EP0914945B1 - Verfahren zur Regelung des Farbauftrages bei einer Druckmaschine - Google Patents
Verfahren zur Regelung des Farbauftrages bei einer Druckmaschine Download PDFInfo
- Publication number
- EP0914945B1 EP0914945B1 EP98119006A EP98119006A EP0914945B1 EP 0914945 B1 EP0914945 B1 EP 0914945B1 EP 98119006 A EP98119006 A EP 98119006A EP 98119006 A EP98119006 A EP 98119006A EP 0914945 B1 EP0914945 B1 EP 0914945B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- colour
- value
- image element
- raster
- sensitivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F33/00—Indicating, counting, warning, control or safety devices
- B41F33/0036—Devices for scanning or checking the printed matter for quality control
- B41F33/0045—Devices for scanning or checking the printed matter for quality control for automatically regulating the ink supply
Definitions
- the invention relates to a method for regulating the color application in a Printing machine according to the preamble of the independent claim.
- Such a is the process referred to as the color distance-controlled control process e.g. known from EP-B2-0 228 347 and from DE 195 15 499 C2.
- the process involves printing a printed sheet in a number using the printing press of test areas with respect to a selected color coordinate system measured colorimetrically. The color coordinates obtained thereby become the Color distance vectors to target color coordinates based on the same color coordinate system calculated.
- These color distance vectors are created using Sensitivity matrices converted into layer thickness change vectors, and the Regulation of the color guide of the printing press is based on the Color distance vectors converted layer thickness change vectors made.
- the fields from with the actual print image are used as test areas printed color control strips used.
- scanners which allow the entire image content of a printed sheet in large numbers of relatively small picture elements with reasonable effort and in a very short time measured colorimetrically or spectrophotometrically.
- These scanners offer the basic metrological requirements for the regulation of Ink guide of a printing machine not only to use test strips printed with it, but the color information from all picture elements of the whole actual To use the printed image for this purpose.
- a difficulty with this as a so-called Measurement in the picture is by the in the Given the four-color printing problem of the black component, to which As is well known, not only the printing ink black itself, but also that superimposed colored colors contribute.
- the present Invention Based on this prior art, it is an object of the present Invention to improve a method of the generic type in that it also for the so-called measurement in the image with practically justifiable effort can be carried out.
- the measurement in the image is the colorimetric Measurement of the entire printed image in a very large number (typically several thousand) of small picture elements (typically a few millimeters in diameter) and the evaluation of those obtained from the individual picture elements colorimetric values for the calculation of the control variables for the coloring of the Printing machine understood.
- Another object of the invention is that Process also to improve the influence of everyone involved Printing inks, in particular also the printing ink black, can be safely separated can.
- Print sheets 3 which the desired print image and possibly additional Have pressure control elements.
- the printed sheets 3 are up to date Removed printing process and a spectrophotometric scanner 2 fed. This scans the printed sheets 3 essentially over the entire Surface from pixel to pixel.
- the size of the individual picture elements 4 is typical about 2.5 mm x 2.5 mm corresponding to around 130,000 picture elements in one Sheet 3 common dimensions.
- the generated by the scanner 2 Samples - typically spectral reflectance values - are stored in one Evaluation device 5 analyzed and input variables for one of the Control unit 9 assigned to printing press 1, which in turn processes the Coloring elements of the printing press 1 in accordance with these input parameters controls.
- the input variables are, at least in the case of an offset printing press, typically around zonal layer thickness changes for the individual inks involved in printing.
- the determination of the above Input variables or changes in layer thickness are made by comparing the Sampled values or quantities derived therefrom, in particular color measurement values (Color locations or color vectors) of a so-called OK sheet 3 with the corresponding sizes of one taken from the current printing process Printing sheet 3 in the sense that the by the input sizes or Changes in layer thickness caused changes in the settings of the Coloring organs of the printing press 1 the best possible adjustment of the color impression of the continuously generated printed sheets 3 to the OK sheet Have consequence.
- another OK sheet 3 can also be used Reference can be used, for example corresponding default values or corresponding values obtained from prepress.
- the arrangement outlined essentially corresponds conventional, e.g. in EP-B2 0 228 347 and DE-A 44 15 486 in detail described arrangements and methods for color control of Printing machines and therefore requires no closer for the specialist Explanation.
- the basic structure of the scanning device 2 and the evaluation device 5 go from Fig. 2.
- the scanning device 2 comprises a substructure in the form of a somewhat inclined one rectangular measuring table T, on which the printed sheet 3 to be measured is positioned can be.
- a measuring carriage W is arranged on the measuring table T, on or in which is a spectrophotometric measuring unit, not shown here.
- the Measuring carriage W extends over the entire depth of the measuring table T in Coordinate direction y and is motorized across its width in the coordinate direction x linearly movable back and forth, with appropriate drive and control devices A are provided in the measuring carriage W and on or under the measuring table T.
- the evaluation device 5 comprises a computer C with a keyboard K and a monitor M.
- the computer C works together with the drive and control device A on the measuring table T or in the measuring carriage W, controls the movement of the measuring carriage W and processes that of the one in the measuring carriage W located spectrophotometric measuring unit generated scanning signals.
- the scanning signals or quantities derived therefrom typically for example the color values of the individual picture elements 4, can be displayed on the monitor M, for example in terms of pictures.
- monitor M and fact K are used for interactively influencing the evaluation processes, but this is not the subject of the present invention and is therefore not explained in more detail.
- the spectrophotometric measuring unit comprises a plurality of reflectance measuring heads arranged linearly along the measuring carriage W and a spectral photometer optically connected to these measuring heads via an optical fiber multiplexer.
- the measuring unit scans the printed sheet 3 when moving the measuring carriage W back and forth across the entire printed sheet surface in a plurality - typically 320 - of parallel linear tracks spectrophotometrically, with each track having a large number of individual picture elements 4, the dimensions of which in the coordinate direction x are defined by the speed of movement of the measuring carriage W and the temporal resolution of the individual scanning processes.
- the dimensions of the picture elements 4 in the coordinate direction y are determined by the spacing of the scanning tracks.
- the dimensions of the individual scanned image elements 4 are approximately 2.5 mm ⁇ 2.5 mm, which results in a total number of approximately 130,000 image elements in the case of a printing sheet 3 of conventional size.
- the reflectance spectra of the picture elements 4 are available as scanning signals for each individual picture element 4 of the printing sheet 3, which the computer C evaluates and processes further in the manner described below for determining the input variables for the printing press control device 9.
