EP1113170B1 - Verfahren zur Überwachung des Verbrennungsvorgangs bei der Verbrennung fossiler Brennstoffe - Google Patents
Verfahren zur Überwachung des Verbrennungsvorgangs bei der Verbrennung fossiler Brennstoffe Download PDFInfo
- Publication number
- EP1113170B1 EP1113170B1 EP00127161A EP00127161A EP1113170B1 EP 1113170 B1 EP1113170 B1 EP 1113170B1 EP 00127161 A EP00127161 A EP 00127161A EP 00127161 A EP00127161 A EP 00127161A EP 1113170 B1 EP1113170 B1 EP 1113170B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion
- sequence
- combustion process
- accordance
- values
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 120
- 238000000034 method Methods 0.000 title claims description 48
- 238000012544 monitoring process Methods 0.000 title claims description 12
- 239000002803 fossil fuel Substances 0.000 title claims description 7
- 239000000446 fuel Substances 0.000 claims description 29
- 238000002347 injection Methods 0.000 claims description 24
- 239000007924 injection Substances 0.000 claims description 24
- 239000000567 combustion gas Substances 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 9
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 230000007257 malfunction Effects 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 230000000630 rising effect Effects 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 230000006735 deficit Effects 0.000 claims 1
- 230000002123 temporal effect Effects 0.000 claims 1
- 230000007306 turnover Effects 0.000 description 18
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000003502 gasoline Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P19/00—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
- F02P19/02—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
- F02P19/028—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs the glow plug being combined with or used as a sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/021—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an ionic current sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P17/00—Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
- F02P17/12—Testing characteristics of the spark, ignition voltage or current
Definitions
- the invention relates to a method for monitoring the combustion process in the combustion of fossil fuels according to the generic term of claim 1 such as JP-A-62249051, JP-A-04203475 or JP-A-04203270.
- this known method is used to monitor the sequence of individual combustion processes in the cylinder of the internal combustion engine and optionally by appropriate measures, such as by changing the injection timing, the injected fuel quantity or the course of injection, the other combustion processes targeted influence. Furthermore, the known method is used to keep the resulting during the combustion processes temperatures in a desired temperature range in which the increased formation of undesirable exhaust gas components such as nitrogen oxides (NO x ) does not occur, their formation should be avoided for environmental reasons.
- nitrogen oxides are formed increasingly from a temperature of about 2000 K during the combustion processes in the cylinder. After detecting the increased formation of undesirable exhaust gas components, the temperature in the cylinder can be reduced with the aid of the measures described above.
- the problem is that by the excessive formation of nitrogen oxides released electrons, the due to their low mass also from more remote areas Measuring device migrate, the detected conductivity values of the combustion gas falsify, so that the measuring signal disturbed and thus a exact monitoring of the combustion processes is prevented.
- the invention achieves the object by a method with the features according to claim 1.
- sequence of conductivity values has a conductivity curve in which the Signal comparatively unadulterated compared to the known methods can be represented, since disturbances caused by a disproportionate Increase of certain ions in the combustion gas arise, can not be detected.
- sequence of conductivity values at least approximately actual course of the combustion process immediately reflects. Consequently, can be determined from the method according to the invention Sequence of conductivity values of the combustion process with high accuracy are evaluated.
- the sequence of determined Conductivity values with a sequence of stored reference values compared a theoretical course of conductivity change during an optimal combustion process the boundary conditions, such as the injection duration, the injection timing or the course of injection, the boundary conditions of the monitored Combustion process correspond.
- the boundary conditions such as the injection duration, the injection timing or the course of injection
- the boundary conditions of the monitored Combustion process correspond.
- heat release For example, to control the combustion with a predetermined heat release can be compared. Furthermore, can be from the sequence of conductivity values the course of the heat release determine so that, for example, temperature peaks during the combustion process can be detected, to avoid the formation of nitrogen oxides in the subsequent combustion process of the Temperature ago can be reduced.
- the inventive method is particularly in an internal combustion engine used, with the combustion processes in each cylinder be monitored. This way is one compared to conventional ones Method more precise control of fuel supply and power output every single cylinder possible.
