[go: up one dir, main page]

EP0878556B1 - Procédé pour la production des alliages contenant rhénium - Google Patents

Procédé pour la production des alliages contenant rhénium Download PDF

Info

Publication number
EP0878556B1
EP0878556B1 EP98108055A EP98108055A EP0878556B1 EP 0878556 B1 EP0878556 B1 EP 0878556B1 EP 98108055 A EP98108055 A EP 98108055A EP 98108055 A EP98108055 A EP 98108055A EP 0878556 B1 EP0878556 B1 EP 0878556B1
Authority
EP
European Patent Office
Prior art keywords
rhenium
weight
nickel
alloy
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98108055A
Other languages
German (de)
English (en)
Other versions
EP0878556A1 (fr
Inventor
Michael Koch
Wulf Dr. Kock
David Dr. Lupton
Friedhold Schölz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WC Heraus GmbH and Co KG
Original Assignee
WC Heraus GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19811765A external-priority patent/DE19811765A1/de
Application filed by WC Heraus GmbH and Co KG filed Critical WC Heraus GmbH and Co KG
Publication of EP0878556A1 publication Critical patent/EP0878556A1/fr
Application granted granted Critical
Publication of EP0878556B1 publication Critical patent/EP0878556B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F2009/0804Dispersion in or on liquid, other than with sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention relates to a method for producing rhenium-containing alloys with melting of the constituents forming the alloys, casting and solidification and the rhenium-containing alloys produced by the process.
  • the invention particularly relates to a process for the preparation of rhenium-containing Alloys based on iron, cobalt, nickel or a mixture of at least two of these metals and those containing rhenium produced by the process Alloys based on iron, cobalt, nickel or a mixture of at least two of these metals.
  • US 4,119,458 discloses a method of making a particular nickel or cobalt based Super alloy with 2-9% by weight rhenium and less than about 0.8% by weight Titanium and optionally an element from the group chrome, aluminum, tantalum, carbon, Nickel, cobalt, tungsten, vanadium, molybdenum, niobium, hafnium, zirconium and boron, with the following steps:
  • rhenium-containing alloys based on iron, cobalt, nickel or one Mixtures of at least two of these metals are understood as alloys in the sense of the invention, the amount of iron, cobalt and / or nickel greater than that of rhenium and each which may also still be present in the alloys.
  • This type of alloy includes the so-called super alloys.
  • The are according to Römpp Chemie Lexikon, 9th edition, Stuttgart; New York: Georg Thieme Verlag 1989 until 1992, 4393, extremely complex alloys for one application at very high temperatures.
  • the alloy is based on iron, nickel or cobalt with additions of Metals (cobalt, nickel, iron, chrome, molybdenum, tungsten, tantalum, niobium, aluminum, titanium, Manganese, zirconium) and non-metals (carbon and boron).
  • Superalloy components are produced by forming, casting or sintering and acquire their special properties depending on the excretion or reaction kinetics of the elements involved of manufacturing process and application temperature.
  • Super alloys are used in Engine and engine construction, used in energy technology and in aerospace.
  • DE 25 30 245 C2 describes a high-temperature, Corrosion and oxidation resistant superalloy proposed that at least Contains 50% by volume ⁇ '-phase and from 14.3% by weight chromium, 13.5% by weight cobalt, 2.1% by weight titanium, 1.8% by weight aluminum, 9.2% by weight platinum, the rest nickel can.
  • Super alloys for turbine engines may contain rhenium (Römpp Chemie Lexikon, 9th edition, Stuttgart; New York: Georg Thieme Verlag 1989 - 1992, 3867).
  • Super alloys of this type consist for example of 10% cobalt, 8.7% tantalum, 5.9% tungsten, 5.7% aluminum, 5% chromium, 3% rhenium, 1.9% molybdenum, 0.1% hafnium, Balance nickel (EP 0 554 198 A1) or from 2% chromium, 3.7% cobalt, 32% molybdenum, 8.2% Tantalum, 6.2% aluminum, 6.3% rhenium, 4% vanadium, 0.24% carbon, balance nickel (Ullmann's encyclopedia of industrial chemistry, 5th edition, Weinheim: VCH publishing company mbH 1985 to 1995, volume A13, 61).
  • rhenium and alloys containing iron, cobalt and / or nickel by melting together the constituent parts and then pouring them and solidification are usually first performed in a vacuum induction melting furnace Melting (premelting) generated from the main components and then the additives Melt added, the rhenium being in the form of rhenium powder by pressing and Sintering (vacuum or reducing atmosphere, mostly hydrogen) produced tablets used becomes.
  • Melting premelting
  • Sintering vacuum or reducing atmosphere, mostly hydrogen
  • rhenium heptoxide Since rhenium is easily oxidized to rhenium heptoxide, Re 2 O 7 , by atmospheric oxygen, rhenium heptoxide can still be formed in the melt, for example, despite thorough degassing or in the furnace atmosphere, which sublimes from 250 ° C, so that the melt undesirably depleted in rhenium and the alloys no longer meet the specifications.
  • the invention is therefore based on the object of a method for producing rhenium containing alloys based on iron, cobalt, nickel or a mixture of at least two of these metals by melting together the constituents forming the alloys, Pouring and solidification to find the disadvantages of the known method avoids.