- Scanning devices 2 which a printing sheet 3 in two dimensions allow to be measured densitometrically or spectrophotometrically, are widespread in the graphics industry and therefore need for the Expert no further explanation, especially for the concerns of the present Invention the pixel-by-element measurement of the printed sheets 3 also by means of a Handheld colorimeter or handheld spectrophotometer could be done.
- a special one A suitable scanning device 2 corresponding to the one outlined above is e.g. in the German patent application 196 50 223.3 described in all details.
- An essential aspect of the present invention is the inclusion of the printing ink black in the calculation of the input variables for the printing press control or in the calculation of the intermediate variables required for these input variables.
- the printed sheets 3 are not only measured in the visible spectral range (approx. 400-700 nm), but also at at least one point in the near infrared, where only the printing ink black has a significant absorption.
- the reflectance spectra of the individual picture elements 4 thus consist of reflectance values in the visible spectral range, typically 16 reflectance values at intervals of 20 nm each, and a reflectance value in the near infrared range.
- Color values (color coordinates, color vectors, color locations) relating to a selected color space are calculated from the reflectance values of the visible spectral range. It is preferable to choose a color space that is equally spaced in terms of perception, typically the so-called L, a, b color space according to CIE (Commission Internationale de l'Eclairage).
- L, a, b color space
- CIE Commission Internationale de l'Eclairage
- the color and infrared values L, a, b and I present for each individual picture element 4 after the scanning of a printing sheet 3 form the starting point for the calculation of the input variables for the printing press control device 9. These calculations are also carried out in the computer C.
- the three color values L, a, b (or the corresponding values of another color system) and the value quadruple comprising the infrared value I for simplifying purposes as the (four-dimensional) color vector F of the relevant picture element 4, so: F (L, a, b, I)
- color locus in the four-dimensional color space is understood to mean a point whose four coordinates in the color space are the four components of the color vector.
- the color vectors of the picture elements 4 of the OK sheet 3 or another reference are often also referred to as target color vectors.
- ⁇ (L i - L r ) 2 + (a i - a r ) 2 + (b i - b r ) 2 + (I i -I r ) 2 ⁇ 0.5 where the indices i and r in turn have the meaning given.
- the computer C calculates the color distance vector ⁇ F for each picture element 4 of the current printed sheet 3 from the color vectors F determined on this and the OK sheet 3.
- the indices c, g, m and s stand for the printing inks cyan, yellow, magenta and black, the correspondingly indexed components of the vector are the relative changes in layer thickness for the printing ink indicated by the index.
- an offset printing machine 1 is designed zonally, i.e. the printing takes place in a series of parallel zones (typically 32), at which Printing machine 1 separate coloring organs are provided for each zone, the Regulation - at least for the interests of the present invention - independent of one another.
- the mutual influence of neighboring pressure zones and their Consideration in the printing press control is not the subject of present invention and is therefore disregarded.
- the following Comments on the actual control of the printing press 1 or on the calculation of the corresponding input variables for the press control relate each to a pressure zone and apply equally to all pressure zones.
- the coefficients of the sensitivity matrix S are usually called Color value gradients. In the following explanations, 16 Color value gradients each represent the summary term sensitivity matrix used.
- the sensitivity matrix S is a linear replacement model for the relationship between the changes in the layer thickness of the printing inks involved in the printing and the resulting changes in the color impression of the with the changed Layer thickness values of printed picture element 4.
- the sensitivity matrix S only from the To form components L, a, b of a three-dimensional color vector F.
- On the Component I can be omitted if there are several Image elements 4 in relation to the flat coverage of the printing inks involved is independent of each other, which is the case in most cases.
- each printing zone comprises a large number, typically approximately 4000, individual picture elements.
- the interference that occurs during printing generally does not have the same effect on the individual image elements or that not all image elements are affected by the same interference.
- the individual matrix equations for the individual picture elements must therefore be combined to form a matrix equation system which is overdetermined according to the reduced number of picture elements and which is to be solved according to the known methods of compensation calculation using a framework or secondary condition.
- a framework or secondary condition In the case of 4000 picture elements, there is a system of 4000 matrix equations or 16000 simple algebraic equations with the four unknowns ⁇ D c , ⁇ D g , ⁇ D m and ⁇ D s .
- the mean quadratic error should be minimal.
- the mean square error is understood to mean the mean value of the squares of the color distances ⁇ E of the individual picture elements remaining after the corrected layer thicknesses have been applied.
- ⁇ F ⁇ means a column vector with 16000 components ( ⁇ L 1 , ⁇ a 1 , ⁇ b 1 , ⁇ I 1 , ⁇ L 2 , ⁇ a 2 , ⁇ b 2 , ⁇ I 2 ........ ⁇ L 4000 , ⁇ a 4000 , ⁇ b 4000 , ⁇ I 4000 ), ⁇ S ⁇ a matrix with 4 rows and 4000 columns and ⁇ D a column vector with the four unknowns ⁇ D c , ⁇ D g , ⁇ D m and ⁇ D s as components.
- the indices of the components of ⁇ F ⁇ relate to the picture elements 4 1-4000, ie the components of ⁇ F ⁇ are the determined components of the color distance vectors ⁇ F of the individual picture elements 4 compared to the corresponding picture elements 4 of the OK sheet.
- the calculation of the layer thickness change vector ⁇ D is based on Although this is possible in principle, it requires enormous computing effort and corresponding expenditure of time that goes far beyond the limits of what is practically possible exceeds. In particular, a sufficiently fast control, such as in practice, especially in modern high-performance printing presses 1 is not feasible.
- the computing effort for determining the 4000 Sensitivity matrices (64,000 coefficients in total) for each Image elements 4 are not considered at all and move the Feasibility even further away.
- the visual color impression (metrologically the color value, color location or color vector) of a picture element 4 is in offset raster printing by the percentage Raster values (area coverage) of the printing inks involved and, to a lesser extent Mass determined by the layer thickness of the printing inks.
- the grid values or Area coverage (0-100%) are due to the underlying printing plates fixed and practically unchangeable. Influenced the color impression and can therefore only be regulated via the layer thicknesses of the printing inks involved become.
- the terms "grid value” and "area coverage” are given below used synonymously.
- the totality of all possible combinations R of percentage screen values of the printing inks involved (usually cyan, yellow, Magenta, black) is referred to below as a grid space (four-dimensional).
- each Raster value combination R a precisely defined color impression or color vector F the picture element 4 printed with this raster value combination R; so it exists a clear assignment of raster value combination R to color location or color vector F; the grid space can be clearly mapped onto the color space, although the color space is not completely occupied because it also contains non-printable color locations contains. Conversely, there is generally no clear relationship.
