EP0623786A1 - Brennkammer - Google Patents
Brennkammer Download PDFInfo
- Publication number
- EP0623786A1 EP0623786A1 EP94103551A EP94103551A EP0623786A1 EP 0623786 A1 EP0623786 A1 EP 0623786A1 EP 94103551 A EP94103551 A EP 94103551A EP 94103551 A EP94103551 A EP 94103551A EP 0623786 A1 EP0623786 A1 EP 0623786A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- channel
- combustion chamber
- vortex
- chamber according
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 51
- 239000000446 fuel Substances 0.000 claims abstract description 21
- 239000007788 liquid Substances 0.000 claims abstract description 4
- 230000006641 stabilisation Effects 0.000 claims description 2
- 238000011105 stabilization Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 abstract description 17
- 230000003068 static effect Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 10
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/40—Mixing tubes or chambers; Burner heads
- F23D11/408—Flow influencing devices in the air tube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3131—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/4317—Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
- B01F25/43171—Profiled blades, wings, wedges, i.e. plate-like element having one side or part thicker than the other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/43197—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
- B01F25/431971—Mounted on the wall
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/434—Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15D—FLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
- F15D1/00—Influencing flow of fluids
- F15D1/02—Influencing flow of fluids in pipes or conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/16—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
- F23R3/18—Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
- F23R3/20—Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants incorporating fuel injection means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/4317—Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
Definitions
- the invention relates to a combustion chamber in which a gaseous or liquid fuel is injected as a secondary flow into a gaseous, channeled main flow, the secondary flow having a substantially smaller mass flow than the main flow.
- a delta wing that is employed in a channelized flow can be regarded as a vortex generator in the broadest sense. If such wings are flown from the tip, a dead water area is created on the one hand downstream of the wing, and on the other hand the flow through the employed surface experiences a not inconsiderable drop in pressure.
- the arrangement of such a delta wing in a channel must be carried out using flow-restricting aids such as struts, ribs or the like. Furthermore result there are problems with the cooling of such elements, for example in a hot gas flow.
- Such delta wings cannot be used as mixing elements of two or more flows.
- the mixing of a secondary flow with a main flow present in a channel usually takes place by radial injection of the secondary flow into the channel.
- the momentum of the secondary flow is so small, however, that an almost complete mixing only takes place after a distance of approx. 100 channel heights.
- the invention is therefore based on the object of providing a combustion chamber of the type mentioned at the outset with a device with which longitudinal vortices can be generated in the channel through which flow occurs without a recirculation area.
- this is achieved in that the main flow is conducted via vortex generators, of which several are arranged next to one another over the width or the circumference of the flow-through channel, preferably without gaps, and the height of which is at least 50% of the height of the flow-through channel or that Vortex generator associated channel part, and that the secondary flow is introduced into the channel in the immediate area of the vortex generators.
- vortex generators of which several are arranged next to one another over the width or the circumference of the flow-through channel, preferably without gaps, and the height of which is at least 50% of the height of the flow-through channel or that Vortex generator associated channel part, and that the secondary flow is introduced into the channel in the immediate area of the vortex generators.
- the advantage of such an element can be seen in its particular simplicity in every respect.
- the element consisting of three walls with flow around it is completely problem-free.
- the roof surface can be joined with the two side surfaces in a variety of ways.
- the element can also be fixed to flat or curved channel walls in the case of weldable materials by simple weld seams. From a fluidic point of view, the element has a very low pressure drop when flowing around and it creates vortices without a dead water area.
- the element due to its generally hollow interior, the element can be cooled in a variety of ways and with various means.
- the two side surfaces enclosing the arrow angle ⁇ form an at least approximately sharp connecting edge with one another, which together with the longitudinal edges of the roof surface forms a tip, the flow cross-section is hardly impaired by blocking.
- the sharp connecting edge is the exit-side edge of the vortex generator and it runs perpendicular to the channel wall with which the side surfaces are flush, then the non-formation of a wake area achieved thereby is advantageous.
- a vertical connecting edge also leads to side surfaces that are also perpendicular to the channel wall, which gives the vortex generator the simplest possible form that is most favorable in terms of production technology.
- a vortex generator two generated the same opposite vortex.
- the angle of attack ⁇ of the roof surface and / or the arrow angle ⁇ of the side surfaces are selected such that the vortex generated by the flow bursts in the region of the vortex generator.
- FIGS. 1, 5 and 6 do not show the actual channel through which a main flow symbolized by a large arrow flows.
- a vortex generator essentially consists of three free-flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.
- the two side surfaces 11 and 13 are perpendicular to the channel wall 21, it being noted that this is not mandatory.
- the side walls which consist of right-angled triangles, are fixed with their long sides on this channel wall 21, preferably gas-tight. They are oriented so that they form a joint on their narrow sides, including an arrow angle ⁇ .
- the joint is designed as a sharp connecting edge 16 and is also perpendicular to the channel wall 21 with which the side surfaces are flush.
- the two side surfaces 11, 13 including the arrow angle ⁇ are symmetrical in shape, size and orientation and are arranged on both sides of an axis of symmetry 17 (FIGS. 3b, 4b). This axis of symmetry 17 is rectified like the channel axis.
- the roof surface 10 lies against the same channel wall 21 as the side walls 11, 13 with an edge 15 which runs across the channel and is very pointed.
- the vortex generator can also be provided with a bottom surface with which it is fastened in a suitable manner to the channel wall 21.
- a floor area is not related to the mode of operation of the element.
- the connecting edge 16 of the two side surfaces 11, 13 forms the downstream edge of the vortex generator.
- the edge 15 of the roof surface 10 which runs transversely to the flow through the channel is thus the edge which is first acted upon by the channel flow.
- the vortex generator works as follows: When flowing around edges 12 and 14, the main flow is converted into a pair of opposing vortices. Their vortex axes lie in the axis of the main flow. The number of swirls and the location of the vortex breakdown (if the latter is desired at all) are determined by appropriate selection of the angle of attack ⁇ and the arrow angle ⁇ . With increasing angles, the vortex strength or the number of swirls is increased and the location of the vortex bursting moves upstream into the area of the vortex generator itself. Depending on the application, these two angles ⁇ and ⁇ are predetermined by the structural conditions and by the process itself. Only the length L of the element (FIG. 3b) and the height h of the connecting edge 16 (FIG. 3a) then have to be adjusted.
- FIGS. 3a and 4a in which the channel through which flow is indicated is 20, it can be seen that the vortex generator can have different heights compared to the channel height H.
- the height h of the connecting edge 16 will be coordinated with the channel height H in such a way that the vortex generated immediately downstream of the vortex generator already has such a size that the full channel height H is filled, which results in a uniform velocity distribution in the applied Cross section leads.
- Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the pressure loss coefficient also increases with a larger ratio h / H.
- the sharp connecting edge 16 in FIG. 2 is the point which is first acted upon by the channel flow.
- the element is rotated by 180 °.
- the two opposite vortices have changed their sense of rotation.
- Fig. 3 it is shown how several, here 3 vortex generators are arranged side by side without gaps across the width of the flow channel 20.
- the channel 20 has a rectangular shape in this case, but this is not essential to the invention.
- FIG. 4 An embodiment variant with two full and two half vortex generators adjoining it on both sides is shown in FIG. 4.
- the elements differ in particular by their greater height h. If the angle of attack remains the same, this inevitably leads to a greater length L of the element and consequently - because of the same division - to a smaller arrow angle ⁇ .
- the vortices generated will have a lower swirl strength, but will fill the channel cross section completely within a shorter interval. If in In both cases a vortex burst is intended, for example to stabilize the flow, this will take place later in the vortex generator according to FIG. 4 than in that according to FIG. 3.
- the channels shown in FIGS. 3 and 4 represent rectangular combustion chambers. It is pointed out once again that the shape of the channel through which flow passes is not essential for the mode of operation of the invention. Instead of the rectangle shown, the channel could also be a ring segment, i.e. the walls 21a and 21b would be curved. In such a case, the above statement that the side surfaces are perpendicular to the channel wall must of course be relativized. It is important that the connecting edge 16 lying on the line of symmetry 17 is perpendicular to the corresponding wall. In the case of annular walls, the connecting edge 16 would thus be aligned radially, as is shown in FIG. 7.
- FIGS. 7 and 8 show in simplified form a combustion chamber with an annular flow through channel 20.
- an equal number of vortex generators are lined up in the circumferential direction in such a way that the connecting edges 16 of two opposite vortex generators lie in the same radial .
- FIG. 7 shows that the vortex generators on the inner channel ring 21b have a smaller arrow ⁇ .
- ⁇ In the longitudinal section in FIG. 8 it can be seen that this could be compensated for by a larger angle of attack ⁇ if swirl-like vortices in the inner and outer ring cross-section are desired.
- two vortex pairs are generated, each with smaller vertebrae, which leads to a shorter mixing length.
- the fuel could be in this version according to the methods of 5 or 6 to be described later are introduced into the main flow.
- the secondary flow in the form of a liquid fuel, for example, has a substantially smaller mass flow than the main flow. It is introduced vertically into the main flow in the immediate area of the vortex generators.
- this injection takes place via individual bores 22a, which are made in the wall 21a.
- the wall 21a is the wall on which the vortex generators are arranged.
- the bores 22a are located on the line of symmetry 17 downstream behind the connecting edge 16 of each vortex generator. With this configuration, the fuel is fed into the already existing large-scale vortices.
- FIG. 4 shows an embodiment variant of a combustion chamber in which the secondary flow is also injected via wall bores 22b. These are located downstream of the vortex generators in that wall 21b on which the vortex generators are not arranged, that is to say on the wall opposite the wall 21a.
