EP1155423B1 - Noyau magnetique plat - Google Patents
Noyau magnetique plat Download PDFInfo
- Publication number
- EP1155423B1 EP1155423B1 EP00910511A EP00910511A EP1155423B1 EP 1155423 B1 EP1155423 B1 EP 1155423B1 EP 00910511 A EP00910511 A EP 00910511A EP 00910511 A EP00910511 A EP 00910511A EP 1155423 B1 EP1155423 B1 EP 1155423B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic
- component
- magnetic films
- films
- surface roughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003746 surface roughness Effects 0.000 claims description 20
- 230000035515 penetration Effects 0.000 claims description 9
- 229920000642 polymer Polymers 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 239000000696 magnetic material Substances 0.000 claims description 2
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims 1
- 239000010408 film Substances 0.000 description 35
- 229910045601 alloy Inorganic materials 0.000 description 15
- 239000000956 alloy Substances 0.000 description 15
- 239000010410 layer Substances 0.000 description 14
- 230000035699 permeability Effects 0.000 description 10
- 238000004804 winding Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910019233 CoFeNi Inorganic materials 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- -1 polyparaxylylene Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0213—Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
- H01F41/0226—Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15333—Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0013—Printed inductances with stacked layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/02—Cores, Yokes, or armatures made from sheets
Definitions
- the invention relates to a component of low overall height for printed circuit boards with a magnetic region formed by at least one layer of a soft magnetic material.
- Such a device is known from US-A-5,529,831.
- the known device is produced by applying insulating layers, conductor layers and a magnetic layer to the substrate. To apply these layers, a conventional sputtering method is used.
- a disadvantage of such a device is that it can be produced only by means of a complex thin-film process.
- due to the process only small layer thicknesses in the range of a few ⁇ m can be produced. Accordingly small are the cross sections of the magnetic regions produced by means of these methods.
- Another disadvantage is that in such a device, the windings must be made using a complex thin-film process.
- the present invention seeks to provide a readily manufacturable high inductance device for use on circuit boards.
- the magnetic region is formed by at least one soft magnetic film.
- the surface roughness of each film is at least equal to the skin penetration depth at the frequency of use.
- Magnetic foils can typically be produced with thicknesses in the range of 10 to 25 ⁇ m. Stacked up Thus, compared to magnetic regions produced in thin-film process substantially larger cross-sections of the magnetic field. Consequently, the inductance of a device provided with such a magnetic region is relatively high. Nevertheless, the device according to the invention has a low overall height and is therefore also suitable for SMD technology. That the surface roughness of each film is at least equal to the skin penetration depth at the use frequency is particularly favorable for high frequency applications.
- FIGS. 1A to 1C Various embodiments of a magnetic sheet 1 are shown in FIGS. 1A to 1C.
- the magnetic film 1 shown in FIG. 1A has a circular ring shape.
- the magnetic sheets 1 of FIGS. 1B and 1C have an annular shape with rectangular contours.
- the magnetic foils 1 are expediently made of an amorphous or nanocrystalline alloy.
- Amorphous iron-based alloys are known, for example, from US-A-4,144,058.
- Cobalt-based amorphous alloys are disclosed, for example, in EP-A-0 021 101.
- Nanocrystalline alloys are finally described in EP-A-0 271 657. From the materials mentioned thin films can be produced with a typical thickness of 10 to 25 microns, sometimes with smaller or larger thicknesses. From the thin films can then punch out the annular magnetic films 1.
- the stacked magnetic films 1 result, as shown in Figure 2, a toroidal core 3, wherein in Figure 2, the thickness of the magnetic films 1 increases in comparison to the diameter is shown, since the diameter of the magnetic films 1 is in the range of a few millimeters, while the thickness of the magnetic films 1 are in the range of 10 microns.
- the magnetic films 1 may be glued together.
- the adhesive layer can take on the task of an insulating layer.
- a slot 4 is introduced into the ring core 3 shown in FIG. 3, through which the hysteresis loop is sheared.
- the slot 4 has been introduced after the stacking of the magnetic films 1 and the bonding of the magnetic films 1 subsequently.
- the magnetic films 1 are first provided individually with the slot 4 and then stacked and glued together.
- the production of the embodiment shown in Figure 4 is more expensive, but for the ring core 3 of Figure 4 has a higher mechanical strength.
