[go: up one dir, main page]

EP1254313B1 - Verfahren zur erzeugung einer folge von hochspannungszündfunken und hochspannungszündvorrichtung - Google Patents

Verfahren zur erzeugung einer folge von hochspannungszündfunken und hochspannungszündvorrichtung Download PDF

Info

Publication number
EP1254313B1
EP1254313B1 EP01903597A EP01903597A EP1254313B1 EP 1254313 B1 EP1254313 B1 EP 1254313B1 EP 01903597 A EP01903597 A EP 01903597A EP 01903597 A EP01903597 A EP 01903597A EP 1254313 B1 EP1254313 B1 EP 1254313B1
Authority
EP
European Patent Office
Prior art keywords
ignition
energy store
spark
voltage
ignition energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01903597A
Other languages
English (en)
French (fr)
Other versions
EP1254313A2 (de
Inventor
Manfred Vogel
Werner Herden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1254313A2 publication Critical patent/EP1254313A2/de
Application granted granted Critical
Publication of EP1254313B1 publication Critical patent/EP1254313B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q3/00Igniters using electrically-produced sparks
    • F23Q3/004Using semiconductor elements

Definitions

  • the invention relates to a method for production a sequence of high voltage ignition pulses as well as a High-voltage ignition device according to the preamble of claim 8.
  • this measuring line can be used to measure the Spark current can be used. This results in an inexpensive and robust solution to the Control of the recharging process by the control unit.
  • FIG. 1 shows a high-voltage ignition device 1, an ignition energy store 2, a control unit 3 and comprises a switching element 4.
  • the high voltage igniter 1 places on a spark gap 5 electrical energy for generating a high-voltage spark ready.
  • the spark gap 5 is formed on an ignition spark generating means 6, that should preferably be implemented as a spark plug can.
  • the ignition energy store 2 is in a preferred embodiment formed as an inductor, that is Ignition coil 7 realized that a primary winding 8th and has a secondary winding 9.
  • Ignition coil 7 realized that a primary winding 8th and has a secondary winding 9.
  • the ignition spark generating means 6 On the secondary winding 9 is the ignition spark generating means 6 connected, with another in this circuit Interference suppressor 10 and a so-called EFU diode 11 (switch-on spark suppression) arranged are, the anode with the spark gap 5 and their Cathode are connected to the secondary winding 9.
  • EFU diode 11 switch-on spark suppression
  • the primary winding 8 has one winding end at a supply voltage U B , which is, for example, the battery voltage of an on-board battery of a motor vehicle.
  • U B a supply voltage
  • the other winding end of the primary winding 8 can be connected to ground via the switching element 4.
  • the supply circuit for the primary winding 8 is opened or closed.
  • the switching element 4 is closed, the ignition energy store 2 is charged. After the ignition energy store 2 has been charged, the stored ignition energy is dissipated via the spark gap 5 by opening the switching element 4 and the ignition energy store 2 is thereby discharged.
  • the control device 3 has a voltage measurement input 14, which is connected to a voltage tap 15, which is located in the primary-side circuit between the primary coil 8 and the switching element 4, in order to be able to measure the so-called clear timer voltage of the ignition energy store 2. Furthermore, the control device 3 has a current measurement input 16, which is connected to a current tap 17 of the switching element 4. The primary current I P is measured via this current measurement input 16, at least during the charging process of the ignition energy store 2. In addition, the control unit 3 includes a determination device 19 which determines the state of charge of the energy store 2 at least during the generation of ignition sparks.
  • the determination device has a current measurement input 20, which is connected to a winding end of the secondary winding 9, so that the spark current I F can be measured during the ignition spark generation.
  • a measuring resistor 21, also referred to as a shunt is connected to the connecting line between the current measuring input 20 and the secondary winding 9 with its one connection, the other connection of the measuring resistor 21 being connected to ground 18.
  • control unit 3 has a control input 22, to which a standing voltage U E can be applied, which can be output by a switching device.
  • the mode of operation of the high-voltage ignition device 1 is explained below on the basis of FIGS. 1 and 2a to 2c: when the control input 22 is activated, the control voltage U E is present for a period of time t 0 to t E (FIG. 2c). Thereupon the control device 3 controls the switching element 4, so that the supply circuit for the primary winding 8 is closed and the primary current I P increases from the time t 0 .
  • the current I P changes depending on the state of charge of the ignition energy store 2.
