[go: up one dir, main page]

EP1325122A2 - Modulation der transkription pro-inflammatorischer genprodukte - Google Patents

Modulation der transkription pro-inflammatorischer genprodukte

Info

Publication number
EP1325122A2
EP1325122A2 EP01986318A EP01986318A EP1325122A2 EP 1325122 A2 EP1325122 A2 EP 1325122A2 EP 01986318 A EP01986318 A EP 01986318A EP 01986318 A EP01986318 A EP 01986318A EP 1325122 A2 EP1325122 A2 EP 1325122A2
Authority
EP
European Patent Office
Prior art keywords
irf
seq
inhibitor
cells
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01986318A
Other languages
English (en)
French (fr)
Inventor
Markus Hecker
Andreas H. Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avontec GmbH
Original Assignee
Avontec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avontec GmbH filed Critical Avontec GmbH
Publication of EP1325122A2 publication Critical patent/EP1325122A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/13Decoys
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/341Gapmers, i.e. of the type ===---===

Definitions

  • the present invention relates to inhibitors of the translation factor IRF-1, their use as a therapeutic agent and their use for the prevention or therapy of cardiovascular complications such as restenosis after percutaneous angioplasty or the stenosis of renal bypasses, chronic (transplant-arteriosclerosis or nasculopathy) or acute transplant rejection.
  • graft versus host disease GVHD
  • immunological hypersensitivity reactions especially bronchial asthma and atopic dermatitis
  • chronic recurrent inflammatory inflammation genes especially ulcerative colitis and Crohn's disease
  • psoriasis and sarcoidosis and autoimmune diseases especially diabetes mellitus, multiple sclerosis (multiple sclerosis) Lupus erythematosus), rheumatoid arthritis and nasculitis.
  • the vascular endothelium plays a key role in inflammatory diseases, as it is the primary site of interaction of circulating inflammatory cells with tissue.
  • inflammatory diseases e.g. rheumatoid arthritis
  • arteriosclerotic vascular wall lesions including transplant and renal bypass nasculopathy and restenosis after percutaneous angioplasty as well as in chronic inflammatory recurrent inflammation as well as in chronic inflammatory recurrent inflammation
  • Discussions e.g.
  • Lymphocytes and endothelial cells communicate via the CD40 / CD154 receptor / ligand system (also referred to as T ⁇ F receptor / ligand 5 system) with a consecutive increase in chemokine and adhesion molecule expression in the endothelium.
  • CD40 / CD154 receptor / ligand system also referred to as T ⁇ F receptor / ligand 5 system
  • the endothelial cells apparently release biologically active interleulcin-12 only after activation of the CD40 signaling pathway in an amount which is equal to the maximally stimulated monocyte (this are commonly considered the main source of interleukin-12).
  • erleukin-12 is the most important stimulus or differentiation factor for naive T-helper cells, which react with an increased formation of interferon- ⁇ or expression of CD 154 on their surface (these T-helper cells are then considered as THl cells).
  • Interferon- ⁇ in turn increases the expression of CD40 in the endothelial cells, so that a vicious cycle occurs in which endothelial cells, T helper cells and recruited monocytes mutually stimulate one another and keep the inflammatory reaction going.
  • CD40 / CD154 The inflammatory reaction-triggering stimulatory properties of CD40 / CD154 have been demonstrated in animal experiments, among others, in acute or chronic graft rejection (nasculopathy) and in Crohn's disease.
  • endothelial-leukocyte interaction via CD40 / CD154 not only the endothelial-leukocyte interaction via CD40 / CD154, but also, for example, the CD40 / CD154-mediated interaction of monocytes / macrophages or dendritic cells with THl cells or naive T helper cells play a role.
  • smooth vascular muscle cells can also express keratinocytes of the skin or synovial fibroblasts in joints CD40.
  • the activation of the CD40 signaling pathway in these cells is also important not only for the inflammatory reaction, but also leads to tissue restructuring processes such as the remodeling of the vascular wall in transplant nasculopathy, the skin changes in psoriasis or the erosions of the articular cartilage in the rheumatoid arthritis.
  • tissue restructuring processes such as the remodeling of the vascular wall in transplant nasculopathy, the skin changes in psoriasis or the erosions of the articular cartilage in the rheumatoid arthritis.
  • the co-stimulatory properties of CD40 / CD154 are important for the differentiation of B lymphocytes in antibody-producing plasma cells, which is triggered by contact with TH2 cells.
  • the B lymphocytes express CD40, the TH2 cells CD 154. Without this co-stimulation, the plasma cells primarily produce antibodies of the IgM type and hardly antibodies of the IgE or IgG type.
  • An excessive TH2 response i.e. the excessive production of IgE and IgG antibodies, plays an important role in primary allergic, chronic recurrent inflammatory disorders such as bronchial asthma, atopic denatitis and ulcerative colitis, but also in collagen diseases such as systemic lupus erythematosus ( SLE), whereby the formation of auto-reactive autoantibodies is in the Nordergrund in SLE and is therefore regarded as a generalized autoimmune effect.
  • SLE systemic lupus erythematosus
  • the distinction between autoimmune diseases and chronic recurrent inflammatory diseases are problematic, since a common predisposing factor is apparently the imbalance between a TH1 and a TH2-mediated cellular or humoral immune response.
  • results associated with the CD40 / CD154 signaling pathway represent inhibition of CD40 expression in the CD154 target cells.
  • One disadvantage of anti-CD 154 antibody treatment is the risk of hypersensitivity reactions (against the Antibodies), especially after repeated application and poor accessibility, at least for tissue-resistant epitopes (eg infiltrated T-lymphocytes), since the antibodies usually have to be applied via the bloodstream.
  • tissue-resistant epitopes eg infiltrated T-lymphocytes
  • there are no low molecular weight receptor antagonists for CD40 due to the trimerization of the receptor molecule after ligand binding, CD40 antibodies are more likely to activate the CD154 target cells.
  • Fig. 2 shows schematically the result of the time-dependent increase in the nuclear translocation of NFKB (p65 / p50 heterodimer), the p91 / p91 homodimer of Stat-1 and of IRF-1 in human endothelial cells, which was 0.5 hours (NFKB and Stat-1) or 3 hours (IRF-1) with TNF ⁇ (1000 U / ml), IFN ⁇ (1000 U / ml) and TNF ⁇ (100 U / ml) plus IFN ⁇ (1000 U / ml).
  • a pre-incubation (1 hour) with cycloheximide (Cx, 1 ⁇ M) shows that IRF-1 is expressed de ovo. Representative electrophoretic mobility shift analysis, comparable results were obtained in further experiments.
  • Fig. 4 shows schematically the effects of various cis-element decoys against Stat-1, NFKB and IRF-1 (10 ⁇ M, 4 h preincubation) on the CD40 protein content (a) determined with the aid of fluorescence activated cell sorting (FACS) in human Endothelial cells which were incubated for 24 hours with TNF ⁇ (100 U / ml) / IFN ⁇ (1000 U / ml) and the detection of the cell surface protein PECAM-1 (b), which is characteristic of endothelial cells.
  • FACS fluorescence activated cell sorting
  • FIG. 5 shows schematically the results of the effects of TNF ⁇ (2000 U / ml), IFN ⁇ (1000 U / ml) and TNF ⁇ (100 U / ml) plus IFN ⁇ (1000 U / ml) on the CD40 and IRF-1, respectively mRNA levels in human endothelial cells after 9 hours of incubation. Representative experiment, comparable results were obtained in further experiments.
  • FIG. 6 shows schematically the results for the time-dependent increase in CD40 or IRF-1 mRNA expression in human endothelial cells, which for 0, 0.5, 1.5, 3 and 9 hours with IFN ⁇ (1000 U / ml) were incubated. Representative experiment, comparable results were obtained in further experiments.
  • Fig. 7 shows schematically the specificity of the cis-element decoy effect on the CD40 mRNA expression in the human endothelial cells.
  • Preincubation (4 hours) with the cis element Decoy (IRF-ln cons, 10 ⁇ M) but not with the corresponding mutated control oligonucleotide (IRF-ln mut, 10 ⁇ M) inhibits CD40 mRNA expression in cells which are subsequently used for Incubated for 9 hours with TNF ⁇ (100 U / ml) and IFN ⁇ (1000 U / ml).
  • TNF ⁇ 100 U / ml
  • IFN ⁇ 1000 U / ml
  • FIG. 8 shows the inhibition of the cytoin-induced (100 U / ml) TNF ⁇ , 1000 U / ml IFN ⁇ ) expression of the IRF-1 protein (after 3 hours) and the CD40 mRNA (after 9 hours) in human endothelial cells which had previously been treated with an IRF-1 antisense oligonucleotide (AS; SEQ ID NO: 23) for 5 hours (concentration 0.2 ⁇ M).
  • AS IRF-1 antisense oligonucleotide
  • the left half of the picture shows the statistical summary of 3 experiments with different cell batches, the right half shows a representative Western blot or RT-PCR analysis, in (b) plus the densitometric evaluation ("intensity"), given in% the stimulated control and based on the internal standard ß-actin (* P ⁇ 0.05 compared to the stimulated control cells).
  • the corresponding missense (MS) and scrambled (SCR) control oligonucleotides did not influence the expression of IRF-1 or CD40.
  • FIG. 9 shows the electrophoretic mobility shift analysis of the uptake of various IRF-1 cis-element decoys (SEQ ID NO: 13, 17, 19 and 21) in cultured THP-1 cells and the subsequent neutralization of IRF-1.
  • the THP-1 cells were Element decoys preincubated for 1 hour and then stimulated for a further 3 hours with TNF ⁇ (100 U / ml) and IFN ⁇ (1000 U / ml).
  • TNF ⁇ 100 U / ml
  • IFN ⁇ 1000 U / ml
  • the result of the subsequent preparation and analysis of the samples is shown in the left half of the figure.
  • the right half of the picture shows the electrophoretic mobility shift analysis of a core extract of stimulated control cells obtained under identical experimental conditions, which was additionally treated with an anti-IRF-1 antibody as described in Krzesz et al. (1999) FEBS Lett. 453, 191 before the electrophoretic mobility shift analysis had been incubated (supershift analysis).
  • decoy-ODN or "cis-element decoy” or “double-stranded DNA oligonucleotide” used here denotes a double-stranded DNA molecule which has a sequence which corresponds to or is similar to the natural IRF-1 nuclear binding sequence in the genome and to which the transcription factor IRF-1 binds in the cell.
  • the cis element decoy thus acts as a molecule for the competitive inhibition of IRF-1.
  • the inventors were able to elucidate the transcription factors involved in the inflammation-related, cytoldn-mediated increase in CD40 receptor expression in human endothelial cells. Surprisingly, it has been found that the transcription factors are nuclear
  • NF -KB Factor KB
  • Stat-1 Signal Transducer and Activator of Transcription-1
  • TNF ⁇ Tumor necrosis factor- ⁇
  • IFN ⁇ interferon- ⁇
  • Transcription factors are not latently present in the cell, but first have to be synthesized de novo, usually after exposure to interferon- ⁇ and activation of the transcription factor Stat-1.
  • oligonucleotides are used in human cells in cell culture, the cytokine-induced CD40 expression (both with monostimulation with IFN ⁇ and with a combination of IFN ⁇ and TNF ⁇ ) is inhibited.
  • the induction of IRF-1 precedes the induction of CD40, so that an antisense oligonucleotide blockade of IRF-1 expression inhibits cytokine-induced CD40 expression to the same extent as the decoy oligonucleotides. Switching off the IRF-1 activity in cells results in a highly significant and selective inhibition of CD40 expression in these cells.
  • the endothelium-leukocyte interaction in particular the interaction of TH1 and endothelial cells, is weakened and represents the basis for the success of the therapy.
  • This also applies analogously to the weakening of the CD40 / CD154-mediated Interaction of naive T helper cells with antigen-presenting cells (e.g. monocytes, dendritic cells), of TH2 cells with B lymphocytes, and of other CD40-expressing cells (e.g. smooth muscle cells, keratinocytes, fibroblasts) with CD154-expressing cells ( THl cells, activated platelets).
  • antigen-presenting cells e.g. monocytes, dendritic cells
  • TH2 cells e.g. smooth muscle cells, keratinocytes, fibroblasts
  • CD154-expressing cells e.g. smooth muscle cells, keratinocytes, fibroblasts
  • One aspect of the present invention is therefore to provide an inhibitor of the activity of the transcription factor IRF-1 as a therapeutic agent.
  • Proteins, including IRF-1 can be inhibited in their activity in various ways.
  • Anti-IRF-1 antibodies, natural or synthetic substances that cause IRF-1 interaction with the DNA, i.e. reducing transactivation activity can be used.
  • the de novo synthesis of IRF-1 could also be inhibited by blocking Stat-1 or the signaling pathways leading to Stat-1 activation (Janus kinases).
  • a preferred method for the specific inhibition of IRF-1 activity is the use of double-stranded DNA oligonucleotides, also called cis-element decoy or decoy-ODN, which contain a binding site for IRF-1.
  • cis-element decoy or decoy-ODN double-stranded DNA oligonucleotides
  • decoy-ODN double-stranded DNA oligonucleotides
  • the sequence of a nucleic acid used to prevent binding of the transcription factor IRF-1 is the sequence to which IRF-1 naturally binds in the cell.
  • the cis-element decoy can also be larger than the 13-mer binding sequence and can be extended at the 5 'end and / or at the 3' end. Corresponding mutations in the region of the binding sequence lead to the loss of the binding of STAT-1 to the decoy oligonucleotide.
  • the DNA oligonucleotide according to the invention comprises not only the sense or forward sequence but also the complementary antisense or reverse sequence.
  • Preferred DNA oligonucleotides according to the invention have the following 13-mer binding sequences for IRF-1:
  • the cis element decoy can also have a sequence different from the above sequence and can be longer than a 13-mer.
  • the affinity for binding a nucleic acid sequence to IRF-1 can be determined using the Electrophoretic Mobility Shift Assay (EMSA) (Sambrook et al. (1989) Molecular Cloning. Cold Spring Harbor Laboratory Press; Krzesz et al. (1999) FEBS Lett. 453 , 191) can be determined.
  • ESA Electrophoretic Mobility Shift Assay
  • This test system is suitable for the quality control of nucleic acids intended for use in the method of the present invention or the determination of the optimal length of a binding site. It is also suitable for the identification of other sequences which are bound by IRF-1.
  • EMSA For an EMSA, intended for the isolation of new binding sites, the best suited are purified or recombinantly expressed versions of IRF-1, which are used in several alternating rounds of PCR amplification and selection by EMSA (Thiesen and Bach (1990) Nucleic Acids Res 18, 3203).
  • Genes which are known to contain IRF-1 binding sites in their promoter or enhancer regions and which are therefore putative targets for specific squelching by the method of the present invention include the CD40 gene and other pro- inflammatory genes e.g. cyclooxygenase-2, subunits of NADPH oxidase ( ⁇ 67phox and gp91phox), the inducible isoform of nitrogen monoxide (NO) synthase, interleukins 6, 8 and 12 as well as the adhesion molecules RANTES (soluble in T-lymphocytes, regulated upon activation, normal T-cell expressed, presumed secreted) and VCAM-1 (vascular cell adhesion olecule-1, also called CD 106).
  • pro- inflammatory genes e.g. cyclooxygenase-2, subunits of NADPH oxidase ( ⁇ 67phox and gp91phox), the inducible isoform of nitrogen monoxide (NO) synthase, interleukins 6,
  • the method of the present invention modulates the transcription of a gene or genes in such a way that the gene or genes, e.g. CD40, not or reduced expression.
  • Decreased or suppressed expression in the context of the present invention means that the transcription rate is reduced in comparison to cells which are not treated with a double-stranded DNA oligonucleotide according to the invention.
  • Such a change can be determined, for example, by Northern blot (Sambrook et al., 1989) or RT-PCR analysis (Sambrook et al., 1989).
  • Such a reduction is typically at least a 2-fold, in particular at least a 5-fold, in particular at least a 10-fold reduction.
  • the loss of activation can be calibrated, for example, if IRF-1 acts as a transcription activator on a specific gene and therefore squelching the activator leads to loss of expression of the target gene.
  • the method of the present invention enables the inhibition of the expression of a gene, provided that this is blocked by a constitutively active or (after corresponding stimulation of the cell) an activated transcription factor.
  • a constitutively active or (after corresponding stimulation of the cell) an activated transcription factor is an example of this.
  • an activated transcription factor is the inhibition of the expression of the prepro-endothelin-1 gene in native endothelial cells of the jugular vein of the rabbit by a cis-element decoy against the transcription factor CCAAT / enhancer binding protein (Lauth et al., J. Mol. Med ., (2000), 78, 441).
  • the expression of genes can be inhibited, the products of which have a protective effect, e.g. against inflammatory diseases.
  • the cis element decoy which is used in the present invention contains one or more, preferably 1, 2, 3, 4 or 5, particularly preferably 1 or 2, binding sites to which IRF-1 specifically binds.
  • the nucleic acids can be produced synthetically, by enzymatic methods or in cells. The individual processes are state of the art and known to the person skilled in the art.
  • the length of the double-stranded DNA oligonucleotide is at least as long as a sequence used that specifically binds IRF-1.
  • the double-stranded DNA oligonucleotide used is usually between about 13-65 bp, preferably between about 13-65 bp 26 bp and particularly preferably between 18-23 bp.
  • oligonucleotides are rapidly degraded by endo- and exonucleases, in particular DNases and RNases in the cell. Therefore, the DNA oligonucleotides can be modified to stabilize them against degradation, so that a high concentration of the oligonucleotides in the cell is maintained over a longer period of time. Typically, such stabilization can be obtained by introducing one or more modified intemucleotide bonds.
  • a successfully stabilized DNA oligonucleotide does not necessarily contain a modification to every hite ⁇ iucleotide bond.
  • the intemucleotide bonds at the respective ends of both oligonucleotides of the cis-element decoy are preferably modified.
  • the last six, five, four, three, two or the last or one or more emucleotide bonds within the last six intemucleotide bonds can be modified.
  • various modifications of the intemucleotide bonds can be introduced into the nucleic acid and the resulting double-stranded DNA oligonucleotides can be tested for sequence-specific binding to IRF-1 using the routine EMSA test system.
  • Modified cis-element decoys which still show sufficient binding can be selected, with sufficient binding meaning at least about 50% or at least about 75%, and particularly preferably about 100%, of the binding of the unmodified nucleic acid.
  • Cis-element decoys with modified intemucleotide binding which still show sufficient binding, can be checked whether they are more stable in the cell than the unmodified cis-element decoys.
  • the cells transfected with the cis-element decoys according to the invention are examined at various times for the amount of the cis-element decoys then still present.
  • a cis-element decoy marked with a fluorescent dye (eg Texas red) or a radioactively marked (eg 32 P) cis-element decoy is preferably used, followed by digital fluorescence microscopy or autoradiography or scintigraphy.
