EP0578966B1 - Method for winding a yarn with stepped precision winding - Google Patents
Method for winding a yarn with stepped precision winding Download PDFInfo
- Publication number
- EP0578966B1 EP0578966B1 EP93109171A EP93109171A EP0578966B1 EP 0578966 B1 EP0578966 B1 EP 0578966B1 EP 93109171 A EP93109171 A EP 93109171A EP 93109171 A EP93109171 A EP 93109171A EP 0578966 B1 EP0578966 B1 EP 0578966B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- frequency
- mirror
- winding
- stage
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004804 winding Methods 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 230000007704 transition Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H54/00—Winding, coiling, or depositing filamentary material
- B65H54/02—Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
- B65H54/38—Arrangements for preventing ribbon winding ; Arrangements for preventing irregular edge forming, e.g. edge raising or yarn falling from the edge
- B65H54/381—Preventing ribbon winding in a precision winding apparatus, i.e. with a constant ratio between the rotational speed of the bobbin spindle and the rotational speed of the traversing device driving shaft
- B65H54/383—Preventing ribbon winding in a precision winding apparatus, i.e. with a constant ratio between the rotational speed of the bobbin spindle and the rotational speed of the traversing device driving shaft in a stepped precision winding apparatus, i.e. with a constant wind ratio in each step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/31—Textiles threads or artificial strands of filaments
Definitions
- the invention relates to a method for winding a continuously fed thread according to the preamble of patent claim 1.
- the traversing frequency is constant in the wild winding. This results in a constant thread laying angle.
- the number of turns i ie the ratio of speed / traversing frequency, decreases continuously with increasing diameter. If the number of turns becomes an integer or assumes a value that differs from an integer by a simple fraction, such as 1 1/2 (2nd order), 2 2/3 (3rd order), 5 3/4 (4th . Order), so-called mirror windings arise.
- the numbers in which mirror windings arise ie the whole and the mixed numbers, are referred to below as "mirror values”.
- the characteristic feature of a mirror winding is that turns are placed exactly on turns previously laid.
- the turns of successive layers lie on top of each other.
- the M-order mirror value means that the turns of the (K + M) -th layer lie exactly on the turns of the K-th layer.
- the "layer” is the piece of thread that is placed on the spool during a double stroke, i.e. while the traversing thread guide moves from one end of the bobbin to the other and back.
- the "thread” is the piece of thread that is put on during one revolution.
- the number of turns i is the number of turns per layer.
- mirror windings can cause a number of disadvantages, in particular an unstable spool structure, difficulties in unwinding the affected spool and unevenness in a subsequent coloring.
- the traversing frequency is in a fixed ratio to the speed of the coil; the number of turns therefore remains constant. According to the coil speed, the traversing frequency also becomes smaller and smaller as the coil diameter increases. The result is that the thread-laying angle also becomes smaller and smaller. It is essentially proportional to the traversing frequency. As the angle of deposit decreases, the coherence of the coil deteriorates. This method can therefore only be used to a limited extent. However, it has the advantage that one can avoid mirror formation by choosing the number of turns.
- the winding is built up in several stages.
- the traversing frequency f decreases proportionally with the coil speed n.
- the number of turns i n / f therefore remains constant in each stage.
- the maximum permissible traversing frequency ie the maximum permissible depositing angle, which is approximately proportional to the number of turns for a certain diameter, is used.
- the transition to the next stage usually takes place when the placement angle has reached the smallest dimension that is still permissible.
- the traversing frequency is increased suddenly, so that the maximum traversing frequency and the maximum placement angle are set again. Accordingly, the number of turns jumps to a new, smaller value. It can happen that the number of turns accidentally falls on a mirror value or in its critical proximity.
- a computer determines the number of turns from stage to stage and compares them with the dangerous mirror values. If the calculated number of turns does not fall within the critical range of a mirror value, this number of turns is used. However, if it is in the critical range of a mirror value, a slightly increased number of turns is used. This lies at a precisely defined short distance from the dangerous mirror value, which depends in particular on the size and the atomic number of the mirror value.
- the turns of the (K + M) -th layer are not placed exactly on the turns of the K-th layer, but at a predetermined constant laying distance a next to the turns of the K-th layer.
- the laying distance a is measured from the middle of the thread to the middle of the thread and is therefore in any case greater than the width of an overlying thread. It is recommended to make it as small as possible, if possible not larger than twice the thread width.
- the aim is to keep the number of corrective interventions as small as possible. Therefore, winding is only carried out with a corrected number of turns in those stages in which this is essential to avoid a mirror winding. In the other stages, the number of turns is obtained, which is obtained by choosing the maximum permissible traversing frequency as the starting frequency. With these numbers of turns, the distances between the turns of corresponding layers are random and therefore uneven.
- the invention has for its object to improve the method according to the preamble of claim 1 so that the coil receives a uniformly high packing density with little edge increase.
- a "number of turns close to the mirror" in the sense of the invention is by no means a mirror value and also not a number that comes anywhere near a mirror value, but rather a number of turns that differs from a mirror value i s by a defined difference.
- Each mirror value corresponds to two numbers of turns close to the mirror, one of which is a little smaller, the other a little larger than the mirror value.
- M s is the order of the mirror value i s .
- x a 2H
- H is the traverse stroke, i. H. the length of the winding.
- a is the laying distance between the turns of the K th layer and the (K + M) th layer, measured from the middle of the thread to the middle of the thread; it is at least equal to the width and at most equal to 3 times the width of the thread lying thereon, preferably not greater than twice the width.
- the size X is usually negligibly small compared to the atomic number M s , the two difference terms are almost identical. It is characteristic that they are proportional to the number of turns and essentially inversely proportional to the atomic number. So they vary in size from level to level.
- the sizes marked with the index s differ individually for the individual levels.
- the sizes a and H and thus the derived size x are the same size for all levels.