  • the process should be easier to perform and good and to alloys consistent quality and constant composition. According to the procedure superalloys containing rhenium in particular, especially those based on nickel, have it made.
  • the method representing the solution to the problem is characterized in that that when the rhenium component melts together in the form of a melt metallurgy Rhenium alloy obtained with a rhenium content of 30 - 70% by weight and 30-70% by weight of iron, cobalt and / or nickel is used.
  • the rhenium alloy used for the method according to the invention is a so-called Master alloys are "master alloys" according to Römpp Chemie Lexikon, 9th edition, Stuttgart; New York: Georg Thieme Verlag 1989 - 1992, 2478, such alloys used in metallurgy Find use.
  • a rhenium-iron alloy of 30-70% by weight is particularly suitable for the process.
  • Rhenium and 30-70% by weight iron preferably 50% by weight rhenium and 50 %
  • iron, or a rhenium-cobalt alloy of 30-70% by weight rhenium and 30-70% by weight cobalt preferably made from 50% by weight rhenium and 50% by weight Cobalt.
  • the method according to the invention has proven to be particularly favorable if one Rhenium-nickel alloy obtained from 30 - 70% by weight rhenium by melt metallurgy and 30-70% by weight of nickel, preferably of 50% by weight of rhenium and 50% by weight Nickel, is used.
  • melt-metallurgical extraction of the rhenium master alloy is done to avoid this oxidation in a vacuum or under protective gas.
  • Suitable materials for the crucibles are graphite, aluminum oxide, silicon dioxide and zirconium dioxide.
  • the rhenium-iron, rhenium-cobalt and rhenium-nickel master alloy is advantageously used in the form of granules, which are obtained by pouring the melted master alloy into water Can be generated and are easy to handle and dose, used, As particularly suitable granules of around 1 to 3 millimeters have been found.
  • the method according to the invention is distinguished - compared to the known method - due to its easier feasibility.
  • the rhenium produced by the process Alloys containing are of very good quality and high purity.
  • the process is preferred for the production of rhenium-based alloys used by nickel.
  • the rhenium alloy used as the master alloy in the process according to the invention melts in a temperature interval (solidus temperature in the range from approximately 1550 ° C. to 1750 ° C.) which is below the melting point of the rhenium. So it melts in the premelt, which has a temperature of about 1500 to 1600 ° C and a density of about 8 g / cm 3 , much more easily than the sintered rhenium used in the known method.
  • a temperature interval solidus temperature in the range from approximately 1550 ° C. to 1750 ° C.
  • the lower density of the rhenium master alloy favors its homogeneous distribution in the Melt; there is no fear of settling on the bottom of the crucible. Also owns the rhenium master alloy to oxygen does not make the sintered one more reactive Rhenium tablets, so that there is no risk of the formation of rhenium heptoxide and as a result of which there is a depletion of rhenium in the melt.
  • the rhenium-nickel alloy with a solidus temperature of 1620 ° C. which is preferably used as the master alloy for the process, can be melted by melting nickel and rhenium, which is obtained in a known manner from ammonium perrhenate by reduction in a stream of hydrogen, in vacuo or under Produce argon, carbon monoxide or hydrogen as protective gas.
  • Graphite, aluminum oxide, silicon dioxide and zirconium dioxide are suitable materials for the crucible.
  • aluminum oxide or silicon dioxide have proven particularly useful as crucible material and argon or carbon monoxide as protective gas.
  • Rhenium can be obtained in a purity of more than 99.99% from ammonium perrhenate become. Nickel is generally of commercial quality with a purity of 99.97% used. If super-alloys are to be produced on the basis of nickel for the aerospace industry, Production of the rhenium-nickel master alloy nickel of high purity, as for example by the carbonyl process, that is, by thermal decomposition of nickel tetracarbonyl can be chosen.
  • a rhenium alloy can also be used for the process according to the invention can be used as a master alloy, in addition to rhenium and iron, cobalt or nickel still contains a proportion of elements provided in the alloys to be produced.
  • 500 g of rhenium powder and 500 nickel powder are placed in a silicon dioxide crucible and heated in an induction melting furnace (4000 Hz) under carbon monoxide. If that Nickel begins to melt (1455 ° C), the temperature is steadily increased until the whole Crucible content has melted. For the purpose of homogenization, the melt becomes two more Maintained at this temperature for minutes and then slowly into a large bath of cold water poured, forming granules with a grain size of about 1.5 mm. The through Melt extraction certain oxygen content of the granules is 370 ppm.
  • rhenium powder and 600 g of nickel powder are placed in an aluminum oxide crucible and in an induction melting furnace (4000 Hz) under argon / hydrogen (95% by volume Argon and 5% by volume of hydrogen) melted according to Example 1 and granules shed.
  • the granules have an oxygen content of 230 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Claims (12)

