsübung,
- Fig. 2
- eine ausschnittweise, schematische, perspektivische Darstellung eines Abschußrohrs einer Rohrwaffe mit Visier sowie Lasersender und Detektor einer Vorrichtung zur Schußsimulation,
- Fig. 3
- ein Biockschaltbild des rohrwaffenseitigen Teils der Schußsimulationsvorrichtung,
- Fig. 4
- eine Seitenansicht eines als Ziel dienenden Kampfpanzers mit dem als Blockschaltbild dargestellten zielseitigen Teil der Schußsimulationsvorrichtung,
- Fig. 5
- eine beispielhafte Darstellung einer Schußbahn eines von der Schußsimulationsvorrichtung auf ein Ziel abgefeuerten virtuellen Geschosses.
Claims (20)
- Verfahren zum Simulieren eines von einer ballistische Geschosse verschießenden Rohrwaffe (10) auf eine Ziel (11), vorzugsweise auf ein bodengebundenes, fahrendes oder stehendes Ziel, abgefeuerten Schusses, bei dem nach Ausrichten eines Visiers (17), dessen Visierlinie (171) parallel zur Rohrseelenachse (181) der Rohrwaffe (10) verläuft, auf das Ziel (11) mit Einstellen einer horizontalen Ablage (Vorhalt) und einer vertikalen Ablage (Aufsatz) der Visierlinie (171) vom Ziel (11) zwecks Schußauslösung ein Abzug (19) manuell betätigt wird, durch Betätigen des Abzugs (19) an der Rohrwaffe (10) ein aus Laserimpulsen zusammengesetzter erster Laserstrahl (24) ausgesendet wird, die Flugbahn (34) des abgefeuerten virtuellen Geschosses berechnet wird und fortlaufend die Abweichungen der Flugbahn (34) von der momentanen Visierlinienauarichtung zum Schußzeitpunkt ermittelt werden, der erste Laserstrahl (24) um den Flugbahnabweichungen entsprechende Schwenkwinkelwerte geschwenkt wird, die Laufzeit der vom Ziel (11) reflektierten Laserimpulse gemessen und daraus die Zielenttemung (r) bestimmt wird, entweder die vom Schußzeitpunkt bis zum Empfang der reflektierten Laserimpulse vergangene Zeit mit der für die Zielentfernung (r) berechneten Flugzeit des abgefeuerten virtuellen Geschosses verglichen wird oder die für die Zielentfernung (r) eingestellten, tatsächlichen Schwenkwinkelwerte des ersten Laserstrahls (24) gegenüber der momentanen Visierlinienausrichtung zum Schußzeitpunkt mit den für die Zielentfemung (r) aus den Flugbahndaten errechneten, theoretischen Schwenkwinkelwerten des ersten Laserstrahls (24) gegenüber der momentanen Visierlinienausrichtung zum Schußzeitpunkt verglichen werden und bei Übereinstimmung inrerhalb eines Toleranzbereichs ein aus codierten Laserimpulsen bestehender zweiter Laserstrahl (25) in die vom ersten Laserstrahl (24) zuletzt angenommene Senderichtung ausgesendet wird, dessen Codierung Informationen über Schußdaten der Rohrwaffe (10), wie Munitions- und Waffenart, Identität des Schützen (16), enthält, sowie zielseitig bei Empfang des zweiten Laserstrahls (25) mittels eines von einer Mehrzahl von auf der Oberfläche des Ziels (11) verteilt angeordneten Detektoren (35) aus der Lage des empfangenden Detektors (35) am Ziel (11) und den decodierten Informationen ein Trefferschaden berechnet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Ermittlung der Abweichungen (Δz) der Flugbahn (34) von der momentanen Visierlinienausrichtung zum Schußzeitpunkt und der daraus abgeleiteten Schwenkwinkelwerte (αz) des ersten Laserstrahls (24) in Elovation durchgeführt wird.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Ermittlung der Abweichungen (Δx) cer Flugbahn (34) von der momentanen Visierlinenausrichtung zum Schußzeitpunkt und der daraus abgeleiteten Schwenkwinkelwerte (x) des ersten Laserstrahls (24) zusätzlich im Azimut durchgeführt wird.