- the characterizing part of claim 1 means that in each individual stage a number of turns is selected in which the turns of the (K + M) th position are deposited at a fixed distance a next to the turns of the K th position.
- FIGS 1-6 illustrate various embodiments.
- the selection of the number of turns close to the mirror for the individual stages is expediently carried out with the aid of an i-D diagram in which the hyperbolic limit curves for the minimum and the maximum depositing angle as well as the start and end diameter of the coil are entered.
- the coil travel with a stepped precision winding is generally symbolized by a staircase curve that lies between the two limit curves. It is characteristic of the invention that all steps parallel to the abscissa correspond to the number of turns close to the mirror.
- the number of turns close to the mirror has been selected such that they lie at defined positive distances from first order mirror values.
- the mirror values are the whole numbers from 8 to 2 in continuous descending order.
- the restriction to the number of turns near the mirror in the vicinity of integer mirror values has the advantage that collisions with mirror values of a higher order are easy to avoid.
- the transition to the next stage - i.e. the sudden increase in the traversing frequency - always occurs exactly when the traversing frequency and thus also the lay-off angle has reached the lowest permissible value.
- the upper corner points of the staircase curve are all on the hyperbola, which is assigned to the minimum laying angle.
- the lower corner points lie in the space between this hyperbola and the hyperbola, which is assigned to the maximum placement angle.
- the example shown in FIG. 2 initially differs from the example in FIG. 1 in that the maximum placement angle is only 8 °.
- the maximum traversing frequency is therefore correspondingly lower than in the first example.
- the stair curve, which symbolizes the coil travel must be accommodated in the space between the two hyperbolic limit curves, which is narrowed in comparison with FIG. 1. This is made possible by the fact that those turns numbers close to the mirror which are adjacent to the 2nd order mirror values, ie the half-numbered mirror values, are also used. These number of turns close to the mirror are briefly referred to below as "2nd order turn numbers close to the mirror".
- the distances between the associated mirror values are all the same, namely 0.5.
- the distances between the number of turns close to the mirror differ slightly, however, since the difference between the mirror value and the corresponding number of turns close to the mirror also depends on the ordinal number, which in this example alternately takes on the values 1 or 2.
- the limitation to a reduced frequency range has the advantage that the frequency jumps occurring at the transitions between the individual stages are smaller. This improves the coil structure.
- the critical angles are likewise 6 or 8 °.
- the number of turns close to the mirror is used, which are adjacent to the integer mirror values 8, 7, 6, 5, 4, i.e. with 1st order turns numbers close to the mirror. If, however, analogous to FIG. 1, one jumps directly from the number of turns 4.04 close to the mirror to the next following number of turns of the 1st order, namely to 3.03 and 2.02, the initial depositing angles in the corresponding stages would exceed the predetermined maximum limit. Therefore, both the first-order number of turns close to the mirror and the second-order number of turns close to the mirror are used in the end section of the coil travel. In comparison to FIG. 2, the total number of switching operations required during the coil trip is reduced. The layers corresponding to the steps are correspondingly thicker in the area near the sleeve.
- Figure 4 illustrates an embodiment in which the placement angle is limited to the extremely narrow range between 7 and 8 °. This severely limits the selection of the number of turns close to the mirror for the individual stages.
- the first half of the coil trip we work with 1st and 2nd order number of turns close to the mirror.
- the number of turns close to the mirror is used, which is smaller than the corresponding mirror values, namely at mirror values 7.5; 7; 5.5; 5; 4, 5 and 4. This makes it easier to fit the stair curve into the narrow space between the two limit curves.
- the gradation is further refined by using 3rd order number of turns close to the mirror, the distances of the number of turns close to the mirror from the associated mirror values being irregular in part, partly positive, partly negative.
- FIG. 5 largely corresponds to that of FIG. 2.
- the difference is that the lower corner points of the stair curve lie on the hyperbola, which corresponds to the maximum placement angle. This means that after each stage, the frequency increase is carried out at the moment when the coil speed has dropped just enough that the maximum frequency results as the starting frequency for the following stage.
- the example illustrated in FIG. 6 differs from all previous exemplary embodiments in particular in that the transition to the next stage takes place whenever the diameter has increased by a certain amount, which is the same for all stages.
- the first and second order number of turns close to the mirror are used in full sequence, starting with 8.08 and ending with 2.513. It can be seen that in the beginning and end phase of the coil travel, the placement angles come close to the maximum placement angle. In the middle phase, the discard angle approaches the lower limit.
- the uniform thickness of the layers wound in the individual stages ensures that the shoulders which appear on the end faces of the coils lie at uniform intervals. This can have advantages when the thread is pulled off during further processing. Even if there is a relatively large space between the minimum and maximum placement angles, a fine gradation is required.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Winding Filamentary Materials (AREA)
- Replacing, Conveying, And Pick-Finding For Filamentary Materials (AREA)
- Coil Winding Methods And Apparatuses (AREA)
- Windings For Motors And Generators (AREA)
- Winding Of Webs (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Aufspulen eines kontinuierlich zugeführten Fadens gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for winding a continuously fed thread according to the preamble of
Beim Aufspulen kontinuierlich zugeführter Fäden auf Spulen, die mit gleichbleibender Umfangsgeschwindigkeit angetrieben sind, unterscheidet man zwischen drei verschiedenen Verfahren:
Wilde Wicklung
Präzisionswicklung
gestufte Präzisionswicklung
When winding continuously fed threads on bobbins that are driven at a constant peripheral speed, a distinction is made between three different methods:
Wild winding
Precision winding
graduated precision winding
Bei der wilden Wicklung ist die Changierfrequenz konstant. Daraus ergibt sich ein konstanter Fadenablegewinkel. Da jedoch mit wachsendem Spulendurchmesser die Drehzahl abnimmt, nimmt die Windungszahl i, d.h. das Verhältnis Drehzahl/Changierfrequenz, mit wachsendem Durchmesser stetig ab. Wenn die Windungszahl ganzzahlig wird oder einen Wert annimmt, der sich von einer ganzen Zahl durch einen einfachen Bruch unterscheidet, wie z.B. 1 1/2 (2. Ordnung), 2 2/3 (3. Ordnung), 5 3/4 (4. Ordnung), entstehen sogenannte Spiegelwicklungen. Der Kürze halber werden nachfolgend die Zahlen, bei denen Spiegelwicklungen entstehen, d.h. die ganzen und die gemischten Zahlen, als "Spiegelwerte" bezeichnet.The traversing frequency is constant in the wild winding. This results in a constant thread laying angle. However, since the speed decreases with increasing coil diameter, the number of turns i, ie the ratio of speed / traversing frequency, decreases continuously with increasing diameter. If the number of turns becomes an integer or assumes a value that differs from an integer by a simple fraction, such as 1 1/2 (2nd order), 2 2/3 (3rd order), 5 3/4 (4th . Order), so-called mirror windings arise. For the sake of brevity, the numbers in which mirror windings arise, ie the whole and the mixed numbers, are referred to below as "mirror values".