- the inventive Method used in a diesel engine To measure the conductivity of the in-cylinder combustion gas is a Glow plug of the respective cylinder of the diesel engine used.
- the Glow plug of the respective cylinder is equipped with a reference resistor in Series connected and conductively connected to the inner wall of the cylinder.
- Particles To determine the conductivity of the combustion gas in the respective Cylinder based on the positively charged gas contained in the combustion gas Particles are applied to the glow plug during part of the compression stroke and a part of the working stroke applied a negative voltage.
- the conductivity of the combustion gas changes between the glow plug and the inner wall of the cylinder, causing the voltage drop across the reference resistor changes and is measured and amplified for evaluation.
- the different voltage values are stored as a sequence of conductivity values in a memory.
- a Meßsignalkurve 10th representing the change in conductivity values with respect to the crankshaft angle shows, where the conductivity values on the proportion of positive charged particles are based in the combustion gas.
- Meßsignalkurve 10 is a value of about 0.4 volts. From a crankshaft angle of about 20 ° before top dead center OT of the piston starts the engine control of the diesel engine with a pilot injection in which a small amount of diesel fuel in the Cylinder is injected to the inside of the cylinder before the actual Main injection to heat. This is reflected in the trace 10 due to the small signal fluctuations 12 in the signal curve.
- the negative Meßsignalkurve 10 thereby increases to a value of about 2.6 Volts, as shown by the second signal tip 16. Then falls the Meßsignalkurve 10 to form a third signal peak 18 with a Value of about 1.6 volts at a crankshaft angle of about -15 ° Gently lower the top dead center OT of the piston, until it stops at a Crankshaft angle of about -40 ° with respect to top dead center OT of the piston also reaches at least approximately 0.4 volts.
- FIG. 1 the course of the heat release as a heat release curve 20 for the same combustion process for which the Meßsignalkurve 10 was applied.
- the heat release curve 20 starts first with a level of about 0 joules per second and also shows at a crankshaft angle of about 14 ° before the upper Dead center OT is a first signal peak 22, which is at about 1.1 joules per second has its maximum.
- the location of the first signal tip 22 of the Heat release curve 20 corresponds exactly to the position of the first signal tip 14 of Meßsignalkurve 10.
- the heat release curve 20 falls in same as the Meßsignalkurve 10 to a minimum of 0 Joule per second and then rises to form a second signal peak 24 at a crankshaft angle of about -2 ° after top dead center OT of the piston to form a second signal tip 24 to a maximum Value of about 1.7 joules per second. After the second signal tip 24 drops the heat release curve 20 gently, the course the heat release curve 20 to the course of Meßsignalkurve 10th after the third signal peak 18 is approximated.
- the heat release curve shows 20 shows a course in which the resulting signal peaks 22 and 24 show the same position with respect to the crankshaft angle as the first signal peak 14 and the pair of signal peaks 16 and 18 of the Meßsignkurve 10th
- Fig. 2 is a diagram is shown in which, together with the Meßsignalkurve Figure 10 shows a turnover rate curve 26 in which the turnover rate of hydrocarbons based on the crankshaft angle during of the observed combustion process.
- the turnover rate curve Figure 26 shows at the beginning of the combustion that during the pre-injection injected fuel quantity a first increase 28 to a turnover rate of about 10%, with the formation of sinusoidal signal fluctuations 30 with low slope up to a conversion rate of about 15% at the top Dead center OT of the piston expires.
- the turnover rate curve increases 26 to form a second increase 32 strongly, the into a smooth spout 34, until the turnover rate curve 26 at a crankshaft angle of -60 ° after top dead center about horizontal course shows.
- the turnover rate curve 26 shows the second increase 32, which eventually forms a smooth spout 34 at least runs approximately horizontally.
- the burning begins, as in the Meßsignalkurve 10 represented by the second signal tip 16, takes also abruptly the proportion of converted hydrocarbons.
- the measured signal curve 10 has reached its maximum, it falls again evenly, which also causes the decreasing slope in the second Increase 32 of the turnover rate curve 26.
- decreasing Amount of fuel to be burned at the same time decreases the amount to reacted hydrocarbon, such as the turnover rate curve 26 with her gentle spout 34 documented.
