[go: up one dir, main page]

EP0776689B1 - Mischvorrichtung - Google Patents

Mischvorrichtung Download PDF

Info

Publication number
EP0776689B1
EP0776689B1 EP96810767A EP96810767A EP0776689B1 EP 0776689 B1 EP0776689 B1 EP 0776689B1 EP 96810767 A EP96810767 A EP 96810767A EP 96810767 A EP96810767 A EP 96810767A EP 0776689 B1 EP0776689 B1 EP 0776689B1
Authority
EP
European Patent Office
Prior art keywords
partial
partitioning wall
vortex
mixing device
vortex generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810767A
Other languages
English (en)
French (fr)
Other versions
EP0776689A1 (de
Inventor
Adnan Dr. Eroglu
Wolfgang Dr. Polifke
Peter Dr. Senior
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
ABB Alstom Power Switzerland Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Alstom Power Switzerland Ltd filed Critical ABB Alstom Power Switzerland Ltd
Publication of EP0776689A1 publication Critical patent/EP0776689A1/de
Application granted granted Critical
Publication of EP0776689B1 publication Critical patent/EP0776689B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • B01F25/43172Profiles, pillars, chevrons, i.e. long elements having a polygonal cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431971Mounted on the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/221Improvement of heat transfer
    • F05B2260/222Improvement of heat transfer by creating turbulence