  • a successfully modified cis-element decoy has a half-life in the cell that is higher than that of an unmodified one Cis-element decoys, preferably at least about 48 hours, more preferably at least about 4 days, most preferably at least about 7 days.
  • Modified intemuldeotide phosphate residues and / or non-phosphorus bridges in a nucleic acid that can be used in a method of the present invention include, for example, methylphosphonate, phosphorothioate, phosphorodithioate, phosphoramidate, phosphate ester, while non-phosphorus ether nucleotide analogs, for example Contain siloxane bridges, carbonate bridges, carboxymethyl ester bridges, acetamidate bridges and / or thioether bridges.
  • a further embodiment of the invention is the stabilization of nucleic acids by introducing structural features into the nucleic acid which increase the half-life of the nucleic acid.
  • Such structures containing hairpin and bell DNA are disclosed in US 5,683,985.
  • modified hitemuldeotide-phosphate residues and / or non-phosphorus bridges can be introduced together with the structures mentioned.
  • the resulting nucleic acids can be tested for binding and stability in the test system described above.
  • the binding sequence can be present not only in a cis-element decoy, but also in a vector.
  • the vector is a plasmid vector and in particular a plasmid vector that is able to replicate autosomally, thereby ensuring the stability of the introduced double-stranded nucleic acid increased.
  • Another aspect of the present invention is a double-stranded DNA oligonucleotide which is capable of binding to the transcription factor IRF-1 in a sequence-specific manner and preferably has one of the following sequences, only one strand of the double-stranded DNA oligonucleotide being shown here and the complementary strand is also included:
  • Double-stranded DNA oligonucleotides of the present invention have a length, modifications, and possibly a repetition of the specific binding site, as described in detail above.
  • the optimal length of the cis-element decoy is selected in order to optimize the binding to IRF-1 and the uptake into the cell.
  • a double-stranded DNA oligonucleotide that is shorter than 12 bp binds only weakly to its target protein, while a double-stranded DNA oligonucleotide that is longer than 22 bp, although it binds strongly, is absorbed into the cell with low efficiency .
  • the binding strength can be determined by EMSA, while the uptake of the double-stranded nucleic acid can be analyzed with the aid of a fluorescent dye (e.g. Texas red) or radioactively labeled (e.g. 32 P) cis-element decoy and subsequent digital fluorescence microscopy or autoradiography or scintigraphy.
  • a cis-element decoy of the present invention can be stabilized as described above.
  • a preferred embodiment of the present invention are cis-element decoys which contain a palm-dromic binding site and therefore comprise at least two transcription factor binding sites in a short double-stranded nucleic acid.
  • the palindromic sequence does not necessarily result in a higher binding of IRF-1, but is absorbed faster (more efficiently) by the target cells.
  • the shorter cis-element decoys according to the invention are palindromic only at the ends because of the long (centrally arranged) binding sequence and the repetitive G / CAAA motifs.
  • the binding sequence may also be preferred rather be arranged at the edges, as is the case with some of the preferred cis-element decoy sequences.
  • a cis-element decoy of the present invention is rapidly taken up into the cell. Adequate uptake is characterized by the modulation of one or more genes that can be modulated by IRF-1.
  • the cis-element decoy of the present invention preferably modulates the transcription of a gene or genes after about 4 hours of contact with the cell, more preferably after about 2 hours, after about 1 hour, after about 30 minutes and most preferably after about 10 minutes.
  • a typical mixture used in such an experiment contains 10 ⁇ mol / 1 cis-element decoy.
  • the present invention further relates to a method for modulating the transcription of at least one gene in CD40-expressing cells, in particular in endothelial cells, monocytes, denditric cells, B-lymphocytes, smooth muscle cells, keratinocytes or fibroblasts, the method comprising the step of contacting the aforementioned Cells with a mixture containing one or more double-stranded nucleic acid (s), which are able to bind sequence-specifically to the transcription factor IRF-1, comprises.
  • a preferred method is use in endothelial cells that are part of a graft. Typically, the method is applied to a graft in vivo or ex vivo prior to implantation.
  • the grafts can be treated prior to implantation by ex vivo application of the method of the present invention or after implantation by in vivo application of the method.
  • the treated graft is (thin) intestine, heart, liver, lung, kidney and pancreas or a combination of several organs.
  • the treatment of the organs, more precisely the pearl incubation of their blood vessels with the cis-element decoys according to the invention can be carried out ex vivo by rinsing out the solution immediately before the implantation.
  • the organ can be stored in a corresponding preservation solution (cooled) at the same time (e.g. University of Wisconsin Solution, Brettschneider HTK solution).
  • the mixture containing the cis-element decoys according to the invention is mixed with the target cells (eg endothelial cells, monocytes, denditric cells, B-lymphocytes, smooth muscle cells, Keratinocytes or fibroblasts).
  • the target cells eg endothelial cells, monocytes, denditric cells, B-lymphocytes, smooth muscle cells, Keratinocytes or fibroblasts.
  • the goal of this h-touching is to transfer the cis-element decoys that bind IRF-1 into the target cell (ie, the CD40-expressing cell). Therefore, nucleic acid modification and / or additives or adjuvants which are known to increase membrane penetration can be used in the present invention (Uhlmann and Peyman (1990) Chem. Rev. 90, 544).
  • a mixture according to the invention contains only nucleic acid and buffer.
  • a suitable concentration of the cis-element decoys is in the range of at least 0.1 to 100 ⁇ mol / L, preferably 10 ⁇ mol / L, one or more suitable buffers being added.
  • Such a buffer is Tyrode solution containing 144.3 nmol / 1 Na + , 4.0 mmol / 1 K + , 138.6 mmol / 1 Cl " , 1.7 mmol / 1 Ca 2+ , 1.0 mmol 1 Mg 2+ , 0.4 mmol / 1 HPO 4 2 ' , 19.9 mmol / 1 HCO 3 " , 10.0 mmol / 1 D-glucose.
  • the mixture additionally contains at least one additive and / or auxiliary.
  • Additives and / or adjuvants such as lipid, cationic lipids, polymers, liposomes, nanoparticles, nucleic acid aptamers, peptides and proteins that are bound to DNA, or synthetic peptide-DNA molecules are intended, for example, to introduce nucleic acids into the cell to direct the mixture to only one subgroup of cells to prevent degradation of the nucleic acid in the cell to facilitate storage of the nucleic acid mixture prior to use.
  • Examples of peptides and proteins or synthetic peptide-DNA molecules are e.g. Antibodies, antibody fragments, ligands, adhesion molecules, all of which can be modified or unmodified.
  • Additives that stabilize the cis-element decoys in the cell are, for example, nucleic acid-condensing substances such as cationic polymers, poly-L-lysine or polyethyleneimine.
  • the mixture used in the process of the present invention is preferably applied topically by injection, catheter, suppository ("suppository"), aerosols (nasal or oral spray, inhalation) trocars, projectiles, pluronic gels, polymers that are persistent Release medication, or any other device that provides local access allows. Ex vivo use of the mixture used in the method of the present invention also allows local access.
  • Another aspect of the present invention is to provide an inhibitor of IRF-1 expression as a therapeutic agent.
  • This inhibitor is preferably a single-stranded nucleic acid molecule, a so-called antisense oligonucleotide.
  • Antisense oligonucleotides can inhibit the synthesis of a target gene on three different levels, in the transcription (prevention of hnRNA synthesis), the processing (splicing) of the hnRNA to the mRNA and the translation of the mRNA into protein on the ribosomes.
  • the ner driving to inhibit the expression of genes by means of antisense oligonucleotides is well known in the art and to those skilled in the art.
  • the antisense oligonucleotide against IRF-1 used in the method according to the invention preferably has the sequence 5'-CGAGTGATGGGCATGTTGGC-3 '(SEQ ID ⁇ O: 23) and bridges the start codon.
  • Further preferred sequences for antisense oligonucleotides are 5'-GATTCGGCTGGTCGC-3 '(SEQ ID NO: 24), 5'-TAATCCAGATGAGCCC-3' (SEQ ID NO: 25) and 5'-GGAGCGATTCGGCTGGT-3 '(SEQ ID NO: 26).
  • the antisense oligonucleotide can be a single-stranded DNA molecule, RNA molecule or a DNA-RNA hybrid molecule.
  • the antisense oligonucleotide may also have one or more modified intemucleotide linkages, e.g. those described above for the Cis Element Decoy.
  • Another aspect of the present invention is an antisense oligonucleotide that specifically inhibits IRF-1 expression and preferably has one of the following sequences:
  • Another aspect of the present invention is furthermore the use of the antisense oligonucleotides and / or double-stranded DNA molecules according to the invention for the production of a medicament for the prevention and / or therapy of cardiovascular complications such as resteosis after percutaneous angioplasty or the stenosis of vein bypasses, the chronic (transplant - arteriosclerosis or vasculopathy) or acute graft rejection, graft versus host disease (GVHD), immunological hypersensitivity reactions (allergies) especially bronchial asthma and atopic dermatitis, chronic recurrent inflammatory diseases especially ulcerative colitis and Crohn's disease, in particular psoriasis, and autoimmune genes, and autoimmune diseases and sarcoma, and autoimmune genes, as well as anemia and autoimmune diseases Diabetes mellitus, multiple sclerosis, collagenosis (eg systemic lupus erythematosus), rheumatoid arthritis and vasculitis ..
  • a particular advantage of this therapeutic approach is the simultaneous weakening of the THl and TH2 cell response, in which the CD40 / CD154 signaling pathway has a co-stimulatory effect.
  • the TH1 cell reaction e.g. psoriasis
  • the TH2 cell reaction is dampened (e.g. atopic dermatitis) or vice versa.
  • Human endothelial cells were isolated from umbilical cord veins by treatment with 1.6 U / ml dispase in Hepes-modified Tyrode solution for 30 min at 37 ° C. and on gelatin-coated 6-hole tissue culture dishes (2 mg / ml gelatin in 0.1 M HC1 for 30 min. At ambient temperature) in 1.5 ml M199 medium containing 20% fetal calf serum, 50 U / ml penicillin, 50 ⁇ g / ml streptomycin, 10 U / ml nystatin, 5 mM HEPES and 5 mM TES, 1 ⁇ g / ml Heparin and 40 ⁇ g / ml endothelial growth factor, cultured.
  • the total endothelial RNA was isolated using the Qiagen RNeasy Kit (Qiagen, Hilden, Germany), followed by cDNA synthesis with a maximum of 3 ⁇ g RNA and 200 U Superscript TM II reverse transcriptase (Gibco Life Technologies, Düsseldorf, Germany) in a total volume of 20 ⁇ l according to the manufacturer's instructions.
  • cDNA loading 5 ⁇ l (approximately 75 ng cDNA) of the resulting cDNA solution and the primer pair (Gibco) for elongation factor 1 (EF-1) PCR with 1 U Taq DNA polymerase (Gibco) in a total volume of 50 ⁇ l used.
  • EF-1 served as the internal standard for PCR.
  • PCR products were separated on 1.5% agarose gels containing 0.1% ethidium bromide and the intensity of the bands was determined densitometrically using a CCD camera system and the One-Dscan gel analysis software from Scanalytics (Billerica, MA, USA) determined to adjust the volume of the cDNA in subsequent PCR analyzes.
  • Electrophoretic Mobility Shift Analysis The nuclear extracts and [ 32 P] -labeled double-stranded consensus oligonucleotides (Santa Cruz Biotechnologie, Heidelberg, Germany), non-denaturing polyacrylamide gel electrophoresis, autoradiography and supershift analysis were carried out as in Krzesz et al. (1999) FEBS Lett. 453, 191.
  • Oligonucleotides with the following single-stranded sequences were used (binding sequences are underlined): NFKB, 5'-AGTTGAGGGGACTTTCCCAGGC-3 '(SEQ ID NO: 35); STAT-1, 5'-CATGTTATGCATATTCCTGTAAGT G-3 '(SEQ ID NO: 36); IRF-1,5'-GGAAGCGAAAATGAAATTGACT-3 '(SEQ ID NO: 19).
  • Double-stranded dODN were from the complementary single-stranded phosphorothioate-linked oligonucleotides (Eurogentec, Cologne, Germany) as in Krzesz et al. (1999) FEBS Lett. 453, 191.
  • the cultured human endothelial cells were preincubated for 4 hours at a concentration of 10 ⁇ M of the respective dODN. These were the conditions that had already been optimized based on EMSA and RT-PCR analysis. Thereafter, the medium containing dODN was generally replaced by fresh medium.
  • the single-stranded sequences of the dODN were as follows (underlined letters denote phosphorothioate-linked bases, all in 5 '- 3' direction): NF-KB, AGTTGAGGGGACTTTCCCAGGC (SEQ ID NO: 35);
  • STAT-1 CATGTTATGCATATTCCTGTAAGTG (SEQ ID NO: 36); IRF-1, GGAAGCGAAAATGAAATTGACT (SEQ ID NO: 19;
  • the sequence of the IRF-1 antisense oligonucleotide was 5'-CGAGTGATGGGC-ATGTTGGC-3 '(SEQ ID NO: 23).
  • a missense oligonucleotide (IRF-1 MS, 5'-CGAGTGGTAGACGTATTGGC-3 '(SEQ ID NO: 38)) and a scrambled oligonucleotide (IRF-1 SCR, 5'-GAGCTGCTGAGGTCGTTGAG-3 c (SEQ ID NO : 39)) used.
  • the endothelial cells to be analyzed were first washed three times with 1 ml of FACS buffer (PBS, 2% fetal calf serum, sterile filtered) and then taken up in 2 ml of FACS buffer. After centrifugation (300xg, 5 min., + 4 ° C) and determination of the total cell number (Neubauer cell chamber), the fluorescence-labeled antibody (Pharmingen, San Diego, USA) was added according to the manufacturer (20 ⁇ l / 10 6 cells) and incubated for 30 min at + 4 ° C in the dark. The mixture was then washed with 2 ml of FACS buffer and centrifuged for 10 min at 300xg and + 4 ° C.
  • FACS buffer PBS, 2% fetal calf serum, sterile filtered
  • the supernatant was decanted, the cell pellet resuspended in 1 ml Cell-Fix (PBS, 1%> formaldehyde) and stored in the dark at + 4 ° C until measurement (EPICS®XL-MCL, Coulter, Krefeld, Germany).
  • the following antibodies were used: CD40, R-phycoerythrin (R-PE) - and fluorescein isothiocyanate (F ⁇ TC) conjugated; PECAM-1 (CD31), fluorescein isothiocyanate (F ⁇ TC) conjugated.
  • the corresponding R-PE and FITC-conjugated isotype controls were used to determine non-specific cell-antibody bindings.
  • Protein were denatured using a 10% polyacrylamide gel electrophoresis
  • BioTrace TM polyvinylidene fluoride transfer membrane (Pall Corporation, Rossdorf, Germany) transferred.
  • a polyclonal primary antibody directed against the C-terminus was used to detect CD40 protein.
  • the protein bands were determined after the addition of a peroxidase-coupled anti-rabbit IgG
  • the stem combination Brown Norway donor on Lewis recipient was used for allogeneic transplantation.
  • the transplant was rejected after 7 days without nmunsuppression.
  • the Lewis to Lewis transplant served as syngeneic controls.
  • the aorta was clamped proximal and distal to the outlet of the mesenteric artery, the portal vein was cut at the level of the liver hilum and the vascular bed of the small intestine was rinsed with cold University of Wisconsin (UW) solution until there were no macroscopic blood residues in the vascular bed, in the last step the intestinal lumen was also rinsed with cold UW solution and the intestine was removed with an aortic segment and kept in cold UW solution until implantation (duration up to 120 minutes).
  • UW University of Wisconsin
  • the abdomen was opened in the midline under ether inhalation anesthesia.
  • the aorta and vena cava were shown and simultaneously clamped off.
  • the vessel was connected end-to-side in continuous suturing using an 8-0 nylon thread.
  • the aortic segment bearing the mesenteric artery on the infrarenal aorta and the portal vein on the infrarenal vena cava were anastomosed.
  • the terminal ileum of the donor intestine was also connected end-to-side to the terminal ileum of the recipient intestine using a 6-0 nylon thread.
  • the oral end of the donor intestine was closed by ligature xmd the abdomen was closed in two layers continuously. Postoperatively, the animals received Temgesic in the drinking water for analgesia.
  • the intravital microscopy was carried out with an Axiotech Vario 100 microscope from Zeiss (Göttingen), equipped with an HBO 100 mercury lamp for epifluorescence measurements. With the use of 10x, 20x and 40x (water immersion) lenses, resolutions of 243x, 476x and 933x were calibrated. The microscopic images were recorded with a CCD video camera (CF 8/1, Kappa) and recorded on a video tape for later evaluation.
  • CF 8/1, Kappa CCD video camera
  • the rats Seven days after the transplant, the rats (6 animals per group) became deeper Diethyl ether anesthesia x examined intravital microscopically.
  • the trachea was cannulated to make breathing easier.
  • a polyurethane catheter was placed in the carotid artery to permanently check blood pressure and simplify the application of dyes.
  • the body temperature of the animals was kept constant by a heatable plate.
  • the animals were opened by means of a ventral-median incision, the descending colon was outsourced, a small incision was made antimesenterically and the intestine was fastened in a special holder to facilitate microscopy. In order to prevent the tissue from drying out, the intestine was permanently wetted with Ringer's solution.
  • the intestinal microcirl circulation was visualized by the injection of 0.8 ml 0.5%> FITC- (fluorescein isothiocyanate) coupled dextran.
  • FITC- fluorescein isothiocyanate
  • the various parameters were quantified as follows: The perfusion index resulted from the perfused Mulcosa areas (in%>) + 0.5x of all irregularly perfused Mulcosa areas (in% > ).
  • the functional capillary density was determined by a computer-assisted image analysis (CAP-IMAGE software, Zeintl, Heidelberg).
  • the leukocytes were marked by the injection of 0.2 ml of 0.1% Rhodamine-6 G (Sigma, Heidelberg) and microscopic postcapillary venules in the submu osa.
  • Adherent leukocytes (“stickers”) were defined as leukocytes that adhered to the endothelium in a vessel segment of 100 ⁇ m in length for at least 20 seconds. The number of stickers / mm 2 endothelial surface was calculated. The endothelial surface was obtained from the surface calculation for a cylinder.
  • the mulcosal functional capillary density was reduced in the control group as well as in the group treated with mutated control oligonucleotide to 10% of the values of syngene transplanted small intestines without rejection.
  • the functional capillary density was increased by a factor of 4 in small intestines treated with the Stat-1 cis element Decoy.
  • the blood flow (flow rate of the erythrocytes) in these animals was 10-fold and the perfusion index 3-fold.
  • the stasis index was reduced by 60% and the number of leukocytes adhering to the endothelium by 25%. Only the latter parameter was not statistically significantly changed. Overall, the rejection-related reduction in intestinal perfusion and thus the degeneration of the graft was significantly reduced in the group treated with the cis element Decoy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Pulmonology (AREA)
  • Diabetes (AREA)
  • Plant Pathology (AREA)
  • Dermatology (AREA)
  • Microbiology (AREA)
  • Rheumatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Cardiology (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Pain & Pain Management (AREA)