  • the switching element 4 When a predeterminable value I P, IGNITION is reached at the time t 1 , the switching element 4 is opened again via the control unit 3, so that the subsequent discharge process of the ignition energy store 2 generates the spark current I F ( Figure 2b) at time t 1 rises, whereupon the ignition spark on the spark gap 5 burns. By progressive discharge of ignition energy 2 of the spark current I F decreases.
  • a predeterminable trigger value I TR of the spark current I F which is detected by the determination device 19, is reached, the switching element 4 is closed again via the control unit 3 and a recharging process of the ignition energy store 2 is started at time t 2 .
  • the charging process is carried out again until the specific value I P, IGNITION for the primary current is reached at time t 3 , whereupon the switching element 4 is opened again via the control unit 3, so that a subsequent ignition spark at the spark gap 5 at the time t 3 by the discharging process ignites that burns until the spark current I F has dropped back to the trigger value I TR at time t 4 , whereupon the switching element 4 is closed again and a further charging process of the ignition energy store is carried out until the value of the primary current I P again Value I P, IGNITION reached at time t 5 .
  • the ignition store 2 is discharged again, which in turn generates an ignition spark at the time t 5 on the spark gap 5.
  • control voltage U E is no longer present at the control input 22 at the time t E , so that the control unit 3 does not close the switching element 4 again and the ignition spark burns out completely. It is thus readily apparent that, depending on the activation time t 0 to t E, an initial spark can be generated at time t 1 , at least one or more subsequent sparks can be generated in time period t 2 to t 4 and a final ignition spark is generated at time t 5 , which burns out can.
  • the switching element 4 for a charging process of the ignition energy storage device 2 is only closed when the ignition spark current I F triggers the trigger value I TR for a specific one Time period, for example 20 ⁇ s to 80 ⁇ s, falls short, so that current peaks are virtually filtered out and are not taken into account when driving the switching element 4.
  • the trigger value I TR is less than the maximum current I F, max and can be, for example, 0.3 to 0.7 times the maximum ignition current I F, max .
  • This trigger value I TR can therefore be varied, preferably as a function of at least one operating parameter of the internal combustion engine.
  • the speed and / or the load of the internal combustion engine can be used for this.
  • a characteristic curve field is available which contains several characteristic curves, so that the trigger value I TR can be selected as a function of these operating core lines of the internal combustion engine. Changing the trigger value I TR also changes the duration of a single spark, so the number of sparks for a spark sequence can be changed.
  • FIG. 3 shows a second exemplary embodiment of a high-voltage ignition device 1, in which the determination device 19 is embodied in a switching unit 27 connected upstream of the control unit 3, which includes a switching unit 28, which is connected on the output side to the control input 22 of the control unit 3 and the control voltage U E provides for the control unit 3.
  • the control voltage U E is provided in a pulse-like manner in accordance with FIG. 4a, specifically as a function of the spark current I F. If this spark current I F reaches the trigger value I TR (FIG. 4c), a control voltage pulse U E is again applied to the control input 22, so that the control unit 3 closes the switching element 4 until the primary current I P has the ignition value I P, IGNITION (FIG.
  • the current measurement input 20 is tapped between a Zener diode 29 and the measuring resistor 21, the Zener diode 29 being switched in the forward direction for the spark current I F.
  • the connecting line between the secondary winding 9 and the Zener diode 29 is passed on to an ion current measuring device 30, with which the ion current in the combustion chamber can be measured during spark breaks, for example in order to be able to assess the knocking behavior of the internal combustion engine.
  • the same or equivalent parts in FIGS. 3 and 4 as in FIGS. 1 and 2 are provided with the same reference numerals. In this respect, reference is made to their description.
  • the adjustment of the discharge time of the ignition energy storage can also meet the conditions in the secondary circuit of the ignition energy storage 2 and the ignition spark generating means 6 can be adjusted so that also tolerances of resistors 12, 10 and 13 in Secondary circuit can be compensated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung einer Folge von Hochspannungszündimpulsen sowie eine Hochspannungszündvorrichtung gemäß Oberbegriff des Anspruchs 8.
Stand der Technik