  1. Procédé pour la préparation d'alliages contenant du rhénium par fusion commune des constituants formant les alliages, coulée et solidification, caractérisé en ce que l'on utilise dans la fusion commune le constituant rhénium dans la forme d'un alliage de rhénium produit par métallurgie par fusion constitué de 30-70 % en poids de rhénium avec le reste étant du fer, du cobalt et/ou du nickel.
  2. Procédé selon la revendication 1, caractérisé en ce que l'on utilise un alliage de rhénium-fer constitué de 30-70 % en poids de rhénium et de 30-70 % en poids de fer.
  3. Procédé selon la revendication 2, caractérisé en ce que l'on utilise un alliage de rhénium-fer constitué de 50 % en poids de rhénium et de 50 % en poids de fer.
  4. Procédé selon la revendication 1, caractérisé en ce que l'on utilise un alliage de rhénium-cobalt constitué de 30-70 % en poids de rhénium et de 30-70 % en poids de cobalt.
  5. Procédé selon la revendication 4, caractérisé en ce que l'on utilise un alliage de rhénium-cobalt constitué de 50 % en poids de rhénium et de 50 % en poids de cobalt.
  6. Procédé selon la revendication 1, caractérisé en ce que l'on utilise un alliage de rhénium-nickel constitué de 30-70 % en poids de rhénium et de 30-70 % en poids de nickel.
  7. Procédé selon la revendication 6, caractérisé en ce que l'on utilise un alliage de rhénium-nickel constitué de 50 % en poids de rhénium et de 50 % en poids de nickel.
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'on utilise l'alliage de rhénium dans la forme de granulés.
  9. Procédé selon la revendication 8, caractérisé en ce que l'on utilise l'alliage de rhénium dans la forme de granulés de taille 1-3 mm.
  10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'on utilise un alliage de rhénium produit par fusion sous vide.
  11. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'on utilise un alliage de rhénium produit par fusion sous gaz inerte.
  12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que l'on utilise un alliage de rhénium fondu dans un creuset de graphite, d'oxyde d'aluminium, de dioxyde de silicium ou de dioxyde de zirconium.
EP98108055A 1997-05-12 1998-05-04 Procédé pour la production des alliages contenant rhénium Expired - Lifetime EP0878556B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19719407 1997-05-12
DE19719407 1997-05-12
DE19811765 1998-03-18
DE19811765A DE19811765A1 (de) 1997-05-12 1998-03-18 Verfahren zur Herstellung von Rhenium enthaltenden Legierungen und danach hergestellte Legierungen