- the one Any raster value combination R belonging to color vector F can be empirically determined by Sample prints determined or using a suitable model that the Printing process sufficiently accurate under the given printing conditions describes, can be calculated.
- a suitable model is e.g.
- the Area coverage values of the picture elements 4 are used. Are the Area coverage values from prepress are already known, so there is no need Measurement on test prints (exception: full tones).
- Raster value combinations R the associated color vector F and the associated Sensitivity matrix S calculated in advance and stored in a table.
- This the entirety of all sensitivity matrices S and color vectors F calculated in this way containing table is referred to below as a raster color table RFT.
- the associated raster value combination R is explained in more detail below calculates and on the basis of this raster value combination R the associated sensitivity matrix S taken from the pre-calculated raster color table RFT. To this In this way it is possible to quickly get the required without excessive computing effort Determine sensitivity matrices.
- a number of, for example, 1296 equally spaced discrete screen value combinations R iR (6 discrete screen percentages A C , A G , A M , A S for the printing colors cyan, yellow, magenta, black) are defined in the screen space: i 0 1 2 3 4 5 A C 0 20 40 60 80 100% A G 0 20 40 60 80 100% A M 0 20 40 60 80 100% A S 0 20 40 60 80 100%
- a sensitivity matrix S iR is calculated for each of these 1296 discrete raster value combinations R iR and stored in the raster color table RFT.
- the calculated color vector F iR belonging to the discrete raster value combinations R iR is also stored in the table RFT.
- the raster color table RFT thus contains a total of 1296 color vectors F iR and 1296 associated sensitivity matrices S iR .
- the grid space is preferably quantized in two stages.
- the first stage for only 256 discrete halftone value combinations (corresponding to four discrete halftone percentage values 0%, 40%, 80%, 100% for each of the printing colors cyan, yellow, magenta, black), the associated color vectors and the are based on the offset printing model associated sensitivity matrices.
- the second stage the associated color vectors and sensitivity matrices for the missing raster percentage values 20% and 60% are calculated by linear interpolation from the color vectors and sensitivity matrices of the 16 nearest discrete raster value combinations.
- a sensitivity matrix S iR whose associated discrete raster value combination R iR is closest to the raster value combination R calculated from the color vector F is now assigned to a color vector F determined for a picture element 4.
- the calculated raster value combination is replaced by R each closest discrete halftone value combination R iR and receives associated with the precalculated to this discrete halftone value combination R iR sensitivity matrix S iR.
- the grid space is quantized by dividing it into a number of subspaces. All color vectors F, the calculated associated raster value combinations R of which fall into one and the same of these subspaces, are assigned the same sensitivity matrix S iR previously calculated for this subspace.
- the subspaces are defined by the following six value ranges of the percentage raster portions (area coverage) of the four printing inks involved: 0 .... 10, 10 .... 30, 30 .... 50, 50 .... 70, 70 .... 90, 90 .... 100%
- the (including infrared value I four-dimensional) color space is also subjected to quantization, ie divided into a number of subspaces, for determining the raster value combination R from the color vector F.
- quantization ie divided into a number of subspaces, for determining the raster value combination R from the color vector F.
- a number of discrete color locations, each with discrete coordinate values, are defined in the color space.
- the four-dimensional color space can be quantized such that each dimension L, a, b, I of the color space can only assume 11 discrete values, resulting in a total of 14641 discrete color locations F iF : i 0 1 2 3 4 5 6 7 8th 9 10 L 0 10 20 30 40 50 60 70 80 90 100 a -75 -60 -45 -30 -15 0 15 30 45 60 75 b -45 -30 -15 0 15 30 45 60 75 90 105 I 0 10 20 30 40 50 60 70 80 90 100
- the associated raster value combinations R iF are calculated using the special calculation method explained below and, if they do not coincide with a discrete raster value combination R iR , are replaced by the closest discrete raster value combination R iR .
- this mapping is calculated in advance and stored in an assignment table referred to below as the raster index table RIT.
- each color vector F determined for a picture element 4 is replaced by the closest discrete color location F iF .
- the discrete raster value combination R iR assigned to this discrete color location F iF is then taken from the raster index table RIT and the corresponding sensitivity matrix S iR is read out from the raster color table RFT and assigned to the color vector F.
- the sensitivity matrix S can be determined with comparatively little computing effort and correspondingly quickly for any determined color vector F, although this can only be selected from one of the 1296 precalculated sensitivity matrices S iR . In practice, however, this is sufficient.
- the color space is divided into 81 sub-areas T iT as follows: i 0 1 2 L (0..120) 0..20..40 40..60..80 80..100..120 a (-90 .. + 90) -90 ..- 60 ..- 30 -30..0 .. + 30 +30 .. + 60 .. + 90 b (-60 .. + 120) -60 ..- 30..0 0 .. + 30 .. + 60 +60 .. + 90 .. + 120 I (0..120) 0..20..40 40..60..80 80..100..120
- iT i (L) * 3 0 + i (a) * 3 1 + i (b) * 3 2 + i (I) * 3 3
- A means the raster vector with the raster percentage values A C , A G , A M , A S of the four printing inks involved as components, and U iT a conversion matrix with 16 coefficients, which shows the partial derivatives (gradients) of the components of the raster vector according to the components of the color vector are. If the conversion matrices U iT of the individual partial areas T iT are known, the associated raster vector A or the associated raster value combination R can thus be calculated for each color vector F.
- the problem is therefore reduced to the calculation of the conversion matrices U iT for the individual sub-areas T iT or more precisely for the color vectors F iT from their centers.
- the conversion matrices are calculated using a weighted linear compensation calculation using the values from the raster-color table RFT explained above, that is to say the 1296 discrete raster value combinations R iR and the associated discrete color vectors F iR .
- RFT raster-color table
- Weight of the support points, ie the discrete color locations F iR of the raster color table RFT, for the compensation calculation is determined according to a suitable function with the color distance between the support points and the respective color vector F iT as parameters.
- the compensation calculation is linear, ie there are discontinuities at the transitions of the individual sub-areas T iT , which are insignificant in practice.
- the raster color table RFT and the raster index table RIT are calculated and saved in accordance with the above explanations for the prevailing printing conditions. If already determined and saved on a storage medium, the tables RFT, RIT can of course also be called up from this storage medium. On the basis of the two tables RFT, RIT, it is possible without substantial computing effort to assign the color vectors F determined for the individual picture elements 4 to the discrete sensitivity matrix S that applies in each case. Now, a current print sheet 3 is taken from the current printing process and measured by the scanning device 2 in the manner described, with the color vector F and the color distance vector ⁇ F for each picture element 4 for each picture element 4 from the corresponding picture element 4 of a previously measured OK sheet 23 is determined.
