EP1159578B1 - Verfahren zur schusssimulation - Google Patents
Verfahren zur schusssimulation Download PDFInfo
- Publication number
- EP1159578B1 EP1159578B1 EP00912514A EP00912514A EP1159578B1 EP 1159578 B1 EP1159578 B1 EP 1159578B1 EP 00912514 A EP00912514 A EP 00912514A EP 00912514 A EP00912514 A EP 00912514A EP 1159578 B1 EP1159578 B1 EP 1159578B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- target
- weapon
- information
- tube
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/26—Teaching or practice apparatus for gun-aiming or gun-laying
- F41G3/2616—Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
- F41G3/2622—Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
- F41G3/2655—Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile in which the light beam is sent from the weapon to the target
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/26—Teaching or practice apparatus for gun-aiming or gun-laying
- F41G3/2616—Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
- F41G3/2622—Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
- F41G3/265—Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile with means for selecting or varying the shape or the direction of the emitted beam
Definitions
- the invention relates to a method for simulating a shot guns firing ballistic projectiles in the Preamble of claim 1 defined genus.
- a known method for shooting or shooting simulation (DE 37 20 595 Al) is based on a so-called two-way simulation, first with a sight aimed at a target Distance to the target is measured, then that with a Retroreflector illuminated and lasered target the light reflected by the retroreflector on one position-resolving, electro-optical device on the Gun barrel is pictured.
- the one determined from the illustration The location of the retroreflector is matched with the location of the hit simulated shot compared based on the measured Distance, the type of weapon and ammunition used and the Essay that the hypothetical projectile path with the Line of sight forms, is calculated. Is the location of the Retroreflector matches the target location, one Hit message triggered by the barrel weapon, both agree does not match, an error message is generated.
- Matches the laser beam generating the scan pattern correct alignment of the barrel weapon on the retroreflector of a target located in the solid angle sector, so the laser beam reflects in itself, and the returning laser beam reaches a weapon side arranged optical receiver.
- An assigned to the recipient Calculator uses stored data to calculate how the type of ammunition, from the target distance and the vertical Angular offset, the resulting at this target distance Projectile trajectory and the target attachment angle of the barrel weapon. This target gauging is repeated over and over again determined data target dimension, target distance and the data derived from this, the flight flight time and the target attachment angle are stored in a memory.
- a Shot release button is connected to the computer. Your Pressing causes the target to stop measuring and the most recently saved data from memory read out and a laser beam emitted to the target be modulated.
- the transferred and demodulated data calculated a virtual projectile impact and the target's own motion by measuring the Direction of reception of the laser beam and driving speed measured during the floor flight time and based on the position of the target at the end of the floor flight time and hit detection on the virtual floor impact met.
- the invention has for its object a method for Shooting simulation of the type mentioned to indicate that significantly lower manufacturing costs for this Method realizing shot simulator enables and thereby a sufficient one for use in combat training areas Accuracy guaranteed.
- the process according to the invention has the advantage that only one only optical transmission path from the shooter to the target is required and thus the simulator at high Sensitivity gets by with low laser power.
- the Checking whether the shooter has set up his gun in this way has a goal that is reflected in an estimated Distance, has been hit or not, will be in the Target based on the data of the set gun carried out what is easily possible, since weapon and target continuously measure their position and target the position of the Gun is fired with firing.
- the procedure allows a realistic handling of the weapon, the Canting of the weapon, the type of ammunition, the type of weapon, the Set azimuth and elevation angles (lead and Essay) in the hypothetical or virtual Meeting point determination are taken into account.
- the method according to the invention can be used both in barrel weapons, such as Armored cannons, in which the setting of the attachment of the Gun should be practiced, as well as with barrel weapons, like Bazookas, which are based on the estimate of the advance arrives, be applied. To do this, only the Panning direction of the transmitted light from the vertical to one horizontal plane and the maximum swivel angle be adjusted.
- the Transmitted light generated as a result of laser pulses, and the Weapon information is modulated on every laser pulse.