- the sequence of conductivity values which form the Meßsignalkurve 10
- a series of reference values compared a theoretical course of conductivity change show during an optimal combustion process and according to the boundary conditions of the monitored combustion process, such as the injection duration, the injection time or the course of injection.
- the two sequences are compared with each other values, which in occur at least approximately identical crankshaft angles. Thereby can be a deviation of the actual combustion process determine the theoretically optimal combustion process, so that in a subsequent combustion process, the injection accordingly can be changed.
- the malfunction individual components of the internal combustion engine can be determined. If at least a part of the conductivity values exceeds the reference values, can be concluded that insufficient exhaust gas recirculation, for example by a malfunction of the exhaust gas recirculation valve or a Blockage of the branch, at which the exhaust gas is discharged from the exhaust system is caused. Is the consequence of conductivity values or the Measurement signal curve 10 with respect to the reference values stored from the sequence formed reference curve towards the end of the combustion process shifted, it means that during the monitored combustion process contain too little oxygen in the air-fuel mixture was. From this can be, for example, a malfunction or derive a leak of the turbocharger.
- the measured conductivity values are the same Amount largely below the corresponding reference values this is that the injected amount of fuel is not the desired one Amount of fuel corresponds to that determined by the engine control previously has been. This can be a malfunction of the injector or diagnose a reduced performance of the pump.
- Meßsignalkurve 10 can be from the waveform of Meßsignalkurve 10 exactly read at what time, i. to which crankshaft angle, the fuel has ignited, how long the combustion process lasted, and when the end of the combustion occurred. Through this exact information taken from the Meßsignalkurve 10 can be, the fuel injection into the cylinder accordingly the desired engine performance are regulated.
- the diesel engine can be operated with maximum power
- a series of conductivity values each of which is compared to a sequence of stored reference values which defines a theoretical combustion process in which the respective cylinder provides maximum power.
- the amount of fuel to be injected, the injection duration and also the injection course are regulated until the conductivity values of subsequent combustion processes at least is approximated to the sequence of stored reference values.
- the power of each cylinder can be maximized so that even with different powerful cylinders of the diesel engine each Cylinder provides maximum performance.
- the method described above can likewise be applied to internal combustion engines used with gasoline.
- gasoline engines it is possible by adjusting the ignition timing, in which the air-fuel mixture in the cylinder through the spark plug or the spark plug is ignited to change specifically.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
- Fig. 1
- ein Diagramm, in dem eine im Zylinder eines Verbrennungsmotors aufgenommene Leitfähigkeits-Meßsignalkurve sowie eine Wärmefreisetzungskurve gezeigt sind, wobei beide Kurven auf den Kurbelwellenwinkel des Verbrennungsmotors bezogen sind, und
- Fig. 2
- ein Diagramm, in dem die im Zylinder aufgenommene Leitfähigkeits-Meßsignalkurve gemeinsam mit einer Umsatzratenkurve für Kohlenwasserstoffe gezeigt ist, wobei auch hier beide Kurven auf den Kurbelwellenwinkel des Verbrennungsmotors bezogen sind.