Das charakteristische Merkmal einer Spiegelwicklung besteht darin, daß Windungen genau auf bereits vorher gelegte Windungen aufgelegt werden.The characteristic feature of a mirror winding is that turns are placed exactly on turns previously laid.
Bei ganzzahligen Windungszahlen, d.h. bei Spiegelwerten 1. Ordnung, liegen die Windungen aufeinanderfolgender Lagen aufeinander. Allgemein gilt, daß bei einem Spiegelwert M-ter Ordnung die Windungen der (K+M)-ten Lage genau auf den Windungen der K-ten Lage liegen.For integer turns, i.e. with 1st order mirror values, the turns of successive layers lie on top of each other. In general, the M-order mirror value means that the turns of the (K + M) -th layer lie exactly on the turns of the K-th layer.
Als "Lage" wird dabei das Fadenstück bezeichnet, das während eines Doppelhubes auf die Spule gelegt wird, d.h. während sich der Changierfadenführer von dem einen zum anderen Spulenende und zurück bewegt. Als "Windung" wird das Fadenstück bezeichnet, das während einer Umdrehung aufgelegt wird. Die Windungszahl i ist die Anzahl der Windungen pro Lage.The "layer" is the piece of thread that is placed on the spool during a double stroke, i.e. while the traversing thread guide moves from one end of the bobbin to the other and back. The "thread" is the piece of thread that is put on during one revolution. The number of turns i is the number of turns per layer.
Spiegelwicklungen können bekanntlich eine Reihe von Nachteilen verursachen, insbesondere einen unstabilen Spulenaufbau, Schwierigkeiten beim Abwickeln der betroffenen Spule und Ungleichmäßigkeiten bei einer nachfolgenden Färbung.As is well known, mirror windings can cause a number of disadvantages, in particular an unstable spool structure, difficulties in unwinding the affected spool and unevenness in a subsequent coloring.
Bei der Präzisionswicklung steht die Changierfrequenz zur Drehzahl der Spule in einem festen Verhältnis; die Windungszahl bleibt also konstant. Entsprechend der Spulendrehzahl wird also auch die Changierfrequenz mit zunehmendem Spulendurchmesser immer kleiner. Die Folge ist, daß auch der Fadenablegewinkel immer kleiner wird. Er ist im wesentlichen proportional zur Changierfrequenz. Mit kleiner werdendem Ablegewinkel verschlechtert sich aber der Zusammenhalt der Spule. Daher ist dieses Verfahren nur begrenzt einsetzbar. Es hat aber den Vorteil, daß man durch die Wahl der Windungszahl die Spiegelbildung vermeiden kann.In the precision winding, the traversing frequency is in a fixed ratio to the speed of the coil; the number of turns therefore remains constant. According to the coil speed, the traversing frequency also becomes smaller and smaller as the coil diameter increases. The result is that the thread-laying angle also becomes smaller and smaller. It is essentially proportional to the traversing frequency. As the angle of deposit decreases, the coherence of the coil deteriorates. This method can therefore only be used to a limited extent. However, it has the advantage that one can avoid mirror formation by choosing the number of turns.
Bei der gestuften Präzisionswicklung erfolgt der Wickelaufbau in mehreren Stufen. In jeder einzelnen Stufe nimmt die Changierfrequenz f proportional mit der Spulendrehzahl n ab. Die Windungszahl
Nach der DE-OS 40 37 278, die der EP-A-0 486 896 entspricht, auf der die Erfindung aufbaut, ermittelt ein Rechner von Stufe zu Stufe die Windungszahlen und vergleicht sie mit den gefährlichen Spiegelwerten. Wenn die berechnete Windungszahl nicht in den kritischen Bereich eines Spiegelwertes fällt, wird mit dieser Windungszahl gearbeitet. Wenn sie aber im kritischen Bereich eines Spiegelwertes liegt, wird mit einer geringfügig vergrößerten Windungszahl gearbeitet. Diese liegt zu dem gefährlichen Spiegelwert in einem genau definierten kurzen Abstand, der insbesondere von der Größe und der Ordnungszahl des Spiegelwertes abhängt. Dadurch wird erreicht, daß die Windungen der (K+M)-ten Lage nicht genau auf den Windungen der K-ten Lage, sondern in einem vorgegebenen konstanten Verlegeabstand a neben den Windungen der K-ten Lage abgelegt werden. Der Verlegeabstand a wird von Fadenmitte zu Fadenmitte gemessen und ist daher jedenfalls größer als die Breite eines aufliegenden Fadens. Es wird empfohlen, ihn so klein wie möglich zu bemessen, möglichst nicht größer als die doppelte Fadenbreite.According to DE-OS 40 37 278, which corresponds to EP-A-0 486 896 on which the invention is based, a computer determines the number of turns from stage to stage and compares them with the dangerous mirror values. If the calculated number of turns does not fall within the critical range of a mirror value, this number of turns is used. However, if it is in the critical range of a mirror value, a slightly increased number of turns is used. This lies at a precisely defined short distance from the dangerous mirror value, which depends in particular on the size and the atomic number of the mirror value. It is thereby achieved that the turns of the (K + M) -th layer are not placed exactly on the turns of the K-th layer, but at a predetermined constant laying distance a next to the turns of the K-th layer. The laying distance a is measured from the middle of the thread to the middle of the thread and is therefore in any case greater than the width of an overlying thread. It is recommended to make it as small as possible, if possible not larger than twice the thread width.