Im Stand der Technik sind verschiedene Hochspannungs-Zündvorrichtungen bekannt. Neben der induktiven Zündung sind außerdem kapazitive Zündsysteme sowie Wechselstrom-Zündsysteme bekannt. Ferner sind im Stand der Technik Zündsysteme bekannt geworden, bei denen eine Folge von Hochspannungszündfunken erzeugt wird. Die auch als Doppelzündung bekannte Vorrichtung erzeugt während eines Verbrennungsvorganges in einem Zylinder mehrere Zündfunken, um die Verbrennung zu verbessern. Hierfür sind beispielsweise Zündsysteme bekannt, die mehrere Zündenergiespeicher, beispielsweise Zündspulen, aufweisen. Die Zündfunkenfolge wird im Stand der Technik zeitgesteuert, wobei diese Zeitsteuerung per Software und/oder Hardware mittels eines Steuergeräts erfolgt. Nachteilig bei den bekannten Mehrfachfunkensystemen ist, dass die Zeit zwischen einem Auf- und Entladevorgang des Zündspeichers relativ lange ist. Außerdem ist bei Zündsystemen mit mehreren Zündenergiespeichern ein erhöhter Materialaufwand erforderlich.
Eine bekannte Vorrichtung ist in US 5488940 beschrieben.
Vorteile der Erfindung
Mit dem Verfahren zur Erzeugung einer Folge von Hochspannungszündimpulsen, das die Merkmale des Anspruchs 1 aufweist, und mit der Hochspannungs-Zündvorrichtung, die die Merkmale des Anspruchs 8 besitzt, ist es in vorteilhafter Weise möglich, die Zeit zwischen einem Entlade- und Aufladevorgang eines Zündenergiespeichers zu verkürzen. Dadurch ist es möglich, während eines Verbrennungsvorganges mehrere Hochspannungszündfunken bereitzustellen. Es ist jedoch auch möglich, aufgrund der Erhöhung der Anzahl der Zündfunken, die Kapazität des Zündenergiespeichers zu reduzieren, also beispielsweise eine gegenüber dem Stand der Technik verkleinerte Zündspule zu verwenden. Im wesentlichen wird die Verkürzung der Wiederaufladezeit des Zündenergiespeichers dadurch erreicht, dass dieser vor seiner vollständigen Entladung wieder aufgeladen wird. Es verbleibt also unabhängig von Parameteränderungen, wie beispielsweise der Zündspannung, der Brennspannung des Zündfunkens, der Drehzahl der Brennkraftmaschine, des Verhältnisses des Luft-Kraftstoff-Gemisches, der Batteriespannungssituation oder dergleichen, eine Restzündenergie im Zündenergiespeicher, so dass der Wiederaufladevorgang verkürzt ist, worauf der Folgefunken mit einem wesentlich geringeren Zeitabstand zum Erstfunken erzeugt werden kann.
Um eine vollständige Entladung des Zündenergiespeichers auf einfach Art und Weise verhindern zu können, ist in einer Weiterbildung der Erfindung vorgesehen, dass -während der Zündfunken brennt- der Zündfunkenstrom gemessen und bei Unterschreiten eines festlegbaren Wertes des Zündfunkenstromes der Wiederaufladevorgang des Zündenergiespeichers gestartet wird. Um unkontrollierte Wiederzündung am Zündfunkenerzeugungsmittel auszuschließen, die beispielsweise durch Stromspitzen des Zündfunkenstromes hervorgerufen werden kann, ist in besonders bevorzugter Ausführungsform vorgesehen, dass der Wiederaufladevorgang des Zündenergiespeichers erst dann gestartet wird, wenn der Zündfunkenstrom den festlegbaren Wert für einen vorgegebenen Zeitraum unterschritten hat. Damit wird jedoch auch eine Mindestfunkendauer gewährleistet, die für die Zündung des Luft-Kraftstoffgemisches im Brennraum erforderlich ist. Da das Wiedereinschalten also erst bei Unterschreiten des Zündfunkenstroms unter den festlegbaren Wert erfolgt, wird aber auch die kurze Wiederaufladezeit des Zündfunkenspeichers erreicht, da Restzündenergie im Speicher vorhanden ist.
Ist eine Messleitung von dem Zündenergiespeicher zu einem Steuergerät für eine Ionenstrommessung vorhanden, so kann diese Messleitung zur Messung des Zündfunkenstroms verwendet werden. Dadurch ergibt sich eine kostengünstige und robuste Lösung der Steuerung des Wiederaufladevorgangs durch das Steuergerät.
Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.
Zeichnung
Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen mit Bezug auf die Zeichnung näher erläutert. Es zeigen:
Figur 1
ein erstes Ausführungsbeispiel einer Hochspannungs-Zündvorrichtung,
Figur 2
über der Zeit aufgetragen den Ladestrom eines Zündenergiespeichers der Hochspannungszündvorrichtung, den Zündfunkenstrom sowie eine Steuerspannung,
Figur 3
ein zweites Ausführungsbeispiel einer Hochspannungs-Zündvorrichtung, und
Figur 4
die zur Hochspannungs-Zündvorrichtung nach Figur 3 zugehörigen Strom- und Spannungsverläufe über der Zeit.
Beschreibung der Ausführungsbeispiele
Figur 1 zeigt eine Hochspannungs-Zündvorrichtung 1, die einen Zündenergiespeicher 2, ein Steuergerät 3 und ein Schaltelement 4 umfasst. Die Hochspannungs-Zündvorrichtung 1 stellt an einer Funkenstrecke 5 elektrische Energie zur Erzeugung eines Hochspannungs-Zündfunkens bereit. Die Funkenstrecke 5 ist an einem Zündfunkenerzeugungsmittel 6 ausgebildet, das vorzugsweise als Zündkerze realisiert sein kann.
