EP0761978B1 - Thermostructural composite material rotor, particularly of large diameter and its method of manufacturing - Google Patents
Thermostructural composite material rotor, particularly of large diameter and its method of manufacturing Download PDFInfo
- Publication number
- EP0761978B1 EP0761978B1 EP96401836A EP96401836A EP0761978B1 EP 0761978 B1 EP0761978 B1 EP 0761978B1 EP 96401836 A EP96401836 A EP 96401836A EP 96401836 A EP96401836 A EP 96401836A EP 0761978 B1 EP0761978 B1 EP 0761978B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- blades
- hub
- turbine
- composite material
- blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000000034 method Methods 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 10
- 239000000835 fiber Substances 0.000 claims description 6
- 239000004744 fabric Substances 0.000 claims description 5
- 238000003754 machining Methods 0.000 claims description 4
- 238000007493 shaping process Methods 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- 238000001564 chemical vapour infiltration Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 11
- 238000000280 densification Methods 0.000 description 10
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 230000008901 benefit Effects 0.000 description 5
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 5
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000011153 ceramic matrix composite Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 241000940835 Pales Species 0.000 description 1
- 206010033546 Pallor Diseases 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/282—Selecting composite materials, e.g. blades with reinforcing filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/04—Blade-carrying members, e.g. rotors for radial-flow machines or engines
- F01D5/043—Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
- F01D5/048—Form or construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/34—Rotor-blade aggregates of unitary construction, e.g. formed of sheet laminae
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
- F04D29/023—Selection of particular materials especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/284—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/50—Building or constructing in particular ways
- F05D2230/51—Building or constructing in particular ways in a modular way, e.g. using several identical or complementary parts or features
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/20—Oxide or non-oxide ceramics
- F05D2300/22—Non-oxide ceramics
- F05D2300/224—Carbon, e.g. graphite
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/20—Oxide or non-oxide ceramics
- F05D2300/22—Non-oxide ceramics
- F05D2300/226—Carbides
- F05D2300/2261—Carbides of silicon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/603—Composites; e.g. fibre-reinforced
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/603—Composites; e.g. fibre-reinforced
- F05D2300/6033—Ceramic matrix composites [CMC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/4932—Turbomachine making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/4932—Turbomachine making
- Y10T29/49321—Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member
Definitions
- the present invention relates to turbines, and more particularly those intended to operate at high temperatures, typically higher at 1000 ° C.
- these turbines are made of metal, generally made up of several elements assembled by welding.
- the use of metal has several drawbacks. So the high mass of the rotating parts requires large shaft lines and very powerful motors and requires anyway a limitation of the speed of rotation. There is a limitation in temperature due to the risk of metal creep.
- the sensitivity of the metal to thermal shock can cause formation of cracks or deformations. This results in imbalances in the rotating mass favoring a reduction in the service life of the turbines and their drive motors.
- significant thermal shock can occur, especially when injected massive cold gas, to quickly lower the temperature inside an oven to reduce the duration of treatment cycles.
- thermostructural composite materials are used for temperature use high. These materials generally consist of a fibrous reinforcement texture, or preform, densified by a matrix and are characterized by their properties mechanical which make them suitable for constituting structural elements and by their ability to maintain these properties up to high temperatures.
- thermostructural composite materials are composites carbon-carbon (C-C) consisting of a carbon fiber reinforcement and a carbon matrix, and ceramic matrix composites (CMC) consisting of carbon fiber or ceramic reinforcement and a ceramic matrix.
- thermostructural composite materials Compared to metals, thermostructural composite materials have the essential advantages of much lower density and high stability at high temperatures. The reduction in mass and the elimination of risk of creep can allow high speeds of rotation and, thereby, very high ventilation rates without requiring oversizing of the drive bodies. In addition, thermostructural composite materials have a very high resistance to thermal shock.
- Thermostructural composite materials therefore have important performance advantages, but their use is limited in because of their fairly high cost. In addition to the materials used, the cost comes from essentially difficulties encountered in making fibrous preforms, especially when the parts to be manufactured have complex shapes, which is the case of turbines, and the duration of the densification cycles.
- an object of the present invention is to propose an architecture turbine particularly suitable for its production in composite material thermostructural in order to benefit from the advantages of this material but at a cost manufacturing as reduced as possible.
- Another object of the present invention is to propose an architecture turbine suitable for making large turbines, that is to say whose diameter can greatly exceed 1 m.
- the turbine is produced by assembly of parts having a simple shape, for example annular plates planes making up the hub, or parts made from preforms fibrous in a simple shape (two-dimensional plate or sheet), by example blades and flanges.
- parts having a simple shape for example annular plates planes making up the hub, or parts made from preforms fibrous in a simple shape (two-dimensional plate or sheet), by example blades and flanges.
- the swollen blade root is formed by placing an insert in a slot in the texture fiber used to make the preform of a blade.
- the plates are assembled constituting the hub with at least one annular plate, constituting a first flange closing the passages between blades at one end of the turbine, by axial clamping on a shaft on which the turbine is mounted.
- the second flange which forms an annular zone with the hub fluid inlet for suction through the passages between blades, is mounted on the blades, for example by engagement in notches of the flange of heels formed on the adjacent edges of the blades, and / or by gluing.
- this second flange can be static.
- the invention relates to a turbine in thermostructural composite material comprising a plurality of blades arranged around a hub, between two flanges, the turbine being characterized in that it includes flat annular plates of thermostructural composite material stacked along the same axis, immobilized with respect to each other in rotation around the axis and forming a hub, and the blades of composite material thermostructural are individually connected to the hub by a part forming blade root.
- said flat annular plates of material thermostructural composite form an assembly comprising the hub and a first flange closing the passages between blades at one end of the turbine.
- FIGS 1 and 2 illustrate a turbine comprising a plurality of blades 10 regularly arranged around a hub 20, between two flanges end 30, 40. These various components of the turbine are in one thermostructural composite material, for example a composite material carbon-carbon (C-C) or a ceramic matrix composite material such as C-SiC composite material (carbon fiber reinforcement and carbide matrix silicon).
- C-C composite material carbon-carbon
- SiC composite material carbon fiber reinforcement and carbide matrix silicon
- the blades 10 define between them passages 11 for circulation of fluid.
- the passages 11 are closed by the annular flange 30 which extends from the hub 20 to the edge free outside 12 of the blades 10.
- the flange 40 of shape substantially annular, extends over only part of the length of the blades 10, from their outer edge 12.
- the free space between the internal edge 41 of the flange 40 and the hub 20 defines an entry zone from which a fluid can be sucked through the passages 11, to be ejected at the outer ring of the turbine, like the show the arrows F in Figure 2.
- the hub 20 is formed of annular plates 21 which are stacked along the axis A of the turbine.
- the plates 21 have the same internal diameter defining the central passage of the hub. In each plate, the outside diameter gradually increases from the face closest to the fluid entry zone to the opposite face, and the contacting faces of two neighboring plates have the same outer diameter, so that the set of plates 21 forms a hub of regularly increasing thickness between the flange 40 and the flange 30, without discontinuity.