- Verfahren nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß Abweichungen der Visierlinie von der momentanen Visierlinienausrichtung zum Schußzeitpunkt fortlaufend gemessen und zur Korrektur der Schwenkwinkelwerte (αz, αx) des ersten Laserstrahls (24) herangezogen werden.
- Verfahren nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß zum zeitlich versetzten Aussenden der beiden Laserstrahlen (24, 25) ein einziger Laser mit einer augensicheren Wellenlänge, vorzugsweise von 905 nm, verwendet und zielseitig eine Vielzahl von Retroreflektoren (38) vorgesehen wird.
- Verfahren nach der Ansprüche 1 - 4, dadurch gekennzeichnet, daß zum zeitlich versetzten Aussenden der beiden Laserstrahlen (24, 25) zwei getrennte Laser (22, 23) mit vorzugsweise unterschiedlicher Wellenlänge verwendet werden.
- Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die beiden Laserstrahlen (24, 25) so gebündelt werden, daß der erste Laserstrahl (24) eine signifikant größere Fläche am Ziel (11) beleuchtet als der zweite Laserstrahl (25) und daß zielseitig eine für Rundumempfang ausgelegte Reflektoreinheit (38) vorgesehen wird.
- Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der erste Laserstrahl (24) mit einem leistungsstarken Laser erzeugt wird und daß die Divergenz des ersten Laserstrahls (24) sehr klein gewählt wird.
- Verfahren nach einem der Ansprüche 6 - 8, dadurch gekennzeichnet, daß das Strahlungsprofil des zweiten Laserstrahls (25) so dimensioniert wird, daß die Abmessungen der von dem zweiten Laserstrahl (25) am Ziel (11) beleuchteten Fläche etwa dem 1,5-fachen des gegenseitigen Abstandes der Detektoren (35) am Ziel (11) entspricht.
- Vorrichtung zum Simulieren eines von einer ballistische Geschosse verschießenden, ein mit seiner Visierlinie (171) parallel zur Rohrseelenachse (181) fest ausgerichtetes Visier (17) und einen Abzug (19) zur Schußauslösung aufweisenden Rohrwaffe (10) auf ein Ziel (11), vorzugsweise auf ein bodengebundenes, fahrendes oder stehendes Ziel (11), abgefeuerten Schusses, die rohrwaffenseitig einen fest mit Rohrwaffe (10) gekoppelten Lasersender (21) zum zeitlich versetzten, richtungsgleichen Aussenden eines aus Laserimpulsen zusammengesetzten ersten Laserstrahls (24) und eines aus codierten Laserimpulsen bestehenden zweiten Laserstrahls (25), eine vom Abzug (19) aktivierbare Steuereinheit (33), die bei Aktivierung den Lasersender (21) zum Aussenden des ersten Laserstrahls veranlaßt, einen fest mit der Rohrwaffe (10) gekoppelten Detektor (27) zum Empfangen der am Ziel (11) reflektierten Laserimpulse des ersten Laserstrahls (24), einen dem Detektor (27) nachgeschalteten Laufzeitmesser (28) zum Messen der Laufzeit der reflektierten Laserimpulse des ersten Laserstrahls (24), einen Entfernungsrechner (29) zum Berechnen der Zielentfernung (r) aus der Laufzeit und einen mit dem Entfemungsrechner (29) verbundenen Flugbahnrechner (30) zur Berechnung von Flugbahndaten des abgefeuerten virtuellen Geschosses sowie zielseitig eine Mehrzahl von über die Zieloberfläche verteilt angeordneten, zum Empfang des zweiten Laserstrahls (25) ausgebildeten Detektoren (35) und eine mit den Detektoren (35) verbundene Auswerteelektronik (35) zur Berechnung von Trefferschäden aufweist, dadurch gekennzeichnet, daß