- FIG. 5 In order to protect the toroidal core 3 from mechanical damage, it is provided according to FIG. 5 to introduce the toroidal core 3 into a trough 5 made of plastic.
- the trough 5 can then be wrapped by an inner hole 5 'through with a winding, without the risk that the magnetic core 1 formed by the toroidal core 3 is damaged during winding.
- This polymer layer 6 is expediently a polymer layer deposited from the gaseous phase, for example a polyparaxylylene.
- This method has the advantage that the gaseous polymer material penetrates into very fine cracks and that in this way the magnetic films 1 are also mechanically connected to each other, without the magnetic films 1 are mechanically stressed. Because a mechanical stress can change due to the magnetostriction, the magnetic properties of the magnetic sheet 1 to the detriment.
- the surface roughness R A of the magnetic films 1 is approximately equal to the skin penetration depth ⁇ skin at the use frequencies.
- the definition of the roughness depth is explained below with reference to FIG.
- the X-axis is parallel to the surface of a body whose surface roughness R A is to be determined.
- the Y axis is parallel to the surface normal of the surface to be measured.
- the surface roughness R A then corresponds to the height of a rectangle 7 whose length is equal to a Rescuemeßorder l m and the area equal to the sum of enclosed between a roughness profile 8 and a central line 9 surfaces 10.
- the surface roughness R A of the magnetic films 1 has an effect on the length of the current paths relevant for the eddy currents. If the skin penetration depth ⁇ skin is less than half the film thickness at the application frequencies, then the currents flowing in the magnetic film 1 are mainly limited to an edge layer of the magnetic film 1 of the thickness of the skin penetration depth ⁇ skin . Now, if the surface roughness R A If the magnetic foil 1 lies in the area of the skin penetration depth ⁇ skin , the eddy currents must follow the surface modulated by the surface roughness R A , which leads to elongated current paths and thus to an apparently increased specific resistance. However, this also results in an increased eddy current limit frequency.
- FIGS. 8 and 9 These relationships are illustrated in FIGS. 8 and 9.
- the winding currents 11 flowing in an external winding cause eddy currents 12 in the magnetic film 1 in a surface area of the thickness of the skin penetration depth ⁇ skin .
- the surface roughness of the magnetic sheet 1 is greater than the skin penetration depth ⁇ skin , resulting in the eddy currents 12 elongated current paths, which leads to an increased eddy current cutoff frequency.
- the surface roughness can not be chosen arbitrarily large, since the magnetic films 1 in extreme cases then have holes, which greatly reduces the achievable permeabilities.
- the measured magnetic films 1 are magnetic films 1 of an alloy with the composition (CoFeNi) 78.5 (MnSiB) 21.5 .
- a dashed curve 13 represents the dependence of the permeability ⁇ on the frequency f at a total surface roughness of 2.1% relative to the thickness of the magnetic film 1.
- a solid curve 14 further illustrates the dependence of the permeability ⁇ on the frequency f at the thickness of the magnetic sheet 1 related total surface roughness of 4.7%. It can be seen clearly that the eddy current cutoff frequency is shifted towards higher values by the larger surface roughness. As low has been found when the relative to the thickness of the magnetic films 1, both-sided surface roughness of the top and bottom is> 3%.
- throttles used in telecommunications are to be used.
- the inductance L is A L x N 2 , where N is the number of turns.
- the typical operating frequencies of such a choke are in the range of 20 kHz to 100 kHz, occasionally higher.
- the smallest ferrite core currently available on the market is a MnZn ferrite toroid made by Taiyo Yuden with an outside diameter of 2.54 mm, an inside diameter of 1.27 mm and a height of 0.8 mm.
- the toroidal core 3 with an outer diameter of 2.54 mm, an inner diameter of 1.8 mm and a height of 0.4 mm.
- this toroidal core 3 has a twice as large inner hole, which allows either more turns or turns with increased conductor cross-section.
- the same A L value can also be achieved with the ring core 3 with an outer diameter of 4.0 mm, an inner diameter of 2.85 mm and a height of 0.4 mm.
- This ring core 3 has a larger by comparison with the ferrite core by a factor of 5 inner hole.
- the overall height of the toroidal core can be 3 be further reduced.
- the toroidal core 3 made of this alloy has a construction height which is smaller by a factor of 6.4.
- ring cores 3 are used as S 0 transformer in PCMCIA cards.
- S 0 transformers with a height of 2.2 mm are required, so that the permissible height of 3.3 mm for a PCMCIA card is not exceeded.