- Laser pulses have the advantage, despite the high pulse level only to have a low energy density and thus with the required eye safety of the laser one for the shooting simulation to transfer sufficient power to the target.
- the laser pulses can be relatively immune to interference modulate, so that the weapon information reliably to Target to be transferred.
- FIG. 1 and 2 is an exercise scenario in one Combat training area in side view and top view shown, in which a with a barrel weapon (tank cannon) 11th equipped main battle tank 10 one of several in the terrain 12 targets 13, 14, 15.
- the battle parfzer 10 selected target 13 is shown schematically and can For example, be an enemy battle tank whose Direction of movement in Fig. 2 is indicated by arrow 16.
- the Goals 14 and 15 are fixed and for example buildings or natural obstacles.
- a shooting simulator is used for the target practice, one of the gun 17 associated component 17 and one component 18 assigned to target 13.
- 3 Gun-side component 17 shown in the block diagram is packaged in a housing 19 which is attached to the barrel weapon 11 is fixed and thus the pivoting movement of the tank cannon Azimuth and elevation, as well as any tilting of the Armored tank and thus the barrel weapon 11 when driving off-road participates.
- An optical transmitter 20 is in the housing 19 arranged in the vertical direction, which is a narrow it bundles laser light as a result of at constant Timed pulse emits laser pulses.
- a The optical transmitter 20 is pivoted by means of a Stepper motor 21 causes the same as the optical transmitter 20 is controlled by a central control unit 22.
- the Central control unit 22 is on the input side with a Tilting sensor 22, the tilting of the tub of the Main battle tank 10 and thus the tube weapon 11 measures with one Inclination sensor 24, the elevation angle ⁇ of the gun 11, so the attachment of the barrel weapon 11 compared to the Horizontal, measures and connected to an interface 25, about which the central control unit 22 information about the Ammunition type, the type of weapon, the current position of the Main battle tank 10 in the field and the triggering of the simulated Shot are fed.
- the interface 25 is over an entrance 27 with an arranged on the main battle tank 10, satellite-based positioning system 26, e.g.
- the optical transmitter 22 is still one of the central Control unit 22 containing controlled optical modulator, of the information coming in via the interface 25 Weapon and ammunition type and the measured values of the Tilt sensor 23 and the inclination sensor 24 on each of the optical transmitter 20 emitted laser pulse modulated.
- the target-side shown in Fig. 4 in the block diagram Component 18 of the shot simulator has an optical one Receiving device 31 with a variety of optical Sensors 32, e.g. B. laser diodes, on the incoming Convert laser pulses into electrical signals. If the goal is 13, as assumed, also a main battle tank, so they form Light detectors or optical sensors 32 - as this for the shooting main battle tank 10 is shown in Fig. 1 - in their multitude one horizontally revolving on the tank pan Belt. All optical sensors 32 are with one Signal processing 33 connected, which contains a demodulator and from the received laser pulses with them transferred weapon information (weapon position, weapon type, Bullet type, barrel weapon attachment) and eliminated Microprocessor 34 supplies.
- optical Sensors 32 e.g. B. laser diodes
- the microprocessor 34 receives from one attached to target 13, satellite-based Positioning system 35 (GPS or GDPS) additionally the current position of the target 13. Using the The weapon information and the target position determines the Microprocessor 34 a virtual impact of the projectile after putting one back through the gun alignment itself resulting hypothetical projectile trajectory as well as the distance between barrel weapon 11 and target 13. The microprocessor 34 leads a comparison of projectile impact and target range and if matched, drives a hit display 36 which an optical, acoustic or electromagnetic Sends hit signal. To determine the virtual Bullet hits are in the microprocessor 34 e.g.
- the gunner usually uses a Gun 11 connected visor the gun 11 on the target 13 and poses based on the distance he estimates to target 13 a specific essay (elevation angle ⁇ ) for the gun 11 a. If goal 13 is a moving target is, as indicated in Fig. 2 - Consider a reserve for the barrel weapon 11 and the gun 11 by an azimuth angle ⁇ with respect to Set direct line of sight to goal 13.