mit dem Flugbahnrechner (30) eine Ablenkvorrichtung (26) zum Schwenken der Senderichtung der Laserstrahlen (24, 25) verbunden ist, daß mit Aussenden des ersten Laserstrahls (24) der Flugbahnrechner (30) fortlaufend die Abweichung der Flugbahn (34) von der momentanen Visierlinienausrichtung zum Schußzeitpunkt berechnet und als Steuersignale an die Ablenkvorrichtung (26) legt, die den ersten Laserstrahl (24) um den Steuersignalen entsprechende Schwenkwinkel (αz, αx) gegenüber der momentanen Visierlinienauarichtung zum Schußzeitpunkt verschwenkt, daß der Flugbahnrechner (30) entweder für die vom Entfemungsrechner (29) berechnete Zielentfemung (r) die Flugzeit des abgefeuerten virtuellen Geschosses berechnet und mit der vom Schußzeitpunkt bis zum Empfang der reflektierten Laserimpulse des ersten Laserstrahls (24) vergangenen Zeit vergleicht oder für die vom Entfemungsrechner (29) berechnete Zielentfernung (r) die theoretischen Schwenkwinkel des ersten Laserstrahls (24) gegenüber der momentanen Visierlinienausrichtung zum Schußzeitpunkt aus den Flugbahndaten berechnet und mit den tatsächlichen Schwenkwinkeln (αz, αx) des ersten Laserstrahls (24) gegenüber der momentanen Visierlinienausrichtung zum Schußzeitpunkt vergleicht und bei Übereinstimmung innerhalb eines Toleranzbereichs ein Aktivierungssignal zum Aussenden des zweiten Laserstrahls (25) in die vom ersten Laserstrahl (24) zuletzt angenommene Senderichtung erzeugt.
- Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Berechnung der Flugbahnabweichung (Δz, Δx) von der momentanen Visierlinenausrichtung zum Schußzeitpunkt und der daraus abgeleiteten Schwenkwinkel (αz, αx) des ersten Laserstrahls (24) in Elevation und bei einem Drallverhalten des ausgewählten Geschosses zusätzlich im Azimut erfolgt.
- Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß der Lasersender (21) zur Erzeugung des ersten und zweiten Laserstrahls (24, 25) einen einzigen Laser mit einer augensicheren Wellenlänge, vorzugsweise 905 nm, aufweist, und am Ziel (11) eine Vielzahl von Retroreflektoren über die Zieloberfläche verteilt angeordnet ist.
- Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß der Lasersender (21) zur Erzeugung des ersten Laserstrahls (24) einen Laser (22) mit einer Wellenlänge zwischen 1500 und 1800 nm und zur Erzeugung des zweiten Laserstrahls einen Laser (23) mit einer Wellenlänge von 905 nm aufweist.
- Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die am Ziel (11) vom ersten Laserstrahl (24) beleuchtete Fläche signifikant größer ist als die vom zweiten Laserstrahl (25) beleuchtete Fläche und daß am Ziel (11) eine für Rundumempfang ausgelegte Retroreflektoreinheit (38) etwa mittig angeordnet ist.
- Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß am Ziel (11) eine Vielzahl von Retroreflektoren angeordnet ist und daß die Divergenz des ersten Laserstrahls (24) so gewählt ist, daß bei einer zugelassenen minimalen Zielentfernung (r) der das Ziel an beliebiger Stelle beleuchtende erste Laserstrahl (24) mindestens einen Retroreflektor trifft.
- Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß der zur Erzeugung des ersten Laserstrahls (24) verwendete Laser (22) leistungsstark ist und der erste Laserstrahl (24) eine sehr kleine Divergenz aufweist.
