EP0619134B1 - Mischkammer - Google Patents
Mischkammer Download PDFInfo
- Publication number
- EP0619134B1 EP0619134B1 EP94103386A EP94103386A EP0619134B1 EP 0619134 B1 EP0619134 B1 EP 0619134B1 EP 94103386 A EP94103386 A EP 94103386A EP 94103386 A EP94103386 A EP 94103386A EP 0619134 B1 EP0619134 B1 EP 0619134B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- separating plate
- flow
- edge
- side surfaces
- vortex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/4317—Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
- B01F25/43171—Profiled blades, wings, wedges, i.e. plate-like element having one side or part thicker than the other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/4317—Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
- B01F25/43172—Profiles, pillars, chevrons, i.e. long elements having a polygonal cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/43197—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
- B01F25/431971—Mounted on the wall
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/4317—Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
Definitions
- the invention relates to a mixing device for mixing substances which may have the same or different mass flow, the substances to be mixed flowing on both sides and along a separating plate arranged upstream of the mixing zone, to which flow-influencing means are attached on both sides.
- the invention seeks to remedy this.
- the invention is therefore based on the object of providing a mixing device of the type mentioned at the outset, with which large-scale longitudinal vortices can be generated, which enable fast, controlled mixing of the flowing substances within a very short distance.
- the advantage of such a vortex generator can be seen in its particular simplicity in every respect.
- the element consisting of three walls with flow around it is completely problem-free.
- the roof surface can be joined with the two side surfaces in a variety of ways.
- the element can also be fixed to flat or curved channel walls in the case of weldable materials by simple weld seams. From a fluidic point of view, the element has a very low pressure drop when flowing around and it creates vortices without a dead water area.
- the element due to its generally hollow interior, the element can be cooled in a variety of ways and with various means.
- a vortex generator essentially consists of three freely flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.
- the two side surfaces 11 and 13 are each perpendicular to the associated wall 21 of a partition plate 22, it being noted that this is not mandatory.
- the side walls which consist of right-angled triangles, are fixed with their long sides on this wall 21, preferably gas-tight. They are oriented so that they form a joint on their narrow sides, including an arrow angle ⁇ .
- the joint is designed as a sharp connecting edge 16 and is also perpendicular to that wall 21 with which the side surfaces are flush. Installed in a duct, the flow cross-section is hardly affected by blocking because of the sharp connecting edge.
- the two side surfaces 11, 13 including the arrow angle ⁇ are symmetrical in shape, size and orientation and are arranged on both sides of an axis of symmetry. This axis of symmetry 17 is rectified like the channel axis.
- the roof surface 10 lies with a very flat edge 15 running transversely to the flow around the separating plate on the same wall 21 as the side walls 11, 13. Its longitudinal edges 12, 14 are flush with the longitudinal edges of the side surfaces protruding into the flow channel.
- the roof surface extends at an angle of incidence ⁇ to the wall 21. Its longitudinal edges 12, 14 form a tip 18 together with the connecting edge 16.
- the vortex generator can also be provided with a bottom surface with which it is fastened to the wall 21 in a suitable manner.
- a floor area is not related to the mode of operation of the element.
- the connecting edge 16 of the two side surfaces 11, 13 forms the downstream edge of the vortex generator 9.
- the edge 15 of the roof surface 10 which runs transversely to the flow around the separating plate 22 is thus the edge which is first acted upon by the channel flow.
- the vortex generator works as follows: When flowing around edges 12 and 14, the flow is converted into a pair of opposing vortices. The vortex axes lie in the axis of the flow. The geometry of the vortex generators is chosen so that no backflow zones arise during vortex generation.
- the swirl number of the vortex is determined by a corresponding choice of the angle of attack ⁇ and / or the arrow angle ⁇ . With increasing angles, the vortex strength or the number of swirls is increased and the location of the vortex breakdown (if desired at all) moves upstream into the area of the vortex generator itself. Depending on the application, these two angles are ⁇ and ⁇ determined by design and by the process itself. It is then only necessary to adjust the height h of the connecting edge 16 (FIG. 4).
- the sharp connecting edge 16 in FIG. 2 is the point which is first acted upon by the channel flow.
- the element is rotated by 180 °.
- the two opposite vortices have changed their sense of rotation. They rotate along the roof surface and strive towards the wall on which the vortex generator is mounted.
- the shape of the flow around the separating plate 22 is not essential for the operation of the invention.
- the partition plate 22 could also be a straight or hexagonal or other cross-sectional shape.
- the partition plate 22 is curved.
- the above statement that the side surfaces are perpendicular to the wall must of course be relativized.