- Dovetail-shaped grooves 23 are formed at the periphery of the hub 20 in order to receive the feet of the blades 10 and ensure the connection of these with the hub as shown in more detail later in the description.
- the grooves 23 extend axially over the entire length of the hub 20 by being regularly distributed around it. In plates 21 more large outside diameter, the grooves 23 communicate with the outside through grooves 23a, the width of which corresponds substantially to the thickness of a blade.
- Each annular plate 21 is made individually of material thermostructural composite.
- a fibrous structure can be used in form of plate in which an annular preform is cut.
- Such a structure is produced for example by flat stacking of texture layers two-dimensional fibrous material, such as web of threads or cables, fabric, etc., and bonding of the strata together by needling, as described for example in the document FR-A-2 584 106.
- the annular preform cut from this plate is densified by the constituent material of the matrix of the thermostructural composite material to achieve. Densification is carried out in a manner known per se by infiltration chemical in the vapor phase, or by liquid, i.e. impregnation with a matrix precursor in the liquid state and transformation of the precursor. After densification, the annular plate is machined to be brought to its dimensions final and to form the notches which, after stacking the plates, constitute the grooves 23 and grooves 23a.
- the plates 21 are secured in rotation about the axis A of the turbine by means of screws 26 which extend axially through all the plates.
- the screws 26 are machined from a block of thermostructural composite material.
- the flange 30, which closes the passages 11 opposite the entry area of fluid, is made of thermostructural composite material by densification of a fibrous preform.
- the preform is produced for example by stacking at flat of two-dimensional strata and bonding of the strata together by needling.
- the flange 30 has a thickness which increases by continuously from its periphery to its internal circumference.
- a plate annular intermediate 31 can be interposed between the hub 20 proper and the flange 30 proper, this plate 31 having an external profile such that it allows the face of the flange 30 facing the inside of the turbine to be connected without discontinuity on the outer surface of the hub 20.
- the plate 31 is secured in rotation with the plates 21 by means of screws 26 of material thermostructural composite.
- the profile of the flange 30 may be obtained from a preform produced by stacking annular layers of which the outside diameter gradually decreases.
- machining of the flange to its dimensions definitive is achieved.
- the internal annular face 37 is given flange 30 a frustoconical shape for mounting the turbine on a shaft.
- the attachment of the flange 30 with the hub 20 rotating around the axis A is made by means of screws 36 of thermostructural composite material which connect the flange 30 to plate 31.
- Each blade 10 is in the form of a thin plate with a surface curved whose outline is shown very schematically in Figure 3. From internal side intended to be connected to the hub 20, each blade 10 has a bulging part forming blade root 13 whose shape and dimensions correspond to those of the grooves 23 of the hub.
- the edge of the blade 10 located on the side of the fluid entry zone has, from the foot 13, a first part convex curve 14a which ends in a radial projection forming heel 16. The latter is connected to the end edge 12 by a second convex part 14b.
- the edge of the blade opposite the fluid entry zone present, from the foot 13, a radial part 15a extended by a concave part 15b which follows the profile of the adjacent faces of the intermediate plate 31 and the flange 30.
- the fibrous structure is cut to roughly reproduce the contour of the blade (step 100), then the edge corresponding to the location of the leg is split in order to introduce an insert I around which the parts of the structure fibrous located on either side of the slot are folded (step 101).
- the structure fibrous is then pre-impregnated with a resin and shaped in a tool T in order to give it a shape close to that of the blade to be produced (step 102).
- a preform P of the blade After crosslinking of the resin in the tooling, a preform P of the blade.
- the resin is then pyrolyzed leaving a residue, for example carbon sufficiently binding the fibers together so that the preform P retains its shape. Densification can then be continued outside the tooling, either by continuing with liquid route, either by chemical vapor infiltration (step 103).
- step 104 After densification, a precise machining of the contour of the blade in particular to form the heel 16 and the edges 12, 14, 15 (step 104).
- the annular flange 40 has a curved profile corresponding to that of the edge portion 14b of the blades. It is made by densification of a fibrous texture in the form of a sheet or plate, in the same way as the blades 10. After densification, the flange 40 is machined to be brought to its final dimensions and to form notches 46 intended to receive the heels 16 of the blades 10.
- the assembly of the turbine is carried out as follows.
- the blades 10 are hung on the flange 40 by engagement of the heels 16 in the notches 46. Then, the hub 20 is formed by setting places plates 21 one after the other, while inserting feet 13 of blades in the grooves 23. The plate 31 is put in place then the plates 21 are linked together and with the plate 31 by the screws 26. The flange 30 is then put in place, as well as the screws 36. It will be noted that grooves respectively 44, 35 can be formed on the internal faces of the flanges 40 and 30 in which the edges respectively 24b and 25b of the blades can be inserted to ensure a more effective blade retention.
- a ring 53 is disposed on the plate 21 at the end of the hub opposite the flange 30, the ring 53 having a diameter sufficient to close off the grooves 23.
- the mutual tightening of the plates 21, 31 and the flange 30 is ensured by a nut 55 engaged on the threaded part 52 and exerting a force on the ring 53 by through another ring 56, the rings 53 and 56 being in mutual support by frustoconical surfaces.
- Maintaining the flange 40 is ensured simply by hanging on the heels 16 of the blades.
- the attachment of the flange 40 on the blades may alternatively be carried out by gluing, with or without mechanical attachment of the heels of the blades in notches on the flange. After bonding, it may be advantageous to carry out a cycle chemical vapor infiltration to densify the adhesive joint and establish continuity of the matrix at the interfaces between the glued parts.
- the flange 40 may be constituted by a static part, that is to say not linked in rotation to the rest of the turbine.
- a turbine as illustrated in FIGS. 1 and 2 was produced from CC composite having a diameter of 950 mm and a width, in the axial direction, of 250 mm. It was used to carry out a gas suction with a temperature of 1200 ° C at a rotation speed of 3000 rpm ensuring a flow rate of 130,000 m 3 / h.
- the gain of mass is about 5, i.e. about 40 kg for the turbine composite C-C against 200 kg for the metal turbine.
- the mass of the turbine metal means that its speed of rotation cannot in practice exceed approximately 800 rpm.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Moulding By Coating Moulds (AREA)
Description
La présente invention concerne les turbines, et plus particulièrement celles destinées à fonctionner à des températures élevées, typiquement supérieures à 1 000°C.The present invention relates to turbines, and more particularly those intended to operate at high temperatures, typically higher at 1000 ° C.
Un domaine d'application de telles turbines est le brassage des gaz ou la ventilation dans des fours ou installations similaires utilisés pour réaliser des traitements physico-chimiques à températures élevées, le milieu ambiant étant par exemple constitué de gaz neutres ou inertes.One field of application of such turbines is the mixing of gases or ventilation in ovens or similar installations used to carry out physico-chemical treatments at high temperatures, the ambient environment being example consisting of neutral or inert gases.