Abstract

Die vorliegende Erfindung betrifft Inhibitoren des Transkriptionsfaktors IRF-1, deren Verwendung als therapeutisches Mittel sowie deren Verwendung zur Prävention oder Therapie kardiovaskulärer Komplikationen wie der Restenose nach perkutaner Angioplastie oder der Stenosierung von Venenbypässen, der chronischen (Transplantat-Arteriosklerose oder Vaskulopathie) oder akuten Transplantatabstossung, der graft versus host disease (GVHD), immunologischen Überempfindlichkeitsreaktionen (Allergien) insbesondere Asthma bronchiale und atopische Dermatitis, chronisch rezidivierenden Entzündungserkrankungen insbesondere Colitis ulcerosa und Morbus Crohn, Psoriasis und Sarkoidose, sowie Autoimmunerkrankungen insbesondere Diabetes mellitus, multiple Sklerose, Kollagenosen (z.B. systemischer Lupus erythematodes), rheumatoide Arthritis und Vaskulitiden.

Description

Modulation der Transkription pro-inflammatorischer Genprodukte
Die vorliegende Erfindung betrifft Inhibitoren des Translαiptionsfaktors IRF-1, deren Verwendung als therapeutisches Mittel sowie deren Verwendung zur Prävention oder Therapie kardiovaskulärer Komplikationen wie der Restenose nach perkutaner Angioplastie oder der Stenosierurig von Nenenbypässen, der chronischen (Transplantat-Arteriosklerose oder Naskulopathie) oder akuten Transplantatabstoßung, der graft versus host disease (GVHD), immunologischen Überempfindlic ceitsreaktionen (Allergien) insbesondere Asthma bronchiale und atopische Dermatitis, chronisch rezidivierenden Entzündungserlcranl ingen insbesondere Colitis ulcerosa und Morbus Crohn, Psoriasis und Sarkoidose, sowie Autoimmunerkrankungen insbesondere Diabetes mellitus, multiple Sklerose, Kollagenosen (z.B. systemischer Lupus erythematodes), rheumatoide Arthritis und Naskulitiden.
Das Gefäßendothel nimmt eine Schlüsselstellung bei Entzündungserkrankungen ein, da es den primären Interaktionsort zirkulierender entzündungskompetenter Zellen mit dem Gewebe darstellt. So sind vielfältige Wechselwirkungen von Endothelzellen mit Monozyten und polymorphkemigen neutrophilen Granulozyten bei akuten oder chronischen Entzündungen beschrieben. In letzter Zeit wird auch die Interaktion von Endothelzellen mit pro- infiammatorischen T-Helferzellen (TH1) bei Autoimmunerkrankungen (z.B. rheumatoide Arthritis), bei arteriosklerotischen Gefäßwandläsionen einschließlich der Transplantat- und Nenenbypass-Naskulopathie sowie der Restenose nach perkutaner Angioplastie ebenso wie bei chronisch rezidivierenden Entzündungserl -tnkungen (z.B. Morbus Crohn, Psoriasis) verstärkt diskutiert. Dabei kommunizieren Lymphozyten und Endothelzellen über das CD40/CD154- Rezeptor/Ligand-System (auch als TΝF-Rezeptor/Ligand-5-System bezeichnet) mit konsekutiver Steigerung der Chemokin- und Adhäsionsmolekülexpression im Endothel. Darüber hinaus setzen die Endothelzellen, im Gegensatz zu anderen antigenpräsentierenden Zellen wie z.B. Monozyten, offenbar nur nach Aktivierung des CD40-Signalweges biologisch aktives Interleulcin-12 in einer Menge frei, die der maximal stimulierter Monozyten gleichkommt (diese gelten gemeinhin als Hauptquelle für Interleukin-12). erleukin-12 ist der wichtigste Stimulus bzw. Differerizierungsfaktor für naive T-Helferzellen, die mit einer verstärkten Bildung von Interferon-γ bzw. Expression von CD 154 auf ihrer Oberfläche reagieren (diese T-Helferzellen gelten dann als THl -Zellen). Interferon-γ seinerseits verstärkt die Expression von CD40 in den Endothelzellen, so dass es zu einem Teufelskreis kommt, bei dem sich Endothelzellen, T- Helferzellen und rekrutierte Monozyten gegenseitig stimulieren und die Entzündungsreaktion in Gang halten.
Die Entzündungsreaktion auslösenden ko-stimulatorischen Eigenschaften von CD40/CD154 wurden u.a. bei der akuten bzw. chronischen Transplantatabstoßung (Naskulopathie) sowie beim Morbus Crohn tierexperimentell nachgewiesen. Dabei spielt jedoch nicht nur die Endothel- Leukozyten-Wechselwirkung über CD40/CD154, sondern auch z.B. die CD40/CD154-vermit- telte Interaktion von Monozyten/Makrophagen oder dendritischen Zellen mit THl -Zellen bzw. naiven T-Helferzellen eine Rolle. Ferner können z.B. glatte Gefäßmuskelzellen aber auch Kerati- nozyten der Haut oder synoviale Fibroblasten in Gelenken CD40 exprimieren. Die Aktivierung des CD40-Signalweges in diesen Zellen ist ebenfalls von Bedeutung nicht nur für die Entzündungsreaktion, sondern führt auch zu Umstrukturierungsprozessen im Gewebe wie z.B. dem Remodelling der Gefäßwand bei der Transplantat-Naskulopathie, den Hautveränderungen bei der Psoriasis oder den Erosionen des Gelenkknorpels bei der rheumatoiden Arthritis. Neben den CD154-induzierten, Interleukin-12-abhängigen und THl -vermittelten chromschen Entzündungserlαrankungen bzw. Autoimmunreaktionen, zu denen auch Diabetes mellitus, multiple Sklerose, Sarkoidose und Naskulitiden zählen, sind die ko-stimulatorischen Eigenschaften von CD40/CD154 wichtig für die Differenzierung von B-Lymphozyten in Antikörper-produzierende Plasmazellen, die durch den Kontakt mit TH2-Zellen ausgelöst wird. Dabei exprimieren die B-Lymphozyten CD40, die TH2-Zellen CD 154. Ohne diese Ko- Stimulation produzieren die Plasmazellen primär Antikörper vom Typ IgM und kaum Antikörper vom Typ IgE oder IgG. Eine übersteigerte TH2-Antwort, d.h. die übermäßige Produktion von Antikörpern des Typs IgE und IgG spielt eine wichtige Rolle bei primär allergisch bedingten, chronisch rezidivierenden Entzündungserlσankungen wie Asthma bronchi- ale, atopische Deπnatitis und Colitis ulcerosa, aber auch bei Kollagenosen wie systemischer Lupus erythematodes (SLE), wobei beim SLE die Bildung autoreaktiver Autoantikörper im Nordergrund steht und dieser insofern als generalisierte Autoimmunerl ikung betrachtet wird. Generell ist die Unterscheidung zwischen Autoimmunerkrankungen und chronisch rezidivierenden Entzündungserkrankungen problematisch, da ein gemeinsamer prädisponierender Faktor offenbar das Ungleichgewicht zwischen einer THl- und einer TH2- vermittelten zellulären bzw. humoralen Lmminantwort ist.
Den derzeit einzig sinnvollen Therapieansatz für die Behandlung der u.a. mit dem CD40/CD154 Signalweg assoziierten Erloranlcungen stellt neben blockierenden Antikörpern gegen CD 154 die - hibierung der CD40-Expression in den CD154-Zielzellen dar. Ein Nachteil der Anti-CD 154- Antikö erbehandlung besteht unter anderem in der Gefahr von Überempfindlichkeitsreaktionen (gegen den Antikörper), vor allem bei wiederholter Applikation sowie die zumindest für gewebeständige Epitope (z.B. infiltrierte T-Lymphozyten) schlechte Zugänglichkeit, da die Antikörper in der Regel über die Blutbahn appliziert werden müssen. Allerdings gibt es, wie für viele andere Zytokinrezeptoren auch, keine niedermolekularen Rezeptorantagonisten für CD40. Ferner aktivieren aufgrund der Trimerisierung des Rezeptormoleküls nach Ligandenbindung CD40-Antikörper eher die CD154-Zielzellen. Andere sich von einer allgemeinen Dämpfung der Entzüiidungsreäktion abgrenzenden Strategien sind die Stimulation der THl -Zellantwort bei Überwiegen einer TH2-Zellreaktion (z.B. durch die Gabe von einem THl-Zytokin wie Interferon-γ) oder umgekehrt durch die Stimulation der TH2-Zellantwort bei Überwiegen einer THl -Zellreaktion (z.B. durch Gabe von einem TH2-Zytokin wie Interleuldn-10). Da sich die Reaktionen der T-Helferzellen Zytokin-vermittelt antagonisieren (d.h., ein Überwiegen der TH1- Zellantwort führt zur Dämpfung der TH2-Zellantwort und umgekelirt), bergen diese Strategien aber die Gefahr in sich, den jeweils anderen Arm der T-Helferzellantwort zu enthemmen, mit der Möglichkeit, eine dementsprechende andersartige Entzündungsreaktion auszubilden.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde Mittel für eine Prävention und/oder Therapie von Entzündungserkrankungen zur Verfügung zu stellen, die u.a. mit der CD40/CD154-Kostimulation assoziiert sind.
Die Aufgabe wird durch den in den Patentansprüchen definierten Gegenstand gelöst.
Die Erfindung wird durch die nachfolgenden Figuren näher erläutert:
Fig. 1 zeigt in einer Grafik das Ergebnis der CD40 mRNA-Expression (RT-PCR-Analyse) in nicht-stimulierten, TNFα (1000 U/ml), IFNγ (1000 U/ml) und TNFα (100 U/ml) plus IFNγ (1000 U/ml)-stimulierten kultivierten humanen Endothelzellen nach 9 Stunden (bezogen in % auf die basale CD40-Expression in nicht-stimulierten Endothelzellen) (n=5-9, * P < 0,05 versus basal, fP < 0.05 versus TNFα und IFNγ) .
Fig. 2 zeigt schematisch das Ergebnis der Zeit-abhängigen Zunahme der nuklearen Translokation von NFKB (p65/p50 Heterodimer), des p91/p91 Homodimers von Stat-1 und von IRF-1 in humanen Endothelzellen, die 0,5 Stunden (NFKB und Stat-1) bzw. 3 Stunden (IRF-1) mit TNFα (1000 U/ml), IFNγ (1000 U/ml) und TNFα (100 U/ml) plus IFNγ (1000 U/ml) inkubiert wurden. Eine Vorinkubation (1 Stunde) mit Cycloheximid (Cx, 1 μM) zeigt, dass IRF-1 de ovo exprimiert wird. Repräsentative Electrophoretic Mobility Shift Analyse, vergleichbare Ergebnisse wurden in weiteren Experimenten erhalten.
Fig. 3 zeigt schematisch die Ergebnisse der Auswirkungen von spezifischen Cis-Element Decoys gegen Stat-1, NFKB und IRF-1 (10 μM, 4 h Vorinkubation) auf (a) den mRNA-Spiegel von CD40 (n=3-5, statistische Zusammenfassung, bezogen in % auf den Maximalwert, *P<0,05 versus TNFα/IFNγ), (b) den mRNA-Spiegel von CD40 und E-Selectin (repräsentative RT-PCR- Analyse, vergleichbare Ergebnisse wurden in weiteren Experimenten erhalten), (c) den CD40- Proteingehalt (repräsentativer Western Blot, vergleichbare Ergebnisse wurden in weiteren Experimenten erhalten) in humanen Endothelzellen, die für 9 Stunden (RT-PCR- Analyse) bzw. 24 Stunden (Western Blot) mit TNFα (100 U/ml)/IFNγ (1000 U/ml) inkubiert wurden. Bei (b,c) sind die relativen Intensitäten (%), bestimmt durch densitometrische Auswertung (One-Dscan- Gel Analysis Software, Scanalytics, Billerica, MA, USA), bezogen auf die Maximalwerte bei Zytokin-Stimulation angegeben.
Fig. 4 zeigt schematisch die Effekte verschiedener Cis-Element Decoys gegen Stat-1, NFKB und IRF-1 (10 μM, 4 h Vorinkubation) auf den CD40-Proteingehalt (a) bestimmt mit Hilfe desFluorescence Activated Cell Sorting (FACS) in humanen Endothelzellen, die für 24 Stunden mit TNFα (100 U/ml)/IFNγ (1000 U/ml) inkubiert wurden und den Nachweis des fur Endothelzellen charakteristischen Zelloberflächenproteins PECAM-1 (b). Dargestellt ist jeweils ein Overlay der Originalmessung der IgG Isotypkontrolle und von TNFα/IFNγ-behandelten (CD40) bzw. nicht-stimulierten (PECAM-1) Zellen sowie in tabellarischer Form die logarithmischen Werte der jeweiligen durchsclmittlichen Fluoreszenzintensitäten. Repräsentativer Versuch, vergleichbare Ergebnisse wurden in weiteren Experimenten erhalten. Fig. 5 zeigt schematisch die Ergebnisse die Effekte von TNFα (2000 U/ml), IFNγ (1000 U/ml) und TNFα (100 U/ml) plus IFNγ (1000 U/ml) auf den CD40- bzw. IRF-1 -mRNA-Spiegel in humanen Endothelzellen nach 9 Stunden Inkubation. Repräsentativer Versuch, vergleichbare Ergebnisse wurden in weiteren Experimenten erhalten.