- the total number of picture elements 4 is, for example, around 130,000, so that with the usual 32 printing zones, the color vectors and color distance vectors of around 4,000 picture elements 4 each have to be processed per printing zone.
- the following explanations apply equally to one pressure zone and to all pressure zones.
- Layer thickness change vector ⁇ D is then calculated so that the mean quadratic error should be minimal across all sensitivity classes.
- middle quadratic error is the mean of the squares according to the Application of the corrected layer thicknesses remaining mean color distances of the Understanding picture elements 4 of the individual classes.
- the areas of the sensitivity classes are preferably defined in the grid space. For example, 16-256 classes can be provided. The more classes there are, the fewer errors arise from averaging, but the more the computing effort increases.
- the definition of 81 classes which result from dividing the grid space into 81 subspaces according to the following scheme, has proven to be a practical compromise: n 0 1 2 A C 0% .... 30% 30% .... 70% 70% .... 100% A G 0% .... 30% 30% .... 70% 70% .... 100% A M 0% .... 30% 30% .... 70% 70% .... 100% A S 0% .... 30% 30% 30% .... 70% 70% .... 100%
- iK n (A C ) * 3 0 + n (A G ) * 3 1 + n (A M ) * 3 2 + n (A S ) * 3 3
- the grid space comprises 1296 discrete grid value combinations R iR .
- Exactly 16 raster value combinations R iR thus fall in each of the 81 subspaces and, accordingly, 16 (similar) sensitivity matrices S iR fall into each sensitivity class K iK .
- Sensitivity classes K iK determined. Using the raster index iR and the raster color table RFT, the sensitivity matrix S associated with the color vector F of the picture element 4 is further determined. After these steps, the color vector F, the color distance vector ⁇ F, the raster index iR, the sensitivity matrix S and the class index iK are thus available for each of the approximately 4000 image elements 4 of a printing zone.
- the raster index iR defines the raster value combination R, ie the percentage raster portions (area coverage) of the printing inks involved for the image element 4, the class index iK defines the affiliation of the image element 4 to a specific sensitivity class.
- the picture elements 4 or their color distance vectors ⁇ F become one Weighting process subjected to the influence of area coverage and of Positioning errors are taken into account.
- ⁇ E p 2 is the square of the color distance of the picture element 4 from the unprinted position of the printed sheet 3 (paper white).
- weight factor g 1 Another variant for the determination of the weight factor g 1 is that it receives the value 1 as the maximum value if the sum of the area coverings of the respective picture element 4 falls below a predetermined threshold value, preferably the value 250. Otherwise, the weighting factor g1 is given a smaller value, in particular a value of 0. A combination of the two variants mentioned above is also conceivable.
- ⁇ E M means the sum of the color distances between the picture element 4 and its 8 neighboring picture elements 4.
- ⁇ E M2 means the sum of the squares of the color distances of the picture element 4 from its 8 neighboring picture elements 4.
- the difference between the area coverage values and the neighboring picture elements 4 can also be used, with an increasing difference the weight factor g2 likewise receiving a smaller value going towards 0.
- the color distance vectors ⁇ F of the individual picture elements 4 and the associated sensitivity matrices S are weighted multiplicatively.
- the weighted color distance vectors and sensitivity matrices of the individual picture elements 4 are referred to below as ⁇ F g and S g
- the totals are generated across all picture elements in a class.
- the resolution is again carried out by means of a weighted linear compensation calculation with the additional condition that the mean square error should be minimal, whereby the mean square error means the mean value of the squares of the mean color distances ⁇ E MK of the individual sensitivity classes remaining after application of the layer thicknesses corrected by ⁇ D becomes.
- ⁇ F z ⁇ means a column vector with 4x81 components, which results from the stacking of the 81 vectors ⁇ F MK with their 4 components each.
- ⁇ S z ⁇ is a matrix with 4 rows and 81 columns, which results from the 81 sensitivity matrices S MK being arranged horizontally side by side.
- ⁇ D is a column vector with the four unknowns ⁇ D c , ⁇ D g , ⁇ D m and ⁇ D s as components.
- the desired layer thickness change vector ⁇ D with its components ⁇ D c , ⁇ D g , ⁇ D m and ⁇ D s are obtained for each printing zone, which are fed to the control device 9 as input variables and thus cause the necessary adjustment of the coloring elements of the printing press 1 that the mean square error mentioned is minimized in each pressure zone.
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Inking, Control Or Cleaning Of Printing Machines (AREA)
- Facsimile Image Signal Circuits (AREA)
- Spectrometry And Color Measurement (AREA)
Description
- Fig.1
- ein Prinzip-Schema einer Anordnung zur Steuerung bzw. Regelung einer Druckmaschine und
- Fig. 2
- eine Einrichtung zur bildelementweisen Abtastung von Druckbögen und zur Auswertung der Abtastwerte für die Steuerung bzw. Regelung einer Druckmaschine.
Die spektralfotometrische Messeinheit umfasst eine Vielzahl von längs des Messwagens W linear angeordneten Remissionsmessköpfen und ein mit diesen Messköpfen über einen optischen Fasermultiplexer optisch verbundenes Spektralfotometer. Die Messeinheit tastet den Druckbogen 3 beim Hin- und Herbewegen des Messwagens W über die gesamte Druckbogenoberfläche bildelementweise in einer Vielzahl - typischerweise 320 - von parallelen linearen Spuren spektralfotometrisch ab, wobei in jeder Spur eine Vielzahl von einzelnen Bildelementen 4 liegt, deren Abmessungen in Koordinatenrichtung x durch die Bewegungsgeschwindigkeit des Messwagens W und die zeitliche Auflösung der einzelnen Abtastvorgänge definiert sind. Die Abmessungen der Bildelemente 4 in Koordinatenrichtung y sind durch die Abstände der Abtastspuren festgelegt. Typischerweise betragen die Abmessungen der einzelnen abgetasteten Bildelemente 4 etwa 2,5 mm x 2,5 mm, was bei einem Druckbogen 3 üblicher Grösse eine Gesamtanzahl von rund 130000 Bildelementen ergibt. Nach einem vollständigen Abtastvorgang liegen für jedes einzelne Bildelement 4 des Druckbogens 3 als Abtastsignale die Remissionsspektren der Bildelemente 4 vor, welche der Rechner C in der noch weiter unten beschriebenen Art und Weise zur Bestimmung der Eingangsgrössen für die Druckmaschinensteuereinrichtung 9 auswertet und weiter verarbeitet.