- 10
- positive Meßsignalkurve
- 12
- Signalschwankungen der Meßsignalkurve
- 14
- erste Signalspitze der Meßsignalkurve
- 16
- zweite Signalspitze der Meßsignalkurve
- 18
- dritte Signalspitze der Meßsignalkurve
- 20
- Wärmefreisetzungskurve
- 22
- erste Signalspitze der Wärmefreisetzungskurve
- 24
- zweite Signalspitze der Wärmefreisetzungskurve
- 26
- Umsatzratenkurve
- 28
- erster Anstieg der Umsatzratenkurve
- 30
- Signalschwankungen der Umsatzratenkurve
- 32
- zweiter Anstieg der Umsatzratenkurve
- 34
- sanfter Auslauf der Umsatzratenkurve
Claims (15)
- Verfahren zur Überwachung des Verbrennungsvorgangs bei der Verbrennung fossiler Brennstoffe, insbesondere bei der Verbrennung fossiler Brennstoffe in einem Zylinder eines Verbrennungsmotors, wobei bei dem Verfahren eine Folge von Leitfähigkeitswerten während eines zeitlich begrenzten Verbrennungsvorgangs bestimmt und die Folge von Leitfähigkeitswerten zur Überwachung des Verbrennungsvorgangs ausgewertet wird, und
wobei die Folge von Leitfähigkeitswerten auf dem Anteil positiv geladener Teilchen im Verbrennungsgas basiert,
dadurch gekennzeichnet, daß die Folge von Leitfähigkeitswerten mit einer Folge gespeicherter Referenzwerte verglichen wird, die einen theoretischen Verlauf der Leitfähigkeitsänderung während eines optimierten Verbrennungsvorgangs definieren, dessen Randbedingungen den Randbedingungen des überwachten Verbrennungsvorgangs entsprechen, und daß jeweils Werte der beiden Folgen miteinander verglichen werden, die bei zumindest annähernd identischen Zeitpunkten bei den miteinander zu vergleichenden Verbrennungsvorgängen auftreten. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß, wenn zumindest ein Teil der Leitfähigkeitswerte die Referenzwerte betragsmäßig übersteigt, bei dem überwachten Verbrennungsvorgang eine unzureichende Abgasrückführung erfolgt ist. - Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß, wenn die Folge von Leitfähgkeitswerten bezüglich der Folge gespeicherter Referenzwerte in Richtung des Endes des Verbrennungsvorgangs verschoben ist, während des überwachten Verbrennungsvorgangs zuwenig Sauerstoff im Luft-Brennstoff-Gemisch enthalten war. - Verfahren nach Anspruch 3,
dadurch gekennzeichnet, daß bei der Feststellung eines Sauerstoffmangels während des überwachten Verbrennungsvorgangs, der durch den Einsatz einer zusätzlichen Luftansaugvorrichtung, insbesondere eines Turboladers, unterstützt worden ist, eine Fehlfunktion der Luftansaugvorrichtung diagnostiziert wird. - Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß, wenn zumindest ein großer Prozentsatz der Leitfähigkeitswerte, der vorzugsweise in einem Bereich von wenigstens 75% lag, um zumindest annähernd denselben Betrag von den entsprechenden Referenzwerten abweicht, der Brennstoff während des überwachten Verbrennungsvorgangs mit einer reduzierten Pumpleistung in den Brennraum eingespritzt wurde. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß aus der Folge von Leitfähigkeitswerten ein auf den zeitlichen Ablauf des Verbrennungsvorgangs bezogener Signalverlauf dargestellt wird. - Verfahren nach Anspruch 6,
dadurch gekennzeichnet, daß zur Überwachung des Verbrennungsvorgangs der Verlauf von Signalflanken des Signalverlaufs ausgewertet wird, wobei eine steil ansteigende Signalflanke den Ablauf einer schlagartigen Verbrennung anzeigt, während eine sanft ansteigende Signalflanke den Beginn einer kontinuierlich zunehmenden Verbrennung definiert. - Verfahren nach Anspruch 6 oder 7,
dadurch gekennzeichnet, daß zur Überwachung des Verbrennungsvorgangs aus dem Signalverlauf die Zündung, die Dauer und das Ende der Verbrennung des Brennstoffes bestimmt wird. - Verfahren nach Anspruch 6, 7 oder 8,
dadurch gekennzeichnet, daß zur Überwachung des Verbrennungsvorgangs aus dem Signalverlauf die Wirkung der Voreinspritzung bestimmt wird. - Verfahren nach einem der Ansprüche 6 bis 9,