- the wall bores 22b are each made centrally between the connecting edges 16 of two adjacent vortex generators, as can be seen in FIG. 4. In this way, the fuel reaches the vortex in the same way as in the embodiment according to FIG. 3, but with the difference that it is no longer mixed into the vortex of a pair of vertebrae produced by the same vortex generator, but in one each Vortex of two neighboring vortex generators. Because the neighboring vortex generators Meanwhile, are arranged without a space and produce vortex pairs with the same direction of rotation, the injections according to FIGS. 3 and 4 have the same effect.
- FIGS. 5 and 6 show further possible forms of introducing the secondary flow into the main flow.
- the secondary flow is introduced here through means not shown through the channel wall 21 into the hollow interior of the vortex generator.
- the secondary flow is injected into the main flow via a wall bore 22e, the bore being arranged in the region of the tip 18 of the vortex generator.
- the injection takes place via wall bores 22d, which are located in the side surfaces 11 and 13 on the one hand in the region of the longitudinal edges 12 and 14 and on the other hand in the region of the connecting edge 16.
- FIGS. 9 to 14 show different installation options for the vortex generators.
- FIG. 9 shows an annular channel 20 in which an equal number of vortex generators 9 are lined up in the circumferential direction both on the outer ring wall 21a and on the inner ring wall 21b. 7, however, the connecting edges 16 of two opposite vortex generators are offset by half a division. This arrangement offers the possibility of increasing the height h of the individual element. Downstream of the vortex generators, the generated vortexes are combined with one another, which on the one hand improves the mixing quality and on the other hand leads to a longer lifespan of the vortex.
- the ring channel is segmented by means of radially extending ribs 23.
- a vortex generator 9 is arranged on the ribs 23 in each of the circular ring segments formed in this way.
- the two vortex generators are designed to fill the entire channel height. This solution simplifies the fuel supply that can be made through the hollow ribs. This means that there is no impairment of the flow by centrally arranged fuel lances.
- vortex generators are also attached to the ring walls 21a and 21b.
- the connecting edges of the side elements run at half the channel height, those of the upper and lower in a radial at half the segment width. In terms of how it works, this is a very good solution.
- the elements here cannot fill the entire channel height. It is therefore not to be overlooked that the cooling that may be required is structurally complex, since cooling air supply from the ring walls is not readily possible for the lateral elements.
- the vortex generators 9 in FIG. 12 are arranged off-center on the radial ribs 23 and on the ring walls 21a, 21b.
- One side surface of each vortex generator lies against a corner of the circular ring segment, from where the lateral vortex generators can also be supplied with cooling air from the radially outer ring wall 21a, on the one hand, and from the inner ring wall 21b, on the other hand.
- FIG. 13 Another embodiment according to FIG. 13 is also in respect of a simple cooling possibility Segment of the circular channel, the vortex generators 9 are arranged directly in the segment corners.
- FIGS. 6, 11 and 14 show an additional central introduction of the secondary flow in a mixed arrangement of the variants dealt with in FIGS. 6, 11 and 14.
- the fuel usually oil
- vortex generators of different geometries are used in the rectangular channel, which of course could just as well be a circular ring segment.
- the vortex generators that follow one another in the “circumferential direction” are slightly offset from one another. This, for example, to create the required space for the lance.
- the secondary flow is partially injected via wall holes in the side surfaces of the vortex generators, as indicated by arrows.
- the gas supply takes place via gas lines 25 running along the wall.
- gas lines 25 running along the wall.
- a combustion chamber has become good for dual operation with premix combustion own.
- the mixture is ignited 26 at the point at which the vortex bursts (vortex break down).
- a diffuser 27 is arranged in the plane behind the mixing zone at which the ignition takes place. The good temperature distribution downstream of the vortex generators achieved as a result of the mixing elements avoids the risk of reignition, which is possible without the measure for introducing cooling air into the combustion air mentioned at the beginning.
- the combustion chamber just described could also be a self-igniting post-combustion chamber downstream of a high-temperature gas turbine.
- the high energy content of their exhaust gases enables self-ignition. Effective, rapid mixing of the hot gas flow with the injected fuel is a prerequisite for optimizing the combustion process, particularly with regard to minimizing emissions.
- the vortex generators are designed in such a way that recirculation zones are largely avoided.
- the residence time of the fuel particles in the hot zones is very short, which has a favorable effect on the minimal formation of NO x .
- the injected fuel is dragged along by the vortices and mixed with the main flow. It follows the helical course of the vertebrae and is evenly finely distributed in the chamber downstream of the vertebrae. This reduces the risk of impinging jets on the opposite wall and the formation of so-called "hot spots" - in the case of the radial injection of fuel into an undisturbed flow mentioned above.
- the fuel injection can be kept flexible and adapted to other boundary conditions. In this way, the same injection pulse can be maintained throughout the load range. Since the mixing is determined by the geometry of the vortex generators and not by the machine load, in the example the gas turbine output, the afterburner configured in this way works optimally even under partial load conditions.
- the combustion process is optimized by adjusting the ignition delay time of the fuel and mixing time of the vortices, which ensures a minimization of emissions.
- the effective mixing results in a good temperature profile over the cross section through which the flow is flowing and also reduces the possibility of the occurrence of thermoacoustic instability. Due to their presence alone, the vortex generators act as a damping measure against thermoacoustic vibrations.
- FIGS. 16 and 17 show a top view of an embodiment variant of the vortex generator and a front view of its arrangement in a circular channel.
- the two side surfaces 11 and 13 enclosing the arrow angle ⁇ have a different length.
- the vortex generator then naturally has a different angle of attack stell across its width.
- Such a variant has the effect that vortices with different strengths are generated. For example, this can act on a swirl adhering to the main flow. Or else through the different eddies it becomes original a swirl-free main flow downstream of the vortex generators, as indicated in FIG. 17.
- Such a configuration works well as an independent, compact burner unit.
- the swirl imposed on the main flow can be used to improve the cross-ignition behavior of the burner configuration, for example at partial load.
- the invention is not limited to the examples described and shown. With regard to the arrangement of the vortex generators in the network, many combinations are possible without leaving the scope of the invention.
- the introduction of the secondary flow into the main flow can also be carried out in a variety of ways.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
Abstract
Description
- Die Erfindung betrifft eine Brennkammer, in welcher ein gasförmiger oder flüssiger Brennstoff als Sekundärströmung in eine gasförmige, kanalisierte Hauptströmung eingedüst wird, wobei die Sekundärströmung einen wesentlich kleineren Massenstrom aufweist als die Hauptströmung.
- In Brennkammern können sich kalte Strähnen in der Hauptströmung befinden, die beispielsweise durch das Einleiten von Kühlluft in die Verbrennungsluft entstehen. Solche Strähnen können zu ungenügendem Ausbrand in der Verbrennungszone führen. Es sind deshalb Massnahmen zu treffen, Verbrennungsluft, Kühlluft und Brennstoff innig zu vermischen.
- Als Wirbel-Generator im weitesten Sinn kann ein Deltaflügel angesehen werden, der in einer kanalisierten Strömung angestellt ist. Werden derartige Flügel von der Spitze her angeströmt, so ensteht einerseits stromabwärts des Flügels ein Totwassergebiet und andererseits erfährt die Strömung durch die angestellte Fläche einen nicht unbeträchtlichen Druckabfall. Das Anordnen eines solchen Deltaflügels in einem Kanal muss über strömungsbeeinträchtigende Hilfsmittel wie Streben, Rippen oder dergleichen erfolgen. Darüberhinaus ergeben sich beispielsweise in einer Heissgasströmung Probleme mit der Kühlung solcher Elemente.
- Als Mischelemente von zwei oder mehreren Strömungen sind derartige Deltaflügel nicht brauchbar. Die Mischung einer Sekundärströmung mit einer in einem Kanal vorliegenden Hauptströmung geschieht in der Regel durch radiale Eindüsung der Sekundärströmung in den Kanal. Der Impuls der Sekundärströmung ist indes so gering, dass eine nahezu vollständige Durchmischung erst nach einer Strecke von ca. 100 Kanalhöhen erfolgt ist.
- Die Erfindung liegt deshalb die Aufgabe zugrunde, eine Brennkammer der eingangs genannten Art mit einer Vorrichtung auszustatten, mit der im durchströmten Kanal Längswirbel ohne Rezirkulationsgebiet erzeugt werden können.
- Erfindungsgemäss wird dies dadurch erreicht, dass die Hauptströmung über Wirbel-Generatoren geführt wird, von denen über der Breite oder dem Umfang des durchströmten Kanals mehrere nebeneinander angeordnet sind, vorzugsweise ohne Zwischenräume, und deren Höhe mindestens 50% der Höhe des durchströmten Kanals oder des dem Wirbel-Generators zugeordneten Kanalteils beträgt, und dass die Sekundärströmung im unmittelbaren Bereich der Wirbel-Generatoren in den Kanal eingeleitet wird.
- Mit dem neuen statischen Mischer, den die 3-dimensionalen Wirbel-Generatoren darstellen, ist es möglich, in der Brennkammer ausserordentlich kurze Mischstrecken bei gleichzeitig geringem Druckverlust zu erzielen. Bereits nach einer vollen Wirbelumdrehung ist eine grobe Durchmischung der beiden Ströme vollzogen, während eine Feinmischung infolge von turbulenter Strömung und molekularer Diffusionsprozesse nach einer Strecke vorliegt, die einigen wenigen Kanalhöhen entspricht.
- Ein Wirbel-Generator zeichnet sich dadurch aus,
- dass er drei frei umströmte Flächen aufweist, die sich in Strömungsrichtung erstrecken und von denen eine die Dachfläche und die beiden andern die Seitenflächen bilden,
- dass die Seitenflächen mit einer gleichen Kanalwand bündig sind und miteinander den Pfeilwinkel α einschliessen,
- dass die Dachfläche mit einer quer zum durchströmten Kanal verlaufenden Kante an der gleichen Kanalwand anliegt wie die Seitenwände,
- und dass die längsgerichteten Kanten der Dachfläche, die bündig sind mit den in den Strömungskanal hineinragenden längsgerichteten Kanten der Seitenflächen unter einem Anstellwinkel Θ zur Kanalwand verlaufen.