- the connecting edge 16 lying on the line of symmetry 17 is perpendicular to the corresponding wall. In the case of annular walls, the connecting edge 16 would thus be aligned radially, as is shown in FIG. 3.
- FIG. 3 partially shows a cylindrical container with a built-in partition plate 22.
- the cross section through which flow is divided is divided into two coaxial, circular channels 20 ′ and 20 ′′ of the same channel height H by this partition plate 22.
- the outer wall of the partition plate forms the inner channel wall 21'b of the outer channel, while the inner wall of the partition plate forms the outer channel wall 21''a of the inner channel.
- the same channels could flow through the two channels at different speeds; or it could be flowing substances of different density or chemical composition based on must be mixed in the shortest possible way to a certain uniformly distributed concentration.
- an equal number of vortex generators 9 are lined up with gaps in the circumferential direction.
- the height h of the elements 9 is approximately 90% of the channel height H.
- the annular elements, as shown in FIG. 4, are provided in the same axial plane. The flow takes place perpendicularly into the drawing plane in FIG. 3; the elements 9 are oriented so that the connecting edges 16 are directed against the flow. It can be seen that the direction of rotation of the vortices generated is descending in the area of the connecting edge, i.e. strives towards the wall on which the vortex generator is arranged. At the end of the separating plate 22, the eddy currents generated on its two sides are forced into one another, with the desired mixing occurring.
- a further increase in the mixing quality is achieved if, as shown in FIG. 3, the connecting edges 16 of the vortex generators in the two subchannels are offset by half a division. If swirl-like vortices are used in the subchannels, it can be seen that the vortices rotating around a common radial on both sides of the separating plate combine to form a large vortex with a uniform direction of rotation.
- the vortex generators in the two partial channels could have different heights compared to the channel height H.
- the height h of the connecting edge 16 will be coordinated with the channel height H in such a way that the vortex generated immediately downstream of the vortex generator already reaches such a size that the full channel height H or the full height of the vortex generator is assigned Part of the channel is filled, which leads to a uniform distribution in the applied cross section.
- Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the pressure loss coefficient also increases with a larger ratio h / H.
- FIG. 4 also illustrates how the cross section of the mixing zone d increases steeply downstream of the trailing edge of the partition plate. With this configuration, it can be seen that an intimate mixture is achieved after a short distance.
- the invention is not only limited to the exemplary embodiments and examples shown and described.
- the outer channel walls 21'a and 21''b could of course also be omitted - there is the possibility of combining vortex generators according to FIGS. 1 and 2, for example to to increase the growth of the mixing zone d to one side.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
Description
- Die Erfindung betrifft eine Mischvorrichtung zum Mischen von Stoffen, welche den gleichen oder ungleichen Massenstrom aufweisen können, wobei die zu mischenden Stoffe beidseits und längs einer stromaufwärts der Mischzone angeordneten Trennplatte strömen, an welcher an beiden Seiten strömungsbeeinflussende Mittel angebracht sind.
- In vielen Sektoren wie beispielsweise in der Chemie, der Nahrungsmittel- oder Pharmaproduktion usw. wird verlangt, Stoffe auf kürzestem Weg innig zu vermischen. Die Qualität des ganzen Prozesses hängt meistens von der erzielten Mischqualität ab. Dabei sollte der Druckabfall anlässlich des Mischvorgangs in "vernünftigem" Rahmen bleiben, um die Prozesskosten durch niedrige Pumparbeit klein zu halten.
- Anlässlich der Mischung zwei freier Scherschichten von Strömungen unterschiedlicher Geschwindigkeit, Dichte oder Konzentration am Ende einer Trennplatte werden bei Abwesenheit von zusätzlichen Mischelementen zweidimensionale (spanwise) Wirbel erzeugt, die für Mischzwecke zu langsam sind, weil die Wachsrate einer freien Scherschicht ungenügend ist.
- Hier will die Erfindung Abhilfe schaffen. Die Erfindung liegt deshalb die Aufgabe zugrunde, eine Mischvorrichtung der eingangs genannten zu schaffen, mit der gross-skalige Längswirbel erzeugt werden können, die ein schnelles, kontrolliertes Mischen der strömenden Stoffe innert kürzester Strecke ermöglichen.
- Erfindungsgemäss wird dies mit den Merkmalen der Patentansprüche errreicht.
- Mit dem neuen statischen Mischer, den die 3-dimensionalen Wirbel-Generatoren darstellen, ist es möglich, in der Mischzone ausserordentlich kurze Mischstrecken bei gleichzeitig geringem Druckverlust zu erzielen, ohne die Gesamtkonfiguration der Anlage ändern zu müssen.