dadurch gekennzeichnet, daß aus dem Signalverlauf die Umsatzrate der Kohlenwasserstoffe unmittelbar bestimmt wird. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß aus dem Betrag des jeweiligen Leitfähigkeitswertes die Temperatur ermittelt wird, die während des Zeitpunktes des überwachten Verbrennungsvorgangs auftrat, als der Leitfähigkeitswert erfaßt wurde. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß aus der Folge von Leitfähigkeitswerten die Wärmefreisetzung während des überwachten Verbrennungsvorgangs unmittelbar ermittelt wird. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß das Verfahren bei einem Verbrennungsmotor eingesetzt wird, wobei die Verbrennungsvorgänge in jedem Zylinder überwachtet werden. - Verfahren nach Anspruch 13,
dadurch gekennzeichnet, daß aufeinanderfolgend für jeden Zylinder eine Folge von Leitfähigkeitswerten erstellt wird, die anschließend miteinander verglichen werden, und daß bei Abweichungen zwischen den Folgen von Leitfähigkeitswerten der einzelnen Zylinder die nachfolgenden Verbrennungsvorgänge in den einzelnen Zylindern derart aufeinander abgestimmt werden, daß die Zylinder bei einer Überprüfung der Verbrennungsvorgänge zumindest annähernd identische Folgen von Leitfähigkeitswerten zeigen. - Verfahren nach Anspruch 13 oder 14,
dadurch gekennzeichnet, daß aufeinanderfolgend für jeden Zylinder eine Folge von Leitfähigkeitswerten erstellt wird, die jeweils mit einer Folge gespeicherter Referenzwerte verglichen wird, die einen theoretischen Verbrennungsvorgang definieren, bei dem der jeweilige Zylinder maximale Leistung erbringt, und daß bei Abweichungen der Folge von Leitfähigkeitswerten des betreffenden Zylinders von der Folge gespeicherter Referenzwerte die nachfolgenden Verbrennungsvorgänge entsprechend einer Leistungsmaximierung des betreffenden Zylinders geregelt werden.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU90495A LU90495B1 (en) | 1999-12-24 | 1999-12-24 | Device and method for ion current sensing |
LU90495 | 1999-12-24 | ||
DE10011620A DE10011620A1 (de) | 1999-12-24 | 2000-03-10 | Verfahren zur Überwachung des Verbrennungsvorgangs bei der Verbrennung fossiler Brennstoffe |
DE10011620 | 2000-03-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1113170A1 EP1113170A1 (de) | 2001-07-04 |
EP1113170B1 true EP1113170B1 (de) | 2005-03-09 |
Family
ID=26004778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00127161A Expired - Lifetime EP1113170B1 (de) | 1999-12-24 | 2000-12-12 | Verfahren zur Überwachung des Verbrennungsvorgangs bei der Verbrennung fossiler Brennstoffe |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1113170B1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE50311830D1 (de) * | 2003-06-20 | 2009-10-01 | Delphi Tech Inc | Treiberschaltung |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62249051A (ja) * | 1986-04-22 | 1987-10-30 | Mitsubishi Electric Corp | 内燃機関のイオン電流検出装置 |
JPH04203270A (ja) * | 1990-11-29 | 1992-07-23 | Mitsubishi Electric Corp | イオン電流検出装置 |
JPH04203475A (ja) * | 1990-11-30 | 1992-07-24 | Mitsubishi Electric Corp | イオン電流検出装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2802202C2 (de) * | 1978-01-19 | 1986-09-04 | Robert Bosch Gmbh, 7000 Stuttgart | Einrichtung zur Erfassung von Druckschwankungen im Brennraum einer Brennkraftmaschine |
FR2675206B1 (fr) * | 1991-04-10 | 1995-09-08 | Siemens Automotive Sa | Procede et dispositif de detection d'un rate d'allumage dans un moteur a combustion interne et leurs applications. |
JPH05149230A (ja) * | 1991-11-26 | 1993-06-15 | Mitsubishi Electric Corp | 内燃機関のノツキング検出装置 |
JPH05222989A (ja) * | 1992-02-14 | 1993-08-31 | Hitachi Ltd | 空燃比制御装置 |
JPH07229443A (ja) * | 1994-02-18 | 1995-08-29 | Mitsubishi Electric Corp | 内燃機関の制御装置 |
US6089077A (en) * | 1997-06-26 | 2000-07-18 | Cooper Automotive Products, Inc. | Mass fraction burned and pressure estimation through spark plug ion sensing |