- Der Vorteil eines solchen Elementes ist in seiner besonderen Einfachheit in jeder Hinsicht zu sehen. Fertigungstechnisch ist das aus drei umströmten Wänden bestehende Element völlig problemlos. Die Dachfläche kann mit den beiden Seitenflächen auf verschiedenste Arten zusammengefügt werden. Auch die Fixierung des Elementes an ebenen oder gekrümmten Kanalwänden kann im Falle von schweissbaren Materialien durch einfache Schweissnähte erfolgen. Vom strömungstechnischen Standpunkt her weist das Element beim Umströmen einen sehr geringen Druckverlust auf und es erzeugt Wirbel ohne Totwassergebiet. Schliesslich kann das Element durch seinen in der Regel hohlen Innenraum auf die verschiedensten Arten und mit diversen Mitteln gekühlt werden.
- Es ist angebracht, das Verhältnis Höhe h der Verbindungskante der beiden Seitenflächen zur Kanalhöhe H so zu wählen, dass das erzeugte Wirbelpaar unmittelbar stromabwärts des Wirbel-Generators die volle Kanalhöhe oder die volle Höhe des dem Wirbel-Generators zugeordneten Kanalteils ausfüllt.
- Dadurch, dass über der Breite des durchströmten Kanals mehrere Wirbel-Generatoren ohne Zwischenräume nebeneinander angeordnet sind, wird bereits kurz hinter den Wirbel-Generatoren der ganze Kanalquerschnitt von den Wirbeln voll beaufschlagt.
- Es ist sinnvoll, wenn die beiden den Pfeilwinkel α einschliessenden Seitenflächen symmetrisch um eine Symmetrieachse angeordnet sind. Damit werden drallgleiche Wirbel erzeugt.
- Wenn die beiden den Pfeilwinkel α einschliessenden Seitenflächen eine zumindest annähernd scharfe Verbindungskante miteinander bilden, die mit den Längskanten der Dachfläche zusammen eine Spitze bildet, wird der Durchströmquerschnitt kaum durch Sperrung beeinträchtigt.
- Ist die scharfe Verbindungskante die austrittsseitige Kante des Wirbel-Generators und verläuft sie senkrecht zu jener Kanalwand, mit welcher die Seitenflächen bündig sind, so ist die dadurch erreichte Nichtbildung eines Nachlaufgebietes von Vorteil. Eine senkrechte Verbindungskante führt überdies zu ebenfalls senkrecht auf der Kanalwand stehenden Seitenflächen, was dem Wirbel-Generator die einfachst mögliche und fertigungstechnisch günstigste Form verleiht.
- Wenn die Symmetrieachse parallel zur Kanalachse verläuft, und die Verbindungskante der beiden Seitenflächen die stromabwärtige Kante des Wirbel-Generators bildet, während demzufolge die quer zum durchströmten Kanal verlaufende Kante der Dachfläche die von der Kanalströmung zuerst beaufschlagte Kante ist, so werden an einem Wirbel-Generator zwei gleiche gegenläufige Wirbel erzeugt. Es liegt ein drallneutrales Strömungsbild vor, bei welchem der Drehsinn der beiden Wirbel im Bereich der Verbindungskante aufsteigend ist.
- Es ist für gewisse Anwendungen zweckmässig, wenn der Anstellwinkel Θ der Dachfläche und/oder der Pfeilwinkel α der Seitenflächen so gewählt sind, dass noch im Bereich des Wirbel-Generators der von der Strömung erzeugte Wirbel aufplatzt. Mit der möglichen Variation der beiden Winkel hat man ein einfaches aerodynamisches Stabilsierungsmittel in der Hand, unabhängig von der Querschnittsform des durchströmten Kanals, welcher sowohl breit und niedrig als auch schmal und hoch sein kann, und mit ebenen oder gekrümmten Kanalwänden versehen sein kann.
- Weitere Vorteile der Erfindung, insbesondere im Zusammenhang mit der Anordnung der Wirbel-Generatoren und der Einführung der Sekundärströmung ergeben sich aus den Unteransprüchen.
- In der Zeichnung sind mehrere Ausführungsbeispiele der Erfindung schematisch dargestellt. Es zeigen:
- Fig. 1
- eine perspektivische Darstellung eines Wirbel-Generators;
- Fig. 2
- eine Anordnungsvariante des Wirbel-Generators;
- Fig. 3a-c
- die gruppenweise Anordnung von Wirbel-Generatoren in einem Kanal im Längsschnitt, in einer Draufsicht und in einer Hinteransicht;
- Fig. 4a-c
- eine Ausführungsvariante einer gruppenweisen Anordnung von Wirbel-Generatoren in gleicher Darstellung wie Fig. 3 mit einer Variante der Sekundarströmungs-führung;
- Fig. 5
- eine zweite Variante der Sekundarströmungsführung;
- Fig. 6
- eine dritte Variante der Sekundarströmungsführung;
- Fig. 7
- die Ringbrennkammer einer Gasturbine mit eingebauten Wirbel-Generatoren;
- Fig. 8
- einen teilweisen Längsschnitt durch eine Brennkammer nach Linie 8-8 in Fig. 7
- Fig. 9
- eine zweite Anordnungsvariante für die Wirbel-Generatoren;
- Fig. 10
- eine dritte Anordnungsvariante für die Wirbel-Generatoren;
- Fig. 11
- eine vierte Anordnungsvariante für die Wirbel-Generatoren;
- Fig. 12
- eine fünfte Anordnungsvariante für die Wirbel-Generatoren;
- Fig. 13
- eine sechste Anordnungsvariante für die Wirbel-Generatoren;
- Fig. 14
- eine siebte Anordnungsvariante für die Wirbel-Generatoren in einer Draufsicht;
- Fig. 15a-c
- eine weitere Brennkammer im Längsschnitt, in einer Draufsicht und in einer Hinteransicht.
- Fig. 16
- eine weitere Ausführungsvariante des Wirbel-Generators;
- Fig. 17
- eine Anordnungsvariante des Wirbel-Generators nach Fig 16.
- Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet. In den verschiedenen Figuren sind die gleichen Elemente jeweils mit den gleichen Bezugszeichen versehen. Erfindungsunwesentliche Elemente wie Gehäuse, Befestigungen, Leitungsdurchführungen und dergleichen sind fortgelassen.
- Bevor auf die eigentliche Brennkammer eingegangen wird, wird zunächst der für die Wirkungswweise der Erfindung wesentliche Wirbel-Generator beschrieben.
- In den Figuren 1, 5 und 6 ist der eigentliche Kanal, der von einer mit grossem Pfeil symbolisierten Hauptströmung durchströmt wird, nicht dargestellt. Gemäss diesen Figuren besteht ein Wirbel-Generator im wesentlichen aus drei frei umströmten dreieckigen Flächen. Es sind dies eine Dachfläche 10 und zwei Seitenflächen 11 und 13. In ihrer Längserstreckung verlaufen diese Flächen unter bestimmten Winkeln in Strömungsrichtung.
- In sämtlichen gezeigten Beispielen stehen die beiden Seitenflächen 11 und 13 senkrecht auf der Kanalwand 21, wobei angemerkt wird, dass dies nicht zwingend ist. Die Seitenwände, welche aus rechtwinkligen Dreiecken bestehen, sind mit ihren Längsseiten auf dieser Kanalwand 21 fixiert, vorzugsweise gasdicht. Sie sind so orientiert, dass sie an ihren Schmalseiten einen Stoss bilden unter Einschluss eines Pfeilwinkels α. Der Stoss ist als scharfe Verbindungskante 16 ausgeführt und steht ebenfalls senkrecht zu jener Kanalwand 21, mit welcher die Seitenflächen bündig sind. Die beiden den Pfeilwinkel α einschliessenden Seitenflächen 11, 13 sind symmetrisch in Form, Grösse und Orientierung und sind beidseitig einer Symmetrieachse 17 angeordnet (Fig 3b, 4b). Diese Symmetrieachse 17 ist gleichgerichtet wie die Kanalachse.
- Die Dachfläche 10 liegt mit einer quer zum durchströmten Kanal verlaufenden und sehr spitz ausgebildeten Kante 15 an der gleichen Kanalwand 21 an wie die Seitenwände 11, 13.
- Ihre längsgerichteten Kanten 12, 14 sind bündig mit den in den Strömungskanal hineinragenden längsgerichteten Kanten der Seitenflächen. Die Dachfläche verläuft unter einem Anstellwinkel Θ zur Kanalwand 21. Ihre Längskanten 12, 14 bilden zusammen mit der Verbindungskante 16 eine Spitze 18.
- Selbstverständlich kann der Wirbel-Generator auch mit einer Bodenfläche versehen sein, mit welcher er auf geeignete Art an der Kanalwand 21 befestigt ist. Eine derartige Bodenfläche steht indes in keinem Zusammenhang mit der Wirkungsweise des Elementes.
- In Fig. 1 bildet die Verbindungskante 16 der beiden Seitenflächen 11, 13 die stromabwärtige Kante des Wirbel-Generators. Die quer zum durchströmten Kanal verlaufende Kante 15 der Dachfläche 10 ist somit die von der Kanalströmung zuerst beaufschlagte Kante.
