EP1220353A2 - Vorrichtung zum räumlichen Schwenken eines Radarstrahls - Google Patents
Vorrichtung zum räumlichen Schwenken eines Radarstrahls Download PDFInfo
- Publication number
- EP1220353A2 EP1220353A2 EP01122831A EP01122831A EP1220353A2 EP 1220353 A2 EP1220353 A2 EP 1220353A2 EP 01122831 A EP01122831 A EP 01122831A EP 01122831 A EP01122831 A EP 01122831A EP 1220353 A2 EP1220353 A2 EP 1220353A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- dielectric
- rotatable
- radar
- dielectric body
- transmitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/06—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
- H01Q19/062—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/32—Adaptation for use in or on road or rail vehicles
- H01Q1/3208—Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
- H01Q1/3233—Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/12—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
- H01Q3/14—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying the relative position of primary active element and a refracting or diffracting device
Definitions
- a device for pivoting the spatial Direction of radiation of a radar sensor.
- a radar sensor in vehicles advantageously in the form of a Distance and speed sensors for adaptive speed control, it is advantageous to use the radar beam to be able to pivot spatially, in particular horizontally.
- a radar beam that is a very narrow one Beam has a wide area in front of the vehicle to examine for objects.
- a motor vehicle radar system is known at least one transmitting / receiving element for transmitting and / or receiving has electromagnetic waves, this being in the beam path at least one transmitting / receiving element is a lenticular dielectric Body.
- This lenticular, dielectric On the one hand, body has the task of sending or receiving focus electromagnetic waves and on the other hand that at least one transmitting / receiving element before weather influences protect.
- a device in which between a Transmitting or receiving element for transmitting or receiving radar radiation and a dielectric lens is a dielectric body is rotatably arranged is not known.
- the essence of the present invention is to provide a device which allows a radar beam to be mechanically swiveled. This is done between a dielectric lens and a Radar source that is roughly on the optical axis of the dielectric Lens is arranged, a dielectric body rotatably arranged.
- the axis of rotation of the rotatably arranged, dielectric body aligned so that this approximately parallel to the optical axis of the dielectric lens lies.
- the rotatable, dielectric Body has a conical shape and around its height axis rotates.
- the rotatable, dielectric body advantageously has an angle between the body base and the body jacket that changes along the circumference of the body base. This angle between the body base and body coat is referred to below as the wedge angle.
- the surfaces of the rotatable arranged, dielectric body are coated, in particular by providing so-called matching grooves on the surfaces or by applying a film of material.
- This matching Grooves are depressions on the surface of the dielectric Body, especially in the form of parallel grooves, their dimensions and distances of the radar wavelength are adapted.
- a material film can also be used for these matching grooves be applied to the surfaces.
- the intended material film in terms of its thickness and its relative permittivity is chosen so that the losses from the total transition of the radar waves from the Body about the material film or about the matching grooves in the air can be minimized. With these measures, the reflections, which at the transition of the electromagnetic wave from the air into the body and further out of the body the air are created, minimized.
- This arrangement is advantageously used for pivoting a radar beam in a distance and speed sensor used for motor vehicles.
- Figure 1 is a side view of the device consisting of a transmitting or receiving element (1) for sending or receiving of radar radiation, a dielectric lens (2) for focusing of the radar radiation, as well as a rotatable, dielectric Body (4) shown.
- the transmitting or receiving element (1) and the lens (2) are arranged so that the transmitting or receiving element (1) approximately on the optical axis (3) of the dielectric Lens (2) lies.
- a rotatable arranged dielectric body (4) attached. That body has a cone-like in the embodiment described here Shape, with a rotation axis in the direction of the height axis (5) is provided around which the dielectric body rotate can.
- This axis of rotation (5) is arranged such that they approximately parallel to the optical axis (3) of the dielectric Lens (2) is aligned. Due to the shape of the area of the cone-like Body, it is located within the beam path between Radar element (1) and lens (2) is located, the radar beam broken and passes through the lens (2) at an acute angle to the optical axis (3). By rotating the cone-like body the cross section of the area of the body changes (4) which lies within the beam path, making a different strong refraction of the beam path is achieved depending on the current angular position of the rotatable body (4).