i | 0 | 1 | 2 | 3 | 4 | 5 |
AC | 0 | 20 | 40 | 60 | 80 | 100% |
AG | 0 | 20 | 40 | 60 | 80 | 100% |
AM | 0 | 20 | 40 | 60 | 80 | 100% |
AS | 0 | 20 | 40 | 60 | 80 | 100% |
0....10, 10....30, 30....50, 50....70, 70....90, 90....100%
i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
L | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
a | -75 | -60 | -45 | -30 | -15 | 0 | 15 | 30 | 45 | 60 | 75 |
b | -45 | -30 | -15 | 0 | 15 | 30 | 45 | 60 | 75 | 90 | 105 |
I | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Zunächst wird dazu der Farbraum in 81 Teilbereiche TiT wie folgt unterteilt:
i | 0 | 1 | 2 |
L (0..120) | 0..20..40 | 40..60..80 | 80..100..120 |
a (-90..+90) | -90..-60..-30 | -30..0..+30 | +30..+60..+90 |
b (-60..+120) | -60..-30..0 | 0..+30..+60 | +60..+90..+120 |
I (0..120) | 0..20..40 | 40..60..80 | 80..100..120 |
Nun wird ein aktueller Druckbogen 3 dem laufenden Druckprozess entnommen und mittels der Abtasteinrichtung 2 in der beschriebenen Art und Weise bildelementweise ausgemessen, wobei im Rechner 5 für jedes Bildelement 4 der Farbvektor F und der Farbabstandsvektor ΔF zum entsprechenden Bildelement 4 eines vorgängig analog ausgemessenen OK-Bogens 23 bestimmt wird. Die Gesamtanzahl der Bildelemente 4 beträgt beispielsweise rund 130000, so dass bei den üblichen 32 Druckzonen die Farbvektoren und Farbabstandsvektoren von jeweils rund 4000 Bildelementen 4 pro Druckzone verarbeitet werden müssen. Die nachstehenden Ausführungen gelten jeweils für eine Druckzone und für alle Druckzonen gleichermassen.
n | 0 | 1 | 2 |
AC | 0%....30% | 30%....70% | 70%....100% |
AG | 0%....30% | 30%....70% | 70%....100% |
AM | 0%....30% | 30%....70% | 70%....100% |
AS | 0%....30% | 30%....70% | 70%....100% |
g1 = 1 für Flächendeckungen >= 10% und g1 = 0 für Flächendeckungen < 10%
g1 = 1 für ΔEp 2 >= 52 und g1 = 0 für ΔEp 2 < 52
g2 = 1 für ΔEM <= 8 und g2 = (8/ΔEM) für ΔEM > 8
g2 = 1 für ΔEM2 <= 8 und g2 = (8/ΔEM2)0.5 für ΔEM2 > 8
Die beiden Gewichtsfaktoren g1 und g2 werden zu einem für jedes Bildelement 4 individuellen kombinierten Gewichtsfaktor g gemäss g = g1*g2 kombiniert. Mit diesen individuellen kombinierten Gewichtsfaktoren g werden nun die Farbabstandsvektoren ΔF der einzelnen Bildelemente 4 und die zugehörigen Sensitivitäts-Matrizen S multiplikativ gewichtet. Die gewichteten Farbabstandsvektoren und Sensitivitäts-Matrizen der einzelnen Bildelemente 4 sind in der Folge als ΔFg bzw. Sg bezeichnet
Claims (14)
- Verfahren zur Regelung des Farbauftrags bei einer Druckmaschine, bei welchem ein mit der Druckmaschine (1) gedruckter Druckbogen (3) in einer Anzahl von Bildelementen (4) bezüglich eines ausgewählten Farbkoordinatensystems farbmetrisch ausgemessen wird, aus den dabei gewonnenen Farbvektoren (F) für jedes Bildelement Farbabstandsvektoren (ΔF) zu auf dasselbe Farbkoordinatensystem bezogenen, vorgegebenen oder aus einem Referenz-Druckbogen ermittelten Soll-Farbvektoren berechnet werden, diese Farbabstandsvektoren (ΔF) mit Hilfe von Sensitivitäts-Matrizen (S) in Eingangsgrössen, insbesondere Schichtdickeänderungsvektoren (ΔD), für eine Steuereinrichtung (9) für die Farbgebungsorgane der Druckmaschine (1) umgerechnet werden, und die Regelung der Farbführung der Druckmaschine (1) aufgrund der aus den Farbabstandsvektoren (ΔF) umgerechneten Eingangsgrössen, insbesondere Schichtdickeänderungsvektoren (ΔD) vorgenommen wird,
dadurch gekennzeichnet, dass für jedes ausgemessene Bildelement (4) des Druckbogens (3) eine eigene Sensitivitäts-Matrix (S) bestimmt wird, dass die Bildelemente (4) nach Sensitivitätsklassen (KiK) klassifiziert werden, dass die Farbabstandsvektoren (ΔF) und die Sensitivitäts-Matrizen (S) der jeweils einer Sensitivitätsklasse angehörenden Bildelemente (4) für jede Sensitivitätsklasse (KiK) gemittelt werden, und dass die genannten Eingangsgrössen, insbesondere
Schichtdickeänderungsvektoren (ΔD), aus den gemittelten Farbabstandsvektoren (ΔFMK) und den gemittelten Sensitivitäts-Matrizen (SMK) aller Sensitivitätsklassen (KiK) berechnet werden. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß die Sensitivitäts-Matrizen (S) aus vorbekannten Flächendeckungswerten bestimmt werden. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass für jedes Bildelement (4) mindestens ein Messwert (I) im nahen Infrarot-Bereich gewonnen wird, dass der für jedes Bildelement (4) ermittelte Farbvektor (F) vierdimensional ist, wobei drei Komponenten des Farbvektors (F) die Koordinatenwerte eines angenähert gleichabständigen Farbraums sind und die vierte Komponente aus dem mindestens einen Messwert (I) im nahen Infrarot-Bereich gebildet wird, dass der für jedes Bildelement (4) ermittelte Farbabstandsvektor (ΔF) entsprechend vierdimensional ist, und dass die für jedes Bildelement (4) bestimmte Sensitivitäts-Matrix (S) durch die Gradienten der vier Komponenten des vierdimensionalen Farbvektors (F) nach den am Druck beteiligten Druckfarben gebildet wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass für jedes Bildelement 4 mindestens ein Messwert (I) im nahen Infrarot-Bereich gewonnen wird, dass der für jedes Bildelement (4) ermittelte Farbvektor (F) vierdimensional ist, wobei drei Komponenten des Farbvektors (F) die Koordinatenwerte eines angenähert gleichabständigen Farbraums sind und die vierte Komponente aus dem mindestens einen Messwert (I) im nahen Infrarot-Bereich gebildet wird, dass der für jedes Bildelement (4) ermittelte Farbabstandsvektor (ΔF) dreidimensional ist, und dass die für jedes Bildelement (4) bestimmte Sensitivitäts-Matrix (S) durch die Gradienten der drei Komponenten des dreidimensionalen Farbvektors (F) nach den am Druck beteiligten Druckfarben gebildet wird. - Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass die Farbabstandsvektoren (ΔF) und die Sensitivitäts-Matrizen (S) der jeweils einer Sensitivitätsklasse (KiK) angehörenden Bildelemente (4) für jede Sensitivitätsklasse gewichtet gemittelt werden, wobei jedem Bildelement (4) Gewichtsfaktoren (g1; g2) zugeordnet werden, die aus der Flächendeckung des Bildelements (4) und/oder den Farbabständen des Bildelements (4) zu seinen benachbarten Bildelementen (4) bestimmt werden. - Verfahren nach Anspruch 5,