- Die Wirkungsweise des Wirbel-Generators ist folgende: Beim Umströmen der Kanten 12 und 14 wird die Hauptströmung in ein Paar gegenläufiger Wirbel umgewandelt. Deren Wirbelachsen liegen in der Achse der Hauptströmung. Die Drallzahl und der Ort des Wirbelaufplatzens (vortex break down), sofern letzteres überhaupt gewünscht wird, werden bestimmt durch entsprechende Wahl des Anstellwinkels Θ und des Pfeilwinkels α. Mit steigenden Winkeln wird die Wirbelstärke bzw. die Drallzahl erhöht und der Ort des Wirbelaufplatzens wandert stromaufwärts bis hin in den Bereich des Wirbel-Generators selbst. Je nach Anwendung sind diese beiden Winkel Θ und α durch konstruktive Gegebenheiten und durch den Prozess selbst vorgegeben. Angepasst werden müssen dann nur noch die Länge L des Elementes (Fig. 3b) sowie die Höhe h der Verbindungskante 16 (Fig. 3a).
- In den Fig 3a und 4a, in welchen der durchströmte Kanal mit 20 bezeichnet ist, ist erkennbar, dass der Wirbel-Generator unterschiedliche Höhen gegenüber der Kanalhöhe H aufweisen kann. In der Regel wird man die Höhe h der Verbindungskante 16 so mit der Kanalhöhe H abstimmen, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators bereits eine solche Grösse erreicht, dass die volle Kanalhöhe H ausgefüllt wird, was zu einer gleichmässigen Geschwindigkeitsverteilung in dem beaufschlagten Querschnitt führt. Ein weiteres Kriterium, welches Einfluss auf das zu wählende Verhältnis h/H nehmen kann, ist der Druckabfall, der beim Umströmen des Wirbel-Generators auftritt. Es versteht sich, dass mit grösserem Verhältnis h/H auch der Druckverlustbeiwert ansteigt.
- Im Gegensatz zu Fig. 1 ist in Fig. 2 die scharfe Verbindungskante 16 jene Stelle, die von der Kanalströmung zuerst beaufschlagt wird. Das Element ist um 180° gedreht. Wie aus der Darstellung erkennbar, haben die beiden gegenläufigen Wirbel ihren Drehsinn geändert.
- In Fig. 3 ist gezeigt, wie über der Breite des durchströmten Kanals 20 mehrere, hier 3 Wirbel-Generatoren ohne Zwischenräume nebeneinanderangeordnet sind. Der Kanal 20 hat in diesem Fall Rechteckform, was jedoch erfindungsunwesentlich ist.
- Eine Ausführungsvariante mit 2 vollen und beidseitig daran angrenzenden 2 halben Wirbel-Generatoren ist in Fig. 4 gezeigt. Bei gleicher Kanalhöhe H und gleichem Anstellwinkel Θ der Dachfläche 10 wie in Fig. 3 unterscheiden sich die Elemente insbesondere durch ihre grössere Höhe h. Bei gleichbleibendem Anstellwinkel führt dies zwangsläufig zu einer grösseren Länge L des Elementes und demzufolge auch - wegen der gleichen Teilung - zu einem kleineren Pfeilwinkel α. Im Vergleich mit Fig. 3 werden die erzeugten Wirbel eine geringere Drallstärke aufweisen, jedoch innert kürzerem Intervall den Kanalquerschnitt voll ausfüllen. Falls in beiden Fällen ein Wirbelaufplatzen beabsichtigt ist, beispielsweise zum Stabilisieren der Strömung, wird dies beim Wirbel-Generator nach Fig. 4 später erfolgen als bei jenem nach Fig. 3.
- Die in den Fig. 3 und 4 dargestellten Kanäle stellen rechteckige Brennkammern dar. Es wird noch einmal darauf hingewiesen, dass die Form des durchströmten Kanals für die Wirkungsweise der Erfindung nicht wesentlich ist. Statt des gezeigten Rechtecks könnte es sich beim Kanal auch um ein Ringsegment handeln, d.h. die Wände 21a und 21b wären gekrümmt. Die obige Aussage, dass die Seitenflächen senkrecht auf der Kanalwand stehen, muss in einem solchen Fall selbstverständlich relativiert werden. Massgebend ist, dass die auf der Symmetrielinie 17 liegende Verbindungskante 16 senkrecht auf der entsprechenden Wand steht. Im Fall von ringförmigen Wänden würde die Verbindungskante 16 somit radial ausgerichtet sein, wie dies in Fig. 7 dargestellt ist.
- Die Figuren 7 und 8 zeigen vereinfacht eine Brennkammer mit ringförmig durchströmtem Kanal 20. An beiden Kanalwänden 21a und 21b ist jeweils eine gleiche Anzahl von Wirbel-Generatoren im Umfangsrichtung so aneinandergereiht, dass die Verbindungskanten 16 von zwei gegenüberliegenden Wirbel-Generatoren in der gleichen Radialen liegen. Werden gleiche Höhen h für gegenüberliegende Wirbel-Generatoren vorausgesetzt, so zeigt Fig. 7, dass die Wirbel-Generatoren am inneren Kanalring 21b eine kleinere Pfeilung α haben. Im Längsschnitt in Fig. 8 ist erkennbar, dass dies durch einen grösseren Anstellwinkel Θ kompensiert werden könnte, wenn drallgleiche Wirbel im inneren und äusserern Ringquerschnitt erwünscht sind. Bei dieser Lösung werden, wie in Fig. 7 angedeutet, zwei Wirbelpaare mit jeweils kleineren Wirbeln erzeugt, was zu einer kürzeren Mischlänge führt. Der Brennstoff könnte bei dieser Ausführung nach den Methoden der später zu beschreibenden Fig. 5 oder 6 in die Hauptströmung eingeführt werden.
- In den bereits beschriebenen Fig. 3 und 4 werden mit Hilfe der Wirbel-Generatoren 9 zwei Strömungen miteinander gemischt. Die Hauptströmung in Form von Brennluft - oder Brenngas, je nach Brennkammertyp - attackiert in Pfeilrichtung die quergerichteten Eintrittskanten 15. Die Sekundärströmung in Form eines beispielsweise flüssigen Brennstoffs weist einen wesentlich kleineren Massenstrom auf als die Hauptströmung. Sie wird im unmittelbaren Bereich der Wirbel-Generatoren senkrecht in die Hauptströmung eingeleitet.
- Gemäss Fig. 3 geschieht diese Eindüsung über Einzelbohrungen 22a, die in der Wand 21a angebracht sind. Bei der Wand 21a handelt es sich um jene Wandung, an der die Wirbel-Generatoren angeordnet sind. Die Bohrungen 22a befinden sich auf der Symmetrielinie 17 stromabwärts hinter der Verbindungskante 16 jedes Wirbel-Generators. Bei dieser Konfiguration wird der Brennstoff in die bereits bestehenden gross-skaligen Wirbel eingegeben.
- Die Fig. 4 zeigt eine Ausführungsvariante einer Brennkammer, bei der die Sekundärströmung ebenfalls über Wandbohrungen 22b eingedüst wird. Diese befinden sich stromabwärts der Wirbel-Generatoren in jener Wand 21b, an der die Wirbel-Generatoren nicht angeordnet sind, also an der der Wand 21a gegenüberliegenden Wand. Die Wandbohrungen 22b sind jeweils mittig zwischen den Verbindungskanten 16 zweier benachbarter Wirbel-Generatoren angebracht, wie aus Fig. 4 ersichtlich. Auf diese Weise gelangt der Brennstoff auf die gleiche Art in die Wirbel wie bei der Ausführung nach Fig. 3. Allerdings mit dem Unterschied, dass er nicht mehr in die Wirbel eines von einem gleichen Wirbel-Generator erzeugten Wirbelpaares eingemischt wird, sondern in je einen Wirbel zweier benachbarter Wirbel-Generatoren. Da die benachbarten Wirbel-Generatoren indes ohne Zwischenraum angeordnet sind und Wirbelpaare mit gleichen Drehsinn erzeugen, sind die Eindüsungen nach den Fig. 3 und 4 wirkungsgleich.
- Die Figuren 5 und 6 zeigen weitere mögliche Formen der Einführung der Sekundärströmung in die Hauptströmung. Die Sekundärströmung wird hier über nicht gezeigte Mittel durch die Kanalwand 21 ins hohle Innere des Wirbel-Generators eingeleitet.
- Gemäss Fig. 5 wird die Sekundärströmung über eine Wandbohrung 22e in die Hauptströmung eingedüst, wobei die Bohrung im Bereich der Spitze 18 des Wirbel-Generators angeordnet ist.
- In Fig. 6 geschieht die Eindüsung über Wandbohrungen 22d, die sich in den Seitenflächen 11 und 13 einerseits im Bereich der Längskanten 12 und 14 und andererseits im Bereich der Verbindungskante 16 befinden.
- In den Figuren 9 bis 14 sind schliesslich unterschiedliche Einbaumöglichkeiten der Wirbel-Generatoren gezeigt.
- Die Teilansicht in Fig. 9 zeigt wie Fig. 7 einen ringförmigen Kanal 20, bei dem sowohl an der äussseren Ringwand 21a als auch an der inneren Ringwand 21b eine gleiche Anzahl von Wirbel-Generatoren 9 im Umfangsrichtung aneinandergereiht sind. In Abweichung zu Fig. 7 sind hier jedoch die Verbindungskanten 16 von je zwei gegenüberliegenden Wirbel-Generatoren um eine halbe Teilung gegeneinander versetzt sind. Diese Anordnung bietet die Möglichkeit, die Höhe h des einzelnen Elementes zu vergrössern. Stromabwärts der Wirbel-Generatoren werden die erzeugten Wirbel miteinander kombiniert, was zum einen die Mischqualität noch verbessert und zum anderen zu einer grösseren Lebensdauer des Wirbels führt.