- FIGS. 2a and 2b the mode of operation is based on two different ones Angular positions of the rotatable body explained.
- Figure 2a shows the device at a time when the im Compared to the beam path lying area of the rotatable body has small wedge angle (14).
- the ray path that of the transmitting or receiving element Radar beam is in the manner shown on the rotatable, dielectric body broken and passed the dielectric lens (2) at an angle alpha (6) to the optical Axis (3) of the arrangement.
- the angle alpha (6,7) below which the radar beam is the optical axis (3) of the Device cuts, continuously changed. It follows consequently a transmit or receive beam that is continuous its angle alpha (6.7) to the optical axis of the device changed.
- the radar beam can be over a predetermined, sector-shaped area in the radiation direction swivel the device. This allows a large one Detection area of the radar beam at the same time narrower Realize radiation beam.
- Figures 3a to 3e is the conical, dielectric Body (4) shown in detail.
- Figure 3a shows the body (4) in a plan view, in the axial viewing direction.
- the body (4) has a circular shape in the embodiment variant shown Body base area.
- At the center of this figure is the axis of rotation (5) and the rotary shaft (8).
- the radial lines (10, 11, 12 and 13) represent imaginary cutting lines
- the profiles that the body shown (4) to the respective cutting lines (10, 11, 12 and 13) are in Figures 3b to 3e shown. So the body has a radial cut on the line 10 a cross section in the form of a right triangle, as shown in Figure 3b.
- Another imaginary, radial one Section line (11) has the associated profile, which in Figure 3c is shown, a larger wedge angle (14) than that in Figure 3b shown.
- Figure 3d shows the radial section profile along another imaginary cutting line (12), the location of which is shown in Figure 3a.
- the wedge angle (14) of the in Figure 3d shown radial sectional profile (12) is compared to the wedge angles shown in Figures 3b and 3c larger.
- Figure 3e Another radial sectional profile (13) is shown.
- This Figure 3e shows the profile along the rotatable, dielectric Body at a further point (13), which from Figure 3a can be seen.
- the profile has an even larger wedge angle along line 13 (14).
- the wedge angle (14) is continuous and preferably linear. Between the azimuthal direction with the largest wedge angle and the Azimuthal direction with the smallest wedge angle results in a Point of discontinuity in the lateral surface of the conical body, that represented in Figure 3a by the radial line (9) has been.
- Figure 4 represents a spatial view of the cone-like, rotatable arranged and dielectric body (4).
- the point of discontinuity (9) of the body jacket shown as a result of the juxtaposition of the Cutting profile with the largest wedge angle and the cutting profile with smallest wedge angle.
- the rotation shaft (8) provided in the area of the height axis of the body is shown as well as the axis of rotation (5), which is in the axial Direction lies in the rotation shaft.
- the embodiment shown in the figures of the drawing of the rotatably arranged dielectric body also be carried out in similar variants. So the profile, provided in the exemplary embodiment on the entire circumference of the jacket was also summarized at 180 ° and on the remaining one Tapered casing has the same profile with a decreasing wedge angle will be realized. This ensures that the radar beam after the coverage area has been covered jumps back to the starting position, but in one uniform movement back to the starting position, again the entire detection area by radar beam is scanned.