- a maximum height of 1 mm is required.
- a toroidal core 3 with an outer diameter of 8.6 mm an inner diameter of 3.1 mm and a height of 1 mm is required.
- the previously used for this purpose toroidal cores are mechanically very sensitive and can therefore be produced only with a high reject rate.
- One problem is, for example, the high winding offset, which does not meet the core height.
- the ring cores 3 can be produced in a simple manner with high dimensional accuracy.
- the amorphous or nanocrystalline alloys Through the use of the amorphous or nanocrystalline alloys, it is possible to achieve linear hysteresis loops with low losses and high permeability by means of suitable heat treatments in an external magnetic field. Moreover, due to the natural insulating surface layer of these alloys, it is contrary to crystalline alloy not necessary to isolate the magnetic films 1 by an additional insulating layer against each other. In addition, compared to crystalline alloys, the amorphous or nanocrystalline alloys have a higher resistivity, resulting in higher eddy current cutoff frequencies. Moreover, due to the manufacturing process, the amorphous and nanocrystalline alloys have a more or less strong natural surface roughness, which, however, can be further increased by grinding or etching. The thickness of the magnetic films 1 are between 5 and 40 microns. In extreme cases, the toroidal core 3 is formed by a single magnetic sheet 1. Thus, extremely low heights can be achieved with simultaneous, favorable high-frequency behavior.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Coils Or Transformers For Communication (AREA)
- Soft Magnetic Materials (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Claims (11)
- Composant de faible hauteur pour des plaquettes de circuit imprimé comprenant une zone magnétique formée par au moins une couche d'un matériau magnétique doux,
caractérisé en ce que
la zone magnétique est formée par au moins un film magnétique doux (1) et
la rugosité de surface de chaque film magnétique (1) est au moins égale à la profondeur de pénétration de peau à la fréquence d'utilisation. - Composant selon la revendication 1,
caractérisé en ce que
les films magnétiques (1) sont fabriqués à partir d'un alliage nanocris-tallin ou amorphe. - Composant selon la revendication 2,
caractérisé en ce que
la rugosité de surface de chaque film magnétique (1) par rapport à l'épaisseur est > 3 %. - Composant selon l'une des revendications 1 à 3,
caractérisé en ce que
la zone magnétique est formée par une pluralité de films magnétiques collés les uns aux autres. - Composant selon l'une des revendications 1 à 4,
caractérisé en ce que
les films magnétiques (1) sont isolés les uns des autres par des couches intermédiaires isolantes. - Composant selon l'une des revendications 1 à 5,
caractérisé en ce que
les films magnétiques (1) sont annulaires. - Composant selon la revendication 6,
caractérisé en ce que
les films magnétiques (1) annulaires présentent des fentes (4). - Composant selon la revendication 7,
caractérisé en ce que
les fentes (4) sont disposées les unes sur les autres. - Composant selon la revendication 7,
caractérisé en ce que
les fentes (4) sont disposées de manière décalée selon un angle. - Composant selon l'une des revendications 1 à 9,
caractérisé en ce que
les films magnétiques empilés (1) sont intégrés dans une cuvette en matière plastique (5). - Composant selon l'une des revendications 1 à 10,
caractérisé en ce que
les films magnétiques (1) empilés les uns sur les autres sont entourés par une couche polymère (6).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19907542A DE19907542C2 (de) | 1999-02-22 | 1999-02-22 | Flacher Magnetkern |
DE19907542 | 1999-02-22 | ||
PCT/DE2000/000300 WO2000051146A1 (fr) | 1999-02-22 | 2000-02-01 | Noyau magnetique plat |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1155423A1 EP1155423A1 (fr) | 2001-11-21 |