Fig. 6 zeigt schematisch die Ergebnisse zur Zeit-abhängigen Zunahme der CD40- bzw. IRF-1- mRNA-Expression in humanen Endothelzellen, die für 0, 0,5, 1,5, 3 und 9 Stunden mit IFNγ (1000 U/ml) inkubiert wurden. Repräsentativer Versuch, vergleichbare Ergebnisse wurden in weiteren Experimenten erhalten.
Fig. 7 zeigt schematisch die Spezifität der Cis-Element Decoy Wirkung auf die CD40 mRNA- Expression in den humanen Endothelzellen. Vorinkubation (4 Stunden) mit dem Cis-Element Decoy (IRF-ln cons, 10 μM) nicht aber mit dem entsprechenden mutierten Kontroll- Oligonukleotid (IRF-ln mut, 10 μM) hemmt die CD40 mRNA-Expression in Zellen, die anschließend für 9 Stunden mit TNFα (100 U/ml) und IFNγ (1000 U/ml) inkubiert worden waren. Repräsentative RT-PCR-Analyse, vergleichbare Ergebnisse wurden in weiteren Experimenten erhalten.
Fig. 8 zeigt die Hemmung der Zyto in-induzierten (100 U/ml) TNFα, 1000 U/ml IFNγ) Expression des IRF-1 -Proteins (nach 3 Stunden) und der CD40-mRNA (nach 9 Stunden) in humanen Endothelzellen, die zuvor für 5 Stunden mit einem IRF-1 Antisense-Oligonukleotid (AS; SEQ ID NO:23) behandelt worden waren (Konzentration 0,2 μM). Die linke Bildhälfte zeigt jeweils die statistische Zusammenfassung von 3 Versuchen mit unterschiedlichen Zellchargen, die rechte Bildhälfte zeigt jeweils eine repräsentative Western Blot- bzw. RT-PCR- Analyse, in (b) zuzüglich der densitometrischen Auswertung ("Intensität"), angegeben in % der stimulierten Kontrolle und bezogen auf den internen Standard ß-Aktin (*P<0.05 gegenüber den stimulierten Kontrollzellen). Die entsprechenden Missense (MS) bzw. Scrambled (SCR) Kontroll-Oligonukleotide beeinflussten weder die Expression von IRF-1 noch von CD40.
Fig. 9 zeigt die Electrophoretic Mobility Shift Analyse der Aufnahme verschiedener IRF-1 Cis- Element Decoys (SEQ ID NO: 13, 17, 19 und 21) in kultivierte THP-1-Zellen und die nachfolgende Neutralisierung von IRF-1. Die THP-1 -Zellen wurden mit den verschiedenen Cis- Element Decoys für 1 Stunde vorinkubiert und anschließend für weitere 3 Stunden mit TNFα (100 U/ml) und IFNγ (1000 U/ml) stimuliert. Das Ergebnis der nachfolgenden Aufbereitung und Analyse der Proben ist in der linken Bildhälfte dargestellt. Die rechte Bildhälfte zeigt die Electrophoretic Mobility Shift Analyse eines unter identischen experimentellen Bedingungen gewonnenen Kernextraktes stimulierter Kontrollzellen, der zusätzlich mit einem Anti-IRF-1- Antikörper wie in Krzesz et al. (1999) FEBS Lett. 453, 191 beschrieben vor der Electrophoretic Mobility Shift Analyse inkubiert worden war (Supershift- Analyse).
Der hier verwendete Ausdruck "Decoy-ODN" oder "Cis-Element Decoy" oder "doppelsträngiges DNA-Oligonukleotid" bezeichnet ein doppelsträngiges DNA-Molekül, das eine Sequenz auf- weist, die der natürlichen IRF-1 Kernbindungssequenz im Genom entspricht oder ähnelt und an die der Transkriptionsfaktor IRF-1 in der Zelle bindet. Das Cis-Element Decoy wirkt somit als Molekül zur kompetitiven -hhibierung von IRF-1.
Die Erfinder konnten die bei der entzündungsbedingten, Zytoldn-vermittelten Steigerung der CD40-Rezeptorexpression in humanen Endothelzellen beteiligten Transkriptionsfaktoren aufklären. Überraschenderweise hat sich herausgestellt, dass die Transkriptionsfaktoren Nuclear
Factor KB (NF -KB) und Signal Transducer and Activator of Transcription- 1 (Stat-1) die
Tumornekrosefaktor-α (TNFα)/-hterferon-γ (IFNγ)-mediierte CD40-Expression nicht, wie in glatten Gefaßmuskelzellen von Nagetieren der Fall, direkt, sondern indirekt durch Aktivierung eines weiteren Transkriptionsfäktors, dem Interferon-Regulatory Factor-1 (IRF-1), steuern. IRF-
1 (GenBank Accession No.: L05078, X14454, NM002198 und http.V/transfac. gbf.de/cgi- bin/qt/getEntry.pl?t00423 ist ein Transkriptionsfaktor, der im Gegensatz zu vielen anderen
Transkriptionsfaktoren in der Zelle nicht latent vorhanden ist, sondern erst de novo synthetisiert werden muss und zwar im Regelfall nach Exposition gegenüber Interferon-γ und Aktivierung des Transkriptionsfaktors Stat-1.
Des weiteren stimuliert hiterferon-γ alleine oder in Kombination mit Tumornekrosefaktor-α in humanen Endothelzellen die Expression von CD40; hierbei spielt die TNF-α-abhängige Aktivierung von NF-κB eine untergeordnete Rolle. Wichtiger ist die IFN-γ-abhängige Aktivierung von Stat-1 infolgedessen es zur de /.ovo-Expression von IRF-1 kommt. IRF-1 induziert dami die Expression von CD40. Der Synergismus der beiden Zytokine beruht im Wesentlichen auf einer Verstärkung der IRF-1 -Expression. Werden die erfindungs gemäßen Decoy- Oligonukleotide gegen Stat-1 und IRF-1, nicht aber entsprechende Kontroll- Oligonukleotide in humanen Zellen in Zellkultur verwendet, wird die Zytokin-induzierte CD40- Expression (sowohl bei Monostimulation mit IFNγ wie auch bei Kombination von IFNγ und TNFα) gehemmt. Dabei geht die Induktion von IRF-1 der Induktion von CD40 voraus, so dass eine Antisense-Oligonukleotid-Blockade der IRF-1 -Expression die Zytokin-induzierte CD40- Expression in demselben Umfang wie die Decoy-Oligonukleotide hemmt. Ein Ausschalten der IRF-1 -Aktivität in Zellen hat eine hochsignifikante und selektive Inhibierung der CD40- Expression in diesen Zellen zur Folge. Infolge der verminderten CD40-Expression unter pro- inflammatorischen Bedingungen wird die Endothel-Leukozyten- Wechselwirkung, insbesondere die Interaktion von THl- und Endothelzellen abgeschwächt und stellt die Grundlage für den Therapieerfolg dar. Sinngemäß gilt dies auch für die Abschwächung der CD40/CD154- vermittelten Interaktion von naiven T-Helferzellen mit Antigen-präsentierenden Zellen (z.B. Monozyten, dendritische Zellen), von TH2-Zellen mit B-Lymphozyten, sowie von anderen CD40-exprimierenden Zellen (z.B. glatte Muskelzellen, Keratinozyten, Fibroblasten) mit CD154-exprimierenden Zellen (THl -Zellen, aktivierte Thrombozyten).
Ein Aspekt der vorliegenden Erfindung besteht daher in der Bereitstellung eines Inhibitors der Aktivität des Transkriptionsfaktors IRF-1 als therapeutisches Mittel. Proteine, wozu auch IRF-1 zählt, können auf verschiedenste Weise in ihrer Aktivität inhibiert werden. So können z.B. Anti- IRF-1 -Antikörper, natürliche oder synthetische Substanzen, welche die IRF-1 -Interaktion mit der DNA, d.h. die Transaktivierungsaktivität mindern, verwendet werden. Femer könnte man die de novo-Synthese von IRF-1 durch Blockade von Stat-1 bzw. der zur Stat-1 -Aktivierung führenden Signalwege (Janus-Kinasen) inhibieren.
Ein bevorzugtes Verfahren zur spezifischen Inhibierung der IRF-1 -Aktivität ist die Verwendung von doppelsträngigen DNA-Oligonukleotiden, auch Cis-Element Decoy oder Decoy-ODN genannt, die eine Bindungsstelle für IRF-1 enthalten. Die exogene Zufuhr einer großen Zahl von Transkriptionsfaktor-Bindungsstellen zu einer Zelle, insbesondere in viel höherer Zahl als im Genom vorhanden, erzeugt eine Situation, in der die Mehrzahl eines bestimmten Transkriptionsfaktors spezifisch an das jeweilige Cis-Element Decoy und nicht an seine endogenen Ziel-Bindungsstellen bindet. Dieser Ansatz zur Inhibition der Bindung von Transkriptionsfaktoren an ihre endogene Bindungsstelle wird auch als Squelching bezeichnet. Squelching (oder auch Neutralisation) von Transkription unter Verwendung von Cis-Element Decoys wurde erfolgreich eingesetzt, um das Wachstum von Zellen zu inhibieren. Dabei wurden DNA-Fragmente verwendet, die spezifische Transkriptionsfaktor-Bindungsstellen des Transkriptionsfaktors E2F enthielten (Morishita et al, PNAS, (1995) 92, 5855).
Die Sequenz einer Nukleinsäure, die zur Verhinderung der Bindung des Transkriptionsfaktors IRF-1 verwendet wird, ist beispielsweise die Sequenz, an die IRF-1 natürlicherweise in der Zelle bindet. IRF-1 bindet spezifisch an das Motiv mit der Sequenz wobei S = C oder G und Y = C oder T bedeutet. Für eine Bindung von IRF-1 kommt es auf die sich wiederholenden G/CAAA-Sequenzen und den Abstand zwischen diesen Motiven an, der insbesondere drei Nukleotide beträgt. Daher kann das erfindungsgemäße Cis-Element Decoy folgende 13-mer Konsensus-Kembindungssequenz aufweisen: 5'-SAAAnnnSAAAyy-3' (SEQ ID NO.T), wobei S = C oder G, n = A, T, C oder G und y = C oder T bedeutet. Das Cis-Element Decoy kann ferner größer als die 13-mer Kembindungssequenz sein und am 5'-Ende und/oder am 3'-Ende verlängert werden. Entsprechende Mutationen im Bereich der Kembindungssequenz fuhren zum Verlust der Bindung von STAT-1 an das Decoy-Oligonukleotid.
Da das Cis-Element Decoy eine doppelsträngige Nukleinsäure ist, umfaßt das erfindungsgemäße DNA-Oligonukleotid jeweils nicht nur die Sense- oder Forward-Sequenz sondern auch die komplementäre Antisense- oder Reverse-Sequenz. Bevorzugte erfindungsgemäße DNA- Oligonukleotide weisen folgende 13-mer-Kembindungssequenzen für IRF-1 auf:
5'-CAAAAGCGAAACC-3' (SEQ ID NO:3), 5'-GAAAAGCGAAACC-3' (SEQ ID NO:5), 5'-CAAAAGTGAAACC-3' (SEQ ID NO:7), 5'-GAAAAGTGAAACC-3' (SEQ ID NO:9),
wobei die jeweiligen komplemantären Sequenzen hier nicht wiedergeben sind. Das Cis-Element Decoy kann jedoch auch eine zur vorstehenden Sequenz abweichende Sequenz aufweisen und länger als ein 13-mer sein.
Besonders bevorzugt sind folgende Sequenzen:
(SEQ ID NO:ll): 5'-CAGAAAAGTGAAACCCTG-3'. 18-mer (nicht palindromisch, 1 Bindungsstelle), (SEQ ID NO: 13): S'-CAGTTTCAAATTGAAACTG-3'. 19-mer (nahezu palindromisch, 2
Bindungsstellen),
(SEQ ID NO:15): 5'-CAGGAAAAGTGAAACCGCTG-3'. 20-mer (nicht palindromisch, 1
Bindungsstelle), (SEQ ID NO: 17): S'-GCAGTTTCAAATTGAAACTGC-S', 21-mer (nahezu palindromisch, 2
Bindungsstellen),
(SEQ ID NO:19): 5'-GGAAGCGAAAATGAAATTGACT-3', 22-mer (primär benutzte
Konsensus-S equenz) ,
(SEQ ID NO:21): 5'-GGCAGTTTCAAATTGAAACTGCC-3'. 23-mer (nahezu palindromisch, 2 Bindungsstellen).
Die Bemerkung "2 Bindungsstellen" bezieht sich dabei auf Sense- und Antisense-Strang. Diese
Aufzählung der bevorzugten Sequenzen ist nicht abschließend. Dem Fachmann ist ersichtlich, dass eine Vielzahl von Sequenzen als Inhibitor für IRF-1 verwendet werden können, solange sie die vorstehend aufgeführten Bedingungen der 13-mer Konsensus-Kembindungssequenz und eine Affinität zu IRF-1 aufweisen.
Die Affinität der Bindung einer Nukleinsäuresequenz an IRF-1 kann durch die Verwendung des Electrophoretic Mobility Shift Assay (EMSA) (Sambrook et al. (1989) Molecular Cloning. Cold Spring Harbor Laboratory Press; Krzesz et al. (1999) FEBS Lett. 453, 191) bestimmt werden. Dieses Testsystem ist für die Qualitätskontrolle von Nukleinsäuren, die für die Verwendung in der Methode der gegenwärtigen Erfindung gedacht sind, oder die Bestimmungen der optimalen Länge einer Bindungsstelle geeignet. Sie ist auch für die Identifizierung von anderen Sequenzen, die durch IRF-1 gebunden werden, geeignet. Für einen EMSA, gedacht für die Isolation neuer Bindungsstellen, sind am besten gereinigte oder rekombinant exprimierte Versionen von IRF-1 geeignet, die in mehreren abwechselnden Runden von PCR-Vervielfältigung und Selektion durch EMSA eingesetzt werden (Thiesen und Bach (1990) Nucleic Acids Res. 18, 3203).