- Vorrichtung nach einem der Ansprüche 13 - 16, dadurch gekennzeichnet, daß der zweite Laserstrahl (25) ein solches Strahlgrofil besitzt, daß die Abmessungen der vom Laserstrahl (25) am Ziel (11) beleuchteten Fläche etwa dem 1,5-fachen des gegenseitigen Abstandes der Detektoren (35) am Ziel (11) entspricht.
- Vorrichtung nach einem der Ansprüche 1 - 17, dadurch gekennzeichnet, daß der mit dem Schußrohr (18) der Rohrwaffe (10) fest verbundene Detektor (27) eine Empfangsoptik aufweist, deren Empfangsdivergenz mindestens so groß ist wie der durch die Ablenkvorrichtung (26) hervorgerufene Ablenkbereich der Laserstrahlen (24, 25).
- Vorrichtung nach einem der Ansprüche 1 - 17, dadurch gekennzeichnet, daß der mit dem Schußrohr (18) der Rohrwaffe (10) fest verbundene Detektor (27) eine verstellbare Empfangsoptik aufweist, deren Empfangsdivergenz dem effektiven Strahlquerschnitt des ersten Laserstrahls (24) entspricht, und daß die Empfangsoptik so an die Ablenkvorrichtung (26) angekoppelt ist, daß sie um gleiche Schwenkwinkel (αx, αz) wie der erste Laserstrahl (24) verschwenkt wird.
- Vorrichtung nach einem der Ansprüche 1 - 19, dadurch gekennzeichnet, daß der Flugbahnrechner (30) mit einer die Eigenbewegung der Rohrwaffe (10) sensierenden Eigenbewegungssensorik (31) verbunden ist und mit den von der Eigenbewegungssensorik (31) gelieferten Daten die Steuersignale für die Ablenkvorrichtung (26) im Sinne einer Kompensation der Eigenbewequng der Rohrwaffe (10) auf die Zielausrichtung korrigiert.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200130173T SI1325281T1 (en) | 2000-10-13 | 2001-07-28 | Method and device for simulating firing |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10050691 | 2000-10-13 | ||
DE10050691A DE10050691A1 (de) | 2000-10-13 | 2000-10-13 | Verfahren und Vorrichtung zur Schussimulation |
PCT/EP2001/008775 WO2002031429A1 (de) | 2000-10-13 | 2001-07-28 | Verfahren und vorrichtung zur schusssimulation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1325281A1 EP1325281A1 (de) | 2003-07-09 |
EP1325281B1 true EP1325281B1 (de) | 2004-06-16 |
Family
ID=7659616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01960586A Expired - Lifetime EP1325281B1 (de) | 2000-10-13 | 2001-07-28 | Verfahren und vorrichtung zur schusssimulation |
Country Status (16)
Country | Link |
---|---|
US (1) | US6549872B2 (de) |
EP (1) | EP1325281B1 (de) |
AT (1) | ATE269532T1 (de) |
AU (1) | AU2001282044A1 (de) |
BG (1) | BG65142B1 (de) |
CA (1) | CA2341851A1 (de) |
CZ (1) | CZ2003872A3 (de) |
DE (2) | DE10050691A1 (de) |
DK (1) | DK1325281T3 (de) |
ES (1) | ES2218440T3 (de) |
HU (1) | HU225640B1 (de) |
PL (1) | PL360247A1 (de) |
SK (1) | SK4002003A3 (de) |
TR (1) | TR200401817T4 (de) |
WO (1) | WO2002031429A1 (de) |
ZA (1) | ZA200302779B (de) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE520607C2 (sv) * | 2001-03-30 | 2003-07-29 | Saab Ab | Förfarande och anordning för träffindikering |
IL143603A0 (en) * | 2001-06-06 | 2003-06-24 | C T S Combat Training Simulati | Combat simulation system and method |
US20040005531A1 (en) * | 2002-07-03 | 2004-01-08 | Deepak Varshneya | Precision zeroed small-arms transmitter (ZSAT) with shooter sight-picture compensation capability |
US6995660B2 (en) * | 2002-09-26 | 2006-02-07 | Bae Systems Information And Electronic Systems Integration Inc. | Commander's decision aid for combat ground vehicle integrated defensive aid suites |
