EP0844114B1 - Niveauregeleinrichtung mit Steuerung der Schwingungsdämpfer des Fahrwerks - Google Patents
Niveauregeleinrichtung mit Steuerung der Schwingungsdämpfer des Fahrwerks Download PDFInfo
- Publication number
- EP0844114B1 EP0844114B1 EP97118393A EP97118393A EP0844114B1 EP 0844114 B1 EP0844114 B1 EP 0844114B1 EP 97118393 A EP97118393 A EP 97118393A EP 97118393 A EP97118393 A EP 97118393A EP 0844114 B1 EP0844114 B1 EP 0844114B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- damping requirement
- damping
- range
- requirement
- limit value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/10—Acceleration; Deceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/25—Stroke; Height; Displacement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/80—Exterior conditions
- B60G2400/82—Ground surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2500/00—Indexing codes relating to the regulated action or device
- B60G2500/10—Damping action or damper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/14—Differentiating means, i.e. differential control
Definitions
- the invention relates to a level control device Vibration control.
- the known font shows a system for adaptive Damper adjustment, depending on the current Driving state the appropriate damper detection (soft, medium, hard) of the adjustable shock absorbers activated becomes.
- damper detection soft, medium, hard
- a tighter Damper detection is also activated when the road is uneven the vehicle body to strong movements stimulate.
- the shock absorber adjustment also a disturbing start up or a brake nod from Vehicles with a short wheelbase greatly reduced.
- the dampers harden, if the vehicle body is stimulated accordingly is. If the damper is hardened, the decoupling also occurs of axle and vehicle body reduced, shocks are thereby filtered less, which increases comfort is also reduced. This is especially the case if long-wave suggestions for damper hardening lead, but also superimposed on short-wave components are.
- DE 44 47 039 A1 is a suspension control device known that a shock absorber with variable Has damping coefficient between the sprung and the unsprung mass of a vehicle is, and in which an actuator for fixing and adjusting the damping coefficient of the Shock absorber provided using a control signal is.
- the damper setting takes place on the Basis of the absolute upward and downward speeds, which are recorded and evaluated in order to Generate shock absorber control signal.
- the absolute up and Downward speeds are achieved by integrating the Measured value of an acceleration sensor determined.
- the Road surface condition can also from the Measured values of this acceleration sensor or by differentiation of the measured value of a vehicle height sensor be determined.
- the upward and downward movements filtered (dead band setting device) and the road surface condition is judged for what the root mean square of the up and down movements in a recent predetermined period is formed; the larger this mean is, the more the road surface condition is worse.
- the shock absorber setting which is basically and at good road surface only depending of the absolute upward and downward speeds happens, is also dependent on Road surface condition affected: At one poor road surface prevents the Damping forces become larger than a desired value (Limitation of damping forces), which improves driving comfort of the vehicle improved.
- EP 0 262 572 A3 discloses a method for adjusting the damper force of motor vehicles in which for the adjustment of the output signals of an accelerometer be taken as a basis. About a certain one Measuring time will be the differences in amount between two successive output signal values of suitable time interval added up and output as mean value; it is called the DDK value (dynamic dynamic value).
- the level of the DDK value is a measure of the state of excitation from road surface and driving speed; the DDK value exceeds a predetermined threshold, so there is a switch to "hard” while if it is undershot, a switch in the direction "soft” is done.
- the invention is therefore based on the object Level control device of the type mentioned above improve that even with poor road conditions under the primary goal of the greatest possible Driving safety Loss of comfort where possible be avoided.
- the invention has the advantage that in poor road conditions improved cargo handling and driving comfort are, and that the burden of both the damper itself, as well as that of the damper linkages reduced becomes. Another advantage of the invention is that that none of them increase the costs of their realization additional hardware components required are because the measures are implemented through a program become.
- the invention has the further advantage that it to use dampers with continuous adjustable damper force is suitable.
- the invention has the advantage that the influence by determining the rough road parameter certain effects when selecting the damper detection is taken into account, although the effects as those not determined in detail by the existing sensors become. This includes the axle vibrations, when sensing the spring travel through signal filtering to be hidden or those for damper loading or the piston speeds responsible for the damper forces the damper due to the significant metrological effort can not be recorded.
- the invention has the advantage that the dampers in poor road conditions, if the vehicle body z. B. because of only short-wave Road bumps due to its inertia is not stimulated to make appropriate movements, at the St.d.T. the only reason for damper hardening would have given in the invention would be in one soft yet switched to a harder identifier become.