- Der Vorteil eines solchen Wirbel-Generators ist in seiner besonderen Einfachheit in jeder Hinsicht zu sehen. Fertigungstechnisch ist das aus drei umströmten Wänden bestehende Element völlig problemlos. Die Dachfläche kann mit den beiden Seitenflächen auf verschiedenste Arten zusammengefügt werden. Auch die Fixierung des Elementes an ebenen oder gekrümmten Kanalwänden kann im Falle von schweissbaren Materialien durch einfache Schweissnähte erfolgen. Vom strömungstechnischen Standpunkt her weist das Element beim Umströmen einen sehr geringen Druckverlust auf und es erzeugt Wirbel ohne Totwassergebiet. Schliesslich kann das Element durch seinen in der Regel hohlen Innenraum auf die verschiedensten Arten und mit diversen Mitteln gekühlt werden.
- Es ist sinnvoll, wenn die beiden den Pfeilwinkel α einschliessenden Seitenflächen symmetrisch um eine Symmetrieachse angeordnet sind. Damit werden drallgleiche Wirbel erzeugt.
- In der Zeichnung ist ein Ausführungsbeispiel der Erfindung schematisch dargestellt.
Es zeigen: - Fig. 1
- eine perspektivische Darstellung eines Wirbel-Generators;
- Fig. 2
- eine Anordnungsvariante des Wirbel-Generators;
- Fig. 3
- einen teilweisen Schnitt durch ein doppelkanalig durchströmtes Behältnis mit eingebauten Wirbel-Generatoren;
- Fig. 4
- einen teilweisen Längsschnitt durch das Behältnis nach Linie 4-4 in Fig. 3.
- In den Figuren 1 und 2 besteht ein Wirbel-Generator im wesentlichen aus drei frei umströmten dreieckigen Flächen. Es sind dies eine Dachfläche 10 und zwei Seitenflächen 11 und 13. In ihrer Längserstreckung verlaufen diese Flächen unter bestimmten Winkeln in Strömungsrichtung.
- In den gezeigten Beispielen stehen die beiden Seitenflächen 11 und 13 jeweils senkrecht auf der zugehörigen Wand 21 einer Trennplatte 22, wobei angemerkt wird, dass dies nicht zwingend ist. Die Seitenwände, welche aus rechtwinkligen Dreiecken bestehen, sind mit ihren Längsseiten auf dieser Wand 21 fixiert, vorzugsweise gasdicht. Sie sind so orientiert, dass sie an ihren Schmalseiten einen Stoss bilden unter Einschluss eines Pfeilwinkels α. Der Stoss ist als scharfe Verbindungskante 16 ausgeführt und steht ebenfalls senkrecht zu jener Wand 21, mit welcher die Seitenflächen bündig sind. In einem Kanal eingebaut, wird wegen der scharfen Verbindungskante der Durchströmquerschnitt kaum durch Sperrung beeinträchtigt. Die beiden den Pfeilwinkel α einschliessenden Seitenflächen 11, 13 sind symmetrisch in Form, Grösse und Orientierung und sind beidseitig einer Symmetrieachse angeordnet. Diese Symmetrieachse 17 ist gleichgerichtet wie die Kanalachse.
- Die Dachfläche 10 liegt mit einer quer zur umströmten Trennplatte verlaufenden und sehr flach ausgebildeten Kante 15 an der gleichen Wand 21 an wie die Seitenwände 11, 13. Ihre längsgerichteten Kanten 12, 14 sind bündig mit den in den Strömungskanal hineinragenden längsgerichteten Kanten der Seitenflächen. Die Dachfläche verläuft unter einem Anstellwinkel Θ zur Wand 21. Ihre Längskanten 12, 14 bilden zusammen mit der Verbindungskante 16 eine Spitze 18.
- Selbstverständlich kann der Wirbel-Generator auch mit einer Bodenfläche versehen sein, mit welcher er auf geeignete Art an der Wand 21 befestigt ist. Eine derartige Bodenfläche steht indes in keinem Zusammenhang mit der Wirkungsweise des Elementes.
- In Fig. 1 bildet die Verbindungskante 16 der beiden Seitenflächen 11, 13 die stromabwärtige Kante des Wirbel-Generators 9. Die quer zur umströmten Trennplatte 22 verlaufende Kante 15 der Dachfläche 10 ist somit die von der Kanalströmung zuerst beaufschlagte Kante.
- Die Wirkungsweise des Wirbel-Generators ist folgende: Beim Umströmen der Kanten 12 und 14 wird die Strömung in ein Paar gegenläufiger Wirbel umgewandelt. Die Wirbelachsen liegen in der Achse der Strömung. Die Geometrie der Wirbel-Generatoren ist so gewählt, dass bei der Wirbelerzeugung keine Rückströmzonen entstehen.