Der Zündenergiespeicher 2 ist in bevorzugter Ausführungsform als Induktivität ausgebildet, also als Zündspule 7 realisiert, die eine Primärwicklung 8 und eine Sekundärwicklung 9 besitzt. An der Sekundärwicklung 9 ist das Zündfunkenerzeugungsmittel 6 angeschlossen, wobei in diesem Stromkreis noch ein Entstörwiderstand 10 und eine sogenannte EFU-Diode 11 (Einschalt-Funken-Unterdrückung) angeordnet sind, deren Anode mit der Funkenstrecke 5 und deren Kathode mit der Sekundärwicklung 9 verbunden sind. Ferner sind in diesem Stromkreis noch der Abbrandwiderstand 12 des Zündfunkenerzeugungsmittels und der Widerstand 13 des Zündenergiespeichers 2 eingezeichnet. Mit ihrem einen Wicklungsende ist die Sekundärwicklung 9 also mit der Funkenstrecke 5 und mit ihrem anderen Wicklungsende mit dem Steuergerät 3 verbunden.
Die Primärwicklung 8 liegt mit ihrem einen Wicklungsende an einer Versorgungsspannung UB, die beispielsweise die Batteriespannung einer Bordbatterie eines Kraftfahrzeugs ist. Das andere Wicklungsende der Primärwicklung 8 ist über das Schaltelement 4 auf Masse legbar. Je nachdem, wie das Schaltelement 4 von dem Steuergerät 3 über einen Ansteuerausgang 4' angesteuert wird, ist also der Versorgungsstromkreis für die Primärwicklung 8 geöffnet oder geschlossen. Bei geschlossenem Schaltelement 4 wird der Zündenergiespeicher 2 geladen. Nach erfolgter Aufladung des Zündenergiespeichers 2 wird durch Öffnen des Schaltelements 4 die gespeicherte Zündenergie über die Funkenstrecke 5 abgebaut und der Zündenergiespeicher 2 dadurch entladen.
Das Steuergerät 3 weist einen Spannungsmesseingang 14 auf, der mit einem Spannungsabgriff 15 verbunden ist, der im primärseitigen Stromkreis zwischen der Primärspule 8 und dem Schaltelement 4 liegt, um die sogenannte Klarimerspannung des Zündenergiespeichers 2 messen zu können. Ferner weist das Steuergerät 3 einen Strommesseingang 16 auf, der mit einem Stromabgriff 17 des Schaltelements 4 verbunden ist. Über diesen Strommesseingang 16 wird der Primärstrom IP gemessen, und zwar zumindest während des Ladevorgangs des Zündenergiespeichers 2. Außerdem umfasst das Steuergerät 3 eine Ermittlungseinrichtung 19, die den Ladezustand des Energiespeichers 2 zumindest während der Zündfunkenerzeugung ermittelt. Hierzu weist die Ermittlungseinrichtung in bevorzugter Ausführungsform einen Strommesseingang 20 auf, der mit einem Wicklungsende der Sekundärwicklung 9 verbunden ist, so dass während der Zündfunkenerzeugung der Funkenstrom IF gemessen werden kann. Um dies einfach und leicht ausführen zu können, ist ein auch als Shunt bezeichneter Messwiderstand 21 an die Verbindungsleitung zwischen Strommesseingang 20 und Sekundärwicklung 9 mit seinem einen Anschluss angeschlossen, wobei der andere Anschluss des Messwiderstands 21 zur Masse 18 geführt ist. Schließlich weist das Steuergerät 3 einen Steuereingang 22 auf, an den eine Steherspannung UE angelegt werden kann, die von einem Schaltgerät ausgegeben werden kann.
Anhand der Figuren 1 und 2a bis 2c wird im Folgenden ' die Funktionsweise der Hochspannungs-Zündvorrichtung 1 erläutert: Bei aktiviertem Steuereingang 22 liegt die Steuerspannung UE in einem Zeitraum t0 bis tE an (Figur 2c). Daraufhin steuert das Steuergerät 3 das Schaltelement 4 an, so dass der Versorgungsstromkreis für die Primärwicklung 8 geschlossen ist und der Primärstrom IP ab dem Zeitpunkt t0 ansteigt. Der Strom IP ändert sich in Abhängigkeit des Ladezustands des Zündenergiespeichers 2. Bei Erreichen eines vorgebbaren Wertes IP,ZÜND zum Zeitpunkt t1 wird das Schaltelement 4 über das Steuergerät 3 wieder geöffnet, so dass der anschließende Entladevorgang des Zündenergiespeichers 2 den Funkenstrom IF (Figur 2b) zum Zeitpunkt t1 ansteigen lässt, worauf der Zündfunke an der Funkenstrecke 5 brennt. Durch fortschreitende Entladung des Zündenergiespeichers 2 nimmt der Funkenstrom IF ab. Bei Erreichen eines vorgebbaren Triggerwertes ITR des Funkenstroms IF, der durch die Ermittlungseinrichtung 19 erfasst wird, wird das Schaltelement 4 über das Steuergerät 3 wieder geschlossen und ein Wiederaufladevorgang des Zündenergiespeichers 2 zum Zeitpunkt t2 gestartet. Der Ladevorgang wird wieder bis zum Erreichen des bestimmten Wertes IP,ZÜND für den Primärstrom zum Zeitpunkt t3 durchgeführt, worauf das Schaltelement 4 über das Steuergerät 3 wieder geöffnet wird, so dass durch den Entladevorgang ein Folgezündfunken an der Funkenstrecke 5 zum Zeitpunkt t3 zündet, der so lange brennt, bis der Zündfunkenstrom IF wieder auf den Triggerwert ITR zum Zeitpunkt t4 abgefallen ist, woraufhin das Schaltelement 4 wieder geschlossen wird und ein weiterer Ladevorgang des Zündenergiespeichers durchgeführt wird, bis der Wert des Primärstrom IP wieder den Wert IP,ZÜND zum Zeitpunkt t5 erreicht. Durch nochmaliges Öffnen des Schaltelements 4 erfolgt wieder ein Entladevorgang des Zündspeichers 2, der wiederum ein Zündfunken zum Zeitpunkt t5 an der Funkenstrecke 5 erzeugt. Die Ansteuerspannung UE liegt jedoch zum Zeitpunkt tE nicht mehr am Steuereingang 22 an, so dass das Steuergerät 3 das Schaltelement 4 nicht wieder schließt und der Zündfunken vollständig ausbrennt. Ohne weiteres zeigt sich also, dass je nach Ansteuerdauer t0 bis tE zum Zeitpunkt t1 ein Erstfunken, im Zeitraum t2 bis t4 zumindest ein oder auch mehrere Folgefunken erzeugt werden können und zum Zeitpunkt t5 ein Abschlusszündfunke erzeugt wird, der ausbrennen kann.