De façon habituelle, ces turbines sont en métal, généralement constituées de plusieurs éléments assemblés par soudage. L'utilisation de métal entraíne plusieurs inconvénients. Ainsi, la masse élevée des parties tournantes requiert des lignes d'arbres importantes et des moteurs très puissants et impose de toute façon une limitation de la vitesse de rotation. S'ajoute une limitation en température du fait du risque de fluage du métal.Usually, these turbines are made of metal, generally made up of several elements assembled by welding. The use of metal has several drawbacks. So the high mass of the rotating parts requires large shaft lines and very powerful motors and requires anyway a limitation of the speed of rotation. There is a limitation in temperature due to the risk of metal creep.
De plus, la sensibilité du métal aux chocs thermiques peut entraíner la formation de criques ou des déformations. Il en résulte des déséquilibres de la masse tournante favorisant une diminution de la durée de vie des turbines et de leurs moteurs d'entraínement. Or, dans les applications évoquées plus haut, des chocs thermiques importants peuvent se produire, notamment en cas d'injection massive d'un gaz froid, pour faire baisser rapidement la température à l'intérieur d'un four en vue de réduire la durée de cycles de traitement.In addition, the sensitivity of the metal to thermal shock can cause formation of cracks or deformations. This results in imbalances in the rotating mass favoring a reduction in the service life of the turbines and their drive motors. However, in the applications mentioned above, significant thermal shock can occur, especially when injected massive cold gas, to quickly lower the temperature inside an oven to reduce the duration of treatment cycles.
Afin d'éviter les problèmes rencontrés avec les métaux, d'autres matériaux ont déjà été proposés pour réaliser des turbines, en particulier des matériaux composites. Ainsi, il est proposé, dans le document FR-A-2 504 209, de réaliser les aubes d'une turbine en matériau composite à renfort fibreux qui présentent une bonne tenue mécanique. Pour des utilisations à températures élevées, on fait appel à des matériaux composites thermostructuraux. Ces matériaux sont généralement constitués d'une texture de renfort fibreux, ou préforme, densifiée par une matrice et sont caractérisés par leurs propriétés mécaniques qui les rendent aptes à constituer des éléments structuraux et par leur capacité à conserver ces propriétés jusqu'à des températures élevées. Des exemples usuels de matériaux composites thermostructuraux sont les composites carbone-carbone (C-C) constitués d'un renfort en fibres de carbone et d'une matrice en carbone, et les composites à matrice céramique (CMC) constitués d'un renfort en fibres de carbone ou céramique et d'une matrice céramique.In order to avoid problems with metals, others materials have already been proposed for making turbines, in particular composite materials. Thus, it is proposed, in document FR-A-2 504 209, to make the blades of a fiber reinforced composite turbine which have good mechanical strength. For temperature use high, thermostructural composite materials are used. These materials generally consist of a fibrous reinforcement texture, or preform, densified by a matrix and are characterized by their properties mechanical which make them suitable for constituting structural elements and by their ability to maintain these properties up to high temperatures. Of common examples of thermostructural composite materials are composites carbon-carbon (C-C) consisting of a carbon fiber reinforcement and a carbon matrix, and ceramic matrix composites (CMC) consisting of carbon fiber or ceramic reinforcement and a ceramic matrix.
Par rapport aux métaux, les matériaux composites thermostructuraux présentent les avantages essentiels d'une densité bien inférieure et d'une grande stabilité aux températures élevées. La diminution de masse et la suppression du risque de fluage peuvent autoriser des vitesses de rotation élevées et, par là même, de très forts débits de ventilation sans demander un surdimensionnement des organes d'entraínement. En outre, les matériaux composites thermostructuraux présentent une très grande résistance aux chocs thermiques.Compared to metals, thermostructural composite materials have the essential advantages of much lower density and high stability at high temperatures. The reduction in mass and the elimination of risk of creep can allow high speeds of rotation and, thereby, very high ventilation rates without requiring oversizing of the drive bodies. In addition, thermostructural composite materials have a very high resistance to thermal shock.
Les matériaux composites thermostructuraux présentent donc des avantages importants au plan des performances, mais leur emploi est limité en raison de leur coût assez élevé. Outre les matières utilisées, le coût provient essentiellement des difficultés rencontrées pour réaliser des préformes fibreuses, notamment lorsque les pièces à fabriquer ont des formes complexes, ce qui est le cas des turbines, et de la durée des cycles de densification.Thermostructural composite materials therefore have important performance advantages, but their use is limited in because of their fairly high cost. In addition to the materials used, the cost comes from essentially difficulties encountered in making fibrous preforms, especially when the parts to be manufactured have complex shapes, which is the case of turbines, and the duration of the densification cycles.
Aussi, un but de la présente invention est de proposer une architecture de turbine particulièrement adaptée à sa réalisation en matériau composite thermostructural afin de bénéficier des avantages de ce matériau mais avec un coût de fabrication aussi réduit que possible.Also, an object of the present invention is to propose an architecture turbine particularly suitable for its production in composite material thermostructural in order to benefit from the advantages of this material but at a cost manufacturing as reduced as possible.
Un autre but de la présente invention est de proposer une architecture de turbine convenant à la réalisation de turbines de grandes dimensions, c'est-à-dire dont le diamètre peut largement dépasser 1 m.Another object of the present invention is to propose an architecture turbine suitable for making large turbines, that is to say whose diameter can greatly exceed 1 m.
Selon un de ses aspects, la présente invention a pour objet un procédé
de fabrication d'une turbine comprenant une pluralité de pales disposées autour
d'un moyeu, entre deux flasques, les pales, le moyeu et les flasques étant en
matériau composite thermostructural, procédé selon lequel :
- mettre en forme une texture fibreuse essentiellement bidimensionnelle en plaque ou en feuille, pour obtenir une préforme de pale,
- densifier la préforme par une matrice pour obtenir une ébauche de pale en matériau composite thermostructural, et
- usiner le contour de la préforme densifiée,
- réaliser une préforme annulaire ou sensiblement annulaire au moyen d'une texture fibreuse essentiellement bidimensionnelle en plaque ou en feuille, et
- densifier la préforme par une matrice pour obtenir une pièce en matériau composite thermostructural, et
- shaping an essentially two-dimensional fibrous texture into a plate or a sheet, in order to obtain a blade preform,
- densify the preform with a matrix to obtain a blade blank in thermostructural composite material, and
- machine the contour of the densified preform,
- producing an annular or substantially annular preform by means of a substantially two-dimensional fibrous texture in plate or sheet, and
- densify the preform with a matrix to obtain a part made of thermostructural composite material, and
Ainsi, pour ses parties essentielles, la turbine est réalisée par assemblage de pièces ayant une forme simple, par exemple les plaques annulaires planes composant le moyeu, ou de pièces fabriquées à partir de préformes fibreuses ayant une forme simple (plaque ou feuille bidimensionnelle), par exemple les pales et les flasques.Thus, for its essential parts, the turbine is produced by assembly of parts having a simple shape, for example annular plates planes making up the hub, or parts made from preforms fibrous in a simple shape (two-dimensional plate or sheet), by example blades and flanges.