- In der Teilansicht nach Fig. 10 ist der Ringkanal mittels radial verlaufender Rippen 23 segmentiert. In den derart gebildeten Kreisringsegmenten ist je ein Wirbel-Generator 9 an den Rippen 23 angeordnet. Im gezeigten Fall sind die beiden Wirbel-Generatoren so ausgelegt, dass sie die ganze Kanalhöhe ausfüllen. Diese Lösung vereinfacht die Brennstoffzufuhr, welche durch die hohl gestalteten Rippen vorgenommen werden kann. Eine Beeinträchtigung der Strömung durch zentral angeordnete Brennstofflanzen entfällt damit.
- In der Teilansicht nach Fig. 11 sind zusätzlich zu den seitlichen Wirbel-Generatoren wie bei Fig. 10 auch noch Wirbelerzeuger an den Ringwänden 21a und 21b angebracht. Die Verbindungskanten der seitlichen Elemente verlaufen auf halber Kanalhöhe, jene der oberen und unteren in einer Radialen auf halber Segmentbreite. Von der Wirkungsweise her ist dies eine sehr gute Lösung. Im Gegensatz zur Variante nach Fig. 10 können hier die Elemente die ganze Kanalhöhe nicht ausfüllen. Es ist deshalb nicht zu verkennen, dass die gegebenenfalls erforderliche Kühlung konstruktiv aufwendig ist, da für die seitlichen Elemente eine Kühluftzufuhr aus den Ringwänden nicht ohne weiteres möglich ist.
- Um dem abzuhelfen, sind in Abweichung zu Fig. 11 die Wirbel-Generatoren 9 in Fig. 12 an den radialen Rippen 23 und an den Ringwänden 21a, 21b aussermittig angeordnet. Dabei liegt jeweils eine Seitenfläche jedes Wirbel-Generators an einer Ecke des Kreisringsegmentes an, von wo aus auch die seitlichen Wirbel-Generatoren mit Kühlluft einerseits aus der radial äusseren Ringwand 21a, andererseits aus der inneren Ringwand 21b versorgt werden können.
- Ebenfalls hinsichlich einer einfachen Kühlmöglichkeit sind einer noch anderen Ausführung gemäss Fig. 13 sind in jedem Segment des Kreisringkanals die Wirbel-Generatoren 9 direkt in den Segmentecken angeordnet.
- In der Draufsicht nach Fig. 14 ist die Möglichkeit erkennbar, die Wirbel-Generatoren nicht in einer gleichen Ebene unterzubringen. Von den an einer Kanalwand mit ihren Seitenwänden aneinandergereihten Wirbel-Generatoren sind je zwei benachbarte Elemene in Längsrichtung des Kanals 20 gegeneinander versetzt sind. Bei dieser Variante findet eine Wirbelüberlappung in Umfangsrichtung statt. Es handelt sich um eine Massnahme, die zur Optimierung der Kombination von Wirbelpaaren geeignet ist. Für die hintereinandergeschalteten Wirbel-Generatoren können unterschiedliche Geometrien gewählt werden. Die Anordnung in verschiedenen Ebenen des Kanals wirkt sich überdies günstig aus gegen das Anfachen von akustischen Schwingungen.
- In den Fig. 15a-c ist in einer gemischten Anordnung der zu den Fig. 6, 11 und 14 behandelten Varianten eine zusätzliche zentrale Einführung der Sekundärströmung gezeigt. Der Brennstoff, in der Regel Öl wird über eine zentrale Brennstofflanze 24 eingedüst, deren Mündung sich stromabwärts der Wirbel-Generatoren 9 im Bereich deren Spitze 18 befinden. Beim rechteckigen Kanal, der selbstverständlich genau so gut ein Kreisringsegment sein könnte, sind einerseits Wirbel-Generatoren unterschiedlicher Geometrie verwendet. Desweiteren sind die in "Umfangsrichtung" aufeinanderfolgenden Wirbel-Generatoren leicht gegeneinander versetzt. Dies, um beispielsweise den erforderlichen Platz für die Lanze zu schaffen. Schliesslich geschieht die teilweise Eindüsung der Sekundärströmung über Wandbohrungen in den Seitenflächen der Wirbel-Generatoren, wie dies durch Pfeile angedeutet ist. Die Gaszufuhr geschieht über längs der Wandung verlaufende Gasleitungen 25. Mit der gezeigten Konfiguration wurde sich eine solche Brennkammer gut für den Dual-Betrieb mit Vormischverbrennung eignen. Bei einem Druckabfallkoffizienten von 3 wird eine gute Durchmischung bereits nach ca. 3 Kanalhöhen erreicht. Die Zündung 26 des Gemischs erfolgt an der Stelle, an der der Wirbel aufplatzt (vortex break down). Zur zusätzlichen Flammenstabilisierung ist in der Ebene hinter der Mischzone, an der die Zündung erfolgt, ein Diffusor 27 angeordnet. Die infolge der Mischelemente erzielte gute Temperaturverteilung stromabwärts der Wirbel-Generatoren vermeidet die Gefahr von Rückzündungen, die ohne die Massnahme bei dem eingangs erwähnten Einleiten von Kühlluft in die Verbrennungsluft möglich sind.
- Bei der soeben geschilderten Brennkammer könnte es sich desweiteren um eine selbstzündende Nachbrennkammer stromabwärts einer Hochtemperatur-Gasturbine handeln. Der hohe Energieinhalt deren Abgase ermöglicht die Selbstzündung. Voraussetzung für eine Optimierung des Verbrennungsprozesses, insbesondere hinsichtlich einer Minimierung der Emissionen, ist ein effektives, schnelles Mischen der Heissgasströmung mit dem eingedüsten Brennstoff.
- Wird eine Wirbel-Generator-Konfiguration gemäss Fig. 15a-c mit zentraler Eindüsung des Brennstoffs über eine Lanze zugrundegelegt, so werden die Wirbel-Generatoren so ausgelegt, dass Rezirkulationszonen grösstenteils vermieden werden. Dadurch ist die Verweilzeit der Brennstoffpartikel in den heissen Zonen sehr kurz, was sich günstig auf mimimale Bildung von NOx auswirkt. Der eingedüste Brennstoff wird von den Wirbeln mitgeschleppt und mit der Hauptströmung vermischt. Er folgt dem schraubenförmigen Verlauf der Wirbel und wird stromabwärts der Wirbel in der Kammer gleichmässig feinverteilt. Dadurch reduziert sich die - bei der eingangs erwähnten radialen Eindüsung von Brennstoff in eine unverwirbelte Strömung - Gefahr von Aufprallstrahlen an der gegenüberliegenden Wand und die Bildung von sogenannten "hot spots".
- Da der hauptsächliche Mischprozess in den Wirbeln erfolgt und weitgehend unempfindlich gegen den Eindüsungsimpuls der Sekundärströmung ist, kann die Brennstoffeinspritzung flexibel gehalten werden und an andere Grenzbedingungen angepasst werden. So kann im ganzen Lastbereich der gleiche Eindüsungsimpuls beibehalten werden. Da das Mischen durch die Geometrie der Wirbel-Generatoren bestimmt wird, und nicht durch die Maschinenlast, im Beispielsfall die Gasturbinenleistung, arbeitet der so konfigurierte Nachbrenner auch bei Teillastbedingungen optimal. Der Verbrennungsprozess wird durch Anpassen der Zündverzugszeit des Brennstoffs und Mischzeit der Wirbel optimiert, was eine Minimierung der Emissionen gewährleistet.
- Desweiteren bewirkt das wirkungsvolle Vermischen ein gutes Temperaturprofil über dem durchströmten Querschnitt und reduziert überdies die Möglichkeit des Auftretens von thermoakustischer Instabilität. Allein durch ihre Anwesenheit wirken die Wirbel-Generatoren als Dämpfungsmassnahme gegen thermoakustische Schwingungen.
- Die Figuren 16 und 17 zeigen in einer Draufsicht eine Ausführungsvariante des Wirbel-Generators und in einer Vorderansicht seine Anordnung in einem kreisförmigen Kanal. Die beiden den Pfeilwinkel α einschliessenden Seitenflächen 11 und 13 weisen eine unterschiedliche Länge auf. Dies bedeutet, dass die Dachfläche 10 mit einer schräg zum durchströmten Kanal verlaufenden Kante 15a an der gleichen Kanalwand anliegt wie die Seitenwände. Über seiner Breite weist der Wirbel-Generator dann selbstverständlich einen unterschiedlichen Anstellwinkel Θ auf. Eine derartige Variante hat die Wirkung, dass Wirbel mit unterschiedlicher Stärke erzeugt werden. Beispielsweise kann damit auf einen der Hauptströmung anhaftenden Drall eingewirkt werden. Oder aber durch die unterschiedlichen Wirbel wird der ursprünglich drallfreien Hauptströmung stromabwärts der Wirbel-Generatoren ein Drall aufgezwungen, wie dies in Fig. 17 angedeutet ist. Eine derartige Konfiguration eignet sich gut als eigenständige, kompakte Brennereinheit. Bei der Verwendung von mehreren solcher Einheiten, beispielsweise in einer Gasturbinen-Ringbrennkammmer, kann der der Hauptströmung aufgezwungene Drall ausgenutzt werden, um das Querzündverhalten der Brennerkonfiguration, z.B. bei Teillast, zu verbesern.
- Selbstverständlich ist die Erfindung nicht auf die beschriebenen und gezeigten Beispiele beschränkt. Bezüglich der Anordnung der Wirbel-Generatoren im Verbund sind viele Kombinationen möglich, ohne den Rahmen der Erfindung zu verlassen. Auch die Einführung der Sekundärströmung in die Hauptströmung kann auf vielfältige Weise vorgenommen werden.