Definitions

  • the invention relates to a mixing device for mixing two or more fluids that are the same or different May have mass flow, the to be mixed Fluids flow along a partition, on the downstream End of several vortex generators with free flow areas are arranged, several of them side by side are arranged, the side faces of the vortex generator are flush with one side of the partition and with each other include the arrow angle, the longitudinal ones Edges of the side surfaces at an angle to the wall run and the two side surfaces a connecting edge include each other, preferably perpendicular to the wall runs and the edge first hit by the flow is.
  • EP 0619 134 A1 is a generic Mixing chamber described, the one, having several vortex generators Separating plate provides.
  • a vortex generator has three free-flowing surfaces, one roof surface and two side surfaces, the roof surface runs under one Angle of attack to the partition plate, the two side surfaces close together Arrow angle on.
  • the vortex generator is used to generate from a material flow Flow around longitudinal vortices.
  • a vortex generator of almost the same structure goes out of the EP 0 620 403 A1.
  • the vortex generators described in the two publications cited above each have a trailing edge that runs in a straight line on, i.e. the edge over which the roof surface is connected to the partition.
  • the invention has for its object in a mixing device to improve the mixing of the type mentioned.
  • the advantages of the invention include that by introducing the twisted towards the partition Trailing edges the downstream edge of the partition is extended. As a result, the contact area of the streams to be mixed are increased; further eddies created by the trailing edges. These vertebrae support and strengthen those of the longitudinal edges generated vortices of the vortex generator. In addition, the mixing of the streams to be mixed increased because the vertebrae are facing each other Propagate electricity, creating an interwoven flow pattern arises.
  • the vortex generator element From the fluidic point of view, the vortex generator element a very low pressure drop when flowing around on and it creates vortices with no dead water area. Finally can the element through its usually hollow interior cooled in various ways and with various means become.
  • Vortex generator 9 essentially from several freely flowing triangular surfaces. There are this is two partial roof surfaces 1, 2, two side surfaces 11, 13 and two partial floor areas not visible in FIG. 1. In These surfaces run under certain longitudinal directions Angles in the direction of flow.
  • the two side surfaces 11 and 13 are each perpendicular on the associated top 21 of a partition 22, wherein it is noted that this is not mandatory.
  • the side faces 11, 13, which consist of right-angled triangles, are fixed here with their longer cathete on the partition 22. They are so oriented that they are shorter with theirs
  • the catheter forms a joint, including an arrow angle ⁇ .
  • the joint is designed as a sharp connecting edge 16 and is also perpendicular to the partition 22. In one Channel installed because of the sharp connection edge the flow cross-section hardly affected by blocking. Due to the longer cathets of the side surfaces 11, 13 and an intersection point 8 is formed by the connecting edge 16, which is in the partition.
  • the two the arrow angle ⁇ enclosing side surfaces 11, 13 are symmetrical in Shape, size and orientation and are on both sides of a plane of symmetry arranged by an axis of symmetry 17th and the connecting edge 16 is formed.
  • the axis of symmetry 17 is usually the same direction as the channel axis and so like the channel flow.
  • An essentially longitudinal edge 12 of the partial roof surface 1 is flush with the hypotenuse of the side surface 11 protruding into the flow channel. This longitudinal edge 12 runs at an angle of inclination ⁇ to the wall 22.
  • a downstream rear edge 5 of the partial roof surface 1 lies in a plane perpendicular to Axis of symmetry 17 and is rotated by an angle ⁇ with respect to the partition wall 22, so that the rear edge 5 comes to lie below the partition wall.
  • slots must therefore be made in the partition 22, or the partition must be adapted accordingly.
  • the partial roof surface 2 is symmetrical to the partial roof surface with respect to the plane of symmetry, formed by the axis of symmetry 17 and the connecting edge 16.
  • a longitudinal edge 14 of the partial roof surface 2 is flush with the hypothenus of the side surface 13 protruding into the flow channel Angle of attack ⁇ to the wall 22.
  • a rear edge 6 of the partial roof surface 2 also lies in the plane perpendicular to the axis of symmetry 17 and is rotated by the negative angle ⁇ with respect to the partition wall, so that the rear edge 6 comes to lie below the partition wall 22.
  • the second longitudinal edge of the partial roof surface 1 forms with the second longitudinal edge of the partial roof surface 2 a connecting edge 10 which lies in the plane of symmetry formed by the axis of symmetry 17 and the connecting edge 16.
  • the connecting edge 10 forms with the trailing edge 5 and with the trailing edge 6 a tip 7 located at the downstream end of the vortex generator 9.
  • the longitudinal edges 12, 14 together with the connecting edge 16 and the connecting edge 10 form a tip 18 located at the upstream end of the vortex generator 9.
  • the triangular partial floor surface 3 is defined through the trailing edge 5 and the intersection 8
  • the triangular Partial floor surfaces 4 are defined by the rear edge 6 and the intersection point 8.
  • a connecting edge 30 of the partial bottom surfaces 3, 4 thus extends from the top 7 to to intersection 8.
  • the vortex generator can also be used without floor surfaces are produced, then the partition Function of the floor areas takes over. This requires the partition be serrated at its downstream end, accordingly the partial floor areas. To the contact area on can further increase the downstream end of the partition the trailing edges of the vortex generator also in different Layers that are not perpendicular to the axis of symmetry.
  • a vortex generator 9 ' is on the underside 20 of the partition 22 and a vortex generator 9 the top 21 of the partition arranged side by side.
  • the Vortex generator 9 ' is identical in shape and size to that Vortex generator 9, the names already used above for the vortex generator 9 are therefore also for the vortex generator 9 'used, but are provided with an apostrophe.
  • the vortex generator 9 can be rotated by 180 ° can be transferred to the vortex generator 9 'about an axis of rotation 19.
  • the axis of rotation 19 lies in the partition 22, is parallel to the axis of symmetry 17 and goes through the intersection of Long edge 14 and trailing edge 6.
  • the connecting edge 16 of the two side surfaces 11, 13 forms always the upstream edge of the vortex generators 9, 9 '.
  • the sharp connecting edge 16 is the point that of the channel flow is applied first.
  • the flow across Partition 22 trailing edges 5, 6, 5 ', 6' the roof areas are the last from the channel flow loaded edges.
  • the vortex generators 9 'can also be different are designed as the vortex generators 9, wherein the vortex generators always have one of the basic configurations shown have similar geometry. For example, this is advantageous for mixing physically different flows.
  • the vortex generator works as follows: Flowing around edges 12 and 14, the flow becomes a pair opposite vortex converted. The vortex axes are in the axis of the flow. The geometry of the vortex generators is selected so that there are no backflow zones during vortex generation arise.
  • the vortices of the vortex generator 9 rotate along the roof surfaces and strive for the partition 22 to which the vortex generator is mounted.
  • the vertebrae of the vortex generator 9 'rotate below the roof surfaces along and also strive towards the partition 22.
  • the swirl number of the vertebra is determined by appropriate Choice of the angle of attack ⁇ and / or the arrow angle ⁇ . With increasing angles become the vortex strength or the swirl number increased and the place of vortex breakdown (vortex break down) - if this is desired at all - migrates upstream down to the area of the vortex generator itself. Depending on Application are these two angles ⁇ and ⁇ by constructive Conditions and determined by the process itself. customized then only the height h of the connecting edge needs to be 16. By choosing the angle ⁇ the vertebrae become like this influences that the larger ⁇ is selected, the better the Mixing of the partial flows takes place. However, the angle ⁇ can not be chosen arbitrarily large, because with increasing ⁇ the pressure drop also increases.
  • the shape of the flow Partition 22 is not essential to the operation of the invention is. Instead of the straight form shown in the figures the partition 22 could also be an annular or act hexagonal or other cross-sectional shape.
  • the above statement that the Side surfaces are perpendicular to the wall of course can be put into perspective.
  • the decisive factor is that on the Line of symmetry 17 lying connection edge 16 perpendicular the corresponding wall. In the case of annular walls the connecting edge 16 would thus be aligned radially his.
  • Fig. 5 shows partially a channel with a built-in partition 22.
  • the cross section through which flow is through this partition 22 divided into two subchannels with channel heights H1 and H2.
  • the top 21 of the partition wall 22 forms a channel wall of the upper channel 41
  • the underside 20 of the partition 22 forms a channel wall of the lower channel 42.
  • the two Channels could be from the same medium with different ones Flow through speed; or it could be flowing fluids of different density or chemical composition act the shortest way to a specific one evenly distributed concentration can be mixed have to.
  • the vortex generators 9, 9 ' can be different in the channels 41, 42 Heights h1, h2 compared to the channel heights H1, H2 exhibit.
  • the heights h1, h2 of the connecting edges 16, 16 'of the vortex generators 9, 9' so with the the respective channel heights H1, H2 that the generated Vortex immediately downstream of the vortex generator already such a size that the full channel height H1 + H2 or the full amount of that assigned to the vortex generator Channel part is filled, resulting in an even distribution leads in the loaded cross section.
  • Another one Criterion, which influence on the ratio to be chosen h / H can be taken is the pressure drop that occurs when flowing around the Vortex generator occurs. It goes without saying that with larger Ratio h / H also the pressure loss coefficient increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Description