Gemäß der genannten Druckschrift wird angestrebt, die Anzahl der korrigierenden Eingriffe so klein wie möglich zu halten. Daher wird nur in denjenigen Stufen mit einer korrigierten Windungszahl gewickelt, in denen dies zur Vermeidung einer Spiegelwicklung unumgänglich ist. In den anderen Stufen wird mit den Windungszahlen gearbeitet, die sich ergeben, indem man die maximal zulässige Changierfrequenz als Anfangsfrequenz wählt. Bei diesen Windungszahlen sind die Abstände der Windungen korrespondierender Lagen zufallsbedingt und daher ungleichmäßig.According to the cited document, the aim is to keep the number of corrective interventions as small as possible. Therefore, winding is only carried out with a corrected number of turns in those stages in which this is essential to avoid a mirror winding. In the other stages, the number of turns is obtained, which is obtained by choosing the maximum permissible traversing frequency as the starting frequency. With these numbers of turns, the distances between the turns of corresponding layers are random and therefore uneven.
Der Erfindung liegt die Aufgabe zugrunde, das Verfahren gemäß dem Oberbegriff des Patentanspruchs 1 so zu verbessern, daß die Spule eine gleichmäßige hohe Packungsdichte bei geringer Kantenerhöhung erhält.The invention has for its object to improve the method according to the preamble of
Diese Aufgabe wird durch das im Kennzeichen des Anspruchs 1 angegebene Merkmal gelöst. Dabei ist eine "spiegelnahe Windungszahl" im Sinne der Erfindung keineswegs ein Spiegelwert und auch keine Zahl, die einem Spiegelwert beliebig nahekommt, sondern eine Windungszahl, die sich von einem Spiegelwert is durch eine definierte Differenz unterscheidet. Jedem Spiegelwert entsprechen zwei spiegelnahe Windungszahlen, von denen die eine ein wenig kleiner, die andere ein wenig größer ist als der Spiegelwert. In dem ersten Fall beträgt die Differenz
Dabei haben die Zeichen folgende Bedeutung:The characters have the following meaning:
Ms ist die Ordnung des Spiegelwertes is.
H ist der Changierhub, d. h. die Länge der Wicklung.H is the traverse stroke, i. H. the length of the winding.
a ist der Verlegeabstand zwischen den Windungen der K-ten Lage und der (K+M)-ten Lage, gemessen von Fadenmitte bis Fadenmitte; er ist mindestens gleich der Breite und höchstens gleich der 3fachen Breite des aufliegenden Fadens, vorzugsweise nicht größer als die doppelte Breite.a is the laying distance between the turns of the K th layer and the (K + M) th layer, measured from the middle of the thread to the middle of the thread; it is at least equal to the width and at most equal to 3 times the width of the thread lying thereon, preferably not greater than twice the width.
Da in der Praxis in der Regel die Größe X im Vergleich zur Ordnungszahl Ms vernachlässigbar klein ist, stimmen die beiden Differenzglieder nahezu überein. Charakteristisch ist, daß sie proportional zur Windungszahl und im wesentlichen umgekehrt proportional zur Ordnungszahl sind. Sie sind also von Stufe zu Stufe verschieden groß.Since in practice the size X is usually negligibly small compared to the atomic number M s , the two difference terms are almost identical. It is characteristic that they are proportional to the number of turns and essentially inversely proportional to the atomic number. So they vary in size from level to level.
Die mit dem Index s versehenen Größen sind für die einzelnen Stufen individuell verschieden. Dagegen sind die Größen a und H und somit auch die abgeleitete Größe x für alle Stufen gleich groß.The sizes marked with the index s differ individually for the individual levels. In contrast, the sizes a and H and thus the derived size x are the same size for all levels.
Das Kennzeichen des Anspruchs 1 besagt mit anderen Worten, daß in jeder einzelnen Stufe eine Windungszahl gewählt wird, bei der die Windungen der (K+M)-ten Lage in einem festen Abstand a neben den Windungen der K-ten Lage abgelegt werden.In other words, the characterizing part of
Verschiedene Ausführungsbeispiele der Erfindung, die je nach den Randbedingungen des Einzelfalles Vorteile haben, sind in den Unteransprüchen angegeben.Various exemplary embodiments of the invention, which have advantages depending on the boundary conditions of the individual case, are specified in the subclaims.
Die Figuren 1 - 6 veranschaulichen verschiedene Ausführungsbeispiele.Figures 1-6 illustrate various embodiments.
Die Auswahl der spiegelnahen Windungszahlen für die einzelnen Stufen erfolgt zweckmäßig mit Hilfe eines i-D-Diagramms, in dem die hyperbelförmigen Grenzkurven für den minimalen und den maximalen Ablegewinkel sowie Anfangs- und Enddurchmesser der Spule eingetragen sind. In einem solchen Diagramm wird die Spulenreise bei gestufter Präzisionswicklung allgemein durch eine Treppenkurve symbolisiert, die zwischen beiden Grenzkurven liegt. Charakteristisch für die Erfindung ist, daß alle zur Abszisse parallelen Treppenstücke spiegelnahen Windungszahlen entsprechen.The selection of the number of turns close to the mirror for the individual stages is expediently carried out with the aid of an i-D diagram in which the hyperbolic limit curves for the minimum and the maximum depositing angle as well as the start and end diameter of the coil are entered. In such a diagram, the coil travel with a stepped precision winding is generally symbolized by a staircase curve that lies between the two limit curves. It is characteristic of the invention that all steps parallel to the abscissa correspond to the number of turns close to the mirror.