On évite ainsi les difficultés rencontrées pour la fabrication et la densification de préformes ayant des formes complexes, ou les pertes de matière occasionnées par un usinage de pièces de forme complexe dans des blocs massifs de matériau composite thermostructural.This avoids the difficulties encountered in manufacturing and densification of preforms with complex shapes, or material losses caused by machining of complex shaped parts in massive blocks of thermostructural composite material.
Selon une particularité du procédé, le pied de pale de forme renflée est formé par mise en place d'un insert dans une fente pratiquée dans la texture fibreuse utilisée pour réaliser la préforme d'une pale.According to a particular feature of the process, the swollen blade root is formed by placing an insert in a slot in the texture fiber used to make the preform of a blade.
Selon une autre particularité du procédé, on assemble les plaques constitutives du moyeu avec au moins une plaque annulaire, constituant un premier flasque fermant les passages entre pales à une extrémité de la turbine, par serrage axial sur un arbre sur lequel la turbine est montée.According to another particular feature of the process, the plates are assembled constituting the hub with at least one annular plate, constituting a first flange closing the passages between blades at one end of the turbine, by axial clamping on a shaft on which the turbine is mounted.
Le deuxième flasque, qui ménage avec le moyeu une zone annulaire d'entrée de fluide pour aspiration à travers les passages entre pales, est monté sur les pales, par exemple par engagement dans des encoches du flasque de talons formés sur les bords adjacents des pales, et/ou par collage. En variante, ce deuxième flasque peut être statique.The second flange, which forms an annular zone with the hub fluid inlet for suction through the passages between blades, is mounted on the blades, for example by engagement in notches of the flange of heels formed on the adjacent edges of the blades, and / or by gluing. Alternatively, this second flange can be static.
Selon un autre de ses aspects, l'invention a pour objet une turbine en matériau composite thermostructural comprenant une pluralité de pales disposées autour d'un moyeu, entre deux flasques, la turbine étant caractérisée en ce qu'elle comprend des plaques annulaires planes en matériau composite thermostructural empilées suivant un même axe, immobilisées les unes par rapport aux autres en rotation autour de l'axe et formant un moyeu, et les pales en matériau composite thermostructural sont reliées individuellement au moyeu par une partie formant pied de pale. According to another of its aspects, the invention relates to a turbine in thermostructural composite material comprising a plurality of blades arranged around a hub, between two flanges, the turbine being characterized in that it includes flat annular plates of thermostructural composite material stacked along the same axis, immobilized with respect to each other in rotation around the axis and forming a hub, and the blades of composite material thermostructural are individually connected to the hub by a part forming blade root.
Avantageusement, lesdites plaques annulaires planes en matériau composite thermostructural forment un ensemble comprenant le moyeu et un premier flasque fermant les passages entre pales à une extrémité de la turbine.Advantageously, said flat annular plates of material thermostructural composite form an assembly comprising the hub and a first flange closing the passages between blades at one end of the turbine.
D'autres particularités et avantages de l'invention ressortiront à la lecture de la description faite ci-après, à titre indicatif mais non limitatif, en référence aux dessins annexés, sur lesquels :
- la figure 1 est une vue en perspective partiellement arrachée montrant une turbine conforme à l'invention assemblée et montée sur un arbre ;
- la figure 2 est une vue partielle en coupe de la turbine de la figure 1 ;
- la figure 3 est une vue très schématique d'une pale de la turbine de la figure 1 ; et
- la figure 4 montre les étapes successives de réalisation de la pale de la figure 3.
- Figure 1 is a partially broken away perspective view showing a turbine according to the invention assembled and mounted on a shaft;
- Figure 2 is a partial sectional view of the turbine of Figure 1;
- Figure 3 is a very schematic view of a blade of the turbine of Figure 1; and
- FIG. 4 shows the successive stages of production of the blade of FIG. 3.
Les figures 1 et 2 illustrent une turbine comprenant une pluralité de
pales 10 disposées régulièrement autour d'un moyeu 20, entre deux flasques
d'extrémité 30, 40. Ces différents éléments constitutifs de la turbine sont en un
matériau composite thermostructural, par exemple un matériau composite
carbone-carbone (C-C) ou un matériau composite à matrice céramique tel qu'un
matériau composite C-SiC (renfort en fibres de carbone et matrice en carbure de
silicium).Figures 1 and 2 illustrate a turbine comprising a plurality of
Les pales 10 délimitent entre elles des passages 11 pour la circulation
de fluide. A une extrémité axiale de la turbine, les passages 11 sont fermés par le
flasque 30 de forme annulaire qui s'étend depuis le moyeu 20 jusqu'au bord
extérieur libre 12 des pales 10. A l'autre extrémité axiale, le flasque 40, de forme
sensiblement annulaire, s'étend sur une partie seulement de la longueur des pales
10, depuis leur bord extérieur 12.The
L'espace libre entre le bord interne 41 du flasque 40 et le moyeu 20
définit une zone d'entrée d'où un fluide peut être aspiré, à travers les passages 11,
pour être éjecté au niveau de la couronne extérieure de la turbine, comme le
montrent les flèches F de la figure 2.The free space between the
On décrira maintenant la façon dont les différentes pièces constitutives de la turbine sont réalisées et, ensuite, assemblées.We will now describe how the different constituent parts of the turbine are produced and then assembled.
Le moyeu 20 est formé de plaques annulaires 21 qui sont empilées
suivant l'axe A de la turbine. Les plaques 21 ont même diamètre intérieur
définissant le passage central du moyeu. Dans chaque plaque, le diamètre extérieur
croít progressivement depuis la face la plus proche de la zone d'entrée de fluide
jusqu'à la face opposée, et les faces en contact de deux plaques voisines ont même
diamètre extérieur, de sorte que l'ensemble des plaques 21 forme un moyeu
d'épaisseur régulièrement croissante entre le flasque 40 et le flasque 30, sans
discontinuité. Des gorges 23 en forme de queue d'aronde sont formées à la
périphérie du moyeu 20 afin de recevoir les pieds des pales 10 et assurer la liaison
de celles-ci avec le moyeu comme indiqué plus en détail dans la suite de la
description. Les gorges 23 s'étendent axialement sur toute la longueur du moyeu
20 en étant réparties régulièrement autour de celui-ci. Dans les plaques 21 de plus
grand diamètre extérieur, les gorges 23 communiquent avec l'extérieur à travers
des rainures 23a dont la largeur correspond sensiblement à l'épaisseur d'une pale.The
Chaque plaque annulaire 21 est réalisée individuellement en matériau
composite thermostructural. A cet effet, on peut utiliser une structure fibreuse en
forme de plaque dans laquelle une préforme annulaire est découpée. Une telle
structure est fabriquée par exemple par empilement à plat de strates de texture
fibreuse bidimensionnelle, telle que nappe de fils ou de câbles, tissu, etc., et
liaison des strates entre elles par aiguilletage, comme décrit par exemple dans le
document FR-A-2 584 106.Each
La préforme annulaire découpée dans cette plaque est densifiée par le
matériau constitutif de la matrice du matériau composite thermostructural à
réaliser. La densification est réalisée de façon connue en soi par infiltration
chimique en phase vapeur, ou par voie liquide, c'est-à-dire imprégnation par un
précurseur de la matrice à l'état liquide et transformation du précurseur. Après
densification, la plaque annulaire est usinée pour être amenée à ses dimensions
définitives et pour former les encoches qui, après empilement des plaques,
constituent les gorges 23 et rainures 23a.The annular preform cut from this plate is densified by the
constituent material of the matrix of the thermostructural composite material to
achieve. Densification is carried out in a manner known per se by infiltration
chemical in the vapor phase, or by liquid, i.e. impregnation with a
matrix precursor in the liquid state and transformation of the precursor. After
densification, the annular plate is machined to be brought to its dimensions
final and to form the notches which, after stacking the plates,
constitute the
Les plaques 21 sont solidarisées en rotation autour de l'axe A de la
turbine au moyen de vis 26 qui s'étendent axialement à travers toutes les plaques.