- Die Drallzahl des Wirbels wird bestimmt durch entsprechende Wahl des Anstellwinkels Θ und/oder des Pfeilwinkels α. Mit steigenden Winkeln wird die Wirbelstärke bzw. die Drallzahl erhöht und der Ort des Wirbelaufplatzens (vortex break down) - sofern dies überhaupt gewünscht ist - wandert stromaufwärts bis hin in den Bereich des Wirbel-Generators selbst. Je nach Anwendung sind diese beiden Winkel Θ und α durch konstruktive Gegebenheiten und durch den Prozess selbst vorgegeben. Angepasst werden muss dann nur noch die Höhe h der Verbindungskante 16 (Fig. 4).
- Im Gegensatz zu Fig. 1 ist in Fig. 2 die scharfe Verbindungskante 16 jene Stelle, die von der Kanalströmung zuerst beaufschlagt wird. Das Element ist um 180° gedreht. Wie aus der Darstellung erkennbar, haben die beiden gegenläufigen Wirbel ihren Drehsinn geändert. Sie rotieren oberhalb der Dachfläche entlang und streben der Wand zu, auf welcher der Wirbel-Generator montiert ist.
- Es wird darauf hingewiesen, dass die Form der umströmten Trennplatte 22 für die Wirkungsweise der Erfindung nicht wesentlich ist. Statt der in Fig. 3 gezeigten Ringform der Trennplatte 22 könnte es sich auch um eine gerade oder hexagonale oder eine sonstige Querschnittsform handeln. Im Beispielsfall der Fig. 3 ist die Trennplatte 22 gekrümmt. Die obige Aussage, dass die Seitenflächen senkrecht auf der Wand stehen, muss in einem solchen Fall selbstverständlich relativiert werden. Massgebend ist, dass die auf der Symmetrielinie 17 liegende Verbindungskante 16 senkrecht auf der entsprechenden Wand steht. Im Fall von ringförmigen Wänden würde die Verbindungskante 16 somit radial ausgerichtet sein, wie dies in Fig. 3 dargestellt ist.
- Die Figur 3 zeigt teilweise ein zylindrisches Behältnis mit eingebauter Trennplatte 22. Der durchströmte Querschnitt ist durch diese Trennplatte 22 in zwei koaxiale, kreisringförmige Kanäle 20' und 20'' gleicher Kanalhöhe H, unterteilt. Die äussere Wandung der Trennplatte bildet die innere Kanalwand 21'b des äusseren Kanals, während die innere Wandung der Trennplatte die äussere Kanalwand 21''a des inneren Kanals bildet. Die beiden Kanäle könnten von einem gleichen Medium mit unterschiedlichen Geschwindigkeit durchströmt sein; oder es könnte sich um strömende Stoffe unterschiedlicher Dichte oder chemischer Zusammensetzung handeln, die auf kürzestem Wege zu einer bestimmten gleichmässig verteilter Konzentration vermischt werden müssen.
- An diesen beiden Kanalwänden 21'b und 21''a ist jeweils eine gleiche Anzahl von Wirbel-Generatoren 9 in Umfangsrichtung mit Zwischenräumen aneinandergereiht. Die Höhe h der Elemente 9 beträgt ca. 90% der Kanalhöhe H. Die ringförmig verlaufenden Elemente sind, wie Fig. 4 gezeigt, in der gleichen Axialebene vorgesehen. Die Strömung erfolgt in Fig. 3 senkrecht in die Zeichenebene hinein; die Elemente 9 sind so orientiert, dass die Verbindungskanten 16 gegen die Strömung gerichtet sind. Erkennbar ist, dass der Drehsinn der erzeugten Wirbel im Bereich der Verbindungskante absteigend ist, d.h. zu jener Wand hinstrebt, auf der der Wirbel-Generator angeordnet ist. Am Ende der Trennplatte 22 werden die auf deren beiden Seiten erzeugten Wirbelströme ineinandergezwängt, wobei es zu der gewünschten Durchmischung kommt.
- Eine weitere Erhöhung der Mischqualität wird erreicht, wenn wie in Fig. 3 gezeigt, die Verbindungskanten 16 der Wirbel-Generatoren in den beiden Teilkanälen um eine halbe Teilung gegeneinander versetzt sind. Werden drallgleiche Wirbel in den Teilkanälen zugrundegelegt, so ist erkennbar, dass die um eine gemeinsame Radiale rotierenden Wirbel beider Trennplattenseiten sich zu einem grossen Wirbel mit einheitlichem Drehsinn kombinieren.