EP1155423B1 true EP1155423B1 (fr) | 2006-10-25 |
Family
ID=7898417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00910511A Expired - Lifetime EP1155423B1 (fr) | 1999-02-22 | 2000-02-01 | Noyau magnetique plat |
Country Status (5)
Country | Link |
---|---|
US (1) | US6580348B1 (fr) |
EP (1) | EP1155423B1 (fr) |
DE (2) | DE19907542C2 (fr) |
TW (1) | TW493105B (fr) |
WO (1) | WO2000051146A1 (fr) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10134056B8 (de) * | 2001-07-13 | 2014-05-28 | Vacuumschmelze Gmbh & Co. Kg | Verfahren zur Herstellung von nanokristallinen Magnetkernen sowie Vorrichtung zur Durchführung des Verfahrens |
US6873239B2 (en) * | 2002-11-01 | 2005-03-29 | Metglas Inc. | Bulk laminated amorphous metal inductive device |
US7178755B2 (en) * | 2003-07-30 | 2007-02-20 | Lincoln Global, Inc | Retainer ring for wire package |
US7367452B1 (en) * | 2004-06-22 | 2008-05-06 | Lincoln Global, Inc. | Retainer ring for a wire package and method of using the same |
DE102004051129A1 (de) * | 2004-10-18 | 2006-04-20 | Siemens Ag | Drossel, insbesondere zum Betrieb in einem Frequenzumrichtersystem, sowie Frequenzumrichtersystem |
DE102005034486A1 (de) * | 2005-07-20 | 2007-02-01 | Vacuumschmelze Gmbh & Co. Kg | Verfahren zur Herstellung eines weichmagnetischen Kerns für Generatoren sowie Generator mit einem derartigen Kern |
DE102007001606A1 (de) * | 2007-01-10 | 2008-07-17 | Vacuumschmelze Gmbh & Co. Kg | Anordnung zur Messung der Position eines Magneten relativ zu einem Magnetkern |
US7771545B2 (en) * | 2007-04-12 | 2010-08-10 | General Electric Company | Amorphous metal alloy having high tensile strength and electrical resistivity |
KR20150143251A (ko) * | 2014-06-13 | 2015-12-23 | 삼성전기주식회사 | 코어 및 이를 갖는 코일 부품 |
EP3312618B1 (fr) * | 2016-10-18 | 2022-03-30 | LEM International SA | Transducteur de courant électrique |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT29331B (de) | 1906-02-21 | 1907-07-25 | Louis Detaine | Turngerät. |
US4144058A (en) | 1974-09-12 | 1979-03-13 | Allied Chemical Corporation | Amorphous metal alloys composed of iron, nickel, phosphorus, boron and, optionally carbon |
DE2924280A1 (de) | 1979-06-15 | 1981-01-08 | Vacuumschmelze Gmbh | Amorphe weichmagnetische legierung |
JPS5841649B2 (ja) * | 1980-04-30 | 1983-09-13 | 株式会社東芝 | 巻鉄芯 |
JPS575314A (en) * | 1980-06-11 | 1982-01-12 | Mitsubishi Electric Corp | Inductor |
US4608297A (en) * | 1982-04-21 | 1986-08-26 | Showa Denka Kabushiki Kaisha | Multilayer composite soft magnetic material comprising amorphous and insulating layers and a method for manufacturing the core of a magnetic head and a reactor |
JPS6039160B2 (ja) | 1982-07-22 | 1985-09-04 | 新日本製鐵株式会社 | 絶縁性、耐食性の優れた磁性アモルフアス合金材料 |
DE3244823A1 (de) | 1982-12-03 | 1984-06-07 | E. Blum GmbH & Co, 7143 Vaihingen | Elektroblech zur herstellung von lamellierten eisenkernen fuer statische oder dynamische elektrische maschinen |
FR2560711B1 (fr) * | 1984-03-02 | 1987-03-20 | Metalimphy | Circuit magnetique composite et procede de fabrication dudit circuit |
DE3503019C2 (de) * | 1985-01-30 | 1994-10-06 | Blum Gmbh & Co E | Elektroblech zur Herstellung von aus einer Vielzahl von Blechlagen bestehenden Eisenkernen für elektrische Geräte |
US4881989A (en) | 1986-12-15 | 1989-11-21 | Hitachi Metals, Ltd. | Fe-base soft magnetic alloy and method of producing same |
US4882834A (en) * | 1987-04-27 | 1989-11-28 | Armco Advanced Materials Corporation | Forming a laminate by applying pressure to remove excess sealing liquid between facing surfaces laminations |
DE3926556A1 (de) * | 1989-08-11 | 1991-02-14 | Renk Ag | Axialdrucklager mit gleitschuhen |
ATE146008T1 (de) * | 1990-09-28 | 1996-12-15 | Mitsui Petrochemical Ind | Verfahren zur geräuschverminderung in einem magnetkern |
DE4310401A1 (de) * | 1993-03-31 | 1994-10-06 | Vacuumschmelze Gmbh | Verfahren zur Umhüllung eines Ringkerns als Kantenschutz |