- the change in the wedge angle depending of the azimuthal angle can also deviate from that shown Embodiment, run non-linear, resulting in a variable instantaneous speed of the radar beam at Scanning over the detection area results.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
- Figur 1
- zeigt die Anordnung der dielektrischen Linse, des Radarelementes zum Senden bzw. Empfangen sowie dem dazwischen rotierbar angeordneten, dielektrischen Körper;
- Figur 2a
- zeigt den Strahlverlauf in der Vorrichtung unter einer bestimmten Winkelstellung des rotierbaren Körpers;
- Figur 2b
- zeigt den Strahlverlauf in der Vorrichtung unter einer weiteren bestimmten Winkelstellung des rotierbaren Körpers;
- Figur 3a
- zeigt die Draufsicht in axialer Richtung auf den rotierbaren, dielektrischen Körper;
- Figur 3b bis Figur 3e
- zeigen verschiedene Schnittprofile in radialer Richtung des rotierbaren, dielektrischen Körpers;
- Figur 4
- zeigt eine räumliche Ansicht des rotierbaren, dielektrischen Körpers.
Claims (6)
- Vorrichtung zum räumlichen Schwenken eines Radarstrahls, dadurch gekennzeichnet, dass zwischen einem Sende- bzw. Empfangselement zum Senden bzw. Empfangen von Radarstrahlung und einer dielektrischen Linse ein dielektrischer Körper rotierbar angeordnet ist.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Rotationsachse des rotierbaren, dielektrischen Körpers in etwa achsenparallel zur optischen Achse der dielektrischen Linse ausgerichtet ist.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der rotierbare, dielektrische Körper eine kegelartige Gestalt aufweist und um seine Höhenachse rotiert.
- Vorrichtung nach Anspruch , dadurch gekennzeichnet, dass der rotierbare, dielektrische Körper einen Winkel zwischen der Körpergrundfläche und dem Körpermantel aufweist, der sich entlang des Umfangs der Körpergrundfläche verändert.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Oberflächen des rotierbaren, dielektrischen Körpers vergütet sind, insbesondere durch das Vorsehen sogenannter Matching Grooves oder durch das Aufbringen eines dielektrischen Materialfilms.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass diese Anordnung zum Schwenken eines Radarstrahlenbündels in einem Abstands- und Geschwindigkeitsensor für Kraftfahrzeuge verwendet wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2000165299 DE10065299A1 (de) | 2000-12-29 | 2000-12-29 | Vorichtung zum räumlichen Schwenken eines Radarstrahls |
DE10065299 | 2000-12-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1220353A2 true EP1220353A2 (de) | 2002-07-03 |
EP1220353A3 EP1220353A3 (de) | 2004-04-28 |
Family
ID=7669189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01122831A Withdrawn EP1220353A3 (de) | 2000-12-29 | 2001-09-22 | Vorrichtung zum räumlichen Schwenken eines Radarstrahls |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1220353A3 (de) |
DE (1) | DE10065299A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2990823A1 (de) * | 2014-08-29 | 2016-03-02 | Audi Ag | Radarsensor, insbesondere für ein kraftfahrzeug, und kraftfahrzeug |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB636541A (en) * | 1947-01-09 | 1950-05-03 | John David Lawson | Improvements in or relating to means for translating, oscillating or rotating a beamof electromagnetic radiation |
US3005983A (en) * | 1947-10-30 | 1961-10-24 | Charles H Chandler | Focussing and deflection of centimeter waves |
US3226721A (en) * | 1948-03-26 | 1965-12-28 | Sperry Rand Corp | Scanning antenna utilizing four rotary prisms to produce rectilinear scan and fifth rotary prism to produce conical scan |
EP0179687A1 (de) * | 1984-09-21 | 1986-04-30 | Thomson-Csf | Mittels rotierender Prismen abtastende Mikrowellenantenne |
DE4120439A1 (de) * | 1991-06-20 | 1992-12-24 | Hirschmann Richard Gmbh Co | Flachantenne |