Les vis 26 sont usinées dans un bloc en matériau composite thermostructural.The
Le flasque 30, qui ferme les passages 11 à l'opposé de la zone d'entrée
de fluide, est réalisé en matériau composite thermostructural par densification
d'une préforme fibreuse. La préforme est fabriquée par exemple par empilement à
plat de strates bidimensionnelles et liaison des strates entre elles par aiguilletage.The
Dans l'exemple illustré, le flasque 30 a une épaisseur qui croít de
façon continue depuis sa périphérie jusqu'à sa circonférence interne. Une plaque
intermédiaire annulaire 31 peut être interposée entre le moyeu 20 proprement dit
et le flasque 30 proprement dit, cette plaque 31 ayant un profil externe tel qu'il
permet à la face du flasque 30 tournée vers l'intérieur de la turbine de se raccorder
sans discontinuité à la surface extérieure du moyeu 20. La plaque 31 est
solidarisée en rotation avec les plaques 21 au moyen des vis 26 en matériau
composite thermostructural. On notera que le profil du flasque 30 pourra être
obtenu à partir d'une préforme réalisée par empilement de strates annulaires dont
le diamètre extérieur décroít progressivement.In the example illustrated, the
Après densification, un usinage du flasque à ses dimensions
définitives est réalisé. En particulier, on confère à la face annulaire interne 37 du
flasque 30 une forme tronconique en vue du montage de la turbine sur un arbre. La
solidarisation du flasque 30 avec le moyeu 20 en rotation autour de l'axe A est
réalisée au moyen de vis 36 en matériau composite thermostructural qui relient le
flasque 30 à la plaque 31.After densification, machining of the flange to its dimensions
definitive is achieved. In particular, the internal
Chaque pale 10 se présente sous forme d'une plaque mince à surface
incurvée dont le contour est représenté très schématiquement sur la figure 3. Du
côté interne destiné à être raccordé au moyeu 20, chaque pale 10 présente une
partie renflée formant pied de pale 13 dont la forme et les dimensions
correspondent à celles des rainures 23 du moyeu. Le bord de la pale 10 situé du
coté de la zone d'entrée de fluide présente, à partir du pied 13, une première partie
courbe convexe 14a qui se termine par une saillie radiale formant talon 16. Celui-ci
se raccorde au bord d'extrémité 12 par une deuxième partie convexe 14b. Le
bord de la pale opposé à la zone d'entrée de fluide présente, à partir du pied 13,
une partie radiale 15a prolongée par une partie concave 15b qui suit le profil des
faces adjacentes de la plaque intermédiaire 31 et du flasque 30.Each
Des étapes successives permettant de réaliser la pale 10 en matériau
composite thermostructural sont indiquées sur la figure 4.Successive stages making it possible to produce the
On utilise une structure fibreuse déformable en forme de feuille ou plaque dont l'épaisseur correspond à celle de la pale et qui est formée par exemple par superposition et aiguilletage de strates fibreuses bidimensionnelles comme décrit dans le document FR-A-2 584 106 ou encore le document FR-A-2 686 907.A deformable fibrous structure in the form of a sheet or plate whose thickness corresponds to that of the blade and which is formed for example by superimposition and needling of two-dimensional fibrous strata such as described in document FR-A-2 584 106 or also document FR-A-2 686 907.
La structure fibreuse est découpée pour reproduire approximativement le contour de la pale (étape 100), puis le bord correspondant à l'emplacement du pied est fendu afin d'introduire un insert I autour duquel les parties de la structure fibreuse situées de part et d'autre de la fente sont repliées (étape 101). La structure fibreuse est alors préimprégnée par une résine et mise en forme dans un outillage T afin de lui donner une forme voisine de celle de la pale à réaliser (étape 102). Après réticulation de la résine dans l'outillage, on obtient une préforme P de la pale. La résine est ensuite pyrolysée laissant un résidu par exemple en carbone liant suffisamment les fibres entre elles pour que la préforme P conserve sa forme. La densification peut alors être poursuivie hors de l'outillage soit en continuant par voie liquide, soit par infiltration chimique en phase vapeur (étape 103).The fibrous structure is cut to roughly reproduce the contour of the blade (step 100), then the edge corresponding to the location of the leg is split in order to introduce an insert I around which the parts of the structure fibrous located on either side of the slot are folded (step 101). The structure fibrous is then pre-impregnated with a resin and shaped in a tool T in order to give it a shape close to that of the blade to be produced (step 102). After crosslinking of the resin in the tooling, a preform P of the blade. The resin is then pyrolyzed leaving a residue, for example carbon sufficiently binding the fibers together so that the preform P retains its shape. Densification can then be continued outside the tooling, either by continuing with liquid route, either by chemical vapor infiltration (step 103).
Après densification, on procède à un usinage précis du contour de la
pale afin notamment de former le talon 16 et les bords 12, 14, 15 (étape 104).After densification, a precise machining of the contour of the
blade in particular to form the
Le flasque annulaire 40 a un profil incurvé correspondant à celui de la
partie de bord 14b des pales. Il est réalisé par densification d'une texture fibreuse
en forme de feuille ou plaque, de la même façon que les pales 10. Après
densification, le flasque 40 est usiné pour être porté à ses dimensions définitives et
pour former des encoches 46 destinées à recevoir les talons 16 des pales 10.The
Le montage de la turbine est réalisé de la façon suivante.The assembly of the turbine is carried out as follows.