- the Input 30 given a trigger pulse to the interface 25 what the control unit 22 causes the optical transmitter 20 to activate.
- the optical transmitter 20 transmits a sequence of Laser pulses out, going down in the vertical plane is successively pivoted.
- the first laser pulses are emitted in a direction parallel to Pipe axis runs. Every laser pulse becomes information regarding the current position and orientation of the Pipe weapon, in the present case with respect to the Inclination sensor 24 supplied elevation angle ⁇ and the Canting sensor 23 supplied tilting angle, as well as the used weapon and projectile type modulated.
- To any time of the vertical pivoting movement of the Laser transmitter 20 hits at least one laser pulse the light detectors or optical sensors 32 at the target 13.
- This laser pulse is from the optical receiving device 31 received and in the units described processed in terms of signaling.
- goal 13 is now the virtual bullet impact from the with the laser pulse transmitted weapon information (elevation angle ⁇ , Cant angle, weapon type, weapon ammunition) determined as well from the position of the weapon 11 and transmitted by the laser pulse the known target position the distance between target 13 and Gun 11 determined. Bullet impact and If the target distance is the same, a hit is displayed.
- goal 14 is also included the target-side component 18 of the shot simulator according to FIG. 3 equipped.
- goal 14 the same calculation as in Goal 13 accomplished. In this case, however, is the distance the target 14 to the gun 11 much smaller than that Removal of the virtual projectile impact from the barrel weapon 11, so that no hits are displayed.
- To reduce sensors 32 could be the laser light of the optical Transmitter 20 are spread in the horizontal direction, so that the optical sensors 32 at the target 13 at greater distances can be arranged from each other. To be the same Ensure sensitivity of the optical sensors 32 however, the laser power would have to be increased by the now larger area at destination 13 with the same Illuminate energy density.
- the optical Transmitter 20 emitted laser pulses additionally one Information about the time of transmission of each individual Laser pulse modulated.
- the time specified for the transmission Information is the time between the triggering of the simulated shot and sending the respective one Laser pulse.
- This information is provided in a central control unit 22 integrated counter removed, the started when the shot was fired and at a constant frequency is clocked.
- the target 13 can now from the received laser pulse transmitted information about its Send time and the weapon information the distance between target and barrel weapon. With that, too If GPS reception is disturbed, hit positions are determined and the Target practice continues. In the case of intact GPS reception can the due to the known positions of Gun 11 and Target 13 controlled certain target range become.
- FIG. 5 shows an exercise scenario in which the Firing a Panzerfaust 37 at a moving target tank 38 should be practiced.
- the Panzerfaust 37 represents the barrel weapon 11 and the target tank 38 represents the target 13, which is in the direction Arrow 16 in Fig. 5 moves.
- This exercise is about correct setting of a reserve of the gun 11, so a suitable azimuth angle ⁇ so that the moving Target 13 (target tank 38) after firing Panzerfaust 37 at the right time is hit; because the other Panzerfaust 37 missile armor-piercing ammunition required a certain flight time to the distance to destination 13 bridge in which the target 13 is one of his Speed corresponding distance from his at Shot trigger position taken has moved on.
- the method for firing simulation described above is now modified in such a way that the optically closely bundled transmission light, i.e. the pulse train of laser pulses, is now pivoted in a horizontal plane (azimuth) at a constant speed and each laser pulse also has information regarding the barrel weapon axis in each pivoting position related, current swivel angle ⁇ i is modulated.
- the laser pulses are sent at a constant clock rate (transmission frequency).
- information regarding the instantaneous azimuthal pivot angle ⁇ i relating to the barrel weapon axis 39 is additionally modulated onto each laser pulse in each pivot position of the optical transmitter 20.
- the pivot angles ⁇ 1 to ⁇ 4 are shown schematically in FIG. 5 for explanation.