US5650787A (en) * | 1995-05-24 | 1997-07-22 | Hughes Electronics | Scanning antenna with solid rotating anisotropic core |
US6122261A (en) * | 1993-03-11 | 2000-09-19 | Southern California Edison Company | Hitless ultra small aperture terminal satellite communication network |
-
2000
- 2000-12-29 DE DE2000165299 patent/DE10065299A1/de not_active Withdrawn
-
2001
- 2001-09-22 EP EP01122831A patent/EP1220353A3/de not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB636541A (en) * | 1947-01-09 | 1950-05-03 | John David Lawson | Improvements in or relating to means for translating, oscillating or rotating a beamof electromagnetic radiation |
US3005983A (en) * | 1947-10-30 | 1961-10-24 | Charles H Chandler | Focussing and deflection of centimeter waves |
US3226721A (en) * | 1948-03-26 | 1965-12-28 | Sperry Rand Corp | Scanning antenna utilizing four rotary prisms to produce rectilinear scan and fifth rotary prism to produce conical scan |
EP0179687A1 (de) * | 1984-09-21 | 1986-04-30 | Thomson-Csf | Mittels rotierender Prismen abtastende Mikrowellenantenne |
DE4120439A1 (de) * | 1991-06-20 | 1992-12-24 | Hirschmann Richard Gmbh Co | Flachantenne |
US6122261A (en) * | 1993-03-11 | 2000-09-19 | Southern California Edison Company | Hitless ultra small aperture terminal satellite communication network |
US5650787A (en) * | 1995-05-24 | 1997-07-22 | Hughes Electronics | Scanning antenna with solid rotating anisotropic core |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2990823A1 (de) * | 2014-08-29 | 2016-03-02 | Audi Ag | Radarsensor, insbesondere für ein kraftfahrzeug, und kraftfahrzeug |
Also Published As
Publication number | Publication date |
---|---|
EP1220353A3 (de) | 2004-04-28 |
DE10065299A1 (de) | 2002-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69717877T2 (de) | Dauerhafte, leichte Radar-Linsen-Antenne | |
EP2378309B2 (de) | Optoelektronischer Sensor und Verfahren zur Erzeugung von Informationen über Objekte in einem Überwachungsbereich | |
DE19757848C2 (de) | Vorrichtung zur optischen Erfassung von Objekten | |
EP0897121B1 (de) | Vorrichtung zum Orten von in einen zu Überwachenden Raumbereich eindringenden Objekten | |
AT504145B1 (de) | Messvorrichtung und messkopf zum berührungslosen abtasten eines objekts in drei dimensionen | |
DE102006024534A1 (de) | Laserscanner | |
DE602004007726T2 (de) | Einrichtung zur Ortung eines Roboters | |
EP1515157A1 (de) | Optoelektronische Erfassungseinrichtung | |
DE19727792C2 (de) | Scanner | |
DE2224217B2 (de) | Vorrichtung zum optischen Abtasten eines Bildfeldes | |
DE2058550C3 (de) | Antenne mit einem sphärischen Hauptreflektor | |
EP0897120A2 (de) | Vorrichtung zum Orten von in einen zu überwachenden Raumbereich eindringenden Objekten. | |
DE10228899A1 (de) | Einrichtung und Verfahren zur Laserstrahlablenkung für optische Messsysteme und optisches Element | |
DE19902903C1 (de) | Vorrichtung zum Orten von in einen zu überwachenden Raumbereich eindringenden Objekten | |
EP1135709B1 (de) | Vorrichtung zum abtasten eines objektes | |
DE60202297T2 (de) | Scanner | |
EP1220353A2 (de) | Vorrichtung zum räumlichen Schwenken eines Radarstrahls | |
DE102014012453A1 (de) | Optische Strahlführungseinheit und Materialbearbeitungsvorrichtung mit einer optischen Strahlführungseinheit | |
DE3514302A1 (de) | Optische abtastvorrichtung | |
EP0989416A2 (de) | Verfahren zur genauen Winkelbemessung von Zielen mittels eines Mehrfachantennen-Radarsystems | |
DE1204716B (de) | Hornparabolantenne | |
EP3165958A1 (de) | Scanvorrichtung | |
EP0533036B1 (de) | Suchkopf | |
DE10360950A1 (de) | Optoelektronische Erfassungseinrichtung | |
DE3102684C2 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20041028 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20041230 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20050511 |