US7121464B2 (en) * | 2003-05-29 | 2006-10-17 | White Thompkins W | Automated projectile delivery system |
US7147472B1 (en) * | 2003-10-23 | 2006-12-12 | The United States Of America As Represented By The Secretary Of The Army | Laser aim scoring system |
DE602004010880T2 (de) * | 2004-03-26 | 2008-12-11 | Saab Ab | System und Verfahren zur Waffenwirkung-Simulation |
DE102004039336B4 (de) * | 2004-08-12 | 2006-07-06 | C.O.E.L. Entwicklungsgesellschaft Mbh | Einrichtung zur Leistungssteigerung und Verbesserung der Auswertung in einem Gefechtsübungszentrum |
DE102004042144B4 (de) * | 2004-08-31 | 2010-12-30 | Ruag Coel Gmbh | Verfahren und Vorrichtung zur Schußsimulation von direkt gerichteten Waffen mittels Laserlichts |
EP1696198B1 (de) * | 2005-02-28 | 2014-07-16 | Saab Ab | Verfahren und System zur Feuersimulation |
DK1710769T3 (en) * | 2005-04-06 | 2016-05-30 | Saab Ab | simulation arrangement |
EP1737146B1 (de) * | 2005-06-22 | 2015-09-16 | Saab Ab | Vorrichtung und Verfahren zur Datenübertragung |
US8827707B2 (en) * | 2005-08-01 | 2014-09-09 | Cubic Corporation | Two beam small arms transmitter |
US9316462B2 (en) | 2005-08-01 | 2016-04-19 | Cubic Corporation | Two beam small arms transmitter |
US7599814B2 (en) * | 2006-04-27 | 2009-10-06 | Hrl Laboratories, Llc | System and method for computing reachable areas |
US20080206718A1 (en) * | 2006-12-01 | 2008-08-28 | Aai Corporation | Apparatus, method and computer program product for weapon flyout modeling and target damage assessment |
DE102007014290A1 (de) | 2007-03-22 | 2008-09-25 | Jenoptik Laser, Optik, Systeme Gmbh | Optisches System und Verfahren zur Geschossbahnnachbildung mittels Laserstrahl |
US8191421B2 (en) * | 2007-05-07 | 2012-06-05 | Raytheon Company | Digital ballistic impact detection system |
JP5295223B2 (ja) * | 2007-05-07 | 2013-09-18 | レイセオン カンパニー | デジタル傷検出システム |
WO2009120226A2 (en) * | 2008-03-13 | 2009-10-01 | Cubic Corporation | Sniper training system |
DE102009004179A1 (de) * | 2009-01-09 | 2010-07-15 | Rheinmetall Landsysteme Gmbh | Vorrichtung zur Simulation der akustischen und/oder optischen Darstellung des Abfeuerns einer an einem Objekt, insbesondere Fahrzeug anordbaren Waffe |
US8204094B2 (en) | 2009-04-21 | 2012-06-19 | Innova, Inc. | Scalable, efficient laser systems |
WO2011041001A1 (en) * | 2009-06-18 | 2011-04-07 | Aai Corporation | Method and system for correlating weapon firing events with scoring events |
US8234070B2 (en) * | 2009-06-18 | 2012-07-31 | Aai Corporation | Apparatus, system, method, and computer program product for detecting projectiles |
US8275571B2 (en) * | 2009-06-18 | 2012-09-25 | Aai Corporation | Method and system for correlating weapon firing events with scoring events |
US8706440B2 (en) * | 2009-06-18 | 2014-04-22 | Aai Corporation | Apparatus, system, method, and computer program product for registering the time and location of weapon firings |
US8328557B2 (en) * | 2010-01-08 | 2012-12-11 | Lockheed Martin Corporation | Simultaneous multi-source scanning for sectorized simulated projectile trajectories |
WO2011110265A1 (de) * | 2010-03-12 | 2011-09-15 | Rheinmetall Defence Electronics Gmbh | Scannermodul zur zielvermessung |
WO2012002856A1 (en) * | 2010-06-30 | 2012-01-05 | Saab Ab | Wireless target system |
US8512041B2 (en) | 2010-10-27 | 2013-08-20 | Lockheed Martin Corporation | Combat simulation at close range and long range |