-
- 9
- Wirbel-Generator
- 10
- Dachfläche
- 11
- Seitenfläche
- 12
- Längskante
- 13
- Seitenfläche
- 14
- Längskante
- 15
- quer verlaufenden Kante von 10
- 16
- Verbindungskante
- 17
- Symmetrielinie
- 18
- Spitze
- 20, a
- Kanal
- 21, a,b
- Kanalwand
- 22, a,b,c,d
- Wandbohrung
- 23
- Rippe
- 24
- Brennstofflanze
- 25
- Gasleitung
- 26
- Fremdzündung
- 27
- Diffusor
- Θ
- Anstellwinkel
- α
- Pfeilwinkel
- h
- Höhe von 16
- H
- Kanalhöhe
- L
- Länge des Wirbel-Generators
Claims (23)
- Brennkammer, in welcher ein gasförmiger oder flüssiger Brennstoff als Sekundärströmung in eine gasförmige, kanalisierte Hauptströmung eingedüst wird, wobei die Sekundärströmung einen wesentlich kleineren Massenstrom aufweist als die Hauptströmung,
dadurch gekennzeichnet,
dass die Hauptströmung über Wirbel-Generatoren (9) geführt wird, von denen über der Breite oder dem Umfang des durchströmten Kanals (20) mehrere nebeneinander angeordnet sind, vorzugsweise ohne Zwischenräume, und deren Höhe (h) mindestens 50% der Höhe (H) des durchströmten Kanals oder des dem Wirbel-Generators zugeordneten Kanalteils beträgt, und dass die Sekundärströmung im unmittelbaren Bereich der Wirbel-Generatoren (9) in den Kanal (20) eingeleitet wird. - Brennkammer nach Anspruch 1, dadurch gekennzeichnet,- dass ein Wirbel-Generator (9) drei frei umströmte Flächen aufweist, die sich in Strömungsrichtung erstrecken und von denen eine die Dachfläche (10) und die beiden anderen die Seitenflächen (11, 13) bilden,- dass die Seitenflächen (11, 13) mit einer gleichen Kanalwand (21) bündig sind und miteinander den Pfeilwinkel (α) einschliessen,- dass die Dachfläche (10) mit einer quer zum durchströmten Kanal (20) verlaufenden Kante (15) an der gleichen Kanalwand (21) anliegt wie die Seitenwände,- und dass die längsgerichteten Kanten (12, 14) der Dachfläche, die bündig sind mit den in den Strömungskanal hineinragenden längsgerichteten Kanten der Seitenflächen (11, 13) unter einem Anstellwinkel (Θ) zur Kanalwand (21) verlaufen.
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass das Verhältnis Höhe (h) des Wirbel-Generators zur Kanalhöhe (H) so gewählt ist, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators (9) die volle Kanalhöhe ausfüllt.
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass die beiden den Pfeilwinkel (α) einschliessenden Seitenflächen (11, 13) des Wirbel-Generators (9) symmetrisch um eine Symmetrieachse (17) angeordnet sind.
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass die beiden den Pfeilwinkel (α) einschliessenden Seitenflächen (11, 13) des Wirbel-Generators (9) eine unterschiedliche Länge aufweisen, so dass die Dachfläche (10) mit einer schräg zum durchströmten Kanal (20) verlaufenden Kante (15) an der gleichen Kanalwand (21) anliegt wie die Seitenwände und über der Breite des Wirbel-Generators (9) einen unterschiedlichen Anstellwinkel (Θ) aufweist. (Fig. 16, 17)
- Brennkammer nach Anspruch 4, dadurch gekennzeichnet, dass die beiden den Pfeilwinkel (α) einschliessenden Seitenflächen (11, 13) eine Verbindungskante (16) miteinander umfassen, welche zusammen mit den längsgerichteten Kanten (12, 14) der Dachfläche (10) eine Spitze (18) bilden, und dass die Verbindungskante vorzugsweise senkrecht zu jener Kanalwand (21) verläuft, mit welcher die Seitenflächen (11, 13) bündig sind.
- Brennkammer nach Anspruch 4, dadurch gekennzeichnet, dass die Verbindungskante (16) und/oder die längsgerichteten Kanten (12, 14) der Dachfläche (10) zumindest annähernd scharf ausgebildet sind.
- Brennkammer nach Anspruch 4 und 6, dadurch gekennzeichnet, dass die Symmetrieachse (17) des Wirbel-Generators (9) parallel zur Kanalachse verläuft, wobei die Verbindungskante (16) der beiden Seitenflächen (11, 13) die stromabwärtige Kante des Wirbel-Generators (9) bildet und wobei die quer zum durchströmten Kanal (20) verlaufende Kante (15) der Dachfläche (10) die von der Hauptströmung zuerst beaufschlagte Kante ist.
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass der Anstellwinkel (Θ) der Dachfläche (10) und/oder der Pfeilwinkel (α) der Seitenflächen (11, 13) so gewählt sind, dass noch im Bereich des Wirbel-Generators (9) der von der Strömung erzeugte Wirbel aufplatzt.
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass der Kanal ringförmig ist, dass die Kanalwand, an der eine Mehrzahl von Wirbel-Generatoren (9) in Umfangsrichtung aneinandergereiht sind, die innere oder äussere Ringwand (21a, 21b) ist, und dass die Sekundärströmung über Wandbohrungen (22a) eingedüst wird, von denen sich je eine in der Symmetrielinie (17) stromabwärts unmittelbar hinter der Verbindungskante (16) in der gleichen Ringwand (21a, 21b) befindet, an der die Wirbel-Generatoren (9) angeordnet sind. (Fig. 3)
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass der Kanal (20) ringförmig ist, dass die Kanalwand, an der eine Mehrzahl von Wirbel-Generatoren im Umfangsrichtung aneinandergereiht sind, die innere und/oder äussere Ringwand (21a, 21b) ist, und dass die Sekundärströmung über Wandbohrungen (22b) eingedüst wird, die stromabwärts der Wirbel-Generatoren in jener Ringwand (21b, 21a) angeordnet sind, an der die Wirbel-Generatoren (9) nicht angeordnet sind, wobei die Wandbohrungen (22b) jeweils mittig zwischen den Verbindungskanten (16) zweier benachbarter Wirbel-Generatoren angebracht sind. (Fig. 4)
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass der Kanal (20) ringförmig ist, und dass sowohl an der äussseren Ringwand (21a) als auch an der inneren Ringwand (21b) eine gleiche Anzahl von Wirbel-Generatoren (9) im Umfangsrichtung aneinandergereiht sind, wobei die Verbindungskanten (16) von je zwei gegenüberliegenden Wirbel-Generatoren (9) auf der gleichen Radialen liegen. (Fig. 7)
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass der Kanal (20) ringförmig ist, und dass sowohl an der äussseren Ringwand (21a) als auch an der inneren Ringwand (21b) eine gleiche Anzahl von Wirbel-Generatoren (9) im Umfangsrichtung aneinandergereiht sind, wobei die Verbindungskanten (16) von je zwei gegenüberliegenden Wirbel-Generatoren (9) um eine halbe Teilung gegeneinander versetzt sind. (Fig. 9)
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass der Kanal (20) zumindest in der Ebene, in der sich die Wirbel-Generatoren (9) befinden, ein mittels radialen Rippen (23) segmentierter Kreisringkanal ist, wobei in einem Kreisringsegment je ein Wirbel-Generator (9) an den radialen Rippen (23) und/oder an den Ringwänden (21a, 21b) angeordnet ist. (Fig. 10, 11)
- Brennkammer nach Anspruch 14, dadurch gekennzeichnet, dass die Wirbel-Generatoren (9) an den radialen Rippen (23) und an den Ringwänden (21a, 21b) mittig angeordnet sind. (Fig. 11)
- Brennkammer nach Anspruch 14, dadurch gekennzeichnet, dass die Wirbel-Generatoren (9) an den radialen Rippen (23) und an den Ringwänden (21a, 21b) aussermittig angeordnet sind, wobei jeweils eine Seitenfläche (11, 13) jedes Wirbel-Generators (9) an einer Ecke des Kreisringsegmentes anliegt. (Fig. 12)
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass der Kanal (20) zumindest in der Ebene, in der sich die Wirbel-Generatoren (9) befinden, ein mittels radialen Rippen (23) segmentierter Kreisringkanal ist, wobei in einem Kreisringsegment je ein Wirbel-Generator (9) in den Ecken angeordnet ist. (Fig. 13)
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass von den an einer Kanalwand mit ihren Seitenwänden aneinandergereihten Wirbel-Generatoren (9) je zwei benachbarte Wirbel-Generatoren (9) in Längsrichtung des Kanals (20) gegeneinander versetzt sind. (Fig. 14)
- Brennkammer nach Anspruch 6, dadurch gekennzeichnet, dass die Sekundärströmung über Wandbohrungen (22c, 22d) eingedüst wird, die sich in den Seitenwänden (11, 13) des Wirbel-Generators (9) im Bereich der längsgerichteten Kanten (12, 14) der Dachfläche und/oder der Verbindungskante (16) befinden. (Fig. 6)
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass die Sekundärströmung über Wandbohrungen (22e) eingedüst wird, die sich im Bereich der Spitze (18) des Wirbel-Generators (9) befinden. (Fig. 5)
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass die Sekundärströmung über Brennstofflanzen (24) eingedüst wird, deren Mündungen sich stromabwärts des Wirbel-Generators (9) im Bereich dessen Spitze (18) befinden. (Fig. 15)
- Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass es sich um eine Brennkammer mit Vormischverbrennung handelt, wobei zur Flammenstabilisierung stromabwärts der Wirbel-Generatoren (9) in der Ebene, an der die Fremdzündung (26) erfolgt, ein Diffusor (27) angeordnet ist. (Fig. 15)
- Verwendung einer Brennkammer nach Anspruch 3 als selbstzündende Nachbrennkammer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1078/93 | 1993-04-08 | ||
CH107893 | 1993-04-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0623786A1 true EP0623786A1 (de) | 1994-11-09 |
EP0623786B1 EP0623786B1 (de) | 1997-05-21 |
Family
ID=4201952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94103551A Expired - Lifetime EP0623786B1 (de) | 1993-04-08 | 1994-03-09 | Brennkammer |
Country Status (4)
Country | Link |
---|---|
US (1) | US5513982A (de) |
EP (1) | EP0623786B1 (de) |
JP (1) | JP3527280B2 (de) |
DE (1) | DE59402803D1 (de) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0675322A2 (de) * | 1994-04-02 | 1995-10-04 | ABB Management AG | Vormischbrenner |
DE19527452A1 (de) * | 1995-07-27 | 1997-01-30 | Abb Management Ag | Mehrstufige Dampfturbine |
DE19536672A1 (de) * | 1995-09-30 | 1997-04-03 | Abb Research Ltd | Verfahren und Vorrichtung zur Verbrennung von Brennstoffen |
EP0718561A3 (de) * | 1994-12-24 | 1997-04-23 | Abb Management Ag | Brennkammer |
EP0776689A1 (de) * | 1995-12-01 | 1997-06-04 | Abb Research Ltd. | Mischvorrichtung |
WO1998028574A2 (de) * | 1996-12-20 | 1998-07-02 | Siemens Aktiengesellschaft | Brenner für fluidische brennstoffe, verfahren zum betrieb eines brenners und verwirbelungselement |
EP0924462A1 (de) | 1997-12-15 | 1999-06-23 | Asea Brown Boveri AG | Brenner für Betrieb eines Wärmeerzeugers |
US6572366B2 (en) | 2001-06-09 | 2003-06-03 | Alstom (Switzerland) Ltd | Burner system |
EP1382379A2 (de) * | 2002-07-20 | 2004-01-21 | ALSTOM (Switzerland) Ltd | Wirbelgenerator mit kontrollierter Nachlaufströmung |
DE10250208A1 (de) * | 2002-10-28 | 2004-06-03 | Rolls-Royce Deutschland Ltd & Co Kg | Vorrichtung zur Flammenstabilisierung für mager vorgemischte Brenner für Flüssigbrennstoff in Gasturbinenbrennkammern mittels Turbolatorelementen im Hauptstrom |
WO2007067085A1 (en) * | 2005-12-06 | 2007-06-14 | Siemens Aktiengesellschaft | Method and apparatus for combustion of a fuel |
EP2116766A1 (de) | 2008-05-09 | 2009-11-11 | ALSTOM Technology Ltd | Brennstofflanze |
EP2199674A1 (de) * | 2008-12-19 | 2010-06-23 | ALSTOM Technology Ltd | Brenner einer Gasturbine |
EP2261566A1 (de) * | 2009-05-28 | 2010-12-15 | Siemens AG | Brenner und Verfahren zur Verringerung von selbstinduzierten Flammenschwingungen in einem Brenner |
EP2522912A1 (de) * | 2011-05-11 | 2012-11-14 | Alstom Technology Ltd | Strömungsgleichrichter und Mischer |
WO2014029512A2 (en) | 2012-08-24 | 2014-02-27 | Alstom Technology Ltd | Sequential combustion with dilution gas mixer |
EP2728258A1 (de) * | 2012-11-02 | 2014-05-07 | Alstom Technology Ltd | Gasturbine |
US11454396B1 (en) | 2021-06-07 | 2022-09-27 | General Electric Company | Fuel injector and pre-mixer system for a burner array |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH687832A5 (de) * | 1993-04-08 | 1997-02-28 | Asea Brown Boveri | Brennstoffzufuehreinrichtung fuer Brennkammer. |
GB2297151B (en) * | 1995-01-13 | 1998-04-22 | Europ Gas Turbines Ltd | Fuel injector arrangement for gas-or liquid-fuelled turbine |
DE19510744A1 (de) * | 1995-03-24 | 1996-09-26 | Abb Management Ag | Brennkammer mit Zweistufenverbrennung |
DE19520291A1 (de) * | 1995-06-02 | 1996-12-05 | Abb Management Ag | Brennkammer |
DE19757189B4 (de) * | 1997-12-22 | 2008-05-08 | Alstom | Verfahren zum Betrieb eines Brenners eines Wärmeerzeugers |
DE19820992C2 (de) * | 1998-05-11 | 2003-01-09 | Bbp Environment Gmbh | Vorrichtung zur Durchmischung eines einen Kanal durchströmenden Gasstromes und Verfahren unter Verwendung der Vorrichtung |
EP1048898B1 (de) * | 1998-11-18 | 2004-01-14 | ALSTOM (Switzerland) Ltd | Brenner |
GB0219461D0 (en) * | 2002-08-21 | 2002-09-25 | Rolls Royce Plc | Fuel injection arrangement |
US6886342B2 (en) * | 2002-12-17 | 2005-05-03 | Pratt & Whitney Canada Corp. | Vortex fuel nozzle to reduce noise levels and improve mixing |
EP1690039A1 (de) * | 2003-10-21 | 2006-08-16 | Petroleum Analyzer Company, LP | Verbesserte verbrennungsvorrichtung und verfahren zur herstellung und verwendung derselben |
US7637720B1 (en) | 2006-11-16 | 2009-12-29 | Florida Turbine Technologies, Inc. | Turbulator for a turbine airfoil cooling passage |
DE102007014226B4 (de) * | 2007-03-24 | 2014-02-27 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren und Vorrichtung zur Homogenisierung einer Einlaufströmung in einen fächerförmigen Einlauf mit einem flachen Eingangsquerschnitt |
AT506577B1 (de) * | 2008-06-26 | 2009-10-15 | Gruber & Co Group Gmbh | Statische mischvorrichtung |
EP2253888B1 (de) | 2009-05-14 | 2013-10-16 | Alstom Technology Ltd | Gasturbinenbrenner mit einem Wirbelerzeuger mit Brennstofflanze |
EP2496882B1 (de) | 2009-11-07 | 2018-03-28 | Ansaldo Energia Switzerland AG | Injektionssystem mit brennstofflanzen für einen nachbrenner |
EP2496880B1 (de) | 2009-11-07 | 2018-12-05 | Ansaldo Energia Switzerland AG | Injektionssystem für einen nachbrenner |
WO2011054760A1 (en) | 2009-11-07 | 2011-05-12 | Alstom Technology Ltd | A cooling scheme for an increased gas turbine efficiency |
WO2011054766A2 (en) | 2009-11-07 | 2011-05-12 | Alstom Technology Ltd | Reheat burner injection system |
EP2496883B1 (de) * | 2009-11-07 | 2016-08-10 | Alstom Technology Ltd | Vormischrbrenner für einen gasturbinenbrenner |
EP2420731B1 (de) * | 2010-08-16 | 2014-03-05 | Alstom Technology Ltd | Brenner für Nachverbrennung |
US8881500B2 (en) * | 2010-08-31 | 2014-11-11 | General Electric Company | Duplex tab obstacles for enhancement of deflagration-to-detonation transition |
US8690536B2 (en) * | 2010-09-28 | 2014-04-08 | Siemens Energy, Inc. | Turbine blade tip with vortex generators |
US9297532B2 (en) * | 2011-12-21 | 2016-03-29 | Siemens Aktiengesellschaft | Can annular combustion arrangement with flow tripping device |
US9140214B2 (en) * | 2012-02-28 | 2015-09-22 | United Technologies Corporation | Method of using an afterburner to reduce high velocity jet engine noise |
US20140123653A1 (en) * | 2012-11-08 | 2014-05-08 | General Electric Company | Enhancement for fuel injector |
EP2789915A1 (de) * | 2013-04-10 | 2014-10-15 | Alstom Technology Ltd | Verfahren zum Betrieb einer Brennkammer und Brennkammer |
US20150159878A1 (en) * | 2013-12-11 | 2015-06-11 | Kai-Uwe Schildmacher | Combustion system for a gas turbine engine |
US9358557B2 (en) * | 2013-12-20 | 2016-06-07 | Young Living Essential Oils, Lc | Liquid diffuser |
CN103877837B (zh) * | 2014-02-26 | 2016-01-27 | 中国科学院过程工程研究所 | 一种应用于低温氧化脱硝技术的烟道臭氧分布器及其布置方式 |
WO2015134010A1 (en) * | 2014-03-05 | 2015-09-11 | Siemens Aktiengesellschaft | Combustor inlet flow static mixing system for conditioning air being fed to the combustor in a gas turbine engine |
EP2993404B1 (de) * | 2014-09-08 | 2019-03-13 | Ansaldo Energia Switzerland AG | Verdünnungsgas oder Luftmischer für eine Brennkammer einer Gasturbine |
US9777635B2 (en) * | 2014-12-31 | 2017-10-03 | General Electric Company | Engine component |
US11039550B1 (en) * | 2020-04-08 | 2021-06-15 | Google Llc | Heat sink with turbulent structures |
JP2024013988A (ja) * | 2022-07-21 | 2024-02-01 | 三菱重工業株式会社 | ガスタービン燃焼器およびガスタービン |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3974646A (en) * | 1974-06-11 | 1976-08-17 | United Technologies Corporation | Turbofan engine with augmented combustion chamber using vorbix principle |
DE3520772A1 (de) * | 1985-06-10 | 1986-12-11 | INTERATOM GmbH, 5060 Bergisch Gladbach | Mischvorrichtung |
DE3534268A1 (de) * | 1985-09-26 | 1987-04-02 | Deutsche Forsch Luft Raumfahrt | Zur vermeidung von stroemungsabloesungen ausgebildete oberflaeche eines umstroemten koerpers |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1022493A (en) * | 1910-08-31 | 1912-04-09 | Curtis C Meigs | Apparatus for making sulfuric acid. |