Um zwischen zwei Zündfunken, beispielsweise im Zeitraum t2 bis t3, ein unkontrolliertes Laden beziehungsweise Entladen des Zündenergiespeichers zu verhindern, wird das Schaltelement 4 für einen Ladevorgang des Zündenergiespeichers 2 erst dann geschlossen, wenn der Zündfunkenstrom IF den Triggerwert ITR für einen bestimmten Zeitraum, beispielsweise 20µs bis 80µs, unterschreitet, so dass Stromspitzen quasi ausgefiltert werden und bei der Ansteuerung des Schaltelements 4 nicht berücksichtigt werden. Der Triggerwert ITR ist geringer als der Maximalstrom IF,max und kann beispielsweise das 0,3 bis 0,7-fache des maximalen Zündstroms IF,max betragen. Dieser Triggerwert ITR ist also variierbar, und zwar vorzugsweise in Abhängigkeit zumindest eines Betriebsparameters der Brennkraftmaschine. Hierfür können beispielsweise die Drehzahl und/oder die Last der Brennkraftmaschine dienen. Insbesondere ist vorgesehen, dass ein Kennlinienfeld verfügbar ist, in dem mehrere Kennlinien enthalten sind, so dass in Abhängigkeit dieser Betriebskerinlinien der Brennkraftmaschine der Triggerwert ITR gewählt werden kann. Durch Ändern des Triggerwerts ITR ändert sich auch die Dauer eines Einzelfunkens, somit kann die Funkenanzahl für eine Funkenfolge geändert werden.
Aus Figur 1 geht noch hervor, dass sowohl das Steuergerät 3 und der Messwiderstand 21 als auch das Schaltelement 4, das insbesondere als Leistungsschalter ausgebildet ist, als Einheit 3' auf einem Halbleitersubstrat kostengünstig hergestellt werden können, so dass lediglich vier Anschlüsse 23 bis 26 aus einem dieses Substrat aufnehmenden Gehäuse herausgeführt werden müssen. Selbstverständlich können das Steuergerät 3, der Messwiderstand 21 und das Schaltelement 4 als separate Bauelemente ausgebildet sein, die jedoch auch in einem einzigen Gehäuse angeordnet sein können, das die Anschlüsse 23 bis 26 aufweist.
Figur 3 zeigt ein zweites Ausführungsbeispiel einer Hochspannungs-Zündvorrichtung 1, bei der die Ermittlungseinrichtung 19 in einer dem Steuergerät 3 vorgeschalteten Schalteinheit 27 ausgebildet ist, die ein Schaltgerät 28 umfasst, das ausgangsseitig mit dem Steuereingang 22 des Steuergeräts 3 verbunden ist und die Steuerspannung UE für das Steuergerät 3 bereitstellt. Die Steuerspannung UE wird gemäß Figur 4a impulsartig bereitgestellt, und zwar in Abhängigkeit des Funkenstroms IF. Erreicht dieser Funkenstrom IF den Triggerwert ITR (Figur 4c), wird wieder ein Steuerspannungsimpuls UE auf den Steuereingang 22 gegeben, so dass das Steuergerät 3 das Schaltelement 4 schließt, bis der Primärstrom IP den Zündwert IP,ZÜND (Figur 4b) erreicht, worauf das Schaltelement 4 wieder geöffnet wird, so dass durch Entladen des Zündenergiespeichers 2 wieder ein Funke an der Funkenstrecke 5 bereitgestellt werden kann. Vorteilhaft bei dieser Bereitstellung der Steuerspannung UE ist, dass aus dem Gehäuse, das die Einheit 3' aufnimmt, die das Steuergerät 3 und das Schaltelement 4 aufweist, lediglich drei Anschlüsse 23, 24 und 25 herausgeführt werden müssen.
Bei diesem Ausführungsbeispiel der Hochspannungs-Zündvorrichtung 1 gemäß Figur 3 ist der Strommesseingang 20 zwischen einer Zenerdiode 29 und dem Messwiderstand 21 abgegriffen, wobei die Zenerdiode 29 für den Funkenstrom IF in Durchlassrichtung geschaltet ist. Die Verbindungsleitung zwischen Sekundärwicklung 9 und der Zenerdiode 29 wird weitergeführt zu einer Ionenstrommesseinrichtung 30, mit der in Zündfunkenpausen der Ionenstrom in. dem Brennraum gemessen werden kann, um beispielsweise das Klopfverhalten der Brennkraftmaschine beurteilen zu können. Im übrigen sind in den Figuren 3 und 4 gleiche beziehungsweise gleich wirkende Teile wie in den Figuren 1 und 2 mit denselben Bezugszeichen versehen. Insofern wird auf deren Beschreibung verwiesen.
Mit der Hochspannungs-Zündvorrichtung 1 wird also ein mehrfaches Auf- und Entladen des Zündenergiespeichers 2 realisiert, wobei zur Reduzierung der Pausewzeiten zwischen zwei Zündfunken die Ladezeit gegenüber bekannten Systemen zum Wiederaufladen des Zündenergiespeichers 2 wesentlich verkürzt ist, da immer Restenergie im Zündenergiespeicher 2 verbleibt. Es können somit kostengünstige Zündenergiespeicher, insbesondere Spulen, verwendet werden, deren Primärenergie < 100mJ ist. Durch Änderung des Triggerwertes ITR für den Funkenstrom und Änderung des Abschaltstromes IP,ZÜND kann außerdem eine Anpassung an die jeweilige Versorgungsspannungshöhe, insbesondere Ladesituation der Bordbatterie, erreicht werden. Außerdem kann die Dauer einer Funkenfolge beziehungsweise die Funkenanzahl während einer Funkenfolge variiert werden.
Die Anpassung der Entladezeit des Zündenergiespeichers kann außerdem an die Bedingungen im Sekundärkreis des Zündenergiespeichers 2 und des Zündfunkenerzeugungsmittels 6 angepasst werden, so dass auch Toleranzen der Widerstände 12, 10 und 13 im Sekundärkreis kompensiert werden können.