Gene, von denen bekannt ist, dass sie IRF-1 -Bindungsstellen in ihrem Promotor oder Enhancer- Regionen enthalten, und die deshalb mutmaßliche Ziele für das spezifische Squelchen durch die Methode der gegenwärtigen Erfindung sind, sind beispielsweise das CD40-Gen und weitere pro- inflammatorische Gene z.B. Cyclooxygenase-2, Untereinheiten der NADPH-Oxidase (ρ67phox und gp91phox), die induzierbare Isoform der Stickstoffmonoxid (NO)-Synthase, die Interleukine 6, 8 und 12 sowie die Adhäsionsmoleküle RANTES (löslich von T-Lymphozyten sezerniert, regulated upon activation, normal T-cell expressed, presumed secreted) und VCAM-1 (vascular cell adhesion olecule-1, auch CD 106 genannt).
Die Methode der vorliegenden Erfindung moduliert die Transkription eines Gens oder von Genen in einer solchen Weise, dass das Gen oder die Gene, z.B. CD40, nicht oder vermindert exprimiert werden. Verminderte oder unterdrückte Expression im Rahmen der gegenwärtigen Erfindung bedeutet, dass die Transkriptionsrate venϊngert ist im Vergleich zu Zellen, die nicht mit einem erfindungsgemäßen doppelsträngigen DNA-Oligonukleotid behandelt werden. Solch eine Venninderung kann beispielsweise durch Northern Blot (Sambrook et al., 1989) oder RT- PCR-Analyse (Sambrook et al., 1989) bestimmt werden. Typischerweise ist eine solche Veningerung zumindest eine 2-fache, besonders zumindest eine 5-fache, insbesondere zumindest eine 10-fache Verringerung. Der Verlust von Aktivierung kann beispielsweise eπeicht werden, wenn IRF-1 an einem bestimmten Gen als Transkriptionsaktivator wirkt und deshalb Squelching des Aktivators zum Verlust der Expression des Zielgens führt.
Darüber hinaus ermöglicht die Methode der vorliegenden Erfindung die Enthemmung der Expression eines Gens, sofern diese von einem konstitutiv aktiven oder (nach entsprechender Stimulation der Zelle) einem aktivierten Transkriptionsfaktor blockiert wird. Ein Beispiel hierfür ist die Enthemmung der Expression des Prepro-Endothelin-1-Gens in nativen Endothelzellen der V. jugularis des Kaninchens durch ein Cis-Element Decoy gegen den Transkriptionsfaktor CCAAT/enhancer binding protein (Lauth et al., J. Mol. Med., (2000), 78, 441). Auf diesem Weg kann die Expression von Genen enthemmt werden, deren Produkte eine schützende Wirkung z.B. gegen Entzündungserkrankungen ausüben.
Das Cis-Element Decoy, das in der vorliegenden Erfindung verwendet wird, enthält in einer bevorzugten Ausführungsform eine oder mehrere, vorzugsweise 1, 2, 3, 4 oder 5, insbesondere bevorzugt 1 oder 2 Bindungsstellen, an die IRF-1 spezifisch bindet. Die Nukleinsäuren können synthetisch, mit enzymatischen Methoden oder in Zellen hergestellt werden. Die einzelnen Verfahren sind Stand der Technik und dem Fachmann bekannt.
Die Länge des doppelsträngigen DNA-Oligonukleotids ist mindestens so lang wie eine verwendete Sequenz, die spezifisch IRF-1 bindet. Üblicherweise ist das verwendete doppelsträngige DNA-Oligonukleotid zwischen etwa 13-65 bp, vorzugsweise zwischen etwa 13- 26 bp und besonders bevorzugt zwischen 18-23 bp gewählt.
Oligonukleotide werden in der Regel schnell durch Endo- und Exonukleasen, im besonderen DNasen und RNasen in der Zelle, abgebaut. Deshalb können die DNA-Oligonukeotide modifiziert werden, um sie gegen den Abbau zu stabilisieren, so dass über einen längeren Zeitraum eine hohe Konzentration der Oligonukeotide in der Zelle beibehalten wird. Typischerweise kann eine solche Stabilisierung durch die Einführung von einer oder mehrerer modifizierter Intemukleotidbindungen erhalten werden.
Ein erfolgreich stabilisiertes DNA-Oligonukeotid enthält nicht notwendigerweise eine Modifikation an jeder hiteπiukleotidbindung. Vorzugsweise sind die Intemukleotidbindungen an den jeweiligen Enden beider Oligonukleotide des Cis-Element Decoys modifiziert. Dabei können die letzten sechs, fünf, vier, drei, zwei oder die letzte oder eine oder mehrere emukleotidbindung innerhalb der letzten sechs Intemukleotidbindungen modifiziert sein. Femer können verschiedene Modifikationen der Intemukleotidbindungen in die Nukleinsäure eingeführt werden und die daraus entstehenden doppelsträngigen DNA-Oligonukeotide auf sequenzspezifische Bindung an IRF-1, unter Verwendung des Routine EMSA-Testsystems, getestet werden. Dieses Testsystem erlaubt die Bestimmung der Bindungskonstante des Cis- Element Decoys und so die Bestimmung, ob die Affinität durch die Modifikation verändert wurde. Modifizierte Cis-Element Decoys, die noch eine ausreichende Bindung zeigen, können ausgewählt werden, wobei eine ausreichende Bindung zumindest etwa 50% oder zumindest etwa 75%, und besonders bevorzugt etwa 100% der Bindung der unmodifizierten Nukleinsäure bedeutet.
Cis-Element Decoys mit modifizierter Intemukleotidbindung, die immer noch ausreichende Bindung zeigen, können überprüft werden, ob sie stabiler in der Zelle sind als die unmodifizierten Cis-Element Decoys. Die mit den erfindungsgemäßen Cis-Element Decoys transfizierten Zellen werden zu verschiedenen Zeitpunkten auf die Menge der dann noch vorhandenen Cis-Element Decoys untersucht. Dabei wird vorzugsweise ein mit einem Fluoreszenzfarbstoff (z.B. Texas-Rot) markiertes Cis-Element Decoy oder ein radioaktiv markiertes (z.B. 32P) Cis-Element Decoy eingesetzt mit anschließender digitaler Fluoreszenzmikroskopie bzw. Autoradiographie oder Szintigraphie. Ein erfolgreich modifiziertes Cis-Element Decoy hat eine Halbwertzeit in der Zelle, die höher ist als die eines unmodifizierten Cis-Element Decoys, vorzugsweise von zumindest etwa 48 Stunden, mehr bevorzugt von zumindest etwa 4 Tagen, am meisten bevorzugt von mindestens etwa 7 Tagen.
Geeignete modifizierte Intemukleotidbindungen sind in Uhlmann und Peyman ((1990) Chem. Rev. 90, 544) zusammengefaßt. Modifizierte Intemuldeotid-Phosphat-Reste und/oder NichtPhosphor-Brücken in einer Nukleinsäure, die in einer Methode der gegenwärtigen Erfindung eingesetzt werden können, enthalten zum Beispiel Methylphosphonat, Phosphorothioat, Phosphorodithioat, Phosphoramidat, Phosphatester, während Nicht-Phosphor-lhternukleotid- Analoge, beispielsweise Siloxan-Brücken, Carbonat-Brücken, Carboxymethylester-Brücken, Acetamidat-Brücken und/oder Thioether-Brücken enthalten.
Eine weitere Ausf hrungsfoπn der Erfindung ist die Stabilisierung von Nukleinsäuren durch die Einführung struktureller Merkmale in die Nukleinsäure, die die Halbwertzeit der Nukleinsäure erhöhen. Solche Strukturen, die Haarnadel- und Glocken-DNA enthalten, sind in US 5,683,985 offenbart. Gleichzeitig können modifizierte hitemuldeotid-Phosphat-Reste und/oder NichtPhosphor-Brücken, zusammen mit den genannten Strukturen, eingeführt werden. Die sich daraus ergebenden Nukleinsäuren können im oben beschriebenen Testsystem auf Bindung und Stabilität geprüft werden.
Die Kembindungssequenz kann nicht nur in einem Cis-Element Decoy vorliegen, sondern auch in einem Vektor, hl einer bevorzugten Ausfülnrungsform ist der Vektor ein Plasmidvektor und im besonderen ein Plasmidvektor, der in der Lage ist, autosomal zu replizieren, wodurch er die Stabilität der eingeftihrten doppelsträngigen Nukleinsäure erhöht.
Ein weiterer Aspekt der vorliegenden Erfindung ist ein doppelsträngiges DNA-Oligonukleotid, das in der Lage ist, sequenzspezifisch an den Transkriptionsfaktor IRF-1 zu binden und vorzugsweise eine der folgenden Sequenzen hat, wobei hier nur jeweils ein Strang des doppelsträngigen DNA-Oligonukleotids wiedergegeben ist und der komplementäre Strang ebenfalls umfaßt ist:
5'-SAAAnnnSAAAyy-3' (SEQ ID NO.T), 5'-CAAAAGCGAAACC-3' (SEQ ID NO:3), 5'-GAAAAGCGAAACC-3' (SEQ ID NO:5), 5'-CAAAAGTGAAACC-3' (SEQ ID NO:7), 5'-GAAAAGTGAAACC-3' (SEQ ID NO:9), 5'-CAGAAAAGTGAAACCCTG-3' (SEQ ID NO.T 1), S'-CAGTTTCAAATTGAAACTG-S SEQ ID NO: 13), 5'-CAGGAAAAGTGAAACCGCTG-3' (SEQ ID NO: 15), 5'-GCAGTTTCAAATTGAAACTGC-3' (SEQ ID NO:17), 5'-GGAAGCGAAAATGAAATTGACT-3'(SEQ ID NO: 19), 5'-GGCAGTTTCAAATTGAAACTGCC-3', (SEQ ID NO:21).
Doppelsträngige DNA-Oligonukleotide der vorliegenden Erfindung haben eine Länge, Modifikationen und eventuell eine Wiederholung der spezifischen Bindungsstelle, wie im Einzelnen vorstehend beschrieben. Die optimale Länge des Cis-Element Decoys ist ausgewählt, um die Bindung an IRF-1 und die Aufnahme in die Zelle zu optimieren. Typischerweise bindet ein doppelsträngiges DNA-Oligonukleotid, das kürzer als 12 bp ist, nur schwach an sein Zielprotein, während ein doppelsträngiges DNA-Oligonukleotid, das länger als 22 bp ist, obwohl es stark bindet, nur mit einer niedrigen Effizienz in die Zelle aufgenommen wird. Die Bindungsstärke kann durch EMSA bestimmt werden, während die Aufnahme der doppelsträngigen Nukleinsäure mit Hilfe eines Fluoreszenzfarbstoff (z.B. Texas-Rot) bzw. radioaktiv markierten (z.B. 32P) Cis-Element Decoy und anschließender digitaler Fluoreszenzmikroskopie bzw. Autoradiographie oder Szintigraphie analysiert werden kann. Ein Cis-Element Decoy der gegenwärtigen Erfindung kann wie oben beschrieben stabilisiert werden.
Eine bevorzugte Ausführungsform der gegenwärtigen Erfindung sind Cis-Element Decoys, die eine palmdromische Bindungsstelle enthalten und daher in einer kurzen doppelsträngigen Nuldeinsäure zumindest zwei Transkriptionsfaktor-Bindungsstellen umfassen. Die palindromische Sequenz hat nicht notwendigerweise eine höhere Bindung von IRF-1 zur Folge, sondern wird schneller (effizienter) von den Zielzellen aufgenommen. Allerdings sind vor allem die kürzeren erfindungsgemäßen Cis-Element Decoys wegen der langen (mittig angeordneten) Kembindungssequenz und den repetitiven G/CAAA-Motiven nur an den Enden palindromisch. Für eine effizientere Aufnahme kann eine möglichst ähnliche Anzahl der einzelnen Basen (A = C = G = T) verwendet werden, jedoch ist dies für die erfindungsgemäßen Cis-Element Decoys aufgrund der repetitiven G/CAAA-Motive schwierig. Bevorzugt wird daher ein Kompromiss, wobei zumindest A = T und C = G sein soll. Ferner bevorzugt kann die Kembindungssequenz eher randständig angeordnet sein, wie dies bei einigen der bevorzugten Cis-Element Decoy- Sequenzen der Fall ist.
Ein Cis-Element Decoy der vorliegenden Erfindung wird schnell in die Zelle aufgenommen. Eine ausreichende Aufnahme ist durch die Modulation von einem oder mehreren Genen, das durch IRF-1 moduliert werden kann, charakterisiert. Das Cis-Element Decoy der vorliegenden Erfindung moduliert in bevorzugter Weise die Transkription von einem Gen oder Genen nach etwa 4 Stunden der Berührung mit der Zelle, mehr bevorzugt nach etwa 2 Stunden, nach etwa 1 Stunde, nach etwa 30 Minuten und am meisten bevorzugt nach etwa 10 Minuten. Eine typische Mischung, die in so einem Versuch eingesetzt wird, enthält 10 μmol/1 Cis-Element Decoy.
Die vorliegende Erfindung betrifft femer ein Verfahren zur Modulation der Transkription von mindestens einem Gen in CD40-exprimierenden Zellen, insbesondere in Endothelzellen, Monozyten, denditrischen Zellen, B-Lymphozyten, glatten Muskelzellen, Keratinozyten oder Fibroblasten, wobei die Methode den Schritt der Kontaktiemng der genannten Zellen mit einer Mischung, enthaltend eine oder mehrere doppelsträngige Nukleinsäure(n), die in der Lage sind, sequenzspezifisch an den Transkriptionsfaktor IRF-1 zu binden, umfaßt. Ein bevorzugtes Verfahren ist die Anwendung in Endothelzellen, die Teil eines Transplantates sind. Typischerweise wird die Methode an einem Transplantat in vivo oder ex vivo vor der Implantation angewendet.