Bei dem Beispiel gemäß Figur 1 sind die spiegelnahen Windungszahlen so gewählt worden, daß sie in definierten positiven Abständen von Spiegelwerten 1. Ordnung liegen. Die Spiegelwerte sind die ganzen Zahlen von 8 bis 2 in lückenloser absteigender Folge. Da bekanntlich auf der Zahlenskala in der Umgebung der ganzzahligen Spiegelwerte die Spiegelwerte höherer Ordnung am wenigsten dicht angeordnet sind, hat die Beschränkung auf spiegelnahe Windungszahlen in der Umgebung ganzzahliger Spiegelwerte den Vorteil, daß Kollisionen mit Spiegelwerten höherer Ordnung leicht zu vermeiden sind. Charakteristisch für das Beispiel der Figur 1 ist, daß der Übergang zur nächstfolgenden Stufe - d.h. die sprunghafte Erhöhung der Changierfrequenz - immer genau dann erfolgt, wenn die Changierfrequenz und somit auch der Ablegewinkel den niedrigsten zulässigen Wert erreicht hat. Demzufolge liegen die oberen Eckpunkte der Treppenkurve alle auf der Hyperbel, die dem minimalen Ablegewinkel zugeordnet ist. Die unteren Eckpunkte liegen in dem Zwischenraum zwischen dieser Hyperbel und der Hyperbel, die dem maximalen Ablegewinkel zugeordnet ist.In the example according to FIG. 1, the number of turns close to the mirror has been selected such that they lie at defined positive distances from first order mirror values. The mirror values are the whole numbers from 8 to 2 in continuous descending order. As is well known, since the mirror values of the higher order are least densely arranged on the number scale in the vicinity of the integer mirror values, the restriction to the number of turns near the mirror in the vicinity of integer mirror values has the advantage that collisions with mirror values of a higher order are easy to avoid. It is characteristic of the example of FIG. 1 that the transition to the next stage - i.e. the sudden increase in the traversing frequency - always occurs exactly when the traversing frequency and thus also the lay-off angle has reached the lowest permissible value. As a result, the upper corner points of the staircase curve are all on the hyperbola, which is assigned to the minimum laying angle. The lower corner points lie in the space between this hyperbola and the hyperbola, which is assigned to the maximum placement angle.
Bei einem typischen Beispiel aus der Praxis ist
Wie Figur 1 zeigt, beginnt die Spulenreise mit derjenigen spiegelnahen Windungszahl, die ein wenig größer als 8 ist. Der genaue Wert ergibt sich aus der angegebenen Formel:
Die anfängliche Drehzahl der Spule errechnet sich zu
Der am Ende der ersten Stufe erreichte Durchmesser beträgt
Infolge der Vergrößerung des Durchmessers ist zu diesem Zeitpunkt die Drehzahl der Spule abgefallen auf
Dies ist die Mindestfrequenz, die dem minimalen Ablegewinkel 6° entspricht. Die Frequenz wird nun sprunghaft erhöht. Aus der Drehzahl und der für die zweite Stufe errechneten spiegelnahen Windungszahl
Entsprechend wird in den weiteren Stufen verfahren. Der Eckpunkt der Treppenkurve, der den Beginn der letzten Stufe markiert, liegt zufällig fast genau auf der hyperbelförmigen Grenzkurve, die dem maximalen Ablegewinkel 9° zugeordnet ist. In der letzten Stufe wird mit der spiegelnahen Windungszahl
Von dem Beispiel der Figur 1 unterscheidet sich das in Figur 2 dargestellte Beispiel zunächst dadurch, daß der maximale Ablegewinkel nur 8° beträgt. Die maximale Changierfrequenz liegt daher entsprechend niedriger als bei dem ersten Beispiel. Die Treppenkurve, die die Spulenreise symbolisiert, muß in dem im Vergleich zu Figur 1 verengten Zwischenraum zwischen den beiden hyperbelförmigen Grenzkurven untergebracht werden. Dies wird dadurch ermöglicht, daß zusätzlich auch diejenigen spiegelnahen Windungszahlen genutzt werden, die den Spiegelwerten 2. Ordnung benachbart sind, d.h. den halbzahligen Spiegelwerten. Diese spiegelnahen Windungszahlen werden nachfolgend kurz als "spiegelnahe Windungszahlen 2. Ordnung" bezeichnet. Die Abstände der zugehörigen Spiegelwerte sind alle gleich groß, nämlich 0,5. Die Abstände der spiegelnahen Windungszahlen unterscheiden sich aber geringfügig, da die Differenz zwischen Spiegelwert und zugehöriger spiegelnaher Windungszahl zusätzlich von der Ordnungszahl abhängt, die bei diesem Beispiel abwechselnd die Werte 1 oder 2 annimmt. Die Beschränkung auf einen verkleinerten Frequenzbereich hat den Vorteil, daß die an den Übergängen zwischen den einzelnen Stufen auftretenden Frequenzsprünge geringer sind. Dadurch wird der Spulenaufbau verbessert.The example shown in FIG. 2 initially differs from the example in FIG. 1 in that the maximum placement angle is only 8 °. The maximum traversing frequency is therefore correspondingly lower than in the first example. The stair curve, which symbolizes the coil travel, must be accommodated in the space between the two hyperbolic limit curves, which is narrowed in comparison with FIG. 1. This is made possible by the fact that those turns numbers close to the mirror which are adjacent to the 2nd order mirror values, ie the half-numbered mirror values, are also used. These number of turns close to the mirror are briefly referred to below as "2nd order turn numbers close to the mirror". The distances between the associated mirror values are all the same, namely 0.5. The distances between the number of turns close to the mirror differ slightly, however, since the difference between the mirror value and the corresponding number of turns close to the mirror also depends on the ordinal number, which in this example alternately takes on the