- the risk of "tramping the axis" is reduced which also affects the road traffic reduced. So there is also the danger of underdamping the axles avoided and the dynamic wheel load fluctuations are reduced, with the result that the guidance and propulsion properties of the tires be improved, and increased driving safety given is.
- the invention relates to an air-sprung vehicle, in which the vehicle body is above the vehicle axles supported by air bellows.
- the air volumes in the air suspension bellows supporting the vehicle body determine the level of the vehicle body, namely its Height above the vehicle axles.
- the air-sprung vehicle is further equipped with an electronic one Level control equipped.
- Control valves arranged on the air suspension bellows the air volumes due to an electrical control signal change in the air suspension bellows assigned to them, by ventilating or venting the air bellows.
- Height sensors are provided for actual value detection, which are the actual distances between the vehicle body and determine the vehicle axles.
- an electronics controller provided that a target distance is predetermined, the the actual distances of the height sensors are fed, and the air volume in the Inflated bellows.
- the Electronics regulate the amount of air in a given Air bag in such a way that the actual distance to him assigned sensor equal to the predetermined target distance becomes.
- the electronic controller carries out this level control for the individual air bellows; he is as digital controller with fixed sampling time. To the times determined by the sampling time the measured value of a height sensor is scanned and applies until at the next sampling time as the actual distance of the concerned Height sensor.
- the vehicle's vibration dampers are adjustable executed by continuously increasing their damping force an electrical signal in the sense of an adaptive influence is controllable.
- the vibration dampers are on the vehicle axles on the one hand and on Vehicle body on the other hand attached; for the biaxial Vehicle are four vibration dampers for each the wheels “left” and “right” on the front axle and “Left” and “Right” provided on the rear axle.
- the sample measurement values the height sensors with a low-pass filter Characteristic slightly dampened to both the for fluctuations in measured values that interfere with the level control from sampling time to sampling time due to random Influences to reduce, as well as the wheel vibrations for the determination of the body movements eliminate.
- the determined Roll angle is based on a conversion of the difference the actual distances left by the height sensors and be delivered to the right of the rear axle; the determined Pitch angle is based on the conversion of the actual distance difference between the average of the height sensors on the rear axle and the front axle sensor.
- a first block (1) for calculating the Body damping requirement a second block (2) Calculation of the rough road parameter and a third Block (3) for calculating the total damping requirement.
- the block (1) as input variables (4) are the above explained construction movements supplied; the result the calculations of block (1) are in one size the damping requirement, as a percentage measure with values from 0 to 100% at output (5) of Block (1) is output.
- the input size of block (2) consists of a body acceleration explained below (6), the output variable (7) from block (2) from a rough road parameter with a dimension of 0 until 100 %.
- the output size (5) of block (1) and the output size (7) of block (2) are the input variables to the Block (3) fed.
- the result of the calculations after Block (3) consists of a total damping requirement as Measure from 0 to 100%, it is used as an output variable (8) output.
- the determination of the body damping requirement by block (1) is known as such; the building movements will evaluated by "swaying" and “nodding” depending on size are divided into classes that are a matrix of cases form. The evaluation of this matrix takes into account the Effect of a superimposed vibration of "swaying” and "Nod” such that z. B. in the case of a high "Wank” portion, which as such has a high damping requirement suggests a "nick” portion of medium size Structure damping requirement over that suggested by swaying Dimension practically no longer increased.
- the measure of the body damping requirement from 0 to 100% represents the damper hardening, which at the state of the Technology is given: A measure of 0% means that no damper hardening takes place, a measure of 100% means that of the one that controls the damper force Electronics controller the specified maximum value for the Damper force increase as a manipulated variable on a damper is issued.
- Body acceleration is the acceleration of the Understood vehicle bodywork, which he in the change who experiences suspension travel; it is achieved through double differentiation of an actual distance, the filtered Actual distance of a height sensor used becomes.
- the accelerations of the actual distances all three height sensors are used, and the three acceleration values would then be in suitably one applicable to the vehicle body To determine total value. In practice, however, this is relatively high effort is not necessary and it is sufficient evaluate only one height sensor. in principle it is possible to use the on each of the three height sensors Determine the body acceleration, however the height sensor on the right rear wheel is particularly suitable, there are bumps in the area of the road edge usually occur more often; the actual distance this height sensor is therefore used for the others Based on calculations.