Les pales 10 sont accrochées sur le flasque 40 par engagement des
talons 16 dans les encoches 46. Ensuite, le moyeu 20 est constitué par mise en
place des plaques 21 les unes après les autres, tout en insérant les pieds 13 des
pales dans les gorges 23. La plaque 31 est mise en place puis les plaques 21 sont
liées entre elles et avec la plaque 31 par les vis 26. Le flasque 30 est ensuite mis
en place, ainsi que les vis 36. On notera que des rainures respectivement 44, 35
peuvent être formées sur les faces internes des flasques 40 et 30 dans lesquelles
les bords respectivement 24b et 25b des pales peuvent être insérés pour assurer un
maintien plus effectif des pales.The
Le maintien à l'état assemblé des différentes pièces de la turbine est
assuré par montage sur un arbre 50 (uniquement représenté sur la figure 2). Celui-ci
présente un épaulement tronconique 51, qui s'appuie sur la surface annulaire
interne tronconique correspondante 37 du flasque 30, traverse le moyeu 20 et fait
saillie au delà de celui-ci par une partie filetée 52.Keeping the various parts of the turbine in an assembled state is
provided by mounting on a shaft 50 (only shown in Figure 2). This one
has a
Une bague 53 est disposée sur la plaque 21 à l'extrémité du moyeu
opposée au flasque 30, la bague 53 ayant un diamètre suffisant pour obturer les
gorges 23. Le serrage mutuel des plaques 21, 31 et du flasque 30 est assuré par un
écrou 55 engagé sur la partie filetée 52 et exerçant un effort sur la bague 53 par
l'intermédiaire d'une autre bague 56, les bagues 53 et 56 étant en appui mutuel par
des surfaces tronconiques.A
Le maintien du flasque 40 est assuré simplement par accrochage sur
les talons 16 des pales.Maintaining the
La fixation du flasque 40 sur les pales pourra en variante être réalisée
par collage, avec ou sans accrochage mécanique de talons des pales dans des
encoches du flasque. Après collage, il pourra être avantageux de réaliser un cycle
d'infiltration chimique en phase vapeur afin de densifier le joint de colle et établir
une continuité de la matrice aux interfaces entre les pièces collées.The attachment of the
Toujours en variante, et dans la mesure où un maintien efficace des
pales est assuré par leur montage sur le moyeu et leur insertion dans des rainures
du flasque 30, le flasque 40 pourra être constitué par une pièce statique, c'est-à-dire
non liée en rotation au reste de la turbine.Always as a variant, and insofar as effective maintenance of
blades is ensured by their mounting on the hub and their insertion in grooves
of the
Une turbine telle qu'illustrée par les figures 1 et 2 a été réalisée en composite C-C ayant un diamètre de 950 mm et une largeur, en direction axiale, de 250 mm. Elle a été utilisée pour réaliser une aspiration de gaz d'une température de 1200°C à une vitesse de rotation de 3 000 tr/min assurant un débit de 130 000 m3/h.A turbine as illustrated in FIGS. 1 and 2 was produced from CC composite having a diameter of 950 mm and a width, in the axial direction, of 250 mm. It was used to carry out a gas suction with a temperature of 1200 ° C at a rotation speed of 3000 rpm ensuring a flow rate of 130,000 m 3 / h.
Par rapport à une turbine métallique de mêmes dimensions, le gain de masse est d'un rapport d'environ 5, c'est-à-dire environ 40 kg pour la turbine en composite C-C contre 200 kg pour la turbine en métal. La masse de la turbine métallique fait que sa vitesse de rotation ne peut en pratique dépasser environ 800 tr/min.Compared to a metal turbine of the same dimensions, the gain of mass is about 5, i.e. about 40 kg for the turbine composite C-C against 200 kg for the metal turbine. The mass of the turbine metal means that its speed of rotation cannot in practice exceed approximately 800 rpm.
Claims (12)
- A method of manufacturing a turbine comprising a plurality of blades disposed around a hub and between two end plates, the blades, the hub, and the end plates being made of thermostructural composite material, in which method:(a) the hub is made by stacking plane annular plates of thermostructural composite material along a common axis, and fastening the plates so that they are constrained to rotate together about the axis;(b) each blade is made with an inside edge portion constituting a swollen-shaped root by implementing the following steps:shaping an essentially two-dimensional fiber fabric in plate or sheet form in order to obtain a blade preform;densifying the preform with a matrix to obtain a blade blank made of thermostructural composite material; andmachining the outline of the densified preform;(c) each end plate is made by implementing the following steps:making an annular or substantially annular preform by means of an essentially two-dimensional fiber fabric in plate or sheet form; anddensifying the preform with a matrix to obtain a part made of thermostructural composite material; and(d) the blades are assembled to the hub between the end plates, each blade being connected to the hub by inserting the blade root in a groove of corresponding shape formed in the hub.
- A method according to claim 1, characterised in that the preform of each blade is made by shaping a preimpregnated fiber fabric.
- A method according to claim 1 or 2, characterised in that a blade root is formed by placing an insert in a slit formed in the fiber fabric used for making the preform of a blade.
- A method according to any one of claims 1 to 3, characterised in that the plates constituting the hub are assembled together with at least one annular plate constituting a first end plate closing the passages between the blades at one end of the turbine, to which end plate the blades are connected by axial clamping on a shaft on which the turbine is mounted.
- A method according to claim 4, characterised in that the second end plate which co-operates with the hub to leave an annular fluid inlet zone for suction through the passages between the blades, is mounted on the blades.
- A method according to claim 5, characterised in that the second end plate has notches in which lugs formed on the adjacent edges of the blades are engaged.
- A method according to claim 5 or 6, characterised in that the second end plate is stuck to the adjacent edges of the blades by adhesive.
- A method according to any one of claims 5 to 7, characterised in that a chemical vapour infiltration cycle is performed once the second end plate has been assembled to the blades.
- A turbine made of thermostructural composite material and comprising a plurality of blades (10) disposed around a hub (20) between two end plates (30, 40), the turbine comprising plane annular plates (21) of thermostructural composite material stacked along a common axis and fastened to one another so as to be constrained to rotate together about the axis, thereby forming a hub (20), and the blades (10) of thermostructural composite material being individually connected to the hub by an inside edge portion constituting a swollen-shaped blade root engaged in a groove of corresponding shape formed in the hub.
- A turbine according to claim 9, characterised in that said plane annular plates (21, 31, 30) of thermostructural composite material form an assembly comprising the hub (20) and a first end plate (30) which closes the passages between the blades at one end of the turbine.
- A turbine according to claim 9 or 10, characterised in that the second end plate (40) which co-operates with the hub (20) to form an annular fluid inlet zone for suction through the passages (11) between the blades, is fixed on the blades.