dadurch gekennzeichnet, dass die Flächendeckungen jedes Bildelements bezüglich der beteiligten Druckfarben ermittelt werden, dass einer der Gewichtsfaktoren (g1) eines Bildelements (4) den Wert 1, erhält, wenn der Mittelwert oder eine der Flächendeckungen des Bildelements (4) gleich einem vorgegebenen ersten Schwellenwert, insbesondere den Wert 10%, ist oder diesen überschreitet, und dass der eine der Gewichtsfaktoren (g1) andernfalls einen kleineren Wert, insbesondere den Wert 0 erhält. - Verfahren nach Anspruch 5,
dadurch gekennzeichnet, daß die Flächendeckungen jedes Bildelements (4) bezüglich der beteiligen Druckfarben ermittelt werden, dass einer der Gewichtsfaktoren (g1) eines Bildelements (4) einen Maximalwert, insbesondere den Wert 1 erhält, wenn die Summe der Flächendeckungen des jeweiligen Bildelementes (4) einen vorgegebenen Schwellwert, insbesondere den Wert 250, unterschreitet, und dass der eine der Gewichtsfaktoren (g1) andernfalls einen kleineren Wert, insbesondere den Wert 0, erhält. - Verfahren nach Anspruch 6 oder 7,
dadurch gekennzeichnet, dass anstelle der Flächendeckungen für jedes Bildelement (4) der Farbabstand zu einer unbedruckten Stelle des Druckbogens (3) bestimmt wird, dass der eine der Gewichtsfaktoren (g1) eines Bildelements (4) den Wert 1 erhält, wenn das Quadrat des Farbabstandes des Bildelements gleich einen vorgegebenen zweiten Schwellenwert, insbesondere den Wert 52, ist oder diesen überschreitet, und dass der eine der Gewichtsfaktoren (g1) andernfalls einen kleineren Wert, insbesondere den Wert 0, erhält. - Verfahren nach Anspruch 5,
dadurch gekennzeichnet, dass für jedes Bildelement (4) die Farbabstande zu seinen unmittelbar benachbarten Bildelementen (4) bestimmt werden, dass ein weiteres der Gewichtsfaktoren (g2) eines Bildelements (4) den Wert 1 erhält, wenn die Summe der Farbabstände gleich einen vorgegebenen dritten Schwellenwert, insbesondere den Wert 8, ist oder diesen unterschreitet, und dass der weitere der Gewichtsfaktoren (g2) andernfalls mit zunehmender Summe der Farbabstände oder mit zunehmender Differenz der Flächendeckung zu den benachbarten Bildelementen (4) einen gegen 0 gehenden kleineren Wert erhält. - Verfahren nach Anspruch 9 und einem der Ansprüche 6 und 8,
dadurch gekennzeichnet, dass für jedes Bildelement (4) ein Gewichtsfaktor (g) ermittelt wird, der sich durch multiplikative Verknüpfung des aufgrund der Farbabstände des Bildelements (4) zu seinen benachbarten Bildelementen (4) berechneten Weiteren Gewichtsfaktors (g2) mit dem aufgrund der Flächendeckungen oder des Farbabstands des Bildelements (4) zu einer unbedruckten Stelle des Druckbogens (3) berechneten einen Gewichtsfaktor (g1) ergibt. - Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass für eine vorgegebene erste Anzahl von diskreten Rasterwertkombinationen (RiR) der am Druck beteiligten Druckfarben eine zugehörige Sensitivitäts-Matrix (SiR) berechnet und in einer Raster-Farb-Tabelle (RFT) abgelegt wird, dass für jedes Bildelement (4) aus dem für dieses ermittelten Farbvektor (F) die zugehörige Rasterwertkombination (R) berechnet wird, und dass dem Bildelement (4) diejenige Sensitivitäts-Matrix (SiR) aus der Raster-Farb-Tabelle (RFT) zugeordnet wird, deren zugehörige diskrete Rasterwertkombination (RiR) der für das Bildelement (4) berechneten Rasterwertkombination (R) am nächsten liegt. - Verfahren nach Anspruch 11,
dadurch gekennzeichnet, dass im durch den Infrarot-Anteil (I) auf vier Dimensionen erweiterten Farbraum eine zweite Anzahl von diskreten Farborten (FiF) festgelegt wird, dass für jeden dieser diskreten Farborte die zugehörige Rasterwertkombination der am Druck beteiligten Druckfarben berechnet wird, dass für jeden diskreten Farbort die zugehörige berechnete Rasterwertkombination durch die ihr am nächsten liegende diskrete Rasterwertkombination (RiR) ersetzt wird, und dass die Zuordnungen der diskreten Farborte (FiF) zu den diskreten Rasterwertkombination (RiR) in einer Raster-Index-Tabelle (RIT) abgelegt werden. - Verfahren nach Anspruch 12,
dadurch gekennzeichnet, dass für die Bestimmung der Sensitivitätsmatrix eines Bildelements (4) der für dieses ermittelte vierdimensionale Farbvektor (F) durch den nächstliegenden diskreten Farbort (FiF) ersetzt wird, dass aus der Raster-Index-Tabelle (RIT) die diesem diskreten Farbort zugeordnete Rasterwertkombination (RiR) entnommen wird, dass aus der Raster-Farb-Tabelle (RFT) die zu dieser Rasterwertkombination (RiR) gehörende Sensitivitäts-Matrix (SiR) entnommen wird, und dass diese Sensitivitäts-Matrix (SiR) dem Bildelement (4) zugeordnet wird. - Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass die Sensitivitäts-Matrizen (SiR) mit Hilfe eines mathematischen Modells der zugrundeliegenden Druckmaschine (1) aus Messwerten an mit der Druckmaschine (1) gedruckten Volltonbereichen und unter Mitberücksichtigung der Kennlinien der Druckmaschine berechnet werden.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19749066A DE19749066A1 (de) | 1997-11-06 | 1997-11-06 | Verfahren zur Regelung des Farbauftrages bei einer Druckmaschine |