Technisches Gebiet
Die Erfindung betrifft eine Mischvorrichtung zum Mischen von zwei oder mehreren Fluiden, welche den gleichen oder ungleichen Massenstrom aufweisen können, wobei die zu mischenden Fluide längs einer Trennwand strömen, an deren stromabwärtigem Ende mehrere frei umströmte Flächen aufweisende Wirbel-Generatoren angeordnet sind, von denen mehrere nebeneinander angeordnet sind, wobei die Seitenflächen des Wirbel-Generators mit einer Seite der Trennwand bündig sind und miteinander den Pfeilwinkel einschliessen, die längsgerichteten Kanten der Seitenflächen unter einem Anstellwinkel zur Wand verlaufen und die beiden Seitenflächen eine Verbindungskante miteinander umfassen, die vorzugsweise senkrecht zur Wand verläuft und die von der Strömung zuerst beaufschlagte Kante ist.
Stand der Technik
Derartige Mischvorrichtungen sind beispielsweise bekannt aus EP-A1-0 619 134. In vielen Sektoren wie beispielsweise in der Chemie, der Nahrungsmittel- oder Pharmaproduktion usw. wird verlangt, Fluide auf kürzestem Weg innig zu vermischen. Die Qualität des ganzen Prozesses hängt meistens von der erzielten Mischqualität ab. Dabei sollte der Druckabfall anlässlich des Mischvorgangs in "vernünftigem" Rahmen bleiben, um die Prozesskosten durch niedrige Pumparbeit klein zu halten.
In der vorstehend genannten Druckschrift EP 0619 134 A1 ist eine gattungsgemäße Mischkammer beschrieben, die eine, mehrere Wirbel-Generatoren aufweisende Trennplatte vorsieht. Ein Wirbel-Generator weist drei frei umströmte Flächen auf, eine Dachfläche und zwei Seitenflächen, Die Dachfläche verläuft unter einem Anstellwinkel zur Trennplatte, die beiden Seitenflächen schließen miteinander einen Pfeilwinkel ein. Der Wirbel-Generator wird von einem Stoffstrom zu Erzeugung von Längswirbeln umströmt. Ein Wirbel-Generator nahezu gleichen Aufbaus geht aus der EP 0 620 403 A1 hervor.
Die in beiden vorstehend zitierten Druckschriften beschriebenen Wirbel-Generatoren weisen in charakterisierender Weise jeweils eine geradlinig verlaufende Hinterkante auf, d.h. jene Kante über die die Dachfläche mit der Trennwand verbunden ist.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, bei einer Mischvorrichtung der eingangs genannten Art die Durchmischung zu verbessern.
Erfindungsgemäss wird dies dadurch erreicht,
  • dass eine Dachfläche aus zwei Teildachflächen besteht, wobei die längsgerichteten Kanten der Teildachflächen bündig sind mit den Kanten der Seitenflächen und die Teildachflächen über eine Verbindungskante miteinander verbunden sind,
  • dass die stromabwärts liegenden Hinterkanten der Teildachflächen mit der Trennwand einen Winkel einschliessen, wodurch die Hinterkanten in Bezug auf die Seitenflächen im wesentlichen auf die andere Seite der Trennwand zu liegen kommen,
  • und dass eine Bodenfläche aus zwei Teilbodenflächen besteht, die über eine Verbindungskante miteinander und über die Hinterkanten mit den Teildachflächen verbunden sind.
Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass durch die Einführung der gegenüber der Trennwand verdrehten Hinterkanten die stromabwärtige Kante der Trennwand verlängert wird. Dadurch wird zum einen die Kontaktfläche der zu mischenden Ströme erhöht, zum anderen werden durch die in der Strömung angestellten Hinterkanten weitere Wirbel erzeugt. Diese Wirbel unterstützen und verstärken die an den längsgerichteten Kanten erzeugten Wirbel des Wirbelgenerators. Zudem wird die Durchmischung der zu mischenden Ströme erhöht, da die Wirbel in Richtung des jeweils gegenüberliegenden Stromes propagieren, wodurch ein verwobenes Strömungsmuster entsteht.
Vom strömungstechnischen Standpunkt her weist das Wirbelgenerator-Element beim Umströmen einen sehr geringen Druckverlust auf und es erzeugt Wirbel ohne Totwassergebiet. Schliesslich kann das Element durch seinen in der Regel hohlen Innenraum auf die verschiedensten Arten und mit diversen Mitteln gekühlt werden.
Es ist besonders zweckmässig, wenn die beiden den Pfeilwinkel α einschliessenden Seitenflächen sowie die Teildachflächen des Wirbel-Generators symmetrisch zu einer Symmetrieebene, gebildet durch eine Symmetrieachse und die Verbindungskante der Seitenflächen angeordnet sind. Damit werden drallgleiche Wirbel erzeugt.
Kurze Beschreibung der Zeichnung
In den Zeichnungen ist ein Ausführungsbeispiel der Erfindung schematisch dargestellt.
Es zeigen:
Fig. 1
eine perspektivische Darstellung eines Wirbelgenerators, Sicht von oben;
Fig. 2
eine perspektivische Darstellung des Wirbelgenerators, Sicht von unten;
Fig. 3
eine perspektivische Darstellung mehrerer Wirbelgeneratoren;
Fig. 4
Draufsicht auf die Wirbelgeneratoren von Fig.3;
Fig. 5
Teilquerschnitt durch einen Kanal mit darin angeordneten Wirbelgeneratoren.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt.
Weg zur Ausführung der Erfindung
Nach Fig. 1 besteht ein Wirbel-Generator 9 im wesentlichen aus mehreren frei umströmten dreieckigen Flächen. Es sind dies zwei Teil-Dachflächen 1, 2, zwei Seitenflächen 11, 13 und zwei in der Figur 1 nicht sichtbare Teil-Bodenflächen. In ihrer Längserstreckung verlaufen diese Flächen unter bestimmten Winkeln in Strömungsrichtung.