- the transmitter 20 is in turn integrated in the weapon-side component 17 of the shooting simulator, which is firmly connected to the barrel weapon 11, here combined with the sight of the apelooka 37 to form a structural unit. Since the optical axis of the transmitter 20 is somewhat offset vertically with respect to the barrel weapon axis 39 due to the attachment of the weapon-side component 17 to the barrel weapon 11, the reference line 39 'for the pivoting angle is offset by the same amount above the barrel weapon axis 39. The reference line 39' for however, the swivel angle information always runs in the center of the barrel weapon parallel to the barrel weapon axis 39. The range of the pivot angle of the optical transmitter 20 is limited to the same azimuth range on the right and left of the center of the barrel weapon, i.e.
- the barrel weapon axis 39 which is at least as large as that for combating a cross-gun Gun barrel axis 39 moving target 13 required, taking into account the flight duration of the projectile fired at the moving target 13 projectile of the gun 11.
- the swiveling movement of the optical transmitter 20 always takes place from one of the boundary edges of the swivel angle region, in the example of FIG. 5 from the left, outer boundary edge of the swivel angle region.
- movable target 13 is the same equipped target component 18 of the shot simulator, as shown in Fig. 4 in the block diagram, wherein the number of optical sensors 32 of the optical Receiving device 31 on two to three per long side of the Target 13 is limited, and the optical sensors 32 in Turret area of the target tank 38 are arranged.
- the laser pulses in be spread vertically so that with everyone Laser pulse of the target armor 38 in its maximum height up to Top of the tower is illuminated.
- the target component 18 of the shot simulator is now the same evaluation of the information transmitted in the laser pulses, as already described above, with the only difference that the hit detection previously used target distance using the Swivel angle information and the known own movement of the Target 13 is corrected.
- This correction takes place in the Way that calculates the target distance for a target position the target 13 moving at the target speed after going through one from the swivel angle information and the current distance resulting from the target distance would occupy within the storey flight time, which in turn is calculated from the weapon information.
- This Swivel angle information corresponds to that with the barrel weapon 11 set lead ⁇ in azimuth, and if correct The setting of the lead ⁇ is correct from the Weapon information calculated bullet impact with the corrected target range and a hit is made displayed.
- additional information about its transmission time is modulated onto the laser pulses emitted by the optical transmitter 20, as described above, the transmission of additional angle information ⁇ i about the transmission direction to the target 13 can be dispensed with in the shot simulator described in FIG This information about the respective transmission time of the laser pulses can be used to derive the angle information about the transmission direction.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- General Engineering & Computer Science (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
- Fig. 1 und 2
- jeweils einen eine Rohrwaffe tragenden Kampfpanzer in einem Übungsgelände bei Schußabgabe auf ein Ziel in Seitenansicht (Fig.1) bzw. Draufsicht (Fig. 2),
- Fig. 3
- ein Blockschaltbild der waffenseitigen Komponente eines Schußsimulators,
- Fig. 4
- ein Blockschaltbild der zielseitigen Komponente des Schußsimulators,
- Fig. 5
- eine perspektivische Darstellung einer Panzerfaust in Schußstellung auf einen im Übungsgelände fahrenden Zielpanzer.