- the rough road parameter is based on of the course of the acceleration of the body is determined by double differentiation of the actual distance on right rear wheel is won. According to the scanning principle you get one at each sampling time certain value of the body acceleration that is in the processor the electronics controller in the form of "counts", d. H. Processor counting units is specified.
- Fig. 2 shows an example of a time diagram of the body acceleration with the buildup acceleration entered on the ordinate in "counts" above the abscissa timeline with the "Time” as a normalized dimensionless number n [n as Quotient from time to sampling time]. For the sake of clarity is the "time” n directly to the body acceleration values written [for the sampling times].
- the The exemplary embodiment is a sampling frequency of 40 Hz on the basis that the time difference between one and the next sampling time is 25 ms.
- Minimum acceleration are [first selection criterion]; in this example is the minimum acceleration set to 3 "counts”. All positive building accelerations of more than 3 "counts” and all negative Body accelerations of less than minus 3 - “Counts" are through this insensitivity band initially selected.
- Differentiate acceleration amount In the example 2 is the minimum acceleration amount 3 counts.
- the time window is smooth, d. H. it shifts with every sampling time one sample time to the right on the timeline.
- time window (18), (19), (20) are shown; the selected ones assigned to these time slots Acceleration measured values are in the time diagram over the respective time window.
- To Calculation of the rough road parameter for a time window first becomes a valid for this time window Sum by adding the selected acceleration measured values determined. For time window (18) is this sum is 26 for time window (19) it is the number 31 and for time windows (20) it is the number 27.
- the rough road parameter for a time window results from suitable standardization of its total value.
- the timing diagram according to FIG. 2 represents an example of a good road condition.
- a poor road is primarily a road with short-wave bumps, z. B. a track with potholes, understood. Naturally the vehicle body even with short waves Road bumps stimulated to vibrate, however these vibrations are due to their low Amplitude from the level control height sensors not sufficiently recognized. Because a direct entry of these low-amplitude vibrations in principle is possible, but from a technical and cost point of view [expensive sensors that are sensitive Require handling] is practically eliminated, due to the measured actual distances of the height sensors no conclusion about the condition of the road itself to be hit.
- the accelerations form in the described evaluation the actual distances are the starting point; these will summed in the sliding time window, making long-wave Shares fall out; in contrast, short-wave ones Shares recorded in a kind of high-pass rating, and short-wave components indicate a corresponding one Amplitude on poor road surface out.
- the number and size of the shares determine the sum of the selected acceleration measured values and result proportionally together the rough road parameter.
- the method explained becomes a rough road parameter determined that allowed the street scene to judge, without this the metrological recording the damper force or the damper speed is required.
- the output (5) from Block (1) and the output variable (7) from block (2) as Input variables supplied to the block (3).
- block (3) the total damping requirement is calculated, by the body damping requirement due to the rough road parameter is changed. The result of the change, the total damping requirement is at the output (8) of Block (3) is output and is used by the electronic controller Control variable used for vibration damper setting.
- the change means that the rough road parameter acts as a correction variable for the body damping requirement.
- a correction according to the damper force represent the optimum.
- a direct recording of damper force or damper speed below reasonable Eliminates conditions becomes the rough road parameter chosen as a replacement size for the damper force, since both sizes have the same effect insofar as high damper forces at high and low damper forces with low rough road parameters.
- a A large rough road parameter means a high one Share of high-frequency axis vibrations, and this have high damper speeds and large damper forces result.
- 3a shows the first type of body damping requirement change to determine the total damping requirement.
- 3a is on the abscissa as an independent variable the body damping with the range from 0 to 100% applied.
- the ordinate shows the calculated total damping requirement, also in the range 0 to 100%.
- It three curves (9, 10, 11) are given which show the change of the body damping requirement depending on of the rough road parameter as parameters:
- the Curve (9) represents the function of the total damping requirement with a rough road parameter of 0%
- the curve (10) represents the function of the total damping requirement with a rough road characteristic of 50%
- Fig. (11) provides the function of the total damping requirement at one Bad road characteristic of 100%.
- the type of change in the body damping requirement is also depends on the size of the body damping itself. It is therefore useful to different areas of body damping provide in which the change is different takes place, with at least two areas provided are; improved with the number of areas the variability of the damping requirement modification, however, the effort increases, too a suitable compromise between function and effort is to be met. It represents a good compromise for 3a selected number of three areas of the body damping requirement represents.