RU2478897C2 (ru) * | 2011-06-03 | 2013-04-10 | Михаил Витальевич Головань | Способ обучения операторов высокоточного оружия |
US9121785B2 (en) | 2012-04-24 | 2015-09-01 | Sarcos Lc | Non-powered impact recorder |
US9830408B1 (en) * | 2012-11-29 | 2017-11-28 | The United States Of America As Represented By The Secretary Of The Army | System and method for evaluating the performance of a weapon system |
RU2558407C2 (ru) * | 2013-12-26 | 2015-08-10 | Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М. Василевского" Министерства Обороны Российской Федерации | Способ определения наклонной дальности воздушной цели по ее установленной скорости |
CN103808204B (zh) * | 2014-02-24 | 2015-07-08 | 浙江工业大学之江学院 | 基于靶上实弹弹孔与枪支姿态检测的射击瞄准轨迹检测方法 |
US10734943B2 (en) * | 2014-09-12 | 2020-08-04 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Photovoltaics optimized for laser remote power applications at eye-safer wavelengths |
US9429397B1 (en) * | 2015-02-27 | 2016-08-30 | Kevin W. Hill | System, device, and method for detection of projectile target impact |
EP3312544A1 (de) * | 2016-10-21 | 2018-04-25 | CMI Defence S.A. | Montagehalterung für zielvorrichtung |
US11175112B2 (en) | 2016-11-25 | 2021-11-16 | Saab Ab | Simulation device and a method for facilitating simulation of a shot from a weapon |
CN106840007A (zh) * | 2017-04-07 | 2017-06-13 | 赵�怡 | 一种结合可调激光测距探头阵列与智能终端的空间扫描系统及方法 |
US10835803B2 (en) * | 2019-03-18 | 2020-11-17 | Rapsodo Pte. Ltd. | Object trajectory simulation |
CN110543169B (zh) * | 2019-08-16 | 2022-05-24 | 深圳优地科技有限公司 | 机器人避障方法、装置、机器人及存储介质 |
GB2595213B (en) * | 2020-05-12 | 2024-02-21 | Mbda Uk Ltd | Safety assembly |
CN112711035A (zh) * | 2020-12-17 | 2021-04-27 | 安徽科创中光科技有限公司 | 一种可自动修正弹道轨迹的便携式测风激光雷达系统 |
CN112729011B (zh) * | 2020-12-25 | 2022-03-22 | 南京理工大学 | 一种小空间无弹化校枪方法 |
CN114117771B (zh) * | 2021-11-22 | 2024-12-20 | 中国人民解放军海军大连舰艇学院 | 一种舰炮对陆直接射击火力毁伤评估仿真算法 |
CN114396917B (zh) * | 2022-02-25 | 2023-11-10 | 北京华昊水利水电工程有限责任公司 | 一种橡胶坝安全检测方法及系统 |
CN115164646B (zh) * | 2022-06-28 | 2023-09-15 | 中国人民解放军63863部队 | 复合制导的炮弹的射表基本诸元的计算方法及装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE6900992U (de) * | 1969-01-08 | 1969-10-02 | Grundig Emv | Magnetbandkassette mit vorrichtung zur verhinderung unbeabsichtigter loeschung bespielter baender |
BE793514A (fr) | 1971-12-31 | 1973-04-16 | Saab Scania Ab | Simulateur a impulsions laser pour entrainement au tir |
FR2477695A1 (fr) * | 1980-03-07 | 1981-09-11 | Giravions Dorand | Procede et appareillage de commande de tir sur cible reelle |
DE3114000C2 (de) * | 1981-04-07 | 1983-04-28 | Precitronic Gesellschaft für Feinmechanik und Electronic mbH, 2000 Hamburg | Schießsimulations- und -übungsverfahren für ballistische Munition und bewegliche Ziele |
DE3507007A1 (de) * | 1985-02-27 | 1986-08-28 | Precitronic Gesellschaft für Feinmechanik und Electronic mbH, 2000 Hamburg | Vorrichtung zum ueben des richtens mit einer schusswaffe |
DE3543698C2 (de) * | 1985-12-11 | 1994-04-21 | Hipp Johann F | Schießsimulations- und Übungsverfahren für direktgerichtete Waffensysteme |
DE3543647C2 (de) * | 1985-12-11 | 1994-02-24 | Hipp Johann F | Einrichtung zur Vermessung von durch Reflektoren markierten Raumpunkten und darauf gerichteter Kommunikation mit Licht |
GB2220051A (en) * | 1988-06-27 | 1989-12-28 | Schlumberger Ind Ltd | Weapon training systems |