Bei dem Beispiel, welches in Figur 3 veranschaulicht ist, liegen die Grenzwinkel ebenfalls bei 6 bzw. 8°. Zu Beginn der Spulenreise wird mit spiegelnahen Windungszahlen gearbeitet, die den ganzzahligen Spiegelwerten 8, 7, 6, 5, 4 benachbart sind, d.h. mit spiegelnahen Windungszahlen 1. Ordnung. Würde man jedoch analog zu Figur 1 von der spiegelnahen Windungszahl 4,04 unmittelbar auf die nächstfolgenden spiegelnahen Windungszahlen 1. Ordnung springen, nämlich auf 3,03 und 2,02, so würden die anfänglichen Ablegewinkel in den entsprechenden Stufen die vorgegebene Höchstgrenze überschreiten. Daher kommen im Endabschnitt der Spulenreise sowohl die spiegelnahen Windungszahlen 1. Ordnung als auch die spiegelnahen Windungszahlen 2. Ordnung zur Anwendung. Im Vergleich zu Figur 2 wird die Gesamtzahl der während der Spulenreise erforderlichen Schaltvorgänge verkleinert. Die den Stufen entsprechenden Schichten sind im hülsennahen Bereich entsprechend dicker.In the example which is illustrated in FIG. 3, the critical angles are likewise 6 or 8 °. At the beginning of the coil journey, the number of turns close to the mirror is used, which are adjacent to the
Figur 4 veranschaulicht ein Ausführungsbeispiel, bei dem der Ablegewinkel auf den extrem engen Bereich zwischen 7 und 8° beschränkt ist. Dadurch wird die Auswahl der spiegelnahen Windungszahlen für die einzelnen Stufen stark eingeschränkt. In der ersten Hälfte der Spulenreise wird mit spiegelnahen Windungszahlen 1. und 2. Ordnung gearbeitet. Dabei werden - abweichend von den bisher erörterten Beispielen - auch solche spiegelnahen Windungszahlen verwendet, die kleiner sind als die entsprechenden Spiegelwerte, und zwar bei den Spiegelwerten 7,5; 7; 5,5; 5; 4,5 und 4. Dadurch wird die Einpassung der Treppenkurve in den engen Zwischenraum zwischen den beiden Grenzkurven erleichtert. In der zweiten Hälfte der Spulenreise wird die Abstufung durch Verwendung von spiegelnahen Windungszahlen 3. Ordnung noch verfeinert, wobei die Abstände der spiegelnahen Windungszahlen von den zugehörigen Spiegelwerten in unregelmäßiger Folge teils positiv, teils negativ sind.Figure 4 illustrates an embodiment in which the placement angle is limited to the extremely narrow range between 7 and 8 °. This severely limits the selection of the number of turns close to the mirror for the individual stages. In the first half of the coil trip we work with 1st and 2nd order number of turns close to the mirror. In contrast to the examples discussed so far, the number of turns close to the mirror is used, which is smaller than the corresponding mirror values, namely at mirror values 7.5; 7; 5.5; 5; 4, 5 and 4. This makes it easier to fit the stair curve into the narrow space between the two limit curves. In the second half of the coil trip, the gradation is further refined by using 3rd order number of turns close to the mirror, the distances of the number of turns close to the mirror from the associated mirror values being irregular in part, partly positive, partly negative.
Das Ausführungsbeispiel der Figur 5 entspricht weitgehend demjenigen der Figur 2. Der Unterschied besteht darin, daß die unteren Eckpunkte der Treppenkurve auf der Hyperbel liegen, die dem maximalen Ablegewinkel entspricht. Das bedeutet, daß nach jeder Stufe die Frequenzerhöhung in dem Augenblick durchgeführt wird, in dem die Spulendrehzahl gerade soweit abgefallen ist, daß sich die Maximalfrequenz als Startfrequenz für die folgende Stufe ergibt.The exemplary embodiment of FIG. 5 largely corresponds to that of FIG. 2. The difference is that the lower corner points of the stair curve lie on the hyperbola, which corresponds to the maximum placement angle. This means that after each stage, the frequency increase is carried out at the moment when the coil speed has dropped just enough that the maximum frequency results as the starting frequency for the following stage.
Von allen bisherigen Ausführungsbeispielen unterscheidet sich das in Figur 6 veranschaulichte Beispiel insbesondere dadurch, daß der Übergang in die nächstfolgende Stufe immer dann erfolgt, wenn der Durchmesser um einen bestimmten, für alle Stufen gleichen Betrag zugenommen hat. Es werden in lückenloser Folge die spiegelnahen Windungszahlen 1. und 2. Ordnung verwendet, beginnend mit 8,08 und endend mit 2,513. Man erkennt, daß in der Anfangs- und Endphase der Spulenreise die Ablegewinkel dem maximalen Ablegewinkel nahekommen. In der mittleren Phase nähert sich der Ablegewinkel dem unteren Grenzwert. Durch die gleichmäßige Dicke der in den einzelnen Stufen gewickelten Schichten wird erreicht, daß die an den Stirnflächen der Spulen auftretenden Absätze in gleichmäßigen Abständen liegen. Das kann beim Abziehen des Fadens im Rahmen der Weiterverarbeitung Vorteile bringen. Selbst wenn zwischen dem minimalen und dem maximalen Ablegewinkel ein relativ großer Zwischenraum besteht, ist eine feine Abstufung erforderlich.The example illustrated in FIG. 6 differs from all previous exemplary embodiments in particular in that the transition to the next stage takes place whenever the diameter has increased by a certain amount, which is the same for all stages. The first and second order number of turns close to the mirror are used in full sequence, starting with 8.08 and ending with 2.513. It can be seen that in the beginning and end phase of the coil travel, the placement angles come close to the maximum placement angle. In the middle phase, the discard angle approaches the lower limit. The uniform thickness of the layers wound in the individual stages ensures that the shoulders which appear on the end faces of the coils lie at uniform intervals. This can have advantages when the thread is pulled off during further processing. Even if there is a relatively large space between the minimum and maximum placement angles, a fine gradation is required.