Publications (2)

Publication Number Publication Date
EP0878556A1 EP0878556A1 (fr) 1998-11-18
EP0878556B1 true EP0878556B1 (fr) 2003-12-17

Family

ID=26036412

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98108055A Expired - Lifetime EP0878556B1 (fr) 1997-05-12 1998-05-04 Procédé pour la production des alliages contenant rhénium

Country Status (2)

Country Link
US (1) US6039920A (fr)
EP (1) EP0878556B1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749803B2 (en) 2002-05-03 2004-06-15 Honeywell International, Inc. Oxidation resistant rhenium alloys
US6821313B2 (en) * 2002-05-31 2004-11-23 Honeywell International, Inc. Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
US6987339B2 (en) * 2002-05-03 2006-01-17 Honeywell International, Inc. Flywheel secondary bearing with rhenium or rhenium alloy coating
US6946096B2 (en) 2002-05-03 2005-09-20 Honeywell International, Inc. Use of powder metal sintering/diffusion bonding to enable applying silicon carbide or rhenium alloys to face seal rotors
US7270782B2 (en) * 2002-09-13 2007-09-18 Honeywell International, Inc. Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
US7540995B2 (en) * 2005-03-03 2009-06-02 Icon Medical Corp. Process for forming an improved metal alloy stent
ES2986867T3 (es) * 2005-03-03 2024-11-12 Mirus Llc Aleaciones metálicas mejoradas para dispositivos médicos
US7452502B2 (en) * 2005-03-03 2008-11-18 Icon Medical Corp. Metal alloy for a stent
US9107899B2 (en) 2005-03-03 2015-08-18 Icon Medical Corporation Metal alloys for medical devices
WO2008008291A2 (fr) * 2006-07-13 2008-01-17 Icon Medical Corp. Stent
US20090028744A1 (en) * 2007-07-23 2009-01-29 Heraeus, Inc. Ultra-high purity NiPt alloys and sputtering targets comprising same
DE102008026910A1 (de) * 2008-06-05 2009-12-10 H.C. Starck Gmbh Verfahren zur Herstellung von reinem Ammoniumperrphenat
DE102009037622B4 (de) * 2009-08-14 2013-08-01 Technische Universität Carolo-Wilhelmina Zu Braunschweig Legierung für mechanisch höchst belastete Bauteile
US8398916B2 (en) 2010-03-04 2013-03-19 Icon Medical Corp. Method for forming a tubular medical device
EP2725110B1 (fr) * 2012-10-26 2017-05-03 MTU Aero Engines GmbH Superalliage à base de nickel sans rhénium résistant au fluage
BR112016030273A2 (pt) 2014-06-24 2017-08-22 Icon Medical Corp Dispositivo médico e método para formar o referido dispositivo
US11766506B2 (en) 2016-03-04 2023-09-26 Mirus Llc Stent device for spinal fusion
DE102016010977A1 (de) * 2016-09-13 2018-03-15 H.C. Starck Surface Technology and Ceramic Powders GmbH Verfahren zur Herstellung von Ammoniumperrhenat