US1454196A (en) * | 1921-07-16 | 1923-05-08 | Trood Samuel | Device for producing and utilizing combustible mixture |
US1466006A (en) * | 1922-09-14 | 1923-08-28 | Trood Samuel | Apparatus for producing and utilizing combustible mixture |
US3051452A (en) * | 1957-11-29 | 1962-08-28 | American Enka Corp | Process and apparatus for mixing |
US3404869A (en) * | 1966-07-18 | 1968-10-08 | Dow Chemical Co | Interfacial surface generator |
US4164375A (en) * | 1976-05-21 | 1979-08-14 | E. T. Oakes Limited | In-line mixer |
EP0548396B1 (de) * | 1991-12-23 | 1995-02-22 | Asea Brown Boveri Ag | Vorrichtung für die Vermischung zweier gasförmiger Komponenten und Brenner, in welchem diese Vorrichtung eingesetzt wird |
CH687831A5 (de) * | 1993-04-08 | 1997-02-28 | Asea Brown Boveri | Vormischbrenner. |
DE59401295D1 (de) * | 1993-04-08 | 1997-01-30 | Abb Management Ag | Mischkammer |
-
1994
- 1994-03-09 DE DE59402803T patent/DE59402803D1/de not_active Expired - Lifetime
- 1994-03-09 EP EP94103551A patent/EP0623786B1/de not_active Expired - Lifetime
- 1994-04-08 US US08/225,319 patent/US5513982A/en not_active Expired - Lifetime
- 1994-04-08 JP JP07112494A patent/JP3527280B2/ja not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3974646A (en) * | 1974-06-11 | 1976-08-17 | United Technologies Corporation | Turbofan engine with augmented combustion chamber using vorbix principle |
DE3520772A1 (de) * | 1985-06-10 | 1986-12-11 | INTERATOM GmbH, 5060 Bergisch Gladbach | Mischvorrichtung |
DE3534268A1 (de) * | 1985-09-26 | 1987-04-02 | Deutsche Forsch Luft Raumfahrt | Zur vermeidung von stroemungsabloesungen ausgebildete oberflaeche eines umstroemten koerpers |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0675322A3 (de) * | 1994-04-02 | 1996-05-15 | Abb Management Ag | Vormischbrenner. |
EP0675322A2 (de) * | 1994-04-02 | 1995-10-04 | ABB Management AG | Vormischbrenner |
EP0718561A3 (de) * | 1994-12-24 | 1997-04-23 | Abb Management Ag | Brennkammer |
DE19527452A1 (de) * | 1995-07-27 | 1997-01-30 | Abb Management Ag | Mehrstufige Dampfturbine |
US5791891A (en) * | 1995-09-30 | 1998-08-11 | Abb Research Ltd. | Method and device for burning fuels |
DE19536672A1 (de) * | 1995-09-30 | 1997-04-03 | Abb Research Ltd | Verfahren und Vorrichtung zur Verbrennung von Brennstoffen |
EP0776689A1 (de) * | 1995-12-01 | 1997-06-04 | Abb Research Ltd. | Mischvorrichtung |
WO1998028574A2 (de) * | 1996-12-20 | 1998-07-02 | Siemens Aktiengesellschaft | Brenner für fluidische brennstoffe, verfahren zum betrieb eines brenners und verwirbelungselement |
WO1998028574A3 (de) * | 1996-12-20 | 1998-09-17 | Siemens Ag | Brenner für fluidische brennstoffe, verfahren zum betrieb eines brenners und verwirbelungselement |
EP0924462A1 (de) | 1997-12-15 | 1999-06-23 | Asea Brown Boveri AG | Brenner für Betrieb eines Wärmeerzeugers |
US6572366B2 (en) | 2001-06-09 | 2003-06-03 | Alstom (Switzerland) Ltd | Burner system |
EP1382379A2 (de) * | 2002-07-20 | 2004-01-21 | ALSTOM (Switzerland) Ltd | Wirbelgenerator mit kontrollierter Nachlaufströmung |
EP1382379A3 (de) * | 2002-07-20 | 2004-05-12 | ALSTOM Technology Ltd | Wirbelgenerator mit kontrollierter Nachlaufströmung |
DE10250208A9 (de) * | 2002-10-28 | 2004-12-23 | Rolls-Royce Deutschland Ltd & Co Kg | Vorrichtung zur Flammenstabilisierung für mager vorgemischte Brenner für Flüssigbrennstoff in Gasturbinenbrennkammern mittels Turbolatorelementen im Hauptstrom |
DE10250208A1 (de) * | 2002-10-28 | 2004-06-03 | Rolls-Royce Deutschland Ltd & Co Kg | Vorrichtung zur Flammenstabilisierung für mager vorgemischte Brenner für Flüssigbrennstoff in Gasturbinenbrennkammern mittels Turbolatorelementen im Hauptstrom |
WO2007067085A1 (en) * | 2005-12-06 | 2007-06-14 | Siemens Aktiengesellschaft | Method and apparatus for combustion of a fuel |
EP2116766A1 (de) | 2008-05-09 | 2009-11-11 | ALSTOM Technology Ltd | Brennstofflanze |
US9097426B2 (en) | 2008-05-09 | 2015-08-04 | Alstom Technology Ltd | Burner and fuel lance for a gas turbine installation |
US8938968B2 (en) | 2008-12-19 | 2015-01-27 | Alstom Technology Ltd. | Burner of a gas turbine |
EP2199674A1 (de) * | 2008-12-19 | 2010-06-23 | ALSTOM Technology Ltd | Brenner einer Gasturbine |
EP2261566A1 (de) * | 2009-05-28 | 2010-12-15 | Siemens AG | Brenner und Verfahren zur Verringerung von selbstinduzierten Flammenschwingungen in einem Brenner |
WO2010136300A3 (de) * | 2009-05-28 | 2011-01-27 | Siemens Aktiengesellschaft | Brenner und verfahren zur verringerung von selbstinduzierten flammenschwingungen in einem brenner |
EP2522912A1 (de) * | 2011-05-11 | 2012-11-14 | Alstom Technology Ltd | Strömungsgleichrichter und Mischer |
US8938971B2 (en) | 2011-05-11 | 2015-01-27 | Alstom Technology Ltd | Flow straightener and mixer |
WO2014029512A2 (en) | 2012-08-24 | 2014-02-27 | Alstom Technology Ltd | Sequential combustion with dilution gas mixer |
US9890955B2 (en) | 2012-08-24 | 2018-02-13 | Ansaldo Energia Switzerland AG | Sequential combustion with dilution gas mixer |
US10634357B2 (en) | 2012-08-24 | 2020-04-28 | Ansaldo Energia Switzerland AG | Sequential combustion with dilution gas mixer |
EP2728258A1 (de) * | 2012-11-02 | 2014-05-07 | Alstom Technology Ltd | Gasturbine |
US11454396B1 (en) | 2021-06-07 | 2022-09-27 | General Electric Company | Fuel injector and pre-mixer system for a burner array |
Also Published As
Publication number | Publication date |
---|---|
JP3527280B2 (ja) | 2004-05-17 |
US5513982A (en) | 1996-05-07 |
EP0623786B1 (de) | 1997-05-21 |
JPH06323540A (ja) | 1994-11-25 |
DE59402803D1 (de) | 1997-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0623786B1 (de) | Brennkammer | |
EP0619133B1 (de) | Mischkammer | |
EP0619457B1 (de) | Vormischbrenner | |
EP0619456B1 (de) | Brennstoffzufuhrsystem für Brennkammer | |
EP0620403B1 (de) | Misch- und Flammenstabilisierungseinrichtung in einer Brennkammer mit Vormischverbrennung | |
EP0675322B1 (de) | Vormischbrenner | |
EP0733861A2 (de) | Brennkammer mit Zweistufenverbrennung | |
DE2338673C2 (de) | Nachbrenneranordnung für ein Gasturbinenstrahltriebwerk | |
DE69421766T2 (de) | Wirbelmischvorrichtung für eine Brennkammer | |
DE69205855T2 (de) | Luft-/Kraftstoff-Mischer für eine Gasturbinenbrennkammer. | |
DE60310170T2 (de) | Brennstoffinjektionsvorrichtung | |
DE4426351A1 (de) | Brennkammer | |
DE4411623A1 (de) | Vormischbrenner | |
EP0718558B1 (de) | Brennkammer | |
CH707771A2 (de) | System mit Vielrohr-Brennstoffdüse mit mehreren Brennstoffinjektoren. | |
CH680467A5 (de) | ||
EP0775869B1 (de) | Vormischbrenner | |
EP2006606A1 (de) | Drallfreie Stabilisierung der Flamme eines Vormischbrenners | |
EP0718561A2 (de) | Brennkammer | |
EP0394800B1 (de) | Vormischbrenner für die Heissgaserzeugung | |
EP0742411B1 (de) | Luftzuströmung zu einer Vormischbrennkammer | |
EP2171354B1 (de) | Brenner | |
DE1198130B (de) | Brenner fuer ringfoermige Brennkammern | |
EP0730121A2 (de) | Vormischbrenner | |
EP0961905B1 (de) | Vorrichtung und verfahren zum verbrennen von brennstoff |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
17P | Request for examination filed |
Effective date: 19950405 |
|
17Q | First examination report despatched |
Effective date: 19951103 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ASEA BROWN BOVERI AG |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REF | Corresponds to: |
Ref document number: 59402803 Country of ref document: DE Date of ref document: 19970626 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970730 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59402803 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Effective date: 20120621 Ref country code: DE Ref legal event code: R081 Ref document number: 59402803 Country of ref document: DE Owner name: ALSTOM TECHNOLOGY LTD., CH Free format text: FORMER OWNER: ALSTOM, PARIS, FR Effective date: 20120621 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20120802 AND 20120808 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130225 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130328 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59402803 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20140308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140311 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140308 |