Die Transplantate können vor der Implantation durch ex vivo Anwendung der Methode der gegenwärtigen Erfindung oder nach der hnplantation durch in vivo Anwendung der Methode behandelt werden. In einer bevorzugten Ausfuhrungsform ist das behandelte Transplantat (Dünn-) Darm, Herz, Leber, Lunge, Niere und Pankreas bzw. eine Kombination mehrerer Organe. Die Behandlung der Organe, genauer die Perlnsion Inkubation ihrer Blutgefäße mit den erfindungsgemäßen Cis-Element Decoys kann ex vivo mit Ausspülen der Lösung unmittelbar vor der Implantation erfolgen. Dabei kann das Organ gleichzeitig in einer entsprechenden Konservierungslösung (gekühlt) gelagert werden (z.B. University of Wisconsin Solution, Brettschneider HTK-Lösung).
Die Mischung enthaltend die erfindungsgemäßen Cis-Element Decoys wird mit den Zielzellen (z.B. Endothelzellen, Monozyten, denditrische Zellen, B-Lymphozyten, glatte Muskelzellen, Keratinozyten oder Fibroblasten) in Berührung gebracht. Das Ziel dieses ]h-Berührung-Bringens ist die Übertragxmg der Cis-Element Decoys, die IRF-1 binden, in die Zielzelle (d.h., die CD40- exprimierende Zelle). Deshalb können Nukleinsäure-Modifikation und/oder Zusatzstoffe oder Hilfsstoffe, von denen bekannt ist, dass sie die Durchdringung von Membran erhöhen, im Rahmen der gegenwärtigen Erfindung benutzt werden (Uhlmann und Peyman (1990) Chem. Rev. 90, 544).
Eine Mischung gemäß der Erfindung enthält in einer bevorzugten Ausführungsform nur Nuldeinsäure und Puffer. Eine geeignete Konzentration der Cis-Element Decoys liegt im Bereich von zumindest 0,1 bis 100 μmol/L, vorzugsweise bei 10 μmol/L, wobei ein oder mehrere geeignete Puffer zugesetzt werden. Ein Beispiel eines solchen Puffers ist Tyrode-Lösung enthaltend 144,3 ιnmol/1 Na+, 4,0 mmol/1 K+, 138,6 mmol/1 Cl", 1,7 mmol/1 Ca2+, 1,0 mmol 1 Mg2+, 0,4 mmol/1 HPO4 2', 19,9 mmol/1 HCO3 ", 10,0 mmol/1 D-Glucose.
hi einer weiteren Ausführungsform der Erfindung enthält die Mischung zusätzlich mindestens einen Zusatzstoff und/oder Hilfsstoff. Zusatzstoffe und/oder Hilfsstoffe wie Lipid, kationische Lipide, Polymere, Liposomen, Nanopartikel, Nuldeinsäure- Aptamere, Peptide und Proteine, die an DNA gebunden sind, oder synthetische Peptid-DNA-Moleküle sind beabsichtigt, um beispielsweise die Einbringung von Nukleinsäuren in die Zelle zu erhöhen, um die Mischung auf nur eine Untergrappe von Zellen zu richten, um den Abbau der Nukleinsäure in der Zelle zu verhindern, um die Lagerung der Nuldeinsäuremischung vor der Verwendung zu erleichtern. Beispiele für Peptide und Proteine oder synthetische Peptid-DNA-Moleküle sind z.B. Antikörper, Antikörperfragmente, Liganden, Adhäsionsmoleküle, die alle modifiziert oder unmodifiziert sein können.
Zusatzstoffe, die die Cis-Element Decoys in der Zelle stabilisieren, sind beispielsweise Nukleinsäure-kondensierende Substanzen wie kationische Polymere, Poly-L-Lysin oder Polyethylenimin.
Die Mischung, die in dem Verfahren der gegenwärtigen Erfindung eingesetzt wird, wird bevorzugt lokal angewendet durch Injektion, Katheter, Suppositiorium ("Zäpfchen"), Aerosole (Nasen- bzw. Mundspray, Inhalation) Trokars, Projektile, pluronische Gele, Polymere, die anhaltend Medikamente freisetzen, oder jede andere Vorrichtung, die lokalen Zugang ermöglicht. Auch die ex vivo Anwendung der Mischung, verwendet im Verfahren der gegenwärtigen Erfindung, erlaubt einen lokalen Zugang.
Die Inhibierung der IRF-1 -Aktivität kann jedoch nicht nur auf Proteinebene in den zuvor beschriebenen Verfahren gehemmt werden, sondern kann bereits vor oder bei der Translation des Transkriptionsfaktorproteins bewirkt werden. Daher ist ein weiterer Aspekt der vorliegenden Erfindimg die Bereitstellung eines Inhibitors der IRF-1 -Expression als therapeutisches Mittel. Dieser Inhibitor ist vorzugsweise ein einzelsträngiges Nukleinsäure-Molekül, ein sogenanntes Antisense-Oligonukleotid. Antisense-Oligonukleotide können die Synthese eines Zielgens auf drei verschiedenen Ebenen hemmen, bei der Transkription (Verhinderang der hnRNA-Synthese), der Prozessierung (Spleißen) der hnRNA zur mRNA und der Translation der mRNA in Protein an den Ribosomen. Das Nerfahren zur Inhibierung der Expression von Genen mittels Antisense- Oligonukleotiden ist Stand der Technik und den Fachleuten bestens bekannt. Vorzugsweise hat das im erfmdungs gemäßen Verfahren verwendete Antisense-Oligonukleotid gegen IRF-1 die Sequenz 5'-CGAGTGATGGGCATGTTGGC-3' (SEQ ID ΝO:23) und überbrückt das Startcodon. Weitere bevorzugte Sequenzen für Antisense-Oligonukleotide sind 5'- GATTCGGCTGGTCGC-3' (SEQ ID NO:24), 5'-TAATCCAGATGAGCCC-3' (SEQ ID NO:25) und 5'-GGAGCGATTCGGCTGGT-3' (SEQ ID NO:26). Das Antisense-Oligonukleotid kann ein einzelsträngiges DNA-Molekül, RNA-Molekül oder ein DNA RNA-Hybrid-Molekül sein. Das Antisense-Oligonukleotid kann femer eine oder mehrere modifizierte Intemukleotidbindungen aufweisen, z.B. die vorstehend für das Cis Element Decoy beschriebenen. Bei einem durch Phosphorothioat-modifizierte Intemukleotidbindungen stabilisierten Antisense-Oligonukleotid besonders zu beachten ist, das zwischen den Basen Cytosin und Guanin keine Phosphorothioat-modifizierte Intemukleotidbindung eingeführt ist, da dies zu einer IFNγ- ähnlichen Aktivierung insbesondere von immunkompetenten Zellen (z.B. Endothelzellen) f hrt und somit den gewünschten Therapieeffekt zumindest teilweise konterkarieren würde.
Ein weiterer Aspekt der vorliegenden Erfindung ist ein Antisense-Oligonukleotid, das spezifisch die IRF-1 -Expression inhibiert und vorzugsweise eine der folgenden Sequenzen hat:
5'-CGAGTGATGGGCATGTTGGC-3' (SEQ ID NO:23), 5'-GATTCGGCTGGTCGC-3' (SEQ ID NO:24), 5'-TAATCCAGATGAGCCC-3' (SEQ ID NO:25), 5'-GGAGCGATTCGGCTGGT-3' (SEQ ID NO:26).
Ein weiterer Aspekt der vorliegenden Erfindung ist femer die Verwendung der erfindungsgemäßen Antisense-Oligonukleotide und/oder doppelsträngigen DNA-Moleküle zur Herstellung eines Arzneimittels zur Prävention und/oder Therapie kardiovaskulärer Komplikationen wie der Resteose nach perkutaner Angioplastie oder der Stenosierung von Venenbypässen, der chronischen (Transplantat- Arteriosklerose oder Vaskulopathie) oder akuten Transplantatabstoßung, der graft versus host disease (GVHD), immunologischen Überempfindlichkeitsreaktionen (Allergien) insbesondere Asthma bronchiale und atopische Dermatitis, chronisch rezidivierenden Entzündungserkrankungen insbesondere Colitis ulcerosa und Morbus Crohn, Psoriasis und Sarkoidose, sowie Autoimmunerlα-anl ingen insbesondere Diabetes mellitus, multiple Sklerose, Kollagenosen (z.B. systemischer Lupus erythematodes), rheumatoide Arthritis und Vaskulitiden.. Ein besonderer Vorteil dieses Therapieansatzes besteht des weiteren in der gleichzeitigen Abschwächung der THl- und TH2-Zellantwort, bei denen der CD40/CD154-Signalweg ko-stimulatorisch wirkt. Dadurch kann es nicht zu einer Enthemmung der THl -Zellreaktion (z.B. Psoriasis) bei Dämpfung der TH2-Zellreaktion (z.B. atopische Dermatitis) bzw. umgekehrt kommen.
Die folgenden Figuren und Beispiele dienen nur der Erläutemng und beschränlcen in keiner Weise den Umfang der Erfindung.
1. Zellkultur
Humane Endothelzellen wurden durch Behandlung mit 1,6 U/ml Dispase in Hepes- modifizierter Tyrodelösung für 30 Min. bei 37°C aus Nabelschnurvenen isoliert und auf Gelatinebeschichteten 6-Loch-Gewebekulturschalen (2 mg/ml Gelatine in 0,1 M HC1 für 30 Min. bei Umgebungstemperatur) in 1,5 ml M199 Medium, enthaltend 20% fötales Kälberserum, 50 U/ml Penicillin, 50 μg/ml Streptomycin, 10 U/ml Nystatin, 5 mM HEPES und 5 mM TES, 1 μg/ml Heparin und 40 μg/ml endothelialer Wachstumsfaktor, kultiviert. Sie wurden durch ihre typische Pflasterstein-Morphologie, positive --mmunfärbung für von Willebrandt-Faktor (vWF) und fluorimetrischen Nachweis (FACS) von PECAM-1 (CD31) sowie negative nmimfärbung für glattes Muskel α-Actin (Krzesz et al. (1999) FEBS Lett. 453, 191) identifiziert. 2. RT-PCR-Analyse
Die endotheliale gesamt-RNA wurde mit dem Qiagen RNeasy Kit (Qiagen, Hilden, Deutschland) isoliert, daran anschließend wurde eine cDNA-Synthese mit einem Maximum von 3 μg RNA und 200 U Superscript ™ II Reversetranskriptase (Gibco Life Technologies, Karlsruhe, Deutschland) in einem Gesamtvolumen von 20 μl entsprechend der Herstelleranleitung durchgefiihrt. Für den Abgleich der cDNA-Beladung wurden 5 μl (ungefähr 75 ng cDNA) der resultierenden cDNA-Lösung und dem Primerpaar (Gibco) für Elongationsfaktor 1 (EF-1) PCR mit 1 U Taq DNA Polymerase (Gibco) in einem Gesamtvolumen von 50 μl benutzt. EF-1 diente als interner Standard für die PCR. Die PCR- Produkte wurden auf 1,5% Agarose-Gelen enthaltend 0,1%) Ethidiumbromid separiert und die Intensität der Banden wurde densitometrisch mit einem CCD-Kamerasystem und der One-Dscan Gelanalyse-Software von Scanalytics (Billerica, MA, USA) bestimmt, um in nachfolgenden PCR-Analysen das Volumen der cDNA anzupassen.
Alle PCR-Reaktionen wurden einzeln für jedes Primer-Paar in einem Hybaid OmnE Thermocycler (AWG; Heidelberg, Deutschland) durchgeführt. Die einzelnen PCR-Bedingungen für die cDNA von humanen Nabelsc nurendothelzellen waren wie folgt: CD40 (Produktgröße 381 bp, 25 Zyklen, Anlagerangstemperatur 60°C, (Vorwärtsprimer) 5'- CAGAGTTCACTGAAACGGAATGCC-3' (SEQ ID NO:27), (umgekehrter Primer) 5'- TGCCTGCCTGTTGCACAACC-3 '(SEQ ID NO:28); E-Selectin (Produlctgröße 304 bp, 33 Zyklen, Anlagerungstemperatur 60°C, (Vorwärtsprimer) 5 '-AGCAAGGCATGATGTTAACC- 3' (SEQ ID NO:29), (umgekehrter Primer) 5 '-GCATTCCTCTCTTCCAGAGC-3 ' (SEQ ID NO:30); IRF-1 (Produlctgröße 310 bp, 29 Zyklen, Anlagerungstemperatur 55°C, (Vorwärtsprimer) 5 '-TTCCCTCTTCCACTCGGAGT-3 ' (SEQ ID NO:31), (umgekehrter Primer) 5 '-GATATCTGGCAGGGAGTTCA-3 ' (SEQ ID NO:32); EF-1 (Produlctgröße 220 bp, 22 Zyklen, Anlagerangstemperatur 55°C, (Vorwärtsprimer) 5 '-TCTTAATCAGTGGTGGAAG- 3' (SEQ ID NO:33), (umgekehrter Primer) 5 '-TTTGGTCAAGTTGTTTCC-3 ' (SEQ ID NO:34).
3. Elektrophoretic Mobility Shift Analyse (EMSA) Die nuklearen Extrakte und [32P] -markierten doppelsträngigen Konsensus-Oligonuldeotide (Santa Cruz Biotechnologie, Heidelberg, Deutschland), nicht-denaturierende Polyacrylamid- Gelelektrophorese, Autoradiographie und Supershift-Analyse wurden wie bei Krzesz et al. (1999) FEBS Lett. 453, 191 beschrieben durchgeführt. Oligonukleotide mit der folgenden einzelsträngigen Sequenz wurden verwendet (Kembindungssequenzen sind iinterstrichen): NFKB, 5'-AGTTGAGGGGACTTTCCCAGGC-3' (SEQ ID NO:35); STAT-1, 5'- CATGTTATGCATATTCCTGTAAGT G-3' (SEQ ID NO:36); IRF-1, 5'- GGAAGCGAAAATGAAATTGACT-3 ' (SEQ ID NO:19).
4. Decoy-Oligonukleotid (dODN) Technik
Doppelsträngige dODN wurden von den komplementären einzelsträngigen Phosphorothioat- verbundenen Oligonukleotiden (Eurogentec, Köln, Deutschland) wie bei Krzesz et al. (1999) FEBS Lett. 453, 191 beschrieben hergestellt. Die kultivierten humanen Endothelzellen wurden für 4 Stunden bei einer Konzentration von 10 μM des jeweiligen dODN vorinkubiert. Dies waren die Bedingungen, die bereits vorher aufgrund von EMSA und RT-PCR-Analyse optimiert wurden. Danach wurde das dODN-enthaltende Medium in der Regel durch frisches Medium ersetzt. Die einzelsträngigen Sequenzen der dODN waren wie folgt (unterstrichene Buchstaben kennzeichnen Phosphorothioat- verbundene Basen, alle in 5' - 3' Richtung): NF-KB, AGTTGAGGGGACTTTCCCAGGC (SEQ ID NO:35);