DE19816641C1 (de) * | 1998-04-15 | 1999-10-07 | Daimler Chrysler Ag | Verfahren zur Bestimmung der Laufruhe eines Ottomotors |
-
2000
- 2000-12-12 EP EP00127161A patent/EP1113170B1/de not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62249051A (ja) * | 1986-04-22 | 1987-10-30 | Mitsubishi Electric Corp | 内燃機関のイオン電流検出装置 |
JPH04203270A (ja) * | 1990-11-29 | 1992-07-23 | Mitsubishi Electric Corp | イオン電流検出装置 |
JPH04203475A (ja) * | 1990-11-30 | 1992-07-24 | Mitsubishi Electric Corp | イオン電流検出装置 |
Also Published As
Publication number | Publication date |
---|---|
EP1113170A1 (de) | 2001-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102005058820B4 (de) | Verfahren zur Regelung einer Brennkraftmaschine, insbesondere einer selbstzündenden Brennkraftmaschine | |
DE69809335T2 (de) | Dieselbrennkraftmaschine | |
DE112015002732B4 (de) | Steuervorrichtung für Verbrennungsmotor | |
DE10242227A1 (de) | Verfahren zum Betrieb einer Brennkraftmaschine mit Kraftstoffdirekteinspritzung | |
DE19749817A1 (de) | Vorrichtung und Verfahren zur Ermittlung des Spritzbeginns oder der Verbrennungslage | |
DE102020000353B4 (de) | Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Kraftwagens | |
EP1300588A1 (de) | Verfahren zur Ermittlung des Zeitpunktes einer Verbrennung einer Brennkraftmaschine | |
DE102014207272B4 (de) | Verfahren zum Betreiben einer Brennkraftmaschine, Steuergerät für eine Brennkraftmaschine und Brennkraftmaschine | |
DE102007030280A1 (de) | Verfahren zum Betrieb einer Brennkraftmaschine | |
EP1132601B1 (de) | Verfahren zum Regeln der Verbrennung fossiler Brennstoffe | |
EP1132607B1 (de) | Verfahren zur Regelung der Mehrfacheinspritzung in einem Verbrennungsmotor | |
DE10011630A1 (de) | Verfahren zur Regelung eines Verbrennungsmotors | |
EP2633175A1 (de) | Verfahren zur überwachung einer adaption einer einspritzzeit eines einspritzventils einer brennkraftmaschine | |
EP1113170B1 (de) | Verfahren zur Überwachung des Verbrennungsvorgangs bei der Verbrennung fossiler Brennstoffe | |
EP0648930A2 (de) | Klopfregel- und Klopfüberwachungsverfahren für eine mehrzylindrige Brennkraftmaschine mit einem speziellen Klopfdetektionszylinder | |
WO2013023833A1 (de) | Verfahren und vorrichtung zum betreiben einer brennkraftmaschine | |
EP1164286B1 (de) | Verfahren zur Überwachung der verstärkten Bildung von Stickoxiden | |
WO2014146744A1 (de) | Verfahren zum betreiben einer verbrennungskraftmaschine sowie verbrennungskraftmaschine | |
EP1132605B1 (de) | Verfahren zum Bestimmen des Beginns einer Verbrennung im Zylinder eines Verbrennungsmotors | |
DE102009052219A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine mit Mehrfachverbrennung in einem Arbeitszyklus | |
DE3131191A1 (de) | Verfahren zur ladungszuendung einer hubkolbenbrennkraftmaschine und hubkolbenbrennkraftmaschine zur durchfuehrung dieses verfahrens | |
DE10011620A1 (de) | Verfahren zur Überwachung des Verbrennungsvorgangs bei der Verbrennung fossiler Brennstoffe | |
WO2021074173A1 (de) | Verfahren zum betreiben einer brennkraftmaschine | |
DE10011632A1 (de) | Kalibrierungsverfahren | |
DE10322014A1 (de) | Verfahren zum Starten einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AKX | Designation fees paid | ||
17P | Request for examination filed |
Effective date: 20010906 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
17Q | First examination report despatched |
Effective date: 20040415 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050309 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050309 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50009720 Country of ref document: DE Date of ref document: 20050414 Kind code of ref document: P |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20050309 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20051212 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20081212 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20081205 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100701 |