DE19749066 | 1997-11-06 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0914945A2 EP0914945A2 (de) | 1999-05-12 |
EP0914945A3 EP0914945A3 (de) | 1999-11-03 |
EP0914945B1 true EP0914945B1 (de) | 2002-07-31 |
Family
ID=7847816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98119006A Expired - Lifetime EP0914945B1 (de) | 1997-11-06 | 1998-10-08 | Verfahren zur Regelung des Farbauftrages bei einer Druckmaschine |
Country Status (4)
Country | Link |
---|---|
US (1) | US5957049A (de) |
EP (1) | EP0914945B1 (de) |
JP (1) | JPH11216848A (de) |
DE (2) | DE19749066A1 (de) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19749063A1 (de) * | 1997-11-06 | 1999-05-12 | Heidelberger Druckmasch Ag | Verfahren zur Gewinnung von Farbmeßwerten |
US5967050A (en) * | 1998-10-02 | 1999-10-19 | Quad/Tech, Inc. | Markless color control in a printing press |
DE10103555B4 (de) * | 2001-01-26 | 2019-12-19 | Volkswagen Ag | Verfahren zur Beurteilung einer Farbschicht |
CN1505564A (zh) * | 2001-03-02 | 2004-06-16 | ������������˹��˾Dba Mgi���� | 印刷调节系统和方法 |
US6725772B2 (en) | 2001-07-30 | 2004-04-27 | Ackley Martinez Company | System admixture compensation system and method |
CN1537055A (zh) * | 2001-07-30 | 2004-10-13 | 阿克利・马丁内斯公司Dba Mgi工作 | 色彩管理处理系统和方法 |
AU2002335081A1 (en) * | 2001-10-04 | 2003-04-14 | E.I. Du Pont De Nemours And Company | Ink jet printing |
US6938550B2 (en) * | 2002-10-31 | 2005-09-06 | R. R. Donnelley & Sons, Co. | System and method for print screen tonal control and compensation |
US7437000B1 (en) * | 2003-03-14 | 2008-10-14 | Eric Rosenthal | Full spectrum color detecting pixel camera |
DE50305862D1 (de) * | 2003-10-23 | 2007-01-11 | Gretag Macbeth Ag | Farbqualitätsbeurteilung und Farbregelung bei der Farbreproduktion |
DE102004061469A1 (de) * | 2004-12-18 | 2006-07-13 | Man Roland Druckmaschinen Ag | Verfahren zur Regelung der Farbgebung in einer Offsettdruckmaschine |
US7605959B2 (en) | 2005-01-05 | 2009-10-20 | The Ackley Martinez Company | System and method of color image transformation |
DE102005007780A1 (de) * | 2005-02-19 | 2006-08-31 | Man Roland Druckmaschinen Ag | Vorrichtung und Verfahren zur Messung der zonalen Farbgebung |
JP2007030348A (ja) * | 2005-07-27 | 2007-02-08 | Komori Corp | 印刷機のインキ供給量調整方法および装置 |
US7252360B2 (en) * | 2005-10-25 | 2007-08-07 | Ecole polytechnique fédérale de Lausanne (EPFL) | Ink thickness variations for the control of color printers |
US7652792B2 (en) | 2006-03-15 | 2010-01-26 | Quad/Tech, Inc. | Virtual ink desk and method of using same |
DE102006025898A1 (de) | 2006-06-02 | 2007-12-06 | Heidelberger Druckmaschinen Ag | Verfahren zur Berechnung von Korrekturwerten in einer Farbsteuerung oder Farbregelung für eine Druckmaschine |
DE102006048539A1 (de) | 2006-10-13 | 2008-04-17 | Heidelberger Druckmaschinen Ag | Farbmesskopfpositionierungsvorrichtung |
JP5154204B2 (ja) * | 2006-11-20 | 2013-02-27 | ハイデルベルガー ドルツクマシーネン アクチエンゲゼルシヤフト | 印刷枚葉紙を光学的に測定する装置を作動させる方法 |
DE102007029211A1 (de) * | 2007-06-25 | 2009-01-08 | Heidelberger Druckmaschinen Ag | Verbesserter Druckkontrollstreifen zur Farbmessung auf Bedruckstoffen |
DE102009002822A1 (de) * | 2008-05-28 | 2009-12-03 | Manroland Ag | Betrieb eines Kaltfolienaggregates mit Kleberauftrag |
DE102010009226B4 (de) | 2009-03-13 | 2024-02-15 | Heidelberger Druckmaschinen Ag | Verfahren zur Steuerung des Farbauftrags in einer Druckmaschine |
AT509239B1 (de) | 2009-12-17 | 2013-03-15 | Trumpf Maschinen Austria Gmbh | Antriebsvorrichtung für eine biegepresse |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0143744B1 (de) * | 1983-11-04 | 1988-01-13 | GRETAG Aktiengesellschaft | Verfahren und Vorrichtung zur Beurteilung der Druckqualität und/oder Regelung der Farbführung bei einer Offset-Druckmaschine und mit einer entsprechenden Vorrichtung ausgestattete Offset-Druckmaschine |
EP0228347B2 (de) * | 1985-12-10 | 1996-11-13 | Heidelberger Druckmaschinen Aktiengesellschaft | Verfahren zur Farbauftragssteuerung bei einer Druckmaschine, entsprechend ausgerüstete Druckanlage und Messvorrichtung für eine solche Druckanlage |
US4884221A (en) * | 1986-04-14 | 1989-11-28 | Minolta Camera Kabushiki Kaisha | Color measuring apparatus |
DE3812099C2 (de) * | 1988-04-12 | 1995-01-26 | Heidelberger Druckmasch Ag | Verfahren zur Farbsteuerung einer Offsetdruckmaschine |
DE4142481A1 (de) * | 1991-08-12 | 1993-02-18 | Koenig & Bauer Ag | Qualitaetskontrolle einer bildvorlage z. b. eines gedruckten musters |
EP0540833B1 (de) * | 1991-08-12 | 1997-04-23 | KOENIG & BAUER-ALBERT AKTIENGESELLSCHAFT | Qualitätskontrolle einer Bildvorlage z. B. eines gedruckten Musters |
DE4308857A1 (de) * | 1993-03-19 | 1994-09-29 | Polygraph Contacta Gmbh | Verfahren zur Steuerung des Farbauftrages in einer Druckmaschine |
DE4335229C2 (de) * | 1993-10-15 | 1998-07-16 | Heidelberger Druckmasch Ag | Verfahren zum Erzeugen von auf einer Offsetdruckmaschine hergestellten Farbmustern |
EP0649743B1 (de) * | 1993-10-21 | 1997-04-09 | MAN Roland Druckmaschinen AG | Verfahren zur Steuerung der Farbführung einer autotypisch arbeitenden Druckmaschine |
DE4431270C2 (de) * | 1993-10-21 | 1997-01-16 | Roland Man Druckmasch | Verfahren zur Steuerung der Farbführung einer autotypisch arbeitenden Druckmaschine |
DE4343905C2 (de) * | 1993-12-22 | 1996-02-15 | Roland Man Druckmasch | Verfahren zur Steuerung der Farbführung bei einer Druckmaschine |