Die beiden Seitenflächen 11 und 13 stehen jeweils senkrecht auf der zugehörigen Oberseite 21 einer Trennwand 22, wobei angemerkt wird, dass dies nicht zwingend ist. Die Seitenflächen 11, 13, welche aus rechtwinkligen Dreiecken bestehen, sind hier mit ihrer längeren Kathete auf der Trennwand 22 fixiert. Sie sind so orientiert, dass sie mit ihrer kürzeren Kathete einen Stoss bilden unter Einschluss eines Pfeilwinkels α. Der Stoss ist als scharfe Verbindungskante 16 ausgeführt und steht ebenfalls senkrecht zur Trennwand 22. In einem Kanal eingebaut, wird wegen der scharfen Verbindungskante der Durchströmquerschnitt kaum durch Sperrung beeinträchtigt. Durch die längeren Katheten der Seitenflächen 11, 13 und durch die Verbindungskante 16 wird ein Schnittpunkt 8 gebildet, der in der Trennwand liegt. Die beiden den Pfeilwinkel α einschliessenden Seitenflächen 11, 13 sind symmetrisch in Form, Grösse und Orientierung und sind beidseitig einer Symmetrieebene angeordnet, welche durch eine Symmetrieachse 17 und die Verbindungskante 16 gebildet wird. Die Symmetrieachse 17 ist üblicherweise gleichgerichtet wie die Kanalachse und damit wie die Kanalströmung.
Eine im wesentlichen längsgerichtete Kante 12 der Teil-Dachfläche 1 ist bündig mit der in den Strömungskanal hineinragenden Hypothenuse der Seitenfläche 11. Diese Längskante 12 verläuft unter einem Anstellwinkel  zur Wand 22. Eine stromabwärts liegende Hinterkante 5 der Teildachfläche 1 liegt in einer Ebene senkrecht zur Symmetrieachse 17 und ist um einen Winkel γ gegenüber der Trennwand 22 verdreht, so dass die Hinterkante 5 unterhalb der Trennwand zu liegen kommt. Zur Montage des Wirbelgenerators 9 müssen deshalb Schlitze in der Trennwand 22 angebracht werden, oder die Trennwand muss entsprechend angepasst werden.
Die Teildachfläche 2 ist symmetrisch zur Teildachfläche bezüglich der Symmetriebene, gebildet durch die Symmetrieachse 17 und die Verbindungskante 16. Somit ist eine längsgerichtete Kante 14 der Teil-Dachfläche 2 bündig mit der in den Strömungskanal hineinragenden Hypothenuse der Seitenfläche 13. Die Längskante 14 verläuft unter dem Anstellwinkel  zur Wand 22. Eine Hinterkante 6 der Teildachfläche 2 liegt ebenfalls in der Ebene senkrecht zur Symmetrieachse 17 und ist um den negativen Winkel γ gegenüber der Trennwand verdreht, so dass die Hinterkante 6 unterhalb der Trennwand 22 zu liegen kommt. Die zweite längsgerichtete Kante der Teil-Dachfläche 1 bildet mit der zweiten längsgerichteten Kante der Teil-Dachfläche 2 eine Verbindungskante 10, die in der durch die Symmetrieachse 17 und die Verbindungskante 16 gebildeten Symmetrieebene liegt. Die Verbindungskante 10 bildet mit der Hinterkante 5 sowie mit der Hinterkante 6 eine am stromabwärtigen Ende des Wirbelgenerators 9 liegende Spitze 7. Die Längskanten 12, 14 bilden zusammen mit der Verbindungskante 16 sowie der Verbindungskante 10 eine am stromaufwärtigen Ende des Wirbelgenerators 9 liegende Spitze 18.
Nach Fig. 2 wird die dreieckige Teil-Bodenfläche 3 definiert durch die Hinterkante 5 und den Schnittpunkt 8, die dreieckige Teil-Bodenflächen 4 wird definiert durch die Hinterkante 6 und den Schnittpunkt 8. Eine Verbindungskante 30 der Teil-Bodenflächen 3, 4 erstreckt sich somit von der Spitze 7 bis zum Schnittpunkt 8.
Selbstverständlich kann der Wirbel-Generator auch ohne Bodenflächen hergestellt werden, wobei dann die Trennwand die Funktion der Bodenflächen übernimmt. Dazu muss die Trennwand an ihrem stromabwärtigen Ende gezackt ausgeformt werden, entsprechend den Teil-Bodenflächen. Um die Kontaktfläche am stromabwärtigen Ende der Trennwand weiter zu erhöhen, können die Hinterkanten des Wirbelgenerators auch in verschiedenen Ebenen liegen, die nicht senkrecht zur Symmetrieachse verlaufen.
In Fig. 3 und Fig. 4 ist ein Wirbelgenerator 9' auf der Unterseite 20 der Trennwand 22 und ein Wirbelgenerator 9 auf der-Oberseite 21 der Trennwand nebeneinander angeordnet. Der Wirbelgenerator 9' ist in Form und Grösse identisch mit dem Wirbelgenerator 9, die bereits oben verwendeten Bezeichnungen für den Wirbelgenerator 9 werden deshalb auch für den Wirbel-generator 9' verwendet, sind jedoch mit einem Apostroph versehen. Der Wirbelgenerator 9 kann durch eine Drehung von 180° um eine Drehachse 19 in den Wirbelgenerator 9' überführt werden. Die Drehachse 19 liegt in der Trennwand 22, ist parallel zur Symmetrieachse 17 und geht durch den Schnittpunkt von Längskante 14 und Hinterkante 6.
Die Verbindungskante 16 der beiden Seitenflächen 11, 13 bildet immer die stromaufwärtige Kante der Wirbel-Generatoren 9, 9'. Die scharfe Verbindungskante 16 ist jene Stelle, die von der Kanalströmung zuerst beaufschlagt wird. Die quer zur umströmten Trennwand 22 verlaufenden Hinterkanten 5, 6, 5', 6' der Dachflächen sind somit die von der Kanalströmung zuletzt beaufschlagten Kanten.
Selbstverständlich können die Wirbelgeneratoren 9' auch anders als die Wirbelgeneratoren 9 ausgestaltet werden, wobei die Wirbelgeneratoren immer eine der gezeigten Grundkonfiguration ähnliche Geometrie aufweisen. Dies ist beispielsweise vorteilhaft zur Mischung physikalisch unterschiedlicher Strömungen.