Claims (15)
- Verfahren zur Schußsimulation mit ballistische Geschosse verschießenden Rohrwaffen, mit folgenden, nach Schußauslösung ablaufenden Verfahrensschritten:a) durch sukzessives Schwenken eines optisch eng gebündelten Sendelichts, das von einem der Rohrwaffe zugeordneten optischen Sender (20) abgestrahlt wird, in nur einer Ebene wird ein Ziel (13) beleuchtet,b) mit dem Sendelicht werden aufmodulierte, ausschließlich waffenspezifische Informationen, nämlich Informationen über die momentane Position und vertikale Ausrichtung, den sogenannten Aufsatz, der Rohrwaffe (11) sowie über die Waffen- und Geschoßart, zum Ziel (13) übertragen,c) in dem mit einer optischen Empfangseinrichtung (31) für das Sendelicht und einem satellitengestützten Positionsbestimmungssystem (35) zum Erfassen der Zielposition ausgestatteten Ziel (13) wirdc1) aus den empfangenen und demodulierten waffenspezifischen Informationen ein virtueller Geschoßeinschlag bestimmt,c2) aus der empfangenen und demodulierten waffenspezifischen Information der Position der Rohrwaffe (11) und aus der von dem Positionsbestimmungssystem (35) abgenommenen Zielposition die Entfernung zwischen Ziel (13) und Rohrwaffe (11) bestimmt undc3) aus dem Vergleich der Entfernungen zwischen Ziel (13) und Rohrwaffe (11) einerseits und virtuellem Geschoßeinschlag und Rohrwaffe (11) andererseits eine Trefferfeststellung getroffen.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Verkanten der Rohrwaffe (11) gegenüber einer vertikalen und/oder horizontalen Bezugslinie gemessen und die Meßwerte als weitere waffenspezifische Informationen dem Sendelicht aufmoduliert werden und daß die Informationen bezüglich der Waffenverkantung im Ziel (13) bei der Bestimmung des virtuellen Geschoßeinschlags herangezogen werden.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß im Ziel (13) Flugbahnen von Geschossen mit einer Parameterisierung von Aufsatz (ε) sowie Waffen- und Geschoßart abgelegt werden und daß mit den empfangenen und demodulierten waffenspezifischen Informationen die zutreffende Flugbahn aufgesucht und der virtuelle Geschoßeinschlag ausgelesen wird.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Sendelicht in einer vertikalen Ebene aus einer mit der Rohrwaffe (11) parallelen Ausrichtung heraus abwärts geschwenkt wird.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die optische Empfangseinrichtung (31) des vorzugsweise beweglichen Ziels (13) mit einem am Ziel (13) befestigten, horizontal umlaufenden Gürtel aus einer Vielzahl von beabstandeten Lichtdetektoren (32) versehen wird.
- Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß das Sendelicht in Horizontalrichtung optisch aufgespreizt wird.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Sendelicht in einer horizontalen Ebene mit konstanter Geschwindigkeit geschwenkt wird und dem Sendelicht in jeder Schwenkposition Informationen bezüglich des auf die Rohrwaffe (11) bezogenen, momentanen Schwenkwinkels aufmoduliert werden und daß die zur Trefferfeststellung im Ziel herangezogene Zielentfernung zuvor mittels der Schwenkwinkelinformation und der bekannten Eigenbewegung des Ziels (13) korrigiert wird.
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Korrektur in der Weise durchgeführt wird, daß die Zielentfernung für eine Zielposition berechnet wird, die das mit Zielgeschwindigkeit sich bewegende Ziel (13) nach Durchlaufen einer aus der Schwenkwinkelinformation und der momentanen Zielentfernung sich ergebenden Wegstrecke während der aus den Waffeninformationen sich ergebenden Geschoßflugzeit einnimmt.
- Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der Schwenkbereich des Sendelichts auf einen gleichen Azimutwinkel rechts und links der Rohrwaffenmitte begrenzt ist, der mindestens einem die maximale Flugdauer des abgefeuerten Geschosses berücksichtigenden, maximalen Vorhaltewinkel der Rohrwaffe (11) im Azimut bei Bekämpfung eines mit maximaler Geschwindigkeit quer zur Schußrichtung sich bewegenden Ziels entspricht, und daß beim Auslösen des simulierten Schusses die Schwenkung der Senderichtung von einer der Begrenzungskanten des Schwenkbereichs aus erfolgt.
- Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Sendelicht als eine Folge von Laserimpulsen erzeugt wird und die waffenspezifischen Informationen jedem Laserimpuls aufmoduliert werden.
- Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die Laserimpulse mit konstanter Taktrate gesendet werden.
- Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß jedem Laserimpuls zusätzlich eine Information über seinen Sendezeitpunkt aufmoduliert wird und daß unter Verzicht auf die Übertragung der Schwenkwinkelinformationen die Schwenkwinkelinformationen im Ziel (13) aus den Informationen über die Sendezeitpunkte abgeleitet werden.
- Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß als Informationen über den Sendezeitpunkt die Zeit zwischen der Auslösung des simulierten Schusses und dem Aussenden des jeweiligen Laserimpulses angegeben wird.
- Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Informationen über den Sendezeitpunkt am Ausgang eines mit konstanter Frequenz getakteten Zählers abgenommen wird.
- Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Positionen von Rohrwaffe (11) und Ziel (13) mittels jeweils eines an diesen angeordneten, satellitengestützten Positionsbestimmungssystems, z.B. GPS oder DGPS, erfaßt werden.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19912093A DE19912093A1 (de) | 1999-03-18 | 1999-03-18 | Verfahren zur Schußsimulation |
DE19912093 | 1999-03-18 | ||
PCT/EP2000/001620 WO2000057123A1 (de) | 1999-03-18 | 2000-02-26 | Verfahren zur schusssimulation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1159578A1 EP1159578A1 (de) | 2001-12-05 |
EP1159578B1 true EP1159578B1 (de) | 2003-04-16 |
Family
ID=7901427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00912514A Expired - Lifetime EP1159578B1 (de) | 1999-03-18 | 2000-02-26 | Verfahren zur schusssimulation |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1159578B1 (de) |
AU (1) | AU754674B2 (de) |
CA (1) | CA2366526C (de) |
DE (2) | DE19912093A1 (de) |
WO (1) | WO2000057123A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1972881A1 (de) | 2007-03-22 | 2008-09-24 | JENOPTIK Laser, Optik, Systeme GmbH | Optisches System und Verfahren zur Geschossbahnnachbildung mittels Laserstrahl |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10050691A1 (de) | 2000-10-13 | 2002-05-02 | Stn Atlas Elektronik Gmbh | Verfahren und Vorrichtung zur Schussimulation |
DE602004010880T2 (de) * | 2004-03-26 | 2008-12-11 | Saab Ab | System und Verfahren zur Waffenwirkung-Simulation |
EP1737146B1 (de) * | 2005-06-22 | 2015-09-16 | Saab Ab | Vorrichtung und Verfahren zur Datenübertragung |
FR2931228B1 (fr) * | 2008-05-16 | 2013-02-15 | Gdi Simulation | Procede de discrimination lors de simulation de tirs |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3114000C2 (de) * | 1981-04-07 | 1983-04-28 | Precitronic Gesellschaft für Feinmechanik und Electronic mbH, 2000 Hamburg | Schießsimulations- und -übungsverfahren für ballistische Munition und bewegliche Ziele |
US4682953A (en) * | 1985-07-09 | 1987-07-28 | L B & M Associates, Inc. | Combined arms effectiveness simulation system |
DE3631421A1 (de) * | 1986-09-16 | 1988-03-17 | Philips Patentverwaltung | Verfahren zur trefferermittlung bei schusssimulation sowie anordnung zur durchfuehrung des verfahrens |
DE3720595A1 (de) * | 1987-04-27 | 1988-11-10 | Precitronic | Verfahren und vorrichtung zur schusssimulation |
DE4026207A1 (de) * | 1990-08-18 | 1992-02-20 | Telefunken Systemtechnik | Verfahren zur darstellung der gefechtsfelddaten von mindestens zwei an einer militaerischen uebung teilnehmenden fahrzeugen |
US5382958A (en) * | 1992-12-17 | 1995-01-17 | Motorola, Inc. | Time transfer position location method and apparatus |
-
1999
- 1999-03-18 DE DE19912093A patent/DE19912093A1/de not_active Withdrawn
-
2000
- 2000-02-26 EP EP00912514A patent/EP1159578B1/de not_active Expired - Lifetime
- 2000-02-26 CA CA002366526A patent/CA2366526C/en not_active Expired - Fee Related
- 2000-02-26 DE DE50001795T patent/DE50001795D1/de not_active Expired - Lifetime
- 2000-02-26 WO PCT/EP2000/001620 patent/WO2000057123A1/de active IP Right Grant
- 2000-02-26 AU AU34252/00A patent/AU754674B2/en not_active Ceased
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1972881A1 (de) | 2007-03-22 | 2008-09-24 | JENOPTIK Laser, Optik, Systeme GmbH | Optisches System und Verfahren zur Geschossbahnnachbildung mittels Laserstrahl |