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE729862C (de) * 1939-06-20 1943-10-12 Degussa Werkstoff zur Herstellung von korrosionsfesten, naturharten und abriebfesten Gegenstaenden
CH503114A (de) * 1966-12-21 1971-02-15 Egyesuelt Izzolampa Auf pulvermetallurgischem Wege hergestellter Metallkörper erhöhter Plastizität
GB1520630A (en) * 1974-07-08 1978-08-09 Johnson Matthey Co Ltd Platinum group metal-containing alloys
JPS5942066B2 (ja) * 1975-10-24 1984-10-12 日本電気株式会社 レニウム−コバルト合金接点
US4119458A (en) * 1977-11-14 1978-10-10 General Electric Company Method of forming a superalloy
US5335717A (en) * 1992-01-30 1994-08-09 Howmet Corporation Oxidation resistant superalloy castings

Also Published As

Publication number Publication date
EP0878556A1 (fr) 1998-11-18
US6039920A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
EP0878556B1 (fr) Procédé pour la production des alliages contenant rhénium
DE3783919T2 (de) Verfahren zur herstellung von verbundwerkstoffen aus metall und einer zweiten phase und nach diesem verfahren hergestellte gegenstaende.
DE69620998T2 (de) Oxidationsbeständige molybdänlegierung
DE69032065T2 (de) Verbundwerkstoff von Silber und Metalloxyd und Verfahren zur Herstellung desselben
DE2144156A1 (de) Hoch hitzebeständige Cermet-Legierung, Verfahren zu ihrer Herstellung
CN1699000B (zh) 用于无熔化地制备具有其它添加成分的金属制品的方法
DE3238555C2 (fr)
DE69216171T2 (de) Methode zum Schmelzen von Titanaluminid-Legierungen
DE2018032A1 (de) Infiltrierte zementierte Karbide
DE2137996A1 (de) Verfahren zum Eintragen eines festen Metalls in eine Metallschmelze
DE3635194C2 (fr)
DE3244803A1 (de) Cobalt/chrom-legierungen fuer metallkeramik-zahnersatz
DE69227480T2 (de) Hartauftraglegierung mit präzipitierte Metallkarbiden und Verfahren
DD299075A5 (de) Aluminium-lithium, aluminium-magnesium und magnesium-lithium-legierungen mit hoher widerstandsfaehigkeit
DE3729937C2 (de) Aluminium-Titan-Vorlegierungen mit Drittelement-Zugaben
DE2741345A1 (de) Seltene erdmetalle-vorlegierung
DE3129563C2 (fr)
WO2001057279A1 (fr) Agglomerats poreux contenant du fer et au moins un autre element des groupes 5 ou 6 de la classification periodique des elements, a utiliser comme element d'alliage
DE19811765A1 (de) Verfahren zur Herstellung von Rhenium enthaltenden Legierungen und danach hergestellte Legierungen
DE3782308T2 (de) Verfahren zur in-situ-anpassung des metallischen anteils eines keramischen koerpers und so hergestellte koerper.
DD202895A5 (de) Zusatzstoffe fuer auf geschmolzenem eisen basierende legierungen
DE3011962C2 (de) Metallverbundwerkstoff und Verfahren zu seiner Herstellung
DE3411011C2 (de) Verfahren zur Herstellung einer titanenthaltenden Wasserstoffspeicherlegierung
DE3784172T2 (de) Isothermes verfahren zur bildung poroeser verbindungen aus metall und zweiter phase sowie dadurch erhaltenes poroeses produkt.
DE68917815T2 (de) Intermetallische Titan-Aluminium-Verbindung und Verfahren zu ihrer Herstellung.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: W.C. HERAEUS GMBH & CO. KG

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20000929

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: PROCESS FOR MAKING ALLOYS CONTAINING RHENIUM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031217

REF Corresponds to:

Ref document number: 59810436

Country of ref document: DE

Date of ref document: 20040129

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040920

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080526

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100521

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100519

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59810436

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59810436

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130