Die Wirkungsweise des Wirbel-Generators ist folgende: Beim Umströmen der Kanten 12 und 14 wird die Strömung in ein Paar gegenläufiger Wirbel umgewandelt. Die Wirbelachsen liegen in der Achse der Strömung. Die Geometrie der Wirbel-Generatoren ist so gewählt, dass bei der Wirbelerzeugung keine Rückströmzonen entstehen. Die Wirbel des Wirbelgenerators 9 rotieren oberhalb der Dachflächen entlang und streben der Trennwand 22 zu, auf welcher der Wirbel-Generator montiert ist. Die Wirbel des Wirbelgenerators 9' rotieren unterhalb der Dachflächen entlang und streben ebenfalls der Trennwand 22 zu.
Die Drallzahl des Wirbels wird bestimmt durch entsprechende Wahl des Anstellwinkels  und/oder des Pfeilwinkels α. Mit steigenden Winkeln wird die Wirbelstärke bzw. die Drallzahl erhöht und der Ort des Wirbelaufplatzens (vortex break down) - sofern dies überhaupt gewünscht ist - wandert stromaufwärts bis hin in den Bereich des Wirbel-Generators selbst. Je nach Anwendung sind diese beiden Winkel  und α durch konstruktive Gegebenheiten und durch den Prozess selbst vorgegeben. Angepasst werden muss dann nur noch die Höhe h der Verbindungskante 16. Durch die Wahl des Winkels γ werden die Wirbel so beeinflusst, dass je grösser γ gewählt wird, desto besser die Durchmischung der Teilströme erfolgt. Der Winkel γ kann jedoch nicht beliebig gross gewählt werden, da mit grösser werdendem γ auch der Druckabfall ansteigt.
Es wird darauf hingewiesen, dass die Form der umströmten Trennwand 22 für die Wirkungsweise der Erfindung nicht wesentlich ist. Statt der in den Figuren gezeigten geraden Form der Trennwand 22 könnte es sich auch um eine ringförmige oder hexagonale oder eine sonstige Querschnittsform handeln. Bei einer gekrümmten Trennwand muss die obige Aussage, dass die Seitenflächen senkrecht auf der Wand stehen, selbstverständlich relativiert werden. Massgebend ist, dass die auf der Symmetrielinie 17 liegende Verbindungskante 16 senkrecht auf der entsprechenden Wand steht. Im Fall von ringförmigen Wänden würde die Verbindungskante 16 somit radial ausgerichtet sein.
Die Fig. 5 zeigt teilweise einen Kanal mit eingebauter Trennwand 22. Der durchströmte Querschnitt ist durch diese Trennwand 22 in zwei Teilkanäle mit den Kanalhöhen H1 und H2 unterteilt. Die Oberseite 21 der Trennwand 22 bildet eine Kanalwand des oberen Kanals 41, die.Unterseite 20 der Trennwand 22 bildet eine Kanalwand des unteren Kanals 42. Die beiden Kanäle könnten von einem gleichen Medium mit unterschiedlichen Geschwindigkeit durchströmt sein; oder es könnte sich um strömende Fluide unterschiedlicher Dichte oder chemischer Zusammensetzung handeln, die auf kürzestem Wege zu einer bestimmten gleichmässig verteilter Konzentration vermischt werden müssen.
An den beiden Kanalwänden 20 und 21 der Trennwand ist jeweils eine gleiche Anzahl von Wirbel-Generatoren 9, 9' mit Zwischenräumen aneinandergereiht. Die Höhe h1 der Elemente 9 sowie dei Höhe h2 der Elemente 9' beträgt beispielsweise ca. 90% der zugehörigen Kanalhöhen H1 und H2. Die Strömung erfolgt in Fig. 5 senkrecht aus der Zeichenebene heraus; die Elemente 9, 9' sind so orientiert, dass die Verbindungskanten 16 gegen die Strömung gerichtet sind. Der Drehsinn der erzeugten Wirbel im Bereich der Verbindungskante ist absteigend, d.h. er strebt der jeweiligen Kanal-Wand 20, 21 zu, auf der der Wirbel-Generator angeordnet ist. Am Ende der Trennwand 22, d.h. an den Hinterkanten 5, 6, 5', 6', werden die auf deren beiden Seiten erzeugten Wirbelströme ineinandergezwängt, wobei es zu der gewünschten Durchmischung kommt.
Die drallgleichen Wirbel in den Teilkanälen 41, 42 kombinieren sich zu einem grossen Wirbel mit einheitlichem Drehsinn. Die Drehachse dieses grossen Wirbels ist im wesentlichen die Drehachse 19.
Die Wirbel-Generatoren 9, 9' können in den Kanälen 41, 42 unterschiedliche Höhen h1, h2 gegenüber den Kanalhöhen H1, H2 aufweisen. In der Regel wird man die Höhen h1, h2 der Verbindungskanten 16, 16' der Wirbelgeneratoren 9, 9' so mit den jeweiligen Kanalhöhen H1, H2 abstimmen, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators bereits eine solche Grösse erreicht, dass die volle Kanalhöhe H1+H2 oder die volle Höhe des dem Wirbel-Generators zugeordneten Kanalteils ausgefüllt wird, was zu einer gleichmässigen Verteilung in dem beaufschlagten Querschnitt führt. Ein weiteres Kriterium, welches Einfluss auf das zu wählende Verhältnis h/H nehmen kann, ist der Druckabfall, der beim Umströmen des Wirbel-Generators auftritt. Es versteht sich, dass mit grösserem Verhältnis h/H auch der DrucKverlustbeiwert ansteigt.
Durch gezielte Auslegung und Dimensionierung der Wirbel-Generatoren hat man bei gegebenen Strömungen ein einfaches Mittel an der Hand, je nach Bedarf den Mischvorgang zu steuern.
Bezugszeichenliste
1
Teil-Dachfläche
2
Teil-Dachfläche
3
Teil-Bodenfläche
4
Teil-Bodenfläche
5
Hinterkante von 1 und 3
6
Hinterkante von 2 und 4
7
Spitze
8
Schnittpunkt
9
Wirbelgenerator
9'
Wirbelgenerator an der Unterseite von 22
10
Verbindungskante
11
Seitenfläche
12
Längskante
13
Seitenfläche
14
Längskante
16
Verbindungskante
17
Symmetrieachse
18
Spitze
19
Drehachse
20
Oberseite von 22
21
Unterseite von 22
22
Trennwand
30
Verbindungskante
41
oberer Kanal
42
unterer Kanal
α
Pfeilwinkel
γ
Winkel von 4 und 5 zu 22
Anstellwinkel
h1
Höhe Verbindungskante 16
h2
Höhe Verbindungskante 16'
H1
Höhe Kanal 41
H2
Höhe Kanal 42