Claims (9)
- A method of winding a continuously supplied thread onto a bobbin rotating at a constant peripheral speed with a stepped precision winding, with the following features:a) the traversing frequency is reduced at each stage from an initial frequency to a final frequency proportional to the rotational speed of the bobbin and is then abruptly increased to the initial frequency of the following stage;b) in each stage the initial frequency is at most equal to a fixed maximum frequency;c) in each stage the final frequency is at least equal to a fixed minimum frequency;characterized in that
in each stage s the operation is performed with a winding number which differs from a mirror value i s by a difference of
M s is the ordinal number of the mirror value i s ;
x = a / 2H;
H is the traversing stroke, and
a is the positioning distance between the windings of the layer No. K and the layer No. (K+M), measured from thread centre to thread centre; a is at least equal to the width and at most equal to three times the width of the positioned thread. - A method according to Claim 1, characterized in that the positioning distance a is at most equal to double the width of the positioned thread.
- A method according to Claim 1 or 2, characterized in that the abrupt increase in frequency after each stage occurs at the moment at which the traversing frequency has reached the minimum frequency.
- A method according to Claim 1 or 2, characterized in that the abrupt increase in frequency after each stage occurs at the moment at which the rotational speed of the bobbin has dropped so far that the maximum traversing frequency occurs as the initial frequency for the following stage.
- A method according to Claim 1 or 2, characterized in that the abrupt increase in frequency after each stage occurs at the moment at which the bobbin diameter has reached a pre-determined increment.
- A method according to one of Claims 1 to 5, characterized in that in all the stages winding takes place with winding numbers which are close to the mirror value and which are associated with mirror values of the first order.
- A method according to one of Claims 1 to 5, characterized in that in all the stages winding takes place with winding numbers which are close to the mirror value and which are associated with mirror values of the first or second order.
- A method according to one of Claims 1 to 7, characterized by equally large intervals of the mirror values, with which the winding numbers of the individual stages close to the mirror value are associated.
- A method according to one of Claims 1 to 4 or according to Claim 7, characterized in that, as the travel of the bobbins continues, winding takes place to an increasing extent with winding numbers which are close to the mirror value and which are associated with mirror values of a higher order.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4223271A DE4223271C1 (en) | 1992-07-17 | 1992-07-17 | |
DE4223271 | 1992-07-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0578966A1 EP0578966A1 (en) | 1994-01-19 |
EP0578966B1 true EP0578966B1 (en) | 1996-09-11 |
Family
ID=6463270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93109171A Expired - Lifetime EP0578966B1 (en) | 1992-07-17 | 1993-06-08 | Method for winding a yarn with stepped precision winding |
Country Status (4)
Country | Link |
---|---|
US (1) | US5447277A (en) |
EP (1) | EP0578966B1 (en) |
AT (1) | ATE142597T1 (en) |
DE (2) | DE4223271C1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU6270698A (en) * | 1997-02-05 | 1998-08-25 | Plant Engineering Consultants, Inc. | Precision winding method and apparatus |
TW359661B (en) * | 1997-04-24 | 1999-06-01 | Barmag Barmer Maschf | Method of winding a yarn to cylindrical cross-wound package |
US6568623B1 (en) * | 2000-03-21 | 2003-05-27 | Owens-Corning Fiberglas Technology, Inc. | Method for controlling wind angle and waywind during strand package buildup |
DE10015933B4 (en) * | 2000-03-30 | 2015-09-03 | Saurer Germany Gmbh & Co. Kg | Method for producing a step precision winding |
DE10018808A1 (en) * | 2000-04-15 | 2001-10-25 | Schlafhorst & Co W | Winding cross wound bobbins uses measurements of the yarn diameter to compute the lay of the yarns around the bobbin in a cross winding with consistent characteristics |
DE10033015B4 (en) * | 2000-04-20 | 2011-01-13 | Oerlikon Textile Gmbh & Co. Kg | Method for producing a cross-wound bobbin and cross-wound bobbin |
ITMI20010682A1 (en) * | 2000-04-20 | 2002-09-30 | Schlafhorst & Co W | PROCEDURE FOR PRODUCING A CROSSED COIL AND CROSSED COIL OBTAINED WITH IT |
AT502782B1 (en) † | 2003-05-19 | 2008-07-15 | Starlinger & Co Gmbh | BANDAUFWICKELVERFAHREN |
SI22124A (en) * | 2006-12-07 | 2007-04-30 | Danilo Jaksic | Method of precise winding of textile yarn to cones by changing the winding ratio within one winding cycle several times |
US8590743B2 (en) | 2007-05-10 | 2013-11-26 | S.C. Johnson & Son, Inc. | Actuator cap for a spray device |
US8381951B2 (en) | 2007-08-16 | 2013-02-26 | S.C. Johnson & Son, Inc. | Overcap for a spray device |
US8556122B2 (en) | 2007-08-16 | 2013-10-15 | S.C. Johnson & Son, Inc. | Apparatus for control of a volatile material dispenser |
US8469244B2 (en) | 2007-08-16 | 2013-06-25 | S.C. Johnson & Son, Inc. | Overcap and system for spraying a fluid |
US8387827B2 (en) | 2008-03-24 | 2013-03-05 | S.C. Johnson & Son, Inc. | Volatile material dispenser |
DE102010055575A1 (en) * | 2010-12-21 | 2012-06-21 | Oerlikon Textile Gmbh & Co. Kg | Process for the preparation of a dyeing bobbin |