- A turbine according to claim 9 or 10, characterised in that the second end plate which co-operates with the hub to form an annular fluid inlet zone for suction through the passages between the blades, is static.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9510206 | 1995-08-30 | ||
FR9510206A FR2738304B1 (en) | 1995-08-30 | 1995-08-30 | TURBINE IN THERMOSTRUCTURAL COMPOSITE MATERIAL, PARTICULARLY WITH LARGE DIAMETER, AND METHOD FOR THE PRODUCTION THEREOF |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0761978A1 EP0761978A1 (en) | 1997-03-12 |
EP0761978B1 true EP0761978B1 (en) | 2001-10-31 |
Family
ID=9482160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96401836A Expired - Lifetime EP0761978B1 (en) | 1995-08-30 | 1996-08-28 | Thermostructural composite material rotor, particularly of large diameter and its method of manufacturing |
Country Status (10)
Country | Link |
---|---|
US (2) | US5845398A (en) |
EP (1) | EP0761978B1 (en) |
JP (1) | JPH09105304A (en) |
CN (1) | CN1148673A (en) |
CA (1) | CA2184522A1 (en) |
DE (1) | DE69616460T2 (en) |
ES (1) | ES2165964T3 (en) |
FR (1) | FR2738304B1 (en) |
RU (1) | RU2135779C1 (en) |
UA (1) | UA28035C2 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI101564B (en) | 1997-01-17 | 1998-07-15 | Flaekt Woods Ab | High pressure fan |
FI101565B (en) * | 1997-01-17 | 1998-07-15 | Flaekt Woods Ab | Evaporator fan and its impeller |
IT1291432B1 (en) * | 1997-03-14 | 1999-01-11 | Co Ge S R L | IMPELLER FOR TURBOPUMPS WITH PERFECTED PROFILE BLADES |
FR2776030B1 (en) | 1998-03-11 | 2000-07-13 | Abb Solyvent Ventec | CENTRIFUGAL VENTILATION WHEEL IN COMPOSITE MATERIALS |
JP2001061020A (en) * | 1999-08-20 | 2001-03-06 | Matsushita Electric Ind Co Ltd | Portable phone system |
US6276899B1 (en) * | 1999-11-05 | 2001-08-21 | Flowserve Management Company | Impeller manufacturing process |
DE10341415A1 (en) * | 2003-09-05 | 2005-04-07 | Daimlerchrysler Ag | High-speed impeller |
US20050158171A1 (en) * | 2004-01-15 | 2005-07-21 | General Electric Company | Hybrid ceramic matrix composite turbine blades for improved processibility and performance |
US7108482B2 (en) * | 2004-01-23 | 2006-09-19 | Robert Bosch Gmbh | Centrifugal blower |
EP2302172A1 (en) | 2004-11-12 | 2011-03-30 | Board of Trustees of Michigan State University | Machine comprising an electromagnetic woven rotor and manufacturing method |
US8137611B2 (en) * | 2005-03-17 | 2012-03-20 | Siemens Energy, Inc. | Processing method for solid core ceramic matrix composite airfoil |
US7600979B2 (en) * | 2006-11-28 | 2009-10-13 | General Electric Company | CMC articles having small complex features |
US20090165924A1 (en) * | 2006-11-28 | 2009-07-02 | General Electric Company | Method of manufacturing cmc articles having small complex features |
IT1394295B1 (en) | 2009-05-08 | 2012-06-06 | Nuovo Pignone Spa | CENTRIFUGAL IMPELLER OF THE CLOSED TYPE FOR TURBOMACCHINE, COMPONENT FOR SUCH A IMPELLER, TURBOMACCHINA PROVIDED WITH THAT IMPELLER AND METHOD OF REALIZING SUCH A IMPELLER |
FR2946999B1 (en) * | 2009-06-18 | 2019-08-09 | Safran Aircraft Engines | CMC TURBINE DISPENSER ELEMENT, PROCESS FOR MANUFACTURING SAME, AND DISPENSER AND GAS TURBINE INCORPORATING SAME. |
IT1397058B1 (en) | 2009-11-23 | 2012-12-28 | Nuovo Pignone Spa | CENTRIFUGAL IMPELLER MOLD, MOLD INSERTS AND METHOD TO BUILD A CENTRIFUGAL IMPELLER |
IT1397057B1 (en) * | 2009-11-23 | 2012-12-28 | Nuovo Pignone Spa | CENTRIFUGAL AND TURBOMACHINE IMPELLER |
FR2953553B1 (en) | 2009-12-09 | 2012-02-03 | Snecma | TURBINE TURBINE TURBINE IN CERAMIC MATRIX COMPOSITE WITH MACHINED IMPACTS |
US9506355B2 (en) * | 2009-12-14 | 2016-11-29 | Snecma | Turbine engine blade or vane made of composite material, turbine nozzle or compressor stator incorporating such vanes and method of fabricating same |
ITCO20110064A1 (en) | 2011-12-14 | 2013-06-15 | Nuovo Pignone Spa | ROTARY MACHINE INCLUDING A ROTOR WITH A COMPOSITE IMPELLER AND A METAL SHAFT |
NO334130B1 (en) * | 2012-09-07 | 2013-12-16 | Dynavec As | Device at impeller for hydraulic flow machine |
CN102966565A (en) * | 2012-11-07 | 2013-03-13 | 无锡惠山泵业有限公司 | Pneumatic water pump |
US10193430B2 (en) | 2013-03-15 | 2019-01-29 | Board Of Trustees Of Michigan State University | Electromagnetic device having discrete wires |
DE102013217128A1 (en) * | 2013-08-28 | 2015-03-05 | Wobben Properties Gmbh | Rotor blade element for a wind energy plant, rotor blade, and a manufacturing method therefor and wind turbine with rotor blade |
ITCO20130067A1 (en) | 2013-12-17 | 2015-06-18 | Nuovo Pignone Srl | IMPELLER WITH PROTECTION ELEMENTS AND CENTRIFUGAL COMPRESSOR |
FR3021349B1 (en) | 2014-05-22 | 2021-07-02 | Herakles | METHOD OF MANUFACTURING A TURBOMACHINE VANE FROM COMPOSITE MATERIAL, THUS OBTAINED VANE AND TURBOMACHINE INCORPORATING IT |
DK3148731T3 (en) * | 2014-05-26 | 2022-01-31 | Nuovo Pignone Srl | PROCEDURE FOR MANUFACTURING A COMPONENT FOR A TURBO MACHINE |
KR101584257B1 (en) * | 2014-05-28 | 2016-01-11 | 현대성우메탈 주식회사 | Manufacturing Method of Wheel Using Uni-Directional Fiber Fabric and Wheel Manufactured by the Same |
RU2652269C2 (en) * | 2016-02-29 | 2018-04-25 | Акционерное общество "Институт технологии и организации производства" (АО НИИТ) | Method of making impeller of centrifugal compressor from composite material |
CN106593917A (en) * | 2017-01-16 | 2017-04-26 | 许彐琼 | Impeller and fan with same |
CN108061057A (en) * | 2018-01-31 | 2018-05-22 | 浙江元达机电有限公司 | A kind of upper plug type impeller |
CN113042981B (en) * | 2021-04-21 | 2022-02-01 | 中国水利水电第十工程局有限公司 | End column structure assembling tool and rigid water-stopping herringbone gate manufacturing method |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR382496A (en) * | 1907-10-02 | 1908-02-07 | Albert Huguenin | Type of compression wheel for rotary compressors |
FR392496A (en) * | 1908-07-20 | 1908-11-27 | Henri Etienne Berenger | Whitewash |
GB186022A (en) * | 1921-04-12 | 1922-09-12 | Richard Shenton | Improvements in furnace grates |
US2613058A (en) * | 1945-11-30 | 1952-10-07 | Atkinson Joseph | Cooled bladed rotor |
GB846071A (en) * | 1958-07-10 | 1960-08-24 | Elmer Pershing Warnken | Laminated wheel |
US3224078A (en) * | 1963-09-30 | 1965-12-21 | Ruth D Mayne | Method of making a turbine type blower wheel |