STAT-1, CATGTTATGCATATTCCTGTAAGTG (SEQ ID NO:36); IRF-1, GGAAGCGAAAATGAAATTGACT (SEQ ID NO:19 ;
IRF-ln cons CAGAAAAGTGAAACCCTG (SEQ ID NO: 11); IRF- In mut CAGATGAGTGTAACCCTG (SEQ ID NO:37).
5. Antisense-Oligonukleotid-Technik
Für einen Antisense- Ansatz wurde 1 ml Kulturmedium mit 3% Lipofectin (v/v) (Gibco Life Technologies, Karlsruhe, Deutschland) versetzt und für 30 Min. bei Raumtemperatur (RT) inkubiert. Im Anschluss daran wurde das entsprechende Antisense-Oligonukleotid (Eurogentec, Köln, Deutschland) in einer finalen Konzentration von 0,2 μM hinzugegeben und weitere 15 Min. bei RT inkubiert. Bei Versuchsbeginn wurden die entsprechenden Mengen Heparin und endothelialer Wachstumsfaktor hinzugefügt und das herkömmliche Zellkulturmedium der Endothelzellkultur durch das Antisense-Lipofectin-Medium ersetzt. Nach 5 Stunden wurde das Antisense-Lipofectin-Medium entfernt und durch frisches Zellkulturmedium ersetzt. Die Sequenz des IRF-1 -Antisense-Oligonukleotid (IRF-1 AS) war 5'-CGAGTGATGGGC- ATGTTGGC-3'(SEQ ID NO:23). Als Kontrollen wurden ein Missense-Oligonukleotid (IRF-1 MS, 5'-CGAGTGGTAGACGTATTGGC-3' (SEQ ID NO: 38)) und ein Scrambled- Oligonukleotid (IRF-1 SCR, 5'-GAGCTGCTGAGGTCGTTGAG-3c (SEQ ID NO:39)) verwendet.
6. Fluorescence Activated Cell Sorting (FACS)
Die zu analysierenden Endothelzellen wurden zunächst dreimal mit je 1 ml FACS-Puffer (PBS, 2% fötales Kälberserum, sterilfiltriert) gewaschen und anschließend in 2 ml FACS-Puffer aufgenommen. Nach Zentrifugation (300xg, 5 Min., +4°C) und Bestimmung der Gesamtzellzahl (Neubauer-Zälilkammer) wurde der fluoreszenz-markierte Antikörper (Pharmingen, San Diego, USA) nach Angaben des Herstellers (20 μl/106 Zellen) hinzugegeben und der Ansatz für 30 Min. bei +4°C im Dunkeln inkubiert. Anschließend wurde der Ansatz mit 2 ml FACS-Puffer gewaschen und für 10 Min. bei 300xg und +4°C zentrifugiert. Der Überstand wurde dekantiert, das Zellpellet in 1 ml Cell-Fix (PBS, 1%> Formaldehyd) resuspendiert und bis zur Messung (EPICS®XL-MCL, Coulter, Krefeld, Deutschland) bei +4°C im Dunkeln gelagert. Folgende Antikörper wurden verwendet: CD40, R-Phycoerythrin (R-PE)- und Fluorescein Isothiocyanate (FΙTC)-konjugiert; PECAM-1 (CD31), Fluorescein Isothiocyanate (FΙTC)-konjugiert. Zur Feststellung unspezifischer Zeil- Antikörper-Bindungen wurden die entsprechenden R-PE- und FITC-konjugierten Isotyp-Kontrollen eingesetzt.
7. Western Blot-Analyse
Die Endothelzellen wurden durch fünfmaliges aufeinanderfolgendes Einfrieren in flüssigem Stickstoff und Auftauen bei 37°C (Heizblock, Kleinfelden) aufgeschlossen. Protein-Extrakte wurden wie bei Hecker et al. (1994) Biochem J. 299, 247 beschrieben hergestellt. 20-30 μg
Protein wurden mit Hilfe einer 10%oigen Polyacrylamid-Gelelektrophorese unter denaturierenden
Bedingungen in der Gegenwart von SDS nach Standardprotokoll aufgetrennt und auf eine
BioTrace™ Polyvinylidene Fluoride Transfermembran (Pall Corporation, Roßdorf, Deutschland) transferiert. Zum Nachweis von CD40 Protein wurde ein gegen den C-Terminus gerichteter polyklonaler primärer Antikörper (Research Diagnostics Inc., Flanders, NJ, USA) verwendet.
Die Proteinbanden wurden nach Hinzufügen eines Peroxidase-gekoppelter-Anti-Kaninchen-IgG
(1:3000, Sigma, Deisenhofen, Deutschland), durch die Chemilumineszeiiz-Mefhode
(SuperSignal Chemiluminescent Substrate; Pierce Chemical, Rockford, IL, USA) verbunden mit nachfolgender Autoradiographie (Hyperfilm™ MP, Amersham Pharmacia Biotech,
Buckinghamshire, England) nachgewiesen. Der Auftrag und Transfer gleicher Proteinmengen wurde durch Färben des Blots mit blauer Tinte gezeigt. 8. Statistische Analyse
Wenn nicht anders angezeigt, sind alle Daten in Figuren xmd Text als Mittelwert ± SEM von n Experimenten angegeben. Die statistische Auswertung wurde mit dem Students t-Test für ungepaarte Daten mit einem P-Wert <0.05, der als statistisch signifikant angesehen wurde, dxrrchgeführt.
9. Tierexperimenteller Nachweis der CD40/CD154-assoziierten Transplantatabstoßung
Experimentell nachgewiesen wurde die Transplantatabstoßung in der Ratte unter Verwendung eines Stat-1 -Decoy-Oligonuldeotides, da bei der Ratte Stat-1 anstelle von IRF-1 wie beim Menschen für die Interferon-γ-induzierte CD40-Expression verantwortlich ist (Krzesz et al. (1999) FEBS Lett. 453, 191).
Stammkombination
Zur allogenen Transplantation wurde die Stammlcombination Brown Norway-Spender auf Lewis-Empfänger verwendet. Hierbei kam es ohne nmunsuppression nach 7 Tagen zur Abstoßung des Transplantates. Als syngene Kontrollen diente die Transplantation Lewis auf Lewis.
Explantation In Etherinhalationsnarkose wurde das Abdomen des Tieres in der Mittellinie eröffnet. Zunächst wurde ein Aortasegment von allen arteriellen Abgängen befreit, so dass ein ca. 1 cm langes aortales Segment mit angehender Arteria mesenterica präpariert wurde. Im nächsten Schritt wurde das gesamt Kolon entfernt. Danach wurden alle venösen Zuflüsse der Pfortader in Höhe des Pankreas ligiert, so dass die Pfortader bis in den Leberhilus frei war. Der so präparierte Spenderdünndarm hing jetzt lediglich an dem Gefäßstiel der Aorta und der Pfortader. Nun wurde die Aorta proximal und distal des Abganges der Arteria mesenterica abgeklemmt, die Pfortader in Höhe des Leberhilus durchtrennt und das Gefäßbett des Dünndarmes mit kalter University of Wisconsin (UW)-Lösxmg gespült bis sich keine makroskopischen Blutreste mehr im Gefäßbett befanden, hn letzten Schritt wurde das Darmlumen ebenfalls mit kalter UW-Lösung gespült und der Darm mit einem Aortasegment entnommen und bis zur Implantation in kalter UW-Lösung aufbewahrt (Dauer bis 120 Minuten). Bei Behandlung des Transplantates mit dem Stat-1-Decoy- Oligonuldeotid (Sequenz: CATGTTATGCATATTCCTGTAAGTG; (SEQ ID NO:36) oder dem entsprechenden mutierten Kontroll-Oligonukleotid (Sequenz: CATGTTATGCAGACCGTAGTAAGTG (SEQ ID NO:40), wurden diese in Ringer-Lösung (enthaltend 145 mmol/1 Na+, 5 mmol/1 K+, 156 mmol/1 Cl", 2 mmol 1 Ca2+, 1 mmol/1 Mg2+, 10 mmol/1 Hepes, 10 mmol/1 D-Glucose, pH 7,4) gelöst in die Arteria mesenterica infundiert (Volumen 3 ml, Endkonzentration 20 μmol/L) und erst unmittelbar vor der Anastomosierang mit Ringer-Lösung ausgewaschen.
Implantation
In Etherinhalationsnarkose wurde das Abdomen in der Mittellinie eröffnet. Es wurden die Aorta und Vena cava dargestellt und simultan abgeklemmt. Der Gefäß anschliiß erfolgte End-zu-Seit in fortlaufender Nahttechnik mittels eines 8-0 Nylonfadens. Es wurden das die Arteria mesenterica tragende Aortasegment an der infrarenale Aorta und die Pfortader an die infrarenale Vena cava anastomosiert. Nach Freigabe der Zirkulation wurde das terminale Ileum des Spenderdarmen ebenfalls End-zu-Seit an das terminale Ileum des Empfängerdarmes mittels eines 6-0 Nylonfadens angeschlossen. So wxxrde der vom Spenderdarm produziert Mukus in die normale Passage des Tieres abgeleitet. Das orale Ende des Spenderdarmes wurde mittels Ligatur verschlossen xmd das Abdomen zweischichtig fortlaufend verschlossen. Postoperativ erhielten die Tiere zur Analgesie Temgesic in das Trinkwasser.
hitravitalmikroskopie Eine Beurteilxmg der Bedeutimg der Leukozyten-Endothel-hiteralction für die Entzündungsreaktion war nur durch intravitalmikroskopische Analysen möglich. Diese Methode ermöglichte eine Beobachtung des „Rollens und Adherierens" von Leukozyten am Endothel in vivo sowie eine quantitative Analyse mikrovaskulärer Parameter (Perfusion des Gewebes, Funktionelle Kapillardichte und Blutfluss).
Durchgeführt wurde die Intravitalmikroskopie mit einem Axiotech Vario 100 Mikroskop von Zeiss (Göttingen), ausgestattet mit einer HBO 100 Quecksilber-Lampe für Epifluoreszenz- Messungen. Durch den Einsatz von lOx , 20x und 40x (Wasser-hnmersions) Objektiven wurden Auflösungen von 243 x, 476x und 933 x eπeicht. Die mikroskopischen Bilder wurden mit einer CCD Video-Kamera (CF 8/1, Kappa) aufgenommen und für die spätere Auswertung auf einem Videoband festgehalten.
Sieben Tage nach der Transplantation wurden die Ratten (6 Tiere pro Gruppe) in tiefer Diethylether-Narkose intravitalmikroskopisch x tersucht. Um die Atmung zu erleichtem wurde die Trachea kanüliert. Ein Polyurethan-Katheter wurde zur permanenten Überprüfung des Blutdrucks und Vereinfachung der Applikation von Farbstoffen in die Arteria carotis gelegt. Die Körpertemperatur der Tiere wurde durch eine beheizbare Platte konstant gehalten. Durch einen ventral-median angelegten Schnitt wurden die Tiere eröffnet, das Colon descendens ausgelagert, antimesenterial ein kleiner Schnitt gesetzt und der Darm in einer speziellen Halterung zur Erleichterung des Mikroskopierens befestigt. Um ein Austrocknen des Gewebes zu verhindern, wurde der Darm permanent mit Ringer-Lösung benetzt. Durch die Injektion von 0,8 ml 0,5%> FITC- (Fluorescein-Isothiocyanat) gekoppeltem Dextran wurde die intestinale Milcrozirlculation sichtbar gemacht. Um die Messungen statistisch abzusichern, wurden mindestens zehn verschiedene Bereiche des entsprechenden Darmabschnittes untersucht. Quantifiziert wurden die verschiedenen Parameter folgendermaßen: Der Perfusions-Index ergab sich aus den perfundierten Mulcosa-Arealen (in %>) + 0,5x aller unregelmäßig perfundierten Mulcosa-Areale (in %>). Die funktionelle Kapillardichte wurde durch eine Computer-unterstützte Image-Analyse (CAP-IMAGE Software, Zeintl, Heidelberg) ermittelt. Zur Untersuchung der Leukozyten- Endothel-Interaktionen wurden die Leukozyten durch die Injektion von 0,2 ml 0,1 % Rhodamine- 6 G (Sigma, Heidelberg) markiert und postkapiläre Venolen in der Submu osa mikroskopiert. Als adhärente Leukozyten („Sticker") wurden Leukozyten definiert, die in einem Gefäßsegment von 100 μm Länge mindestens 20 Sek. am Endothel hafteten. Kalkuliert wurden Zahl der Sticker/ mm2 Endotheloberfläche. Die Endotheloberfläche ergab sich aus der Oberflächenberechnung für einen Zylinder.
Dünndanntransplantation - Ergebnis
Die mulcosale funktionelle Kapillardichte, als Maß für die Perfusion, war sowohl in der Kontroll- Gmppe als auch in der mit mutierten Kontroll-Oligonukleotid behandelten Gruppe bis auf 10% der Werte von syngen transplantierten Dünndärmen ohne Abstoßung venϊngert. Im Vergleich dazu war die funktionelle Kapillardichte um den Faktor 4 erhöht in mit dem Stat-1 Cis-Element Decoy behandelten Dünndärmen. Der Blutfluss (Fließgeschwindigkeit der Erythrozyten) war in diesen Tieren 10-fach und der Perfusionsindex 3 -fach erhöht. Der Staseindex wurde um 60%> und die Anzahl der am Endothel haftenden Leukozyten um 25% reduziert. Nur der letztgenannte Parameter war nicht statistisch signifikant verändert. Insgesamt war die abstoßungsbedingte Verminderung der Darmperfusion und damit die Degeneration des Transplantates in der mit dem Cis-Element Decoy behandelten Gruppe also deutlich reduziert.