Claims (7)

  1. Mischvorrichtung zum Mischen von zwei oder mehreren Fluiden, welche einen gleichen oder ungleichen Massenstrom aufweisen, wobei die zu mischenden Fluide längs einer Trennwand (22) strömen, an deren stromabwärtigem Ende mehrere frei umströmte Flächen aufweisende Wirbel-Generatoren (9, 9') angeordnet sind, von denen mehrere nebeneinander angeordnet sind, wobei die Seitenflächen (11, 13) des Wirbel-Generators mit einer Seite der Trennwand (22) bündig sind und miteinander einen Pfeilwinkel (α) einschliessen, längsgerichtete Kanten (12, 14) der Seitenflächen (11, 13) unter einem Anstellwinkel () zur Trennwand (22) verlaufen und die beiden Seitenflächen (11, 13) eine Verbindungskante (16) miteinander umfassen, die senkrecht zur Trennwand (22) verläuft und eine von der Strömung zuerst beaufschlagte Kante (16) bildet, wobei ferner
    eine Dachfläche aus zwei Teildachflächen (1, 2) besteht,
    die Teildachflächen (1, 2) längsgerichtete Kanten aufweisen und mit den Kanten (12, 14) der Seitenflächen (11, 13) bündig sind,
    die Teildachflächen (1, 2) über eine Verbindungskante (10) miteinander verbunden sind,
    die stromabwärts liegenden Hinterkanten (5, 6) der Teildachflächen (1, 2) mit der Trennwand (22) einen Winkel (γ) einschliessen, wodurch die Hinterkanten (5, 6) in Bezug auf die Seitenflächen (11, 13) im wesentlichen auf die andere Seite der Trennwand (22) zu liegen kommen, und
    eine Bodenfläche aus zwei Teilbodenflächen (3, 4) besteht, die über eine Verbindungskante (30) miteinander und über die Hinterkanten (5, 6) mit den Teildachflächen (1, 2) verbunden sind.
  2. Mischvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Teilbodenflächen (3, 4) durch die Trennwand (22) gebildet sind und dass der Wirbelgenerator (9, 9') bestehend aus zwei Seitenflächen (11, 13) und zwei Teildachflächen (1, 2) auf der Trennwand (22) angeordnet ist.
  3. Mischvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Hinterkanten (5, 6) der Teildachflächen (1, 2) in einer Ebene senkrecht zu einer Symmetrieachse (17) angeordnet sind.
  4. Mischvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die beiden den Pfeilwinkel (α) einschliessenden Seitenflächen (11, 13) sowie die Teildachflächen (1, 2) des Wirbel-Generators (9) symmetrisch zu einer Symmetrieebene, gebildet durch eine Symmetrieachse (17) und die Verbindungskante (16), angeordnet sind.
  5. Mischvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Verbindungskante (16) und/oder die längsgerichteten Kanten (12, 14) der Dachfläche scharf ausgebildet sind.
  6. Mischvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Trennwand (22) in einem doppelkanaligen Behältnis angeordnet ist unter Bildung von zwei Teilkanälen (41,42), und dass in jedem Teilkanal die gleiche Anzahl von Wirbel-Generatoren (9, 9') angeordnet ist, und dass die Wirbel-Generatoren beidseitig an der Trennwand (22) befestigt sind.
  7. Mischvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass das Verhältnis Höhe (h1, h2) des Wirbel-Generators (9, 9') zur Höhe (H1, H2) des Teilkanals (41, 42) so gewählt ist, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators die volle Teilkanalhöhe (H1, H2) oder die volle Höhe des Kanals (H1+H2) ausfüllt.
EP96810767A 1995-12-01 1996-11-11 Mischvorrichtung Expired - Lifetime EP0776689B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19544816A DE19544816A1 (de) 1995-12-01 1995-12-01 Mischvorrichtung
DE19544816 1995-12-01