- Aus Fig 4, in welcher die durchströmten Teilkanäle mit 20' und 20'' bezeichnet sind, ist erkennbar (aber nicht dargestellt), dass die Wirbel-Generatoren in beiden Teilkanälen unterschiedliche Höhen gegenüber der Kanalhöhe H aufweisen könnten. In der Regel wird man die Höhe h der Verbindungskante 16 so mit der Kanalhöhe H abstimmen, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators bereits eine solche Grösse erreicht, dass die volle Kanalhöhe H oder die volle Höhe des dem Wirbel-Generators zugeordneten Kanalteils ausgefüllt wird, was zu einer gleichmässigen Verteilung in dem beaufschlagten Querschnitt führt. Ein weiteres Kriterium, welches Einfluss auf das zu wählende Verhältnis h/H nehmen kann, ist der Druckabfall, der beim Umströmen des Wirbel-Generators auftritt. Es versteht sich, dass mit grösserem Verhältnis h/H auch der Druckverlustbeiwert ansteigt.
- In Fig. 4 ist ebenfalls illustriert, wie der Querschnitt der Mischzone d stromabwärts der Trennplattenhinterkante steil ansteigt. Bei dieser Konfiguration ist erkennbar, dass eine innige Mischung bereits nach einer kurzen Strecke vollzogen ist.
- Selbstverständlich ist die Erfindung nicht nur auf die gezeigten und beschriebenen Ausführungs- und Anwendungsbeispiele beschränkt. Durch gezielte Auslegung und Dimensionierung der Wirbel-Generatoren hat man bei gegebenen Strömungen ein einfaches Mittel an der Hand, je nach Bedarf den Mischvorgang zu steuern. In Abweichung zu den in Fig. 3 und 4 gezeigten Anordnungen - bei welchen selbstverständlich auch die äussern Kanalwände 21'a und 21''b entfallen könnten - besteht die Möglichkeit, Wirbel-Generatoren nach den Fig. 1 und 2 zu kombinieren, um beispielsweise das Wachstum der Mischzone d nach einer Seite hin zu vergrössern.
-
- 9
- Wirbel-Generator
- 10
- Dachfläche
- 11
- Seitenfläche
- 12
- Längskante
- 13
- Seitenfläche
- 14
- Längskante
- 15
- quer verlaufenden Kante von 10
- 16
- Verbindungskante
- 18
- Spitze
- 20', 20''
- Teilkanal
- 21, a,b
- Wand
- 22
- Trennplatte
- Θ
- Anstellwinkel
- α
- Pfeilwinkel
- h
- Höhe von 16
- H
- Kanalhöhe
- L
- Länge des Wirbel-Generators
- d
- Mischzone
Claims (9)
- Mischvorrichtung zum Mischen von Stoffen, welche den gleichen oder ungleichen Massenstrom aufweisen können, wobei die zu mischenden Stoffe beidseits und längs einer stromaufwärts der Mischzone (d) angeordneten Trennplatte (22) strömen, an welcher an beiden Seiten strömungsbeeinflussende Mittel angebracht sind, wobei- die Mittel Wirbel-Generatoren (9) sind, von denen über der Breite oder dem Umfang der Trennplatte (22) quer zur Strömungsrichtung mehrere nebeneinander angeordnet sind,- ein Wirbel-Generator (9) drei vom gleichen Stoff frei umströmte Flächen aufweist, die sich in Strömungsrichtung erstrecken und von denen eine die Dachfläche (10) und die beiden andern die Seitenflächen (11, 13) bilden,- die Seitenflächen (11, 13) mit einer gleichen Wand der Trennplatte (22) bündig sind und miteinander den Pfeilwinkel (α) einschliessen,- die Dachfläche (10) mit einer quer zur umströmten Wand der Trennplatte (22) verlaufenden Kante (15) an der gleichen Wand anliegt wie die Seitenwände,- und die längsgerichteten Kanten (12, 14) der Dachfläche, die bündig sind mit den in die Strömung hineinragenden längsgerichteten Kanten der Seitenflächen unter einem Anstellwinkel (Θ) zur Wand der Trennplatte (22) verlaufen.
- Mischvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die beiden den Pfeilwinkel (α) einschliessenden Seitenflächen (11, 13) des Wirbel-Generators (9) symmetrisch um eine Symmetrieachse angeordnet sind.
- Mischvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die beiden den Pfeilwinkel (α) einschliessenden Seitenflächen (11, 13) eine Verbindungskante (16) miteinander umfassen, welche zusammen mit den längsgerichteten Kanten (12, 14) der Dachfläche (10) eine Spitze (18) bilden, und dass die Verbindungskante vorzugsweise senkrecht zu jener Wand der Trennplatte (22) verläuft, mit welcher die Seitenflächen bündig sind.
- Mischvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Verbindungskante (16) und/oder die längsgerichteten Kanten (12, 14) der Dachfläche zumindest annähernd scharf ausgebildet sind.
- Mischvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Symmetrieachse des Wirbel-Generators (9) in Strömungsrichtung verläuft, wobei die Verbindungskante (16) der beiden Seitenflächen (11, 13) die stromabwärtige Kante des Wirbel-Generators bildet und wobei die quer zur umströmten Wand verlaufende Kante (15) der Dachfläche (10) die von der Strömung zuerst beaufschlagte Kante ist.
- Mischvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Symmetrieachse in Strömungsrichtung verläuft, wobei die Verbindungskante (16) der beiden Seitenflächen (11, 13) die von der Strömung zuerst beaufschlagte Kante ist, während die quer quer zur umströmten Wand verlaufende Kante (15) der Dachfläche (10) stromabwärts angeordnet ist.
- Mischvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Trennplatte (22) in einem doppelkanaligen Behältnis angeordnet ist unter Bildung von zwei ringförmigen Teilkanälen (20', 20''), und dass in jedem Teilkanal die gleiche Anzahl von Wirbel-Generatoren (9) im Umfangsrichtung angeordnet ist, und dass die Wirbel-Generatoren beidseitig an der Trennplatte (22) in einer gleichen Axialebene befestigt sind.
- Mischvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass das Verhältnis Höhe (h) des Wirbel-Generators zur Höhe (H) des Teilkanals (20', 20'') so gewählt ist, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators die volle Teilkanalhöhe oder die volle Höhe des dem Wirbel-Generators zugeordneten Kanalteils ausfüllt.
- Mischvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die an der Trennplatte (22) angeordneten Wirbel-Generatoren (9) von zwei benachbarten Teilkanälen um eine halbe Teilung gegeneinander versetzt sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH108493 | 1993-04-08 | ||
CH1084/93 | 1993-04-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0619134A1 EP0619134A1 (de) | 1994-10-12 |
EP0619134B1 true EP0619134B1 (de) | 1996-12-18 |
Family
ID=4202086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94103386A Expired - Lifetime EP0619134B1 (de) | 1993-04-08 | 1994-03-07 | Mischkammer |
Country Status (4)
Country | Link |
---|---|
US (1) | US5423608A (de) |
EP (1) | EP0619134B1 (de) |
JP (1) | JP3578355B2 (de) |
DE (1) | DE59401295D1 (de) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59401177D1 (de) * | 1993-04-08 | 1997-01-16 | Abb Management Ag | Misch- und Flammenstabilisierungseinrichtung in einer Brennkammer mit Vormischverbrennung |
CH687832A5 (de) * | 1993-04-08 | 1997-02-28 | Asea Brown Boveri | Brennstoffzufuehreinrichtung fuer Brennkammer. |
EP0623786B1 (de) * | 1993-04-08 | 1997-05-21 | Asea Brown Boveri Ag | Brennkammer |
CA2186253A1 (en) * | 1994-03-25 | 1995-10-05 | Klaus Huttenhofer | Combined feed and mixing device |
US5638682A (en) * | 1994-09-23 | 1997-06-17 | General Electric Company | Air fuel mixer for gas turbine combustor having slots at downstream end of mixing duct |
DE19510744A1 (de) * | 1995-03-24 | 1996-09-26 | Abb Management Ag | Brennkammer mit Zweistufenverbrennung |
DE19544816A1 (de) | 1995-12-01 | 1997-06-05 | Abb Research Ltd | Mischvorrichtung |
WO1998028574A2 (de) | 1996-12-20 | 1998-07-02 | Siemens Aktiengesellschaft | Brenner für fluidische brennstoffe, verfahren zum betrieb eines brenners und verwirbelungselement |
US5797726A (en) * | 1997-01-03 | 1998-08-25 | General Electric Company | Turbulator configuration for cooling passages or rotor blade in a gas turbine engine |
US5738493A (en) * | 1997-01-03 | 1998-04-14 | General Electric Company | Turbulator configuration for cooling passages of an airfoil in a gas turbine engine |
US6015229A (en) * | 1997-09-19 | 2000-01-18 | Calgon Carbon Corporation | Method and apparatus for improved mixing in fluids |
DE19820992C2 (de) * | 1998-05-11 | 2003-01-09 | Bbp Environment Gmbh | Vorrichtung zur Durchmischung eines einen Kanal durchströmenden Gasstromes und Verfahren unter Verwendung der Vorrichtung |