CZ306120B6 (en) * | 2015-05-06 | 2016-08-10 | Technická univerzita v Liberci | Method of winding self-supporting bobbin and self-supporting bobbin with cheese package of lower thread for sewing machines |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4504021A (en) * | 1982-03-20 | 1985-03-12 | Barmag Barmer Maschinenfabrik Ag | Ribbon free wound yarn package and method and apparatus for producing the same |
EP0093258B1 (en) * | 1982-05-03 | 1986-12-10 | b a r m a g Barmer Maschinenfabrik Aktiengesellschaft | Method of avoiding images at the random cross winding of a yarn |
US4504024A (en) * | 1982-05-11 | 1985-03-12 | Barmag Barmer Maschinenfabrik Ag | Method and apparatus for producing ribbon free wound yarn package |
CN1005029B (en) * | 1985-03-05 | 1989-08-23 | 巴马格·巴默机器制造股份公司 | Winding method |
DE3660670D1 (en) * | 1985-03-11 | 1988-10-13 | Barmag Barmer Maschf | Winding method |
DE3521120A1 (en) * | 1985-06-13 | 1987-01-02 | Maag Fritjof | Winding machine and method for avoiding level stages during winding |
JPS62290682A (en) * | 1986-06-03 | 1987-12-17 | Teijin Seiki Co Ltd | Traverse device |
DE3769053D1 (en) * | 1986-09-18 | 1991-05-08 | Teijin Seiki Co Ltd | METHOD FOR REWINDING YARN ON SPOOLS WITH RELATED MACHINE. |
IT1227912B (en) * | 1988-12-23 | 1991-05-14 | Savio Spa | PROCEDURE AND APPARATUS TO DRIVE THE DISTRIBUTION OF THE WIRE ON THE PACKAGE IN FORMATION IN A COLLECTION GROUP FOR SYNTHETIC WIRES |
DE3918846A1 (en) * | 1989-06-09 | 1990-12-13 | Maag Fritjof | PRAEZISION CROSS COIL, METHOD FOR THE PRODUCTION AND COIL INSTALLATION THEREFOR |
DE4037278A1 (en) * | 1990-11-23 | 1992-05-27 | Neumag Gmbh | METHOD FOR REWINDING A THREAD IN STEPPED PRECISION WINDING |
-
1992
- 1992-07-17 DE DE4223271A patent/DE4223271C1/de not_active Expired - Fee Related
-
1993
- 1993-06-08 AT AT93109171T patent/ATE142597T1/en active
- 1993-06-08 EP EP93109171A patent/EP0578966B1/en not_active Expired - Lifetime
- 1993-06-08 DE DE59303727T patent/DE59303727D1/en not_active Expired - Fee Related
- 1993-07-02 US US08/087,181 patent/US5447277A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US5447277A (en) | 1995-09-05 |
DE4223271C1 (en) | 1993-06-24 |
ATE142597T1 (en) | 1996-09-15 |
DE59303727D1 (en) | 1996-10-17 |
EP0578966A1 (en) | 1994-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0578966B1 (en) | Method for winding a yarn with stepped precision winding | |
DE2649780C3 (en) | Winding machine for textile yarns | |
EP0334211B1 (en) | Method for making a self-supporting wire package | |
EP0256411B1 (en) | Method to wind up threads | |
EP0195325B1 (en) | Winding method | |
EP0237892B1 (en) | Process and device for copping a thread | |
DE2937601A1 (en) | METHOD FOR WINDING THREADS | |
DE2320690A1 (en) | METHOD AND DEVICE FOR WINDING ELECTRIC REELS | |
EP0256383B1 (en) | Method to wind up threads | |
DE8717974U1 (en) | Wire wound coil | |
EP0150771B1 (en) | Precision wound package, process and device for its manufacture | |
WO2004101415A1 (en) | Strip winding method | |
DE19817111A1 (en) | Method of winding yarn on cylindrical cross wound bobbin | |
DE4037278C2 (en) | ||
EP0562296B1 (en) | Method for winding filamentary material, continuously fed at preferably constant speed, in a stepped precision winding and winding device for carrying out the method | |
DE4112768A1 (en) | Computer control for precision winding of cheese packages - using parameters which depend only on bare tube dia. | |
EP1379462A1 (en) | Method for operating a thread-winding machine and winding machinery therefor | |
EP1514824B1 (en) | Crosswound bobbin and method for producing of such a bobbin | |
DE3210244A1 (en) | Process for eliminating a bolster during the winding of a yarn by random winding | |
CH687928A5 (en) | A method for rewinding of yarns on a warp beam and associated beaming machine. | |
DD285518A7 (en) | METHOD FOR CONSTRUCTING AND RENDERING A WRAP CONTAINING PARTIAL THREADED THREAD WITHIN A CENTRIFUGAL SPINDLE | |
EP0837023B1 (en) | Device for winding a thread in random cross winding on a bobbin | |
CH691474A5 (en) | Method and apparatus for winding a yarn. | |
DE3627081C2 (en) | Process for winding threads | |
DE19626962A1 (en) | Winding thread on cylindrical crossover reel in incremental precision winding - comprising continual redn. of traversing speed between predetermined upper and lower limit in transient increments with predetermined winding ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19940129 |
|
17Q | First examination report despatched |
Effective date: 19950330 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK FR GB IT LI NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960911 Ref country code: GB Effective date: 19960911 Ref country code: FR Effective date: 19960911 Ref country code: DK Effective date: 19960911 |
|
REF | Corresponds to: |
Ref document number: 142597 Country of ref document: AT Date of ref document: 19960915 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59303727 Country of ref document: DE Date of ref document: 19961017 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KEMENY AG PATENTANWALTBUERO |
|
EN | Fr: translation not filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 19960911 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19970505 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970604 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19970630 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
BERE | Be: lapsed |
Owner name: NEUMUNSTERSCHE MASCHINEN- UND ANLAGENBAU G.M.B.H N Effective date: 19970630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050608 |