DE19912093A1 (de) | 1999-03-18 | 2000-09-28 | Stn Atlas Elektronik Gmbh | Verfahren zur Schußsimulation |
-
2000
- 2000-10-13 DE DE10050691A patent/DE10050691A1/de not_active Ceased
-
2001
- 2001-03-21 CA CA002341851A patent/CA2341851A1/en not_active Abandoned
- 2001-07-19 US US09/907,601 patent/US6549872B2/en not_active Expired - Fee Related
- 2001-07-28 ES ES01960586T patent/ES2218440T3/es not_active Expired - Lifetime
- 2001-07-28 EP EP01960586A patent/EP1325281B1/de not_active Expired - Lifetime
- 2001-07-28 DK DK01960586T patent/DK1325281T3/da active
- 2001-07-28 PL PL36024701A patent/PL360247A1/xx unknown
- 2001-07-28 HU HU0303748A patent/HU225640B1/hu unknown
- 2001-07-28 SK SK400-2003A patent/SK4002003A3/sk unknown
- 2001-07-28 AT AT01960586T patent/ATE269532T1/de not_active IP Right Cessation
- 2001-07-28 DE DE50102630T patent/DE50102630D1/de not_active Expired - Fee Related
- 2001-07-28 WO PCT/EP2001/008775 patent/WO2002031429A1/de not_active Application Discontinuation
- 2001-07-28 AU AU2001282044A patent/AU2001282044A1/en not_active Abandoned
- 2001-07-28 TR TR2004/01817T patent/TR200401817T4/xx unknown
- 2001-07-28 CZ CZ2003872A patent/CZ2003872A3/cs unknown
-
2003
- 2003-04-08 BG BG107710A patent/BG65142B1/bg unknown
- 2003-04-09 ZA ZA200302779A patent/ZA200302779B/en unknown
Also Published As
Publication number | Publication date |
---|---|
SK4002003A3 (en) | 2003-10-07 |
HU225640B1 (en) | 2007-05-02 |
EP1325281A1 (de) | 2003-07-09 |
ATE269532T1 (de) | 2004-07-15 |
TR200401817T4 (tr) | 2004-09-21 |
BG107710A (en) | 2003-12-31 |
US20020045999A1 (en) | 2002-04-18 |
DE50102630D1 (de) | 2004-07-22 |
CZ2003872A3 (cs) | 2003-12-17 |
DK1325281T3 (da) | 2004-08-02 |
ES2218440T3 (es) | 2004-11-16 |
ZA200302779B (en) | 2003-10-14 |
CA2341851A1 (en) | 2002-04-13 |
AU2001282044A1 (en) | 2002-04-22 |
US6549872B2 (en) | 2003-04-15 |
PL360247A1 (en) | 2004-09-06 |
DE10050691A1 (de) | 2002-05-02 |
WO2002031429A1 (de) | 2002-04-18 |
BG65142B1 (bg) | 2007-03-30 |
HUP0303748A2 (en) | 2004-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1325281B1 (de) | Verfahren und vorrichtung zur schusssimulation | |
DE2907590C2 (de) | Verfahren und Vorrichtung zum Auswerten von simulierten Schießübungen mit am Ziel reflektierten Laser-Strahlen | |
DE2336040C3 (de) | Abwehrsystem mit mehreren Geschossen | |
DE3024247C2 (de) | ||
DE2454453B2 (de) | Vorrichtung zum Durchführen und Auswerten von Schießübungen mit Flugabwehrgeschützen mit simuliertem Feuer | |
DE8790064U1 (de) | Feuerleiteinrichtung für Geschütze | |
DE3114000A1 (de) | Schiesssimulations- und -uebungsverfahren fuer ballistische munition und bewegliche ziele | |
DE602004010880T2 (de) | System und Verfahren zur Waffenwirkung-Simulation | |
EP1688761B1 (de) | Verfahren und Vorrichtung zum Entdecken von optischen Systemen in einem Geländebereich | |
DE3238848A1 (de) | Verfahren und vorrichtung zum gesamten korrigieren des schiessvorganges von einem schuss auf den folgenden bei einer waffe mit gestreckter schussbahn | |
DE3507007A1 (de) | Vorrichtung zum ueben des richtens mit einer schusswaffe | |
DE102005007910A1 (de) | Feuerwaffe für langsam fliegende Geschosse | |
DE3028545C2 (de) | Verfahren zur Schußsimulation bei beweglichen Zielen mittels Lichtsignalen | |
DE19638968A1 (de) | Verfahren und Vorrichtung zur Bekämpfung anfliegender Flugkörper | |
DE1951622C3 (de) | Anordnung zur simulierten Darstellung von Schußbahnen | |