- a lower limit value A U (12) and an upper limit value A O (13) are provided to define the ranges.
- a first lower area “A” is less than the limit value (12) for all values of the body damping requirement
- a second, middle area “B” is equal to or greater than the limit value (12) and less than the limit value (13) for all values of the body damping requirement
- a third, upper area “C” is provided for all values of the body damping requirement equal to or greater than the limit value (13).
- 3b shows the second type of body damping requirement change to determine the total damping requirement.
- the way of representation by abscissa and ordinate, the division into three areas and the overall damping curve for a rough road parameter of 0% are identical to those in Fig. 3a, which is why they are the same Reference numerals (9), (12) and (13) are used, the explanations contained in the description of FIG. 3a are.
- curve (14) is new the change in the body damping requirement depending of a rough road characteristic of 50% and the curve (15), the change in the body damping requirement depending on a rough road parameter of 100% shows.
- the total damping requirement is therefore in FIG. 3b with large values of the body damping requirement [upper part of the middle area and whole upper area] reduced.
- This reduction the damping requirement is due to the already related with the explanations for Fig. 3a mentioned Security issue made.
- the second type of Structure damping requirement change according to Fig. 3b goes about the first type corresponding to Fig. 3a addition, that in the second type the security reserves are still elevated. It is to be prevented that bad distance with large values of the body damping requirement a very large overall damping requirement is given to [by high damping forces] Damage to the dampers and the damper linkages to avoid.
- the second type of change in body damping requirements therefore points towards the the first type increased security with also increased Comfort, but with a larger amplitude the vibration of the vehicle body is to be accepted.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vehicle Body Suspensions (AREA)
Description
"ESAC - Elektronisch gesteuerte Fahrwerksdämpfung" (WABCO Westinghouse Fahrzeugbremsen, WABCO Standard GmbH; Wabcodruck 826 001 173 3/8.94)
ist eine Niveauregeleinrichtung bekannt.
- Fig. 1
- Das Blockschaltbild zur Ermittlung eines Gesamtdämpfungsbedarfes,
- Fig. 2
- ein die Bestimmungen einer SchlechtwegKenngröße erläuterndes Zeitdiagramm von zweifach differenzierten Höhen-Istwerten,
- Fig. 3a
- eine erste Art des durch Veränderung des Aufbaudämpfungsbedarfes durch die Schlechtweg-Kenngröße bestimmten Gesamtdämpfungsbedarfes bei Nichtbeeinflussung großer Aufbaudämpfungsbedarfs-Werte,
- Fig. 3b
- eine zweite Art des durch Veränderung des Aufbaudämpfungsbedarfes durch die Schlechtweg-Kenngröße bestimmten Gesamtdämpfungsbedarfes bei Begrenzung hoher Aufbaudämpfungsbedarfs-Werte auf einen Festwert.
Claims (7)
- Verfahren zur Steuerung von einstellbaren Schwingungsdämpfern eines Fahrwerks mit Niveauregeleinrichtung, wobei das Fahrwerk folgende Elemente aufweist:a) Es sind Druckmittelkammern für Luft vorgesehen, die einen Fahrzeugaufbau tragen;b) es ist eine Ventileinrichtung vorgesehen, die mit den Druckmittelkammern verbunden ist;c) die Ventileinrichtung ist mit einer Druckmittelquelle oder mit einer Druckmittelsenke verbindbar und dient zur Luftmengenveränderung in den Druckmittelkammern;d) es sind Sensoren vorgesehen, welche Ist-Abstände zwischen Fahrzeugachsen und dem Fahrzeugaufbau ermitteln;e) es ist eine Regeleinrichtung vorgesehen, der frei wählbare Soll-Abstände zwischen den Fahrzeugachsen und dem Fahrzeugaufbau vorgebbar sind und die die Ventileinrichtung in Abhängigkeit von der Regelabweichung, nämlich den Differenzen zwischen den entsprechenden Soll- und Ist-Abständen, steuert, so daß durch Druckveränderungen bzw. durch Veränderung der Luftmengen in den Druckmittelkammern die Ist-Abstände gleich den Soll-Abständen werden;f) es sind elektronisch steuerbare Schwingungsdämpfer vorgesehen, die als kontinuierlich verstellbare Schwingungsdämpfer ausgebildet sind;g) Es ist eine Einrichtung zur Veränderung der Schwingungsdämpfer-Einstellung vorgesehen;