US3224079A (en) * | 1964-12-28 | 1965-12-21 | Ruth D Mayne | Method for manufacture of turbine type blower wheels |
US4186473A (en) * | 1978-08-14 | 1980-02-05 | General Motors Corporation | Turbine rotor fabrication by thermal methods |
FR2504209A1 (en) * | 1981-04-21 | 1982-10-22 | Hunsinger Ewald | Radial turbine impeller - has metallic hub and inlet vanes with impeller vanes in oriented synthetic fibre |
US4790052A (en) * | 1983-12-28 | 1988-12-13 | Societe Europeenne De Propulsion | Process for manufacturing homogeneously needled three-dimensional structures of fibrous material |
FR2584106B1 (en) * | 1985-06-27 | 1988-05-13 | Europ Propulsion | METHOD FOR MANUFACTURING THREE-DIMENSIONAL STRUCTURES BY NEEDLEING PLANE LAYERS OF SUPERIMPOSED FIBROUS MATERIAL AND FIBROUS MATERIAL USED FOR THE IMPLEMENTATION OF THE PROCESS |
JPS60159303A (en) * | 1984-01-30 | 1985-08-20 | Shimadzu Corp | Impeller manufacturing method |
FR2568937B1 (en) * | 1984-08-13 | 1988-10-28 | Europ Propulsion | PROCESS FOR MANUFACTURING A TURBINE OR COMPRESSOR WHEEL OF COMPOSITE MATERIAL, AND WHEEL THUS OBTAINED |
DE3633146A1 (en) * | 1985-10-02 | 1987-04-09 | Papst Motoren Gmbh & Co Kg | Fan impeller with more than one flow channel |
FR2667365B1 (en) * | 1990-10-02 | 1993-01-08 | Europ Propulsion | TURBINE WHEEL OF COMPOSITE MATERIAL. |
FR2686907B1 (en) * | 1992-02-05 | 1996-04-05 | Europ Propulsion | PROCESS FOR THE PREPARATION OF FIBROUS PREFORMS FOR THE MANUFACTURE OF PARTS MADE OF COMPOSITE MATERIALS AND PRODUCTS OBTAINED BY THE PROCESS. |
US5205709A (en) * | 1992-03-24 | 1993-04-27 | Williams International Corporation | Filament wound drum compressor rotor |
DE4321173C2 (en) * | 1993-06-25 | 1996-02-22 | Inst Luft Kaeltetech Gem Gmbh | Radial impeller |
-
1995
- 1995-08-30 FR FR9510206A patent/FR2738304B1/en not_active Expired - Fee Related
-
1996
- 1996-08-13 US US08/696,362 patent/US5845398A/en not_active Expired - Fee Related
- 1996-08-28 ES ES96401836T patent/ES2165964T3/en not_active Expired - Lifetime
- 1996-08-28 EP EP96401836A patent/EP0761978B1/en not_active Expired - Lifetime
- 1996-08-28 DE DE69616460T patent/DE69616460T2/en not_active Expired - Fee Related
- 1996-08-28 CN CN96111239A patent/CN1148673A/en active Pending
- 1996-08-29 UA UA96083394A patent/UA28035C2/en unknown
- 1996-08-29 RU RU96117124/06A patent/RU2135779C1/en not_active IP Right Cessation
- 1996-08-30 CA CA002184522A patent/CA2184522A1/en not_active Abandoned
- 1996-08-30 JP JP8229881A patent/JPH09105304A/en active Pending
-
1998
- 1998-01-20 US US09/009,280 patent/US5944485A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US5845398A (en) | 1998-12-08 |
DE69616460T2 (en) | 2002-07-18 |
CN1148673A (en) | 1997-04-30 |
UA28035C2 (en) | 2000-10-16 |
CA2184522A1 (en) | 1997-03-01 |
DE69616460D1 (en) | 2001-12-06 |
RU2135779C1 (en) | 1999-08-27 |
JPH09105304A (en) | 1997-04-22 |
FR2738304B1 (en) | 1997-11-28 |
ES2165964T3 (en) | 2002-04-01 |
FR2738304A1 (en) | 1997-03-07 |
US5944485A (en) | 1999-08-31 |
EP0761978A1 (en) | 1997-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0761978B1 (en) | Thermostructural composite material rotor, particularly of large diameter and its method of manufacturing | |
EP0761977B1 (en) | High temperature composite material impellor, particularly of small diameter, and its manufacturing method | |
EP2118448B1 (en) | Turbine ring assembly for gas turbine | |
EP2416944B1 (en) | Method for producing a turbomachine blade made from a composite material | |
EP2077183B1 (en) | Composite flange with machined part | |
EP3298246B1 (en) | Turbine shroud assembly allowing a differential thermal expansion | |
EP2315734B1 (en) | Method of producing a nozzle or a divergent nozzle element made of a composite | |
EP2585280B1 (en) | Turbomachine blade with complementary asymetric geometry | |
FR2953885A1 (en) | TURBOMACHINE DRAFT IN COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING THE SAME | |
WO2010061140A1 (en) | Composite material turbine engine vane, and method for manufacturing same | |
FR2975123A1 (en) | TURBOMACHINE ROTOR COMPRISING AUBES IN COMPOSITE MATERIAL WITH REPORTED HEEL | |
CA2940565A1 (en) | Stator section for a turbomachine and method for producing the same | |
EP4077883B1 (en) | Blade made of composite material with variable-density attached leading edge | |
EP2585281A1 (en) | Turbomachine blade having an even/odd complementary geometry and its manufacturing process | |
CA2971421A1 (en) | Tooling and impregnation process for a fibrous revolution preform | |
EP0479632B1 (en) | Turbine wheel made of a composite material | |
FR3085299A1 (en) | HOUSING IN COMPOSITE MATERIAL WITH INTEGRATED STIFFENER | |
EP3930991A1 (en) | Repairing or resuming production of a component made of composite material | |
FR3059044A1 (en) | AERONAUTICAL TURBOMACHINE BLOWER HOUSING | |
FR3126914A1 (en) | BLADE OF COMPOSITE MATERIAL COMPRISING A METALLIC REINFORCEMENT AND METHOD FOR MANUFACTURING SUCH A BLADE | |
FR2952943A1 (en) | COMPOSITE ROLL OF ANNEAL LINE | |
FR3133563A1 (en) | Process for manufacturing a cylindrical fibrous blank for annular braking discs | |
WO2025027251A1 (en) | Annular shroud for a turbomachine casing, and production method thereof | |
BE1022808B1 (en) | ABRADABLE JOINT OF AXIAL TURBOMACHINE COMPRESSOR HOUSING | |
EP4043198A1 (en) | Multilayer strip with multiple materials for winding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT |
|
17P | Request for examination filed |
Effective date: 19970909 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MO |
|
17Q | First examination report despatched |
Effective date: 20000209 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
REF | Corresponds to: |
Ref document number: 69616460 Country of ref document: DE Date of ref document: 20011206 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020128 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2165964 Country of ref document: ES Kind code of ref document: T3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020806 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20020808 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020812 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020820 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040302 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050828 |