DE102007014290A1 (de) | 2007-03-22 | 2008-09-25 | Jenoptik Laser, Optik, Systeme Gmbh | Optisches System und Verfahren zur Geschossbahnnachbildung mittels Laserstrahl |
Also Published As
Publication number | Publication date |
---|---|
WO2000057123A1 (de) | 2000-09-28 |
DE19912093A1 (de) | 2000-09-28 |
AU754674B2 (en) | 2002-11-21 |
CA2366526C (en) | 2004-10-05 |
CA2366526A1 (en) | 2000-09-28 |
DE50001795D1 (de) | 2003-05-22 |
EP1159578A1 (de) | 2001-12-05 |
AU3425200A (en) | 2000-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2907590C2 (de) | Verfahren und Vorrichtung zum Auswerten von simulierten Schießübungen mit am Ziel reflektierten Laser-Strahlen | |
DE60106010T2 (de) | Genauigkeitsschusssimulatorsystem und -verfahren | |
EP1325281B1 (de) | Verfahren und vorrichtung zur schusssimulation | |
DE2454453C3 (de) | Vorrichtung zum Durchführen und Auswerten von Schießübungen mit Flugabwehrgeschützen mit simuliertem Feuer | |
DE602004010880T2 (de) | System und Verfahren zur Waffenwirkung-Simulation | |
DE3114000A1 (de) | Schiesssimulations- und -uebungsverfahren fuer ballistische munition und bewegliche ziele | |
EP0890818B1 (de) | Schusssimulationsverfahren und Vorrichtung zur Durchführung des Verfahrens | |
DE3238848A1 (de) | Verfahren und vorrichtung zum gesamten korrigieren des schiessvorganges von einem schuss auf den folgenden bei einer waffe mit gestreckter schussbahn | |
DE3507007C2 (de) | ||
DE2936643A1 (de) | Verfahren und anordnung fuer die abschaetzung der richtgenauigkeit einer waffe | |
EP1159578B1 (de) | Verfahren zur schusssimulation | |
DE3028545C2 (de) | Verfahren zur Schußsimulation bei beweglichen Zielen mittels Lichtsignalen | |
DE1951622C3 (de) | Anordnung zur simulierten Darstellung von Schußbahnen | |
DE19617061C2 (de) | Verfahren und Einrichtung zur Gefechtssimulation auf einem Übungsplatz mit Lichtschußsimulatoren | |
EP1166029B2 (de) | Verfahren zur gefechtsfeldsimulation | |
EP0154809A1 (de) | Verfahren zur Gefechtssimulation | |
DE4111935C2 (de) | ||
DE2339164C3 (de) | Verfahren und Einrichtung zur Simulation eines Schuß- oder Wurfvorganges | |
EP1450125A1 (de) | Verfahren und Vorrichtung zur Bekämpfung eines Zieles | |
DE1728533C3 (de) | Anordnung zum Üben des Zielens mit Schußwaffen | |
DE3004317A1 (de) | Zuendsystem fuer eine granate zur hubschrauberbekaempfung | |
DE3132173A1 (de) | Einrichtung zur bestimmung der treffpunktlage beim beschuss von luftzielen | |
DE2262605C3 (de) | Übungsschießverfahren | |
DE3043767A1 (de) | Verfahren und anordnung zur luft-luft-schiesssimulation | |
DE3545831A1 (de) | Verfahren zum ueben des zielens unter verwendung eines laserschusssimulators und eines zielseitigen retroreflektors sowie schusssimulator zur durchfuehrung dieses verfahrens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010804 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20020408 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE ES GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20030416 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030416 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50001795 Country of ref document: DE Date of ref document: 20030522 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20030416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031030 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D Ref document number: 1159578E Country of ref document: IE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040119 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100219 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50001795 Country of ref document: DE Effective date: 20110901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110901 |