USRE40407E1 (en) | 1999-05-24 | 2008-07-01 | Vortex Flow, Inc. | Method and apparatus for mixing fluids |
US6637668B2 (en) * | 2001-10-24 | 2003-10-28 | Magarl, Llc | Thermostatic control valve with fluid mixing |
DE10330023A1 (de) * | 2002-07-20 | 2004-02-05 | Alstom (Switzerland) Ltd. | Wirbelgenerator mit kontrollierter Nachlaufströmung |
CN1204945C (zh) * | 2003-09-05 | 2005-06-08 | 刘兆彦 | 一种管、筒或塔内构件立交盘 |
US7300242B2 (en) * | 2005-12-02 | 2007-11-27 | Siemens Power Generation, Inc. | Turbine airfoil with integral cooling system |
US7708453B2 (en) * | 2006-03-03 | 2010-05-04 | Cavitech Holdings, Llc | Device for creating hydrodynamic cavitation in fluids |
US7637720B1 (en) | 2006-11-16 | 2009-12-29 | Florida Turbine Technologies, Inc. | Turbulator for a turbine airfoil cooling passage |
AT506577B1 (de) * | 2008-06-26 | 2009-10-15 | Gruber & Co Group Gmbh | Statische mischvorrichtung |
MX2011005391A (es) * | 2008-11-26 | 2011-08-03 | Calgon Carbon Corp | Metodo y aparato para el uso de elementos de mezclado en un sistema de desinfeccion uv de aguas residuales/aguas recicladas. |
EP2496882B1 (de) | 2009-11-07 | 2018-03-28 | Ansaldo Energia Switzerland AG | Injektionssystem mit brennstofflanzen für einen nachbrenner |
WO2011054739A2 (en) | 2009-11-07 | 2011-05-12 | Alstom Technology Ltd | Reheat burner injection system |
WO2011054771A2 (en) | 2009-11-07 | 2011-05-12 | Alstom Technology Ltd | Premixed burner for a gas turbine combustor |
WO2011054760A1 (en) | 2009-11-07 | 2011-05-12 | Alstom Technology Ltd | A cooling scheme for an increased gas turbine efficiency |
WO2011054766A2 (en) | 2009-11-07 | 2011-05-12 | Alstom Technology Ltd | Reheat burner injection system |
RU2455056C2 (ru) * | 2010-06-07 | 2012-07-10 | Открытое акционерное общество "Научно-производственная корпорация "Иркут" (ОАО "Корпорация "Иркут") | Способ диспергирования жидкости и устройство для его осуществления |
DE102012008732A1 (de) * | 2012-05-04 | 2013-11-07 | Xylem Water Solutions Herford GmbH | Mischvorrichtung für UV-Wasserbehandlungsanlagen mit offenem Kanal |
EP2725302A1 (de) | 2012-10-25 | 2014-04-30 | Alstom Technology Ltd | Nachbrenneranordnung |
US20140123653A1 (en) * | 2012-11-08 | 2014-05-08 | General Electric Company | Enhancement for fuel injector |
WO2014114533A1 (en) * | 2013-01-24 | 2014-07-31 | Siemens Aktiengesellschaft | Burner system having turbulence elements |
RU193887U1 (ru) * | 2019-05-17 | 2019-11-19 | Публичное акционерное общество "Научно-производственная корпорация "Иркут" (ПАО "Корпорация "Иркут") | Устройство для аэрации жидкости |
CN110488853B (zh) * | 2019-08-29 | 2021-06-08 | 北京航空航天大学 | 一种降低转轴涡动影响的混合式惯导系统稳定控制指令的计算方法 |
US11898755B2 (en) | 2022-06-08 | 2024-02-13 | General Electric Company | Combustor with a variable volume primary zone combustion chamber |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1022493A (en) * | 1910-08-31 | 1912-04-09 | Curtis C Meigs | Apparatus for making sulfuric acid. |
US1454196A (en) * | 1921-07-16 | 1923-05-08 | Trood Samuel | Device for producing and utilizing combustible mixture |
US1466006A (en) * | 1922-09-14 | 1923-08-28 | Trood Samuel | Apparatus for producing and utilizing combustible mixture |
US3051452A (en) * | 1957-11-29 | 1962-08-28 | American Enka Corp | Process and apparatus for mixing |
US3404869A (en) * | 1966-07-18 | 1968-10-08 | Dow Chemical Co | Interfacial surface generator |
US4164375A (en) * | 1976-05-21 | 1979-08-14 | E. T. Oakes Limited | In-line mixer |
GB1599895A (en) * | 1977-09-28 | 1981-10-07 | Mahler A L | Device for homogenization of a particle filled fluid stream |
CA1129303A (en) * | 1978-07-19 | 1982-08-10 | Figgie International Inc. | Pressure-demand breathing apparatus with automatic air shut-off |
DE3520772A1 (de) * | 1985-06-10 | 1986-12-11 | INTERATOM GmbH, 5060 Bergisch Gladbach | Mischvorrichtung |
DE8700259U1 (de) * | 1986-01-31 | 1987-03-19 | Gebrüder Sulzer AG, Winterthur | Vorrichtung für eine Extraktionskolonne oder eine Mischeinrichtung |