Publications (2)

Publication Number Publication Date
EP0776689A1 EP0776689A1 (de) 1997-06-04
EP0776689B1 true EP0776689B1 (de) 2001-09-05

Family

ID=7778915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810767A Expired - Lifetime EP0776689B1 (de) 1995-12-01 1996-11-11 Mischvorrichtung

Country Status (4)

Country Link
US (1) US5803602A (de)
EP (1) EP0776689B1 (de)
JP (1) JPH09173808A (de)
DE (2) DE19544816A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015229A (en) * 1997-09-19 2000-01-18 Calgon Carbon Corporation Method and apparatus for improved mixing in fluids
DE19820992C2 (de) * 1998-05-11 2003-01-09 Bbp Environment Gmbh Vorrichtung zur Durchmischung eines einen Kanal durchströmenden Gasstromes und Verfahren unter Verwendung der Vorrichtung
DE59807195D1 (de) * 1998-11-06 2003-03-20 Alstom Switzerland Ltd Strömungskanal mit Querschnittssprung
FR2813062B1 (fr) 2000-08-17 2002-11-15 Intertechnique Sa Boite a masques respiratoires pour installation de secours
TWI222423B (en) * 2001-12-27 2004-10-21 Orbotech Ltd System and methods for conveying and transporting levitated articles
DE10330023A1 (de) * 2002-07-20 2004-02-05 Alstom (Switzerland) Ltd. Wirbelgenerator mit kontrollierter Nachlaufströmung
CN1204945C (zh) * 2003-09-05 2005-06-08 刘兆彦 一种管、筒或塔内构件立交盘
DE102009052142B3 (de) * 2009-11-06 2011-07-14 MTU Aero Engines GmbH, 80995 Axialverdichter
EP2496882B1 (de) 2009-11-07 2018-03-28 Ansaldo Energia Switzerland AG Injektionssystem mit brennstofflanzen für einen nachbrenner
WO2011054739A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Reheat burner injection system
WO2011054760A1 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd A cooling scheme for an increased gas turbine efficiency
WO2011054771A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Premixed burner for a gas turbine combustor
US8434723B2 (en) * 2010-06-01 2013-05-07 Applied University Research, Inc. Low drag asymmetric tetrahedral vortex generators
US8881500B2 (en) * 2010-08-31 2014-11-11 General Electric Company Duplex tab obstacles for enhancement of deflagration-to-detonation transition
US8770649B2 (en) 2011-10-29 2014-07-08 Alexander Praskovsky Device, assembly, and system for reducing aerodynamic drag
US9340281B2 (en) * 2014-07-31 2016-05-17 The Boeing Company Submerged vortex generator
US10252792B2 (en) * 2015-04-21 2019-04-09 The United States Of America As Represented By The Administrator Of Nasa Flow disruption devices for the reduction of high lift system noise
DE102016012454B4 (de) * 2016-10-19 2018-06-28 Harry Riege Körperform zur Verringerung des Formwiderstandes bei der Bewegung durch ein Medium.
CN115920686A (zh) * 2023-01-17 2023-04-07 西安热工研究院有限公司 静态混合器和静态混合器组