wobei das Verfahren folgende Merkmale aufweist:h) die Schwingungsdämpfer-Einstellung ist durch den Aufbaudämpfungsbedarf festgelegt, der durch den Zeitverlauf der Ist-Abstände bestimmt ist;i) die Veränderung der Schwingungsdämpfer-Einstellung ist durch eine vom Zeitverlauf der Beschleunigung der Ist-Abstände bestimmte Schlechtweg-Kenngröße festgelegt;j) für die Veränderung der Schwingungsdämpfer-Einstellung sind mindestens zwei Bereiche des Aufbaudämpfungsbedarfes vorgesehen, wobei drei Bereiche (A), (B), (C) vorgesehen sind;k) ein erster, unterer Bereich (A) gilt für alle Werte des Aufbaudämpfungsbedarfes, die kleiner als ein unterer Grenzwert AU (12) sind;1) ein zweiter, mittlerer Bereich (B) gilt für alle Werte des Aufbaudämpfungsbedarfes, die gleich oder größer als der untere Grenzwert AU (12) und kleiner als ein oberer Grenzwert AO (13) sind;m) ein dritter, oberer Bereich (C) gilt für alle Werte des Aufbaudämpfungsbedarfes, die gleich oder größer als der obere Grenzwert AO (13) sind;n) die Art der Veränderung des Aufbaudämpfungsbedarfes ist von der Größe der Aufbaudämpfung selbst abhängig. - Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß für die Veränderung im unteren Bereich eine Anhebung (10), (11), (14), (15) und für die Veränderung im mittleren Bereich eine Absenkung (10), (11), (14), (15) des Dämpfungsbedarfes vorgesehen ist.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß für den oberen Bereich keine Veränderung (10), (11) des Dämpfungsbedarfs vorgesehen ist.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß für den oberen Bereich eine Absenkung (14, 15) des Dämpfungsbedarfs vorgesehen ist.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Dämpfungsbedarf für den oberen Bereich durch den Schnittpunkt (16), (17) der Funktion des Dämpfungsbedarfes für den mittleren Bereich mit der Abszisse des oberen Grenzwertes AO (13) gegeben ist.
- Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß der Grad der Anhebung im unteren bzw. der Grad der Absenkung im mittleren Bereich durch die Schlechtweg-Kenngröße bestimmt ist.
- Verfahren nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß der untere Grenzwert AU (12) durch einen Aufbaudämpfungsbedarf von 20 % und der obere Grenzwert AO (13) durch den Aufbaudämpfungsbedarf von 70 % bestimmt ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19648176A DE19648176B4 (de) | 1996-11-21 | 1996-11-21 | Verfahren zur Steuerung der Schwingungsdämpfer in einem Fahrzeug mit einer Niveauregeleinrichtung |
DE19648176 | 1996-11-21 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0844114A2 EP0844114A2 (de) | 1998-05-27 |
EP0844114A3 EP0844114A3 (de) | 2000-03-22 |
EP0844114B1 true EP0844114B1 (de) | 2002-10-09 |
Family
ID=7812332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97118393A Revoked EP0844114B1 (de) | 1996-11-21 | 1997-10-23 | Niveauregeleinrichtung mit Steuerung der Schwingungsdämpfer des Fahrwerks |
Country Status (4)
Country | Link |
---|---|
US (1) | US6164665A (de) |
EP (1) | EP0844114B1 (de) |
JP (1) | JPH10193942A (de) |
DE (2) | DE19648176B4 (de) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6721644B2 (en) * | 2000-08-02 | 2004-04-13 | Alfred B. Levine | Vehicle drive override subsystem |