JPS63294494A (ja) * | 1987-05-27 | 1988-12-01 | Nippon Denso Co Ltd | 熱交換器 |
US4929088A (en) * | 1988-07-27 | 1990-05-29 | Vortab Corporation | Static fluid flow mixing apparatus |
DE4041295A1 (de) * | 1990-12-21 | 1992-07-02 | Siemens Ag | Kernreaktor-anlage, insbesondere fuer leichtwasserreaktoren, mit einer kernrueckhaltevorrichtung, verfahren zur notkuehlung bei einer solchen kernreaktor-anlage und verwendung turbulenzerzeugender deltafluegel |
-
1994
- 1994-03-07 EP EP94103386A patent/EP0619134B1/de not_active Expired - Lifetime
- 1994-03-07 DE DE59401295T patent/DE59401295D1/de not_active Expired - Lifetime
- 1994-04-08 JP JP07112194A patent/JP3578355B2/ja not_active Expired - Lifetime
- 1994-04-08 US US08/225,395 patent/US5423608A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE59401295D1 (de) | 1997-01-30 |
EP0619134A1 (de) | 1994-10-12 |
JPH07784A (ja) | 1995-01-06 |
US5423608A (en) | 1995-06-13 |
JP3578355B2 (ja) | 2004-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0619134B1 (de) | Mischkammer | |
EP0619133B1 (de) | Mischkammer | |
EP1110599B1 (de) | Dynamischer Mischer für zahnärztliche Abdruckmassen | |
EP0776689B1 (de) | Mischvorrichtung | |
DE19501241C2 (de) | Statisches Mischmodul und Mischapparat zur Verwendung desselben | |
DE1236479B (de) | Vorrichtung zum Mischen stroemender Medien, mit stillstehenden Leitelementen | |
EP1278594B1 (de) | Zweiwellen-zwangsmischer, verwendung des zweiwellen-zwangsmischers und verfahren zum betrieb eines zweiwellen-zwangsmischers | |
DE4223434C1 (de) | Scheibenförmiges Mischwerkzeug | |
DE2323930A1 (de) | Vorrichtung zum erzeugen von um eine achse verlaufenden wendelfoermigen stroemungen | |
DE2822096C2 (de) | ||
DE2739998C3 (de) | Strangpreßvorrichtung zur Herstellung von geschäumtem Kunststoff | |
DE19530820A1 (de) | Stationäres Mischgerät | |
DE69521908T2 (de) | Statische luftmischungsvorrichtung | |
DE2914066C2 (de) | Rohrdrehgelenk | |
DE3239109C2 (de) | ||
DE2643560C2 (de) | Rührvorrichtung | |
DE602005003356T2 (de) | Verfahren, vorrichtung und rotor zur homogenisierung eines mediums | |
DE3427928C1 (de) | Vorrichtung zum Verteilen von Schuettgut in einem Behaelter | |
DE2811489A1 (de) | Rohrmischer | |
DE3618062A1 (de) | Vorrichtung zum vermischen von pastoesen oder gelartigen komponenten | |
DE2146611A1 (de) | Kuehlmischer | |
DE2830029A1 (de) | Selbstreinigender mischer | |
DE3021606C2 (de) | ||
DE2307616A1 (de) | Extruderschnecke | |
DE1806174C3 (de) | Vorrichtung fur die Flussigkeits extraktion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
K1C1 | Correction of patent application (title page) published |
Effective date: 19941012 |
|
17P | Request for examination filed |
Effective date: 19950307 |
|
17Q | First examination report despatched |
Effective date: 19951124 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ASEA BROWN BOVERI AG |
|
REF | Corresponds to: |
Ref document number: 59401295 Country of ref document: DE Date of ref document: 19970130 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970227 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59401295 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Effective date: 20120621 Ref country code: DE Ref legal event code: R081 Ref document number: 59401295 Country of ref document: DE Owner name: ALSTOM TECHNOLOGY LTD., CH Free format text: FORMER OWNER: ALSTOM, PARIS, FR Effective date: 20120621 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20120802 AND 20120808 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ALSTOM TECHNOLOGY LTD., CH Effective date: 20120918 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130225 Year of fee payment: 20 Ref country code: FR Payment date: 20130315 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130328 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59401295 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20140306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140308 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140306 |