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1022493A (en) * 1910-08-31 1912-04-09 Curtis C Meigs Apparatus for making sulfuric acid.
US1454196A (en) * 1921-07-16 1923-05-08 Trood Samuel Device for producing and utilizing combustible mixture
US1466006A (en) * 1922-09-14 1923-08-28 Trood Samuel Apparatus for producing and utilizing combustible mixture
US3051452A (en) * 1957-11-29 1962-08-28 American Enka Corp Process and apparatus for mixing
US3239197A (en) * 1960-05-31 1966-03-08 Dow Chemical Co Interfacial surface generator
US3404869A (en) * 1966-07-18 1968-10-08 Dow Chemical Co Interfacial surface generator
SE320225B (de) * 1968-06-17 1970-02-02 Svenska Flygmotorer Ab
US3671208A (en) * 1970-10-09 1972-06-20 Wayne G Medsker Fluid mixing apparatus
JPS5233822B2 (de) * 1972-03-18 1977-08-31
US4164375A (en) * 1976-05-21 1979-08-14 E. T. Oakes Limited In-line mixer
GB1599895A (en) * 1977-09-28 1981-10-07 Mahler A L Device for homogenization of a particle filled fluid stream
DE3116557A1 (de) * 1981-04-25 1982-11-11 Basf Ag, 6700 Ludwigshafen Vorrichtung zur invertierung und mischung von stroemenden stoffen
US4461579A (en) * 1981-07-31 1984-07-24 Statiflo, Inc. Motionless mixer combination
DE59401177D1 (de) * 1993-04-08 1997-01-16 Abb Management Ag Misch- und Flammenstabilisierungseinrichtung in einer Brennkammer mit Vormischverbrennung
EP0623786B1 (de) * 1993-04-08 1997-05-21 Asea Brown Boveri Ag Brennkammer
EP0619134B1 (de) * 1993-04-08 1996-12-18 ABB Management AG Mischkammer
EP0619133B1 (de) * 1993-04-08 1996-11-13 ABB Management AG Mischkammer

Also Published As

Publication number Publication date
DE59607626D1 (de) 2001-10-11
DE19544816A1 (de) 1997-06-05
US5803602A (en) 1998-09-08
JPH09173808A (ja) 1997-07-08
EP0776689A1 (de) 1997-06-04

Similar Documents

Publication Publication Date Title
EP0776689B1 (de) Mischvorrichtung
EP0619134B1 (de) Mischkammer
EP0619133B1 (de) Mischkammer
EP0546989B1 (de) Statisches Mischelement mit Leitflächen
EP1681090B1 (de) Vorrichtung und Verfahren zum Mischen eines Fluidstroms in einem Strömungskanal
EP0226879B1 (de) Statische Mischvorrichtung für Feststoffteilchen enthaltende oder daraus bestehende Fluide
EP0526393B1 (de) Einmischvorrichtung
EP1382379B1 (de) Verfahren zur Kontrolle der Nachlaufströmung eines Wirbelgenerators
DE10019759C2 (de) Statisches Mischsystem
DE2430487A1 (de) Vorrichtung zum mischen von mindestens zwei gasfoermigen oder fluessigen oder koernigen medien
DE2723056A1 (de) Rohrmischer
DE2606479A1 (de) Zylindrischer koerper mit mitteln zur unterdrueckung von schwingungen
DE69521908T2 (de) Statische luftmischungsvorrichtung
DE3239109C2 (de)
DE2907981A1 (de) Statische mischvorrichtung
DE69931519T2 (de) Verfahren und vorrichtung zur mischung von fliessenden gasen und pulverförmigem material
DE19539923C1 (de) Vorrichtung in einem ein Primärfluid führenden Kanal
DE3229486C2 (de) Statischer Rohrmischer
DE3688127T2 (de) Atomisierungsvorrichtung.
DE10003279B4 (de) Airbagvorrichtung
EP1540662A2 (de) Abstandhalter
CH654219A5 (de) Verfahren und einrichtung zum behandeln von fluessigkeiten oder von grobstueckigen materialien im festzustand mit gasen.
WO2004091760A1 (de) Statischer mischer
DD213602A1 (de) Statischer mischer
DE8700259U1 (de) Vorrichtung für eine Extraktionskolonne oder eine Mischeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19971107

17Q First examination report despatched

Effective date: 19991221

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010905

REF Corresponds to:

Ref document number: 59607626

Country of ref document: DE

Date of ref document: 20011011

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM (SCHWEIZ) AG

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ALSTOM (SCHWEIZ) AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011206

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031107

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607626

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120809 AND 20120815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607626

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59607626

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SCHWEIZ) AG, BADEN, AARGAU, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59607626

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SCHWEIZ) AG, BADEN, AARGAU, CH

Effective date: 20120713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151118

Year of fee payment: 20

Ref country code: DE

Payment date: 20151119

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607626

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59607626

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59607626

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20161110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20161110