DE10112159A1 (de) | 2001-03-14 | 2002-09-19 | Wabco Gmbh & Co Ohg | Verfahren und Einrichtung zur Ermittlung des Fahrzustandes von Fahrzeugen bei Ausfall oder Fehlen eines Geschwindigkeitssensors |
DE10126933B4 (de) * | 2001-06-01 | 2004-08-26 | Continental Aktiengesellschaft | Verfahren zur Regelung oder Steuerung der Dämpferkraft verstellbarer Dämpfer an Fahrzeugen |
US6725983B2 (en) | 2001-09-14 | 2004-04-27 | Meritor Heavy Vehicle Technology, Llc | Shock absorber with air pressure adjustable damping |
KR100475906B1 (ko) | 2001-10-19 | 2005-03-10 | 현대자동차주식회사 | 에어서스펜션 차량의 롤 스태빌라이저 장치 |
FR2832801B1 (fr) * | 2001-11-28 | 2004-02-27 | Peugeot Citroen Automobiles Sa | Procede pour evaluer la frequence instantanee d'une excitation mecanique exercee sur une roue d'un vehicule automobile, et applications |
US7665585B2 (en) * | 2004-09-03 | 2010-02-23 | Alexandridis Alexander A | Vehicle suspension system and method for operating |
US7320387B2 (en) * | 2005-04-06 | 2008-01-22 | Arvinmeritor Technology, Llc | Load adaptive damper with transient air signal restrictor |
US7513516B2 (en) * | 2005-08-23 | 2009-04-07 | Jri Development Group, Llc | Shock isolation cradle |
US7913822B2 (en) * | 2006-12-22 | 2011-03-29 | Chrysler Group Llc | Ride height sensing shock damper |
US8285447B2 (en) * | 2007-03-20 | 2012-10-09 | Enpulz, L.L.C. | Look ahead vehicle suspension system |
US7945362B2 (en) * | 2007-06-22 | 2011-05-17 | Advics Co., Ltd. | Apparatus and method for power hop detection and mitigation |
EP2052891B1 (de) * | 2007-10-26 | 2013-02-27 | Honda Motor Co., Ltd. | Steuervorrichtung für einen variablen Dämpfer |
DE102011100387B4 (de) | 2011-05-04 | 2016-11-24 | Volkswagen Aktiengesellschaft | Verfahren und Vorrichtung zur Einstellung eines Fahrzeugniveaus |
DE102013009204A1 (de) * | 2013-05-31 | 2014-12-04 | Man Truck & Bus Ag | System und Betriebsverfahren zur Niveauregelung eines Fahrerhauses eines Nutzfahrzeugs gegenüber dem Fahrzeugchassis |
US20230086480A1 (en) * | 2021-09-17 | 2023-03-23 | Rivian Ip Holdings, Llc | Active suspension damping |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62194921A (ja) * | 1986-02-21 | 1987-08-27 | Honda Motor Co Ltd | 緩衝器の減衰力制御方法 |
DE3632920A1 (de) * | 1986-09-27 | 1988-03-31 | Bayerische Motoren Werke Ag | Verfahren zur daempfkraftverstellung von kraftfahrzeugen |
DE3937841A1 (de) * | 1988-11-14 | 1990-05-17 | Atsugi Unisia Corp | System zur erfassung von strassenunebenheit fuer eine aufhaengungssteuerung und kraftfahrzeug-aufhaengungssteuerungsystem, welches die erfasste strassenunebenheit als steuerparameter verwendet |
JP2538791Y2 (ja) * | 1990-11-30 | 1997-06-18 | 株式会社ユニシアジェックス | 減衰力制御装置 |
US5242190A (en) * | 1990-12-24 | 1993-09-07 | Ford Motor Company | Unitary sensor assembly for automotive vehicles |
DE4105937C2 (de) * | 1991-02-26 | 1995-12-21 | Vdo Schindling | Steuervorrichtung für ein Kraftfahrzeug zur Einstellung der Dämpfung des Fahrwerks |
DE4243979C2 (de) * | 1991-12-26 | 1998-10-01 | Atsugi Unisia Corp | Steuervorrichtung zum Einstellen der Dämpfungscharakteristik einer Fahrzeugaufhängung |
US5346246A (en) * | 1992-11-23 | 1994-09-13 | Load-Air, Inc. | Automatic air bag suspension control system |
JP3296868B2 (ja) * | 1993-02-05 | 2002-07-02 | アイシン精機株式会社 | 車高調整装置 |
US6058340A (en) * | 1993-12-28 | 2000-05-02 | Tokico Ltd. | Suspension control apparatus |
DE4430364B4 (de) * | 1994-08-26 | 2005-03-31 | Siemens Ag | Verfahren und Vorrichtung zur Steuerung der Dämpfung des Fahrwerks eines Kraftfahrzeugs |
DE4444549C2 (de) * | 1994-12-14 | 1998-12-10 | Daimler Benz Ag | Pneumatisches Federungsaggregat |
US5725239A (en) * | 1996-03-26 | 1998-03-10 | Monroe Auto Equipment | Adaptive load dependent suspension system |
-
1996
- 1996-11-21 DE DE19648176A patent/DE19648176B4/de not_active Expired - Lifetime
-
1997