Claims (12)

  1. Verfahren zur Erzeugung einer Folge von Hochspannungszündfunken, bei dem
    ein Zündenergiespeicher (2) bis zu einem festlegbaren Ladezustand (IP, ZÜND) aufgeladen wird,
    durch Entladen des Zündenergiespeichers (2) an einem an dem Zündenergiespeicher (2) angeschlossenen Zündfunkenerzeugungsmittel (6) ein Zündfunken erzeugt wird,
    ein Wiederaufladevorgang des zündenergiespetchers (2) gestartet wird, bevor der Zündenergiespeicher (2) vollständig entladen ist,
    durch Entladen des Zündenergiespeichers (2) ein weiterer Zündfunken am Zündfunkenerzeugungsmittel (6) erzeugt wird,
    und während der Zündfunkenerzeugung der Zündfunkenstrom (IF) gemessen wird und bei Unterschreiten eines festlegbaren Wertes (ITR) des Zündfunkenstromes (IF) der Wiederaufladevorgang des Zündenergiespeichers (2) gestartet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Wiederaufladevorgang des Zündenergiespeichers (2) gestartet wird, wenn der Zündfunkenstrom (IF) den festlegbaren Wert (ITR) für einen vorgebbaren Zeitraum unterschritten hat.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Ladevorgang, ein Wiederaufladevorgang und ein vollständiger Entladevorgang des Zündenergiespeichers (2) innerhalb eines Verbrennungszyklus erfolgen.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anzahl der Wiederaufladevorgänge innerhalb eines Verbrennungszyklus in Abhängigkeit von Betriebsparametern der Brennkraftmaschine bestimmt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass während einer Zündfunkenpause eine Ionenstrommessung erfolgt und dass in Abhängigkeit der aus der Ionenstrommessung ermittelten Parameter der Startzeitpunkt des Wiederaufladevorganges des Zündenergiespeichers (2) gewählt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Triggerwert (ITR) für den Zündfunkenstrom (IF) in Abhängigkeit zumindest eines Betriebsparameters, insbesondere der Drehzahl und/oder Last, der Brennkraftmaschine variierbar ist.
  7. Hochspannungs-Zündvorrichtung zur Erzeugung einer Funkenfolge, mit einem Zündenergiespeicher, einem Schaltelement für den Zündenergiespeicher, das eine Energieversorgungseinrichtung mit dem Zündenergiespeicher verbindet und unterbricht, und einer Steuereinrichtung für das Ansteuern des Schaltelements, gekennzeichnet durch eine Ermittlungseinrichtung (19) für den Ladezustand (IP, ZÜND) des Zündenergiespeichers (2), wobei die Steuereinrichtung (3) das Schaltelement (4) dann wieder schließt, wenn der Ladezustand des Zündenergiespeichers (2) einen vorgebbaren Wert unterschreitet und das Schaltelement (4) wieder geöffnet wird, wenn ein vorgebbarer Ladezustand wieder erreicht ist, wobei die Ermittlungseinrichtung (19) eine Strommesseinrichtung für den Funkenstrom (IF) ist.
  8. Hochspannungs-Zündvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Zündenergiespeicher (2) eine Induktivität ist.
  9. Hochspannungs-Zündvorrichtung nach einem der Ansprüche 7 und 8, dadurch gekennzeichnet, dass die Steuereinrichtung (3) die Ermittlungseinrichtung (19) aufweist.
  10. Hochspannungs-Zündvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass das Schaltelement (4) ein Halbleiter-Schaltelement ist.
  11. Hochspannungs-Zündvorrichtung nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass das Halbleiter-Schaltelement und die Steuereinrichtung (3) auf einem gemeinsamen Substrat angeordnet sind.
  12. Hochspannungs-Zündvorrichtung nach einem der vorhergehenden Ansprüche 7 bis 11, gekennzeichnet durch eine Ionenstrommesseinrichtung (30).
EP01903597A 2000-01-26 2001-01-08 Verfahren zur erzeugung einer folge von hochspannungszündfunken und hochspannungszündvorrichtung Expired - Lifetime EP1254313B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10003109A DE10003109A1 (de) 2000-01-26 2000-01-26 Verfahren zur Erzeugung einer Folge von Hochspannungszündfunken und Hochspannungszündvorrichtung
DE10003109 2000-01-26
PCT/DE2001/000031 WO2001055588A2 (de) 2000-01-26 2001-01-08 Verfahren zur erzeugung einer folge von hochspannungszündfunken und hochspannungszündvorrichtung