DE4415486C2 (de) * | 1994-05-03 | 1998-06-04 | Heidelberger Druckmasch Ag | Verfahren zur Bestimmung der zulässigen Toleranzen für die Steuerung oder Regelung der Farbgebung an einer Druckmaschine |
DE19515499C2 (de) * | 1995-04-27 | 1997-03-06 | Heidelberger Druckmasch Ag | Verfahren zur simultanen Mehrfarbregelung beim Drucken |
US5903712A (en) * | 1995-10-05 | 1999-05-11 | Goss Graphic Systems, Inc. | Ink separation device for printing press ink feed control |
DE19650223A1 (de) * | 1996-12-04 | 1998-06-10 | Heidelberger Druckmasch Ag | Abtastvorrichtung zur bildelementweisen fotoelektrischen Ausmessung eines Messobjekts |
-
1997
- 1997-11-06 DE DE19749066A patent/DE19749066A1/de not_active Withdrawn
-
1998
- 1998-10-08 DE DE59804980T patent/DE59804980D1/de not_active Expired - Lifetime
- 1998-10-08 EP EP98119006A patent/EP0914945B1/de not_active Expired - Lifetime
- 1998-11-05 US US09/186,858 patent/US5957049A/en not_active Expired - Lifetime
- 1998-11-05 JP JP10314563A patent/JPH11216848A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
DE59804980D1 (de) | 2002-09-05 |
DE19749066A1 (de) | 1999-05-12 |
JPH11216848A (ja) | 1999-08-10 |
EP0914945A3 (de) | 1999-11-03 |
US5957049A (en) | 1999-09-28 |
EP0914945A2 (de) | 1999-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0914945B1 (de) | Verfahren zur Regelung des Farbauftrages bei einer Druckmaschine | |
EP0143744B1 (de) | Verfahren und Vorrichtung zur Beurteilung der Druckqualität und/oder Regelung der Farbführung bei einer Offset-Druckmaschine und mit einer entsprechenden Vorrichtung ausgestattete Offset-Druckmaschine | |
EP0324718B1 (de) | Verfahren und Vorrichtung zur Farbregelung einer Druckmaschine | |
EP0228347B2 (de) | Verfahren zur Farbauftragssteuerung bei einer Druckmaschine, entsprechend ausgerüstete Druckanlage und Messvorrichtung für eine solche Druckanlage | |
EP0255924B1 (de) | Verfahren und Vorrichtung zur Beeinflussung der farblichen Erscheinung einer Farbfläche bei einem Druckvorgang | |
DE4431270C2 (de) | Verfahren zur Steuerung der Farbführung einer autotypisch arbeitenden Druckmaschine | |
EP0142470A1 (de) | Verfahren und Vorrichtung zur Beurteilung der Druckqualität eines vorzugsweise auf einer Offset-Druckmaschine hergestellten Druckerzeugnisses und mit einer entsprechenden Vorrichtung ausgestattete Offset-Druckmaschine | |
EP0836941B1 (de) | Messfeldgruppe und Verfahren zur Erfassung von Qualitätsdaten im Mehrfarben Auflagendruck | |
EP0585740B1 (de) | Verfahren zur Steuerung des Druckprozesses auf einer autotypisch arbeitenden Druckmaschine, insbesondere Bogenoffsetdruckmaschine | |
EP0676285B1 (de) | Color-Management im Rollenoffset-Auflagendruck | |
EP0659559A2 (de) | Verfahren zur Steuerung der Farbführung bei einer Druckmaschine | |
EP0505323B1 (de) | Verfahren zur Einstellung der Rasterpunktgrössen für eine Offset-Rotationsdruckmaschine | |
EP0916491B1 (de) | Verfahren zur Ermittlung von Farbwertgradienten | |
EP0920994B1 (de) | Verfahren zur Gewinnung von Farbmesswerten | |
DE19830487B4 (de) | Verfahren zur Ermittlung von Flächendeckungen in einem Druckbild | |
EP0668164B1 (de) | Qualitätsdatenerfassung im Rollenoffset-Auflagendruck | |
DE19638967C2 (de) | Messfeldgruppe und Verfahren zur Erfassung von optisch drucktechnischen Größen im Mehrfarben-Auflagendruck | |
CH693533A5 (de) | Messfeldblock und Verfahren zur Erfassung von Qualitotsdaten im Mehrfarben-Auflagendruck. | |
DE19738923A1 (de) | Messfeldblock und Verfahren zur Erfassung von Qualitätsdaten im Mehrfarben-Auflagendruck | |
DE19639014A1 (de) | Messfeldgruppe und Verfahren zur Erfassung von Qualitätsdaten im Mehrfarben-Auflagendruck | |
EP1033247B1 (de) | Verfahren zur Steuerung der Farbgebung einer Druckmaschine | |
EP4195645B1 (de) | Verfahren zur spektralen farbdichtemessung im farbdruck | |
EP0649743A1 (de) | Verfahren zur Steuerung der Farbführung einer autotypisch arbeitenden Druckmaschine | |
EP3972233A1 (de) | Verfahren zur automatisierten charakterisierung eines kontinuierlichen drucksystems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19981008 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE CH DE FR GB IT LI NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AKX | Designation fees paid |
Free format text: BE CH DE FR GB IT LI NL |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20020121 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020731 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20020731 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59804980 Country of ref document: DE Date of ref document: 20020905 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20021008 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021031 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
BERE | Be: lapsed |
Owner name: *HEIDELBERGER DRUCKMASCHINEN A.G. Effective date: 20021031 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030506 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20101028 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20101025 Year of fee payment: 13 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20111008 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111008 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111102 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20121211 Year of fee payment: 15 Ref country code: CH Payment date: 20121025 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131031 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59804980 Country of ref document: DE Effective date: 20140501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140501 |