- 1997-10-23 EP EP97118393A patent/EP0844114B1/de not_active Revoked
- 1997-10-23 DE DE59708432T patent/DE59708432D1/de not_active Revoked
- 1997-11-03 US US08/962,791 patent/US6164665A/en not_active Expired - Lifetime
- 1997-11-14 JP JP9349890A patent/JPH10193942A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
DE19648176B4 (de) | 2011-06-22 |
US6164665A (en) | 2000-12-26 |
DE19648176A1 (de) | 1998-05-28 |
JPH10193942A (ja) | 1998-07-28 |
DE59708432D1 (de) | 2002-11-14 |
EP0844114A2 (de) | 1998-05-27 |
EP0844114A3 (de) | 2000-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69517221T2 (de) | Vorrichtung und Verfahren zum Regeln der Dämpfungscharakteristiken von Fahrzeugstossdämpfern | |
EP0844114B1 (de) | Niveauregeleinrichtung mit Steuerung der Schwingungsdämpfer des Fahrwerks | |
EP0428649B1 (de) | Verfahren und vorrichtung zur dämpfung von bewegungsabläufen | |
DE4015972C2 (de) | ||
DE4115481C2 (de) | System zur Erhöhung des Fahrkomforts und der Fahrsicherheit | |
DE60026015T2 (de) | Steuerung für eine radaufhängung mit kurvenstabilitätsverbesserung | |
DE19654223C2 (de) | Vorrichtung und Verfahren zum Steuern bzw. Regeln der Dämpfungskraftcharakteristik eines Fahrzeug-Schwingungsdämpfers | |
DE602004008718T2 (de) | Verfahren zum Steuern der Dämpfungskraft in einer elektronisch-gesteuerten Aufhängungsvorrichtung | |
DE19804005C2 (de) | Verfahren zum Einstellen einer Fahrzeugaufhängung | |
DE10017506C2 (de) | Verfahren zur Bestimmung der Radaufstandskraft eines Kraftfahrzeuges | |
DE4135526C2 (de) | Semiaktive Schwingungsdämpfung für Kraftfahrzeuge | |
DE4133237C2 (de) | System zur Fahrwerkregelung | |
DE19540161B4 (de) | Fahrzeug-Radaufhängungsanordnung | |
DE4432585C2 (de) | Vorrichtung und Verfahren zum Steuern der Dämpfungscharakteristik eines Fahrzeug-Schwingungsdämpfers | |
DE4039629C2 (de) | ||
DE69929493T2 (de) | Steuersystem für eine Fahrzeugradaufhängung und Verfahren | |
DE102010003205A1 (de) | Verfahren zur Bestimmung der vertikalen Beschleunigung, der longitudinalen Winkelbeschleunigung und der transversalen Winkelbeschleunigung eines Körpers, insbesondere eines Kraftfahrzeugs | |
DE3632920A1 (de) | Verfahren zur daempfkraftverstellung von kraftfahrzeugen | |
DE4015221C2 (de) | Dämpfungssteuerung für ein Fahrzeug | |
DE4205223C2 (de) | Dämpfungskraftsteuer- bzw. -regelsystem für die Radaufhängung eines Fahrzeugs | |
WO1991000188A1 (de) | Vorrichtung zur fahrbahnabhängigen fahrwerksregelung | |
DE69106793T2 (de) | Vorrichtung zur Aufhängungsregelung. | |
DE4136104A1 (de) | Verfahren zur lastabhaengigen beeinflussung eines federnden und daempfenden abstuetzsystems zwischen fahrwerk und aufbau eines fahrzeugs und abstuetzsystems zur durchfuehrung dieses verfahrens | |
DE4119323C2 (de) | ||
EP1915264A1 (de) | Verfahren zur bestimmung der radaufstandskraft eines kraftfahrzeuges |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: WABCO GMBH & CO. OHG |
|
17P | Request for examination filed |
Effective date: 20000922 |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20010220 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59708432 Country of ref document: DE Date of ref document: 20021114 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030113 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: CONTINENTAL AG Effective date: 20030708 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20061018 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20061026 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20061031 Year of fee payment: 10 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: WABCO GMBH |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20061209 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 20061209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20071026 Year of fee payment: 11 |