Publications (2)

Publication Number Publication Date
EP1254313A2 EP1254313A2 (de) 2002-11-06
EP1254313B1 true EP1254313B1 (de) 2003-07-02

Family

ID=7628660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01903597A Expired - Lifetime EP1254313B1 (de) 2000-01-26 2001-01-08 Verfahren zur erzeugung einer folge von hochspannungszündfunken und hochspannungszündvorrichtung

Country Status (6)

Country Link
US (1) US6666195B2 (de)
EP (1) EP1254313B1 (de)
JP (1) JP2003521619A (de)
DE (2) DE10003109A1 (de)
RU (1) RU2268394C2 (de)
WO (1) WO2001055588A2 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100332A2 (en) * 2003-05-12 2004-11-18 Shp Enterprises Private Limited An auxiliary capacitive discharge ignition system configurable to provide additional energy at a spark gap and methods thereof
DE102005009981A1 (de) * 2005-03-04 2006-09-28 Bayerische Motoren Werke Ag Vorrichtung zur Zündsteuerung
CN101360953B (zh) * 2005-12-22 2010-09-29 丹佛斯公司 电子点火电路以及用于操作所述电路的方法
JP4640282B2 (ja) * 2006-01-31 2011-03-02 株式会社デンソー 内燃機関の点火制御装置
JP4803008B2 (ja) * 2006-12-05 2011-10-26 株式会社デンソー 内燃機関の点火制御装置
FR2917505B1 (fr) * 2007-06-12 2009-08-28 Renault Sas Diagnostic de l'etat d'encrassement des bougies d'un systeme d'allumage radiofrequence
DE102007034390B4 (de) * 2007-07-24 2019-05-29 Daimler Ag Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
DE102007034399B4 (de) * 2007-07-24 2019-06-19 Daimler Ag Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
FR2919901B1 (fr) * 2007-08-08 2010-02-26 Renault Sas Dispositif de generation de plasma radiofrequence
DE102007051249A1 (de) 2007-10-26 2009-04-30 Robert Bosch Gmbh Vorrichtung zur Regelung eines Mehrfachfunkenbetriebs einer Verbrennungskraftmaschine und zugehöriges Verfahren
FR2927482B1 (fr) * 2008-02-07 2010-03-05 Renault Sas Dispositif de generation de haute tension.
JP4807379B2 (ja) 2008-05-30 2011-11-02 株式会社デンソー 内燃機関の点火制御装置及び点火制御システム
US20100127894A1 (en) * 2008-11-24 2010-05-27 Honeywell International Inc. Magneto sensor for an aircraft ignition system
FR2943739B1 (fr) * 2009-03-24 2015-09-04 Renault Sas Procede d'allumage d'un melange de comburant pour moteur thermique
DE102012106207B3 (de) 2012-03-14 2013-05-23 Borgwarner Beru Systems Gmbh Verfahren zum Ansteuern einer Funkenstrecke, insbesondere einer Zündkerze
EP2650530B1 (de) * 2012-04-13 2025-03-26 Delphi Automotive Systems Luxembourg SA Multiladungszündsystem
WO2014041050A1 (de) * 2012-09-12 2014-03-20 Robert Bosch Gmbh Zündsystem für eine verbrennungskraftmaschine
RU2548663C1 (ru) * 2013-12-19 2015-04-20 Общество с ограниченной ответственностью "КДП" (ООО "КДП") Система зажигания с многократным искрообразованием
CN105443295A (zh) * 2014-09-26 2016-03-30 大陆汽车电子(长春)有限公司 一种用于确定提供给点火装置的能量值的方法和设备
KR20180018562A (ko) * 2015-05-14 2018-02-21 엘도르 코포레이션 에쎄.피.아. 내연 기관용 전자 점화 시스템
JP6824194B2 (ja) * 2015-05-14 2021-02-03 エルドル コーポレイション エセ.ペー.アー. 内燃機関用電子点火システムおよび該電子点火システムの制御方法
BR112017024376B1 (pt) * 2015-05-14 2023-02-23 Eldor Corporation S.P.A. Sistema de ignição eletrônica para um motor de combustão interna e método de acionamento de um sistema de ignição eletrônica para um motor de combustão interna
FR3126455B1 (fr) * 2021-08-26 2024-05-10 Vitesco Technologies Procédé d’allumage d’un moteur thermique de véhicule automobile