Claims

Patentansprüche
1. Ein Inhibitor der IRF-1 -Expression und/oder -Aktivität als therapeutische Substanz.
2. Inhibitor nach Ansprach 1, wobei der Inhibitor ein doppelsträngiges DNA-Molekül ist und die IRF-1 -Aktivität inhibiert.
3. Inhibitor nach Anspruch 2 mit einer Nukleinsäuresequenz gemäß SEQ ID NO: 1 bis 22.
4. Inhibitor nach Anspruch 2 oder 3, wobei das doppelsträngige DNA-Molekül modifizierte Intemukleotidbindungen aufweist.
5. Inhibitor nach Ansprach 1, wobei der Inhibitor ein Antisense-Oligonukleotid ist und die IRF-1 -Expression inhibiert.
6. Inhibitor nach Anspruch 5 mit einer Nukleinsäuresequenz gemäß SEQ ID NO: 23 bis 26.
7. Inhibitor nach Anspruch 5 oder 6, wobei das Antisense-Oligonukleotid modifizierte Intemukleotidbindungen aufweist.
8. Verwendung eines Inhibitors der IRF-1 -Expression und/oder -Aktivität zur Herstellung eines Arzneimittels zur Prävention oder Therapie kardiovaskulärer Komplikationen wie der Restenose nach perkutaner Angioplastie oder der Stenosierung von Venenbypässen, der chronischen (Transplantat-Arteriosklerose oder Vaskulopathie) oder akuten Transplantatabstoßung, der graft versus host disease (GVHD), immunologischen
Uberempfindlichkeitsreaktionen (Allergien) insbesondere Asthma bronchiale und atopische Dermatitis, chronisch rezidivierenden Entzündxmgserkrankungen insbesondere Colitis ulcerosa und Morbus Crohn, Psoriasis und Sarkoidose, sowie Autoimmunerkrankungen insbesondere Diabetes mellitus, multiple Sklerose, Kollagenosen (z.B. systemischer Lupus erythematodes), rheumatoide Arthritis und
Vaskulitiden.
9. Ein Antisense-Oligonukleotid mit einer Nukleinsäuresequenz gemäß SEQ ID NO:23 bis 26.
10. Antisense-Oligonukleotid nach Ansprach 9, wobei das Antisense-Oligonukleotid modifizierte Intemukleotidbindungen aufweist.
11. Ein doppelsträngiges DNA-Molekül mit der Nukleinsäuresequenz gemäß SEQ ID NO: 1 bis 21.
12. Doppelsträngiges DNA-Molekül nach Ansprach 11, wobei das doppelsträngige DNA- Molekül modifizierte Ihtemuldeotidbindungen aufweist.
EP01986318A 2000-10-06 2001-10-04 Modulation der transkription pro-inflammatorischer genprodukte Withdrawn EP1325122A2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10049549 2000-10-06
DE10049549A DE10049549A1 (de) 2000-10-06 2000-10-06 Modulation der Transkription pro-inflammatorischer Genprodukte
DE10059144A DE10059144A1 (de) 2000-10-06 2000-11-29 Modulation der Transkription pro-inflammatorischer Genprodukte
DE10059144 2000-11-29
PCT/DE2001/003835 WO2002029044A2 (de) 2000-10-06 2001-10-04 Modulation der transkription pro-inflammatorischer genprodukte

Publications (1)

Publication Number Publication Date
EP1325122A2 true EP1325122A2 (de) 2003-07-09

Family

ID=26007280

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01986318A Withdrawn EP1325122A2 (de) 2000-10-06 2001-10-04 Modulation der transkription pro-inflammatorischer genprodukte

Country Status (11)

Country Link
US (2) US7524949B2 (de)
EP (1) EP1325122A2 (de)
JP (1) JP2004510787A (de)
CN (1) CN100436578C (de)
AU (2) AU2002223470B2 (de)
CA (1) CA2424604A1 (de)
DE (2) DE10049549A1 (de)
NO (1) NO20031408L (de)
PL (1) PL362987A1 (de)
RU (1) RU2003107669A (de)
WO (1) WO2002029044A2 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE390938T1 (de) * 2001-02-20 2008-04-15 Anges Mg Inc Topische anwendung eines nf-kb decoys zur behandlung atopischer dermatitis
DE10148828B4 (de) * 2001-10-04 2005-05-19 Avontec Gmbh Modulation der Expression STAT-1-abhängiger Gene
EP1460898A4 (de) * 2002-01-03 2006-05-24 Univ Texas Wt1-antisense-oligos für die hemmung von brustkrebs
DE10240417A1 (de) * 2002-09-02 2004-03-11 Avontec Gmbh Decoy-Oligonukleotid-Hemmung der CD40-Expression
EP1709175A2 (de) * 2003-12-03 2006-10-11 Corgentech, Inc. Hif-oligonukleotid-ködermoleküle
JP5646320B2 (ja) 2007-05-11 2014-12-24 アダイニクス, インコーポレイテッド 遺伝子発現と疼痛
CA2765129A1 (en) * 2009-06-08 2010-12-16 Miragen Therapeutics Chemical modification motifs for mirna inhibitors and mimetics
CA2872901A1 (en) 2012-05-10 2013-11-14 Adynxx, Inc. Formulations for the delivery of active ingredients
WO2015095636A2 (en) * 2013-12-19 2015-06-25 The Children's Hospital Of Philadelphia Interferon regulatory factor 1 (irf1) decoys and methods of use thereof
CN103751804B (zh) * 2014-01-23 2015-09-30 武汉大学 干扰素调节因子4(irf4)基因在冠状动脉粥样硬化性心脏病中的应用
US10287583B2 (en) * 2014-08-15 2019-05-14 Adynxx, Inc. Oligonucleotide decoys for the treatment of pain
CN104258419A (zh) * 2014-09-29 2015-01-07 武汉大学 干扰素调节因子1基因在治疗动脉粥样硬化中的应用
JP6749917B2 (ja) * 2015-01-15 2020-09-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. iFR−CT
CN106620719A (zh) * 2016-10-20 2017-05-10 武汉大学 干扰素调节因子1及其抑制剂在治疗脂肪肝和ⅱ型糖尿病中的功能和应用
WO2020101880A1 (en) * 2018-11-14 2020-05-22 Oklahoma Medical Research Foundation Compositions and methods of treating systemic lupus erythematosus
EP3894546A4 (de) * 2018-12-16 2022-12-21 Figene, LLC Therapeutische verwendungen von geneditierten fibroblasten
CN114948965B (zh) * 2022-07-18 2023-11-10 四川大学华西第二医院 一种化合物在制备防治组织损伤药物中的应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3847366B2 (ja) 1996-02-22 2006-11-22 アンジェスMg株式会社 アンチセンスオリゴヌクレオチドを用いた固定性分裂終了細胞増殖剤
US6060310A (en) * 1997-11-24 2000-05-09 The United States Of America As Represented By The Department Of Health And Human Services Transcription factor decoy and tumor growth inhibitor
WO2000006769A2 (en) * 1998-07-25 2000-02-10 Astrazeneca Human ccr-2 gene polymorphisms
CN1317009A (zh) * 1998-08-03 2001-10-10 东卡罗来纳大学 低腺苷反义寡核苷酸制剂、组合物、试剂盒及处理
WO2000044407A2 (en) * 1999-02-01 2000-08-03 Amgen Canada Materials and methods to inhibit hodgkin and reed sternberg cell growth
IL140054A0 (en) * 1999-04-06 2002-02-10 Univ East Carolina Low adenosine anti-sense oligonucleotide, compositions, kit and method for treatment of airway disorders associated with bronchoconstriction, lung inflammation, allergy (ies) and surfactant depletion
EP1165758A2 (de) * 1999-04-12 2002-01-02 Ribozyme Pharmaceuticals, Inc. Regelung der expression von transkiptional-repressorgenen mittels nukleinsäuremolekulen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0229044A2 *

Also Published As

Publication number Publication date
CN100436578C (zh) 2008-11-26
PL362987A1 (en) 2004-11-15
AU2347002A (en) 2002-04-15
US7524949B2 (en) 2009-04-28
RU2003107669A (ru) 2004-11-20
CN1468305A (zh) 2004-01-14
US20040048820A1 (en) 2004-03-11
DE10049549A1 (de) 2002-05-02
US20090221686A1 (en) 2009-09-03
DE10059144A1 (de) 2002-07-04
JP2004510787A (ja) 2004-04-08
NO20031408D0 (no) 2003-03-27
AU2002223470B2 (en) 2007-01-04
WO2002029044A3 (de) 2002-12-12
WO2002029044A2 (de) 2002-04-11
NO20031408L (no) 2003-03-27
CA2424604A1 (en) 2003-04-02

Similar Documents

Publication Publication Date Title
EP1432452B1 (de) Inhibition von stat-1
EP1325122A2 (de) Modulation der transkription pro-inflammatorischer genprodukte
DE69028694T2 (de) Verfahren und zubereitungen zur krebsbehandlung mit oligonukleotiden
EP0387775B1 (de) Genetische Einheiten zur Inhibierung der Funktion von RNA
DE69535467T2 (de) Faktor aus pigmentiertem Epithel (PEDF): Charakterisierung, genomische Organisation und Sequenz des PEDF-Gens
DE69829857T2 (de) Hypoxie-regulierte gene
US20080293657A1 (en) Modulation of the expression of stat-1-dependent genes
DE69613984T2 (de) Für die protein-kinase a-spezifische modifizierte oligonukleotide und verfahren zur deren verwendung
DE10257421A1 (de) Regulatorische Elemente im 5&#39;-Bereich des VR1-Gens
EP2360250B1 (de) siRNA-Moleküle zur Behandlung von Blutgefäßen
EP1537210B1 (de) Decoy-oligonukleotid-hemmung der cd40-expression
WO2004106519A2 (de) Mrp8/mrp14 inhibitoren und ihre verwendung zur prävention und/oder behandlung von hypertrophen narben und keloiden
WO2002068636A1 (de) Verfahren und mittel zur modifikation humaner angiogenese
DE69936320T2 (de) Zellbasierte gentherapie für das lungensystem
WO1999061607A2 (de) Antisense-oligonukleotide zur behandlung von proliferierenden zellen
DE10028376A1 (de) Epididymis-spezifische Proteine mit Fibronektin Typ II-Modulen
AU2007202872A1 (en) Modulation of the Expression of Genes Dependent on Stat-1

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030319

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AVONTEC GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WAGNER, ANDREAS H.

Inventor name: HECKER, MARKUS

17Q First examination report despatched

Effective date: 20070717

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20091109