JP3027081B2 (ja) | 1993-12-09 | 2000-03-27 | アルプス電気株式会社 | 薄膜素子 |
JP3482046B2 (ja) * | 1995-09-28 | 2003-12-22 | 株式会社東芝 | 平面磁気素子およびそれを用いた平面磁気デバイス |
TW306006B (fr) * | 1995-10-09 | 1997-05-21 | Kawasaki Steel Co | |
JPH09246034A (ja) * | 1996-03-07 | 1997-09-19 | Alps Electric Co Ltd | パルストランス磁心 |
TW342506B (en) * | 1996-10-11 | 1998-10-11 | Matsushita Electric Ind Co Ltd | Inductance device and wireless terminal equipment |
TW455631B (en) * | 1997-08-28 | 2001-09-21 | Alps Electric Co Ltd | Bulky magnetic core and laminated magnetic core |
US6469259B2 (en) * | 2000-02-29 | 2002-10-22 | Kyocera Corporation | Wiring board |
US6818907B2 (en) * | 2000-10-17 | 2004-11-16 | The President And Fellows Of Harvard College | Surface plasmon enhanced illumination system |
-
1999
- 1999-02-22 DE DE19907542A patent/DE19907542C2/de not_active Expired - Fee Related
-
2000
- 2000-02-01 WO PCT/DE2000/000300 patent/WO2000051146A1/fr active IP Right Grant
- 2000-02-01 EP EP00910511A patent/EP1155423B1/fr not_active Expired - Lifetime
- 2000-02-01 US US09/914,019 patent/US6580348B1/en not_active Expired - Lifetime
- 2000-02-01 DE DE50013663T patent/DE50013663D1/de not_active Expired - Lifetime
- 2000-11-29 TW TW089125313A patent/TW493105B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP1155423A1 (fr) | 2001-11-21 |
DE19907542A1 (de) | 2000-08-31 |
US6580348B1 (en) | 2003-06-17 |
WO2000051146A1 (fr) | 2000-08-31 |
DE50013663D1 (de) | 2006-12-07 |
TW493105B (en) | 2002-07-01 |
DE19907542C2 (de) | 2003-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68925171T2 (de) | Planar-Induktivität | |
DE4306655C2 (de) | Verfahren zum Herstellen eines planaren Induktionselements | |
DE60013402T2 (de) | Verfahren zum behandeln eines dünnen und zerbrechlichen metallbandes und aus einem nanokristallinen legierungsband hergestellte magnetische werkstücke | |
DE4117878C2 (de) | Planares magnetisches Element | |
DE69104671T2 (de) | Strukturen von Dünnschichten für Magnetköpfe. | |
WO2004066438A1 (fr) | Noyau d'antenne | |
EP1155423B1 (fr) | Noyau magnetique plat | |
DE69200169T2 (de) | Magnetresistive Materialien. | |
DE69813093T2 (de) | Amorphes Magnetmaterial und Magnetkern davon | |
DE19700506A1 (de) | Magnetisches Speichermedium | |
DE4322698A1 (de) | Dünnfilm-Magnetkopf | |
DE3888287T2 (de) | Film-Magnetkopf. | |
DE10302646B4 (de) | Antennenkern und Verfahren zum Herstellen eines Antennenkerns | |
DE69714103T2 (de) | Magnetkern für Impulsübertrager | |
DE3703561A1 (de) | Induktives bauelement | |
DE102022105016A1 (de) | Magnetsensor | |
DE3435519C2 (fr) | ||
DE2917388C2 (fr) | ||
DE3879518T2 (de) | Elektronisches bauelement mit rollenfolie und sein herstellungsverfahren. | |
DE69828073T2 (de) | Verfahren zur erhöhung der arbeitsfrequenz eines magnetkreises und korrespondierender magnetkreis | |
EP1188235B1 (fr) | Branche passe-haut d'un diplexeur pour systemes lnpa | |
DE102022105014A1 (de) | Magnetsensor | |
DE112020006325T5 (de) | Magnetsensor | |
DE69308596T2 (de) | Verfahren zur bestimmung von intrinsieken magnetischen permeabilität von langgestreckten ferromagnetischen elementen | |
DE102021129807A1 (de) | Magnetsensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010822 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50013663 Country of ref document: DE Date of ref document: 20061207 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070122 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070726 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20100226 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100219 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150217 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160330 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20161028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50013663 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170901 |