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853107A (en) * 1973-01-11 1974-12-10 Eltra Corp Capacitive discharge ignition system
JPS5728871A (en) * 1980-07-30 1982-02-16 Nippon Denso Co Ltd Ignition device for internal combustion engine
JPS59147875A (ja) * 1983-02-10 1984-08-24 Mazda Motor Corp エンジンの点火装置
US4688538A (en) * 1984-12-31 1987-08-25 Combustion Electromagnetics, Inc. Rapid pulsed multiple pulse ignition and high efficiency power inverter with controlled output characteristics
JPH0726607B2 (ja) * 1987-02-23 1995-03-29 株式会社日立製作所 多気筒内燃機関用電子配電式点火装置
JP2652550B2 (ja) * 1988-03-11 1997-09-10 富士通テン株式会社 内燃機関の連続点火制御方式
JP2821527B2 (ja) * 1989-04-27 1998-11-05 アイシン精機株式会社 イグニション制御装置
US5131376A (en) * 1991-04-12 1992-07-21 Combustion Electronics, Inc. Distributorless capacitive discharge ignition system
DE4226248A1 (de) 1992-08-08 1994-02-10 Bosch Gmbh Robert Zündanlage für Brennkraftmaschinen
DE4226246A1 (de) * 1992-08-08 1994-02-10 Bosch Gmbh Robert Zündanlage für Brennkraftmaschinen
DE4237271A1 (de) * 1992-11-04 1994-05-05 Vogt Electronic Ag Zündsteuerung für Verbrennungskraftmaschinen
US5411006A (en) * 1993-11-08 1995-05-02 Chrysler Corporation Engine ignition and control system
US5495150A (en) * 1995-03-03 1996-02-27 Northrop Grumman Corporation Sequential, differential ignition of series operated arc lamps
US5623209A (en) * 1995-12-07 1997-04-22 Altronic, Inc. Diagnostic system for capacitive discharge ignition system
DE19643785C2 (de) * 1996-10-29 1999-04-22 Ficht Gmbh & Co Kg Elektrische Zündvorrichtung, insbesondere für Brennkraftmaschinen, und Verfahren zum Betreiben einer Zündvorrichtung
ES2153175T3 (es) * 1997-06-02 2001-02-16 Federal Mogul Ignition Spa Sistema de encendido por chispas multiples.

Also Published As

Publication number Publication date
DE10003109A1 (de) 2001-08-02
JP2003521619A (ja) 2003-07-15
RU2268394C2 (ru) 2006-01-20
EP1254313A2 (de) 2002-11-06
US6666195B2 (en) 2003-12-23
WO2001055588A2 (de) 2001-08-02
US20030089355A1 (en) 2003-05-15
DE50100351D1 (de) 2003-08-07
WO2001055588A3 (de) 2002-03-21

Similar Documents

Publication Publication Date Title
EP1254313B1 (de) Verfahren zur erzeugung einer folge von hochspannungszündfunken und hochspannungszündvorrichtung
EP0790406B1 (de) Elektronisches Zündsystem für Brennkraftmaschinen
DE10023835B4 (de) System und Verfahren zur Bereitstellung einer Mehrfachladezündung
DE2340865C3 (de) Zündvorrichtung für eine Brennkraftmaschine
DE102008064783B3 (de) Kapazitive Hochspannungs-Entladungszündung mit verstärkenden Triggerimpulsen
EP0640761B2 (de) Steuerbare Zündanlage
DE102013215663B4 (de) Zündapparatur
DE10034725B4 (de) Einsatz eines Mehrfachladens zur Maximierung der Energielieferrate an einen Zündkerzenspalt
EP0752580B1 (de) Schaltungsanordnung zur Ionenstrommessung
DE102007034390A1 (de) Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
DE102009026852A1 (de) Verfahren zum Betreiben eines Mehrfunken-Zündsystems, sowie ein Mehrfunken-Zündsystem
DE102007034399B4 (de) Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
DE2064288A1 (de) Kondensator-Zündsystem
DE102013202016A1 (de) Zündsystem
WO2012130649A1 (de) Verfahren und vorrichtung zur verlängerung der brenndauer eines von einer zündkerze gezündeten funkens in einem verbrennungsmotor
DE102004056844A1 (de) Schnelle Vielfachfunkenzündung
DE10138871A1 (de) Mehrfachladungs-Zündsystem mit Sekundärstromrückkopplung, um einen Beginn eines Wiederaufladungsereignisses auszulösen
DE10121993A1 (de) Zündsystem für Verbrennungsmotoren
DE10028105B4 (de) Fehlzündungsdetektionssystem mittels Ionenmessung bei einer Schließvorspannung
EP0484357A1 (de) Vollelektronische zündeinrichtung für eine brennkraftmaschine
DE3404245A1 (de) Hochspannungs-generatorschaltung fuer ein kraftfahrzeugzuendsystem
DE102014015486A1 (de) Betriebsarten- und kennfeldabhängig umschaltbare Funkenbandzündung
DE102014204193A1 (de) Zündvorrichtung mit einer Zündspule
EP1280993B1 (de) Zündanlage für eine verbrennungskraftmaschine
DE19927960A1 (de) Zündvorrichtung und Zündverfahren für Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020923

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR IT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50100351

Country of ref document: DE

Date of ref document: 20030807

Kind code of ref document: P

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030702

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100209

Year of fee payment: 10

Ref country code: IT

Payment date: 20100123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100324

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50100351

Country of ref document: DE

Effective date: 20110802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110802