EP0281675A2 (de) | Sensor zur Bekämpfung von Hubschraubern | |
EP1159578B1 (de) | Verfahren zur schusssimulation | |
EP1972881B1 (de) | Optisches System und Verfahren zur Geschossbahnnachbildung mittels Laserstrahl | |
DE3229298C2 (de) | Schußsimulationsverfahren und Einrichtung zu seiner Durchführung | |
WO2014015983A1 (de) | Verfahren zur simulation eines ausgedehnten wirkungsbereiches eines geschosses | |
DE3545831C2 (de) | ||
DE3543698C2 (de) | Schießsimulations- und Übungsverfahren für direktgerichtete Waffensysteme | |
DE2846738A1 (de) | Thermographische beobachtungs- und zielvorrichtung fuer mehrschuessige direktschuss-abwehrwaffen | |
DE3635816C2 (de) | ||
CH681111A5 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030320 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BOLLWEG, KARSTEN Inventor name: GALLHUBER, ANTON |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BOLLWEG, KARSTEN Inventor name: GALLHUBER, ANTON |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RHEINMETALL DEFENCE ELECTRONICS GMBH |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: LT LV RO SI |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040616 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040616 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040616 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040616 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040616 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040616 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 50102630 Country of ref document: DE Date of ref document: 20040722 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040728 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040728 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040731 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040731 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20040402490 Country of ref document: GR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2218440 Country of ref document: ES Kind code of ref document: T3 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20040616 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20040616 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: IF |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
BERE | Be: lapsed |
Owner name: RHEINMETALL DEFENCE ELECTRONICS G.M.B.H. Effective date: 20040731 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050317 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20070713 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070719 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20070727 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20070705 Year of fee payment: 7 |
|
BERE | Be: lapsed |
Owner name: *RHEINMETALL DEFENCE ELECTRONICS G.M.B.H. Effective date: 20040731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041116 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070725 Year of fee payment: 7 Ref country code: SE Payment date: 20070712 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20070730 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090204 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20090324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080728 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20080729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080728 |