[go: up one dir, main page]

EP0527967B1 - Hydraulische antriebsvorrichtung - Google Patents

Hydraulische antriebsvorrichtung Download PDF

Info

Publication number
EP0527967B1
EP0527967B1 EP91920993A EP91920993A EP0527967B1 EP 0527967 B1 EP0527967 B1 EP 0527967B1 EP 91920993 A EP91920993 A EP 91920993A EP 91920993 A EP91920993 A EP 91920993A EP 0527967 B1 EP0527967 B1 EP 0527967B1
Authority
EP
European Patent Office
Prior art keywords
rotor
drive device
drive
hydraulic motor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91920993A
Other languages
English (en)
French (fr)
Other versions
EP0527967A1 (de
Inventor
Eckehart Schulze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0527967A1 publication Critical patent/EP0527967A1/de
Application granted granted Critical
Publication of EP0527967B1 publication Critical patent/EP0527967B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B9/00Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member
    • F15B9/14Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with rotary servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0636Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F03C1/0644Component parts
    • F03C1/0655Valve means
    • F03C1/0657Cylindrical valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0636Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F03C1/0644Component parts
    • F03C1/0663Casings, housings
    • F03C1/0665Cylinder barrel bearing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0678Control

Definitions

  • the invention relates to a hydraulic drive device according to the preamble of claim 1.
  • Such a hydraulic drive device is known from DE-38 27 365 A1.
  • an axial piston hydraulic motor is provided as the power drive, in which the drive pistons are mounted in cylinder bores of the rotor in axially symmetrical grouping about the axis of rotation of the motor.
  • a run-on control valve of a known type is provided, which works with an electrically controllable setpoint specification and mechanical actual value feedback of the dynamic parameters mentioned.
  • a stepper motor or an AC motor which in turn can be controlled according to the direction of rotation and the speed of rotation by output signals from an electronic control unit, which forms an output stage of an NC or a CNC machine control unit, is provided for setting the setpoint.
  • a spindle nut system is provided for mechanical feedback of the actual position value, which transmits deflections of a valve actuating element of the follow-up control valve, which are required for the valve actuation in accordance with the regulation and occur parallel to the central axis of the spindle nut system.
  • the electric control motor, the overrun control valve and the axial piston hydraulic motor are arranged, in this order, along the common central longitudinal axis of the drive device and coaxially to this side by side or one behind the other, the supply of pressure medium to the individual linear cylinders of the axial piston motor via a housing-fixed and one with the rotor of the axial piston motor rotating control disk takes place, which, seen along the central longitudinal axis, are arranged "between" the follow-up control valve and the drive part of the hydraulic motor, and wherein the rotor of the hydraulic motor with its output shaft is rotatably mounted on a housing end part by means of two angular ball bearings is to achieve the greatest possible effective axial length of the bearing, which is necessary with the high output of the hydraulic motor, in order to get along with small axial dimensions.
  • the hydraulic drive device known from FR-A-2 048 993 also has approximately the same disadvantages, but in which the drive pistons of the axial piston hydraulic motor are guided in bores fixed to the housing and the rotor is designed as a swash plate which is connected to the output shaft in a rotationally fixed manner is mounted on an end end wall of the housing of the drive device and an intermediate wall thereof, which requires additional overall length of the drive device as a whole.
  • a trailing control valve with a rotating valve body is required in this drive device, which is inevitably associated with relatively high leakage oil losses in the valve area and reduces the rigidity of the drive.
  • the power drive is in turn an axial piston motor, in which the pistons are arranged in the rotor and with it rotate the central axis of the motor.
  • the rotor is rotatably mounted on a peg-shaped inner housing extension designed as a hollow tube, in which there is provided one for achieving the follow-up control function first valve is arranged with a rotatable housing, which is coupled in a rotationally fixed manner to the output shaft and has a valve body arranged rotatably within the housing.
  • the pressure medium supply to the linear cylinders of the motor and the pressure medium discharge are controlled by this valve.
  • a second valve which has a rotatable housing and a rotatable valve body, is arranged laterally in a block of the housing of the drive device with its central axis parallel to the central axis of the first valve.
  • the housing of this valve is motionally coupled to the rotatable valve body of the first valve via a spur gear. Its piston is driven by the stepper motor.
  • the function of a follow-up control valve is achieved as a whole by these two valves, as already described with reference to the prior art explained above.
  • the saving in axial length that can be achieved with this type of construction is insignificant, since at least the second valve arranged laterally from the central axis of the drive device contributes with its axial extension to the overall length of the drive device.
  • a disadvantage of this drive device is in particular the correspondingly extended gaps caused by the extended sliding surfaces of the valve elements, which are rotatably supported relative to one another and with respect to the housing, and the resulting leakage oil losses, which here too reduce the rigidity of the drive and thus the reduce achievable control loop gain.
  • the object of the invention is therefore to improve a hydraulic drive device of the type mentioned in such a way that it can be realized with significantly smaller axial dimensions with a comparable power density of the drive and conveys a favorable high "rigidity" of the drive as a whole.
  • the drive device according to the invention is particularly advantageous as an articulated drive for a multi-articulated robot arm which comprises several such articulated drives, i.e. an application for which the features of claim 2 indicate a particularly favorable routing of the pressure supply lines via the rotor each of the drive devices required for this purpose, which does not require flexible - tubular - pressure medium lines.
  • this again with particular advantage with regard to use with multi-articulated robot arms, is provided with a locking device that automatically locks the rotor when the pressure supply is switched off or fails, thereby increasing the risk of injuries in the area of the robot arm Persons and damage to objects is effectively prevented.
  • Such a locking device can be implemented in a simple manner in a functionally reliable manner with the actuating elements specified by the features of claim 5.
  • actuating elements are displaceable parallel to the central longitudinal axis of the drive device, they can act on a locking element which can be pressed against an end face of the rotor, which is then expediently axially immovable, alternatively, as provided in accordance with claim 7, directly on an axially displaceably designed rotor of the hydraulic motor, wherein for such a design of the drive device by the features of the further claims 8 to 10 alternatively or in combination realizable, each advantageous advantageous simple configurations are specified.
  • the hydraulic drive device shown in FIG. 1, to the details of which reference is expressly made, which is designated as a whole by 10, is for a large number of applications intended in mechanical engineering, in which rotary drives of high power density are required, which are easily controllable and can be monitored very precisely with regard to the number of revolutions carried out of the output element of the drive device 10, generally designated 11, the accuracy of this monitorability also within each one of the revolutions carried out by the output element 11 should be possible with a defined angular resolution, for example with a high angular resolution of 0.1 °, if necessary also more precisely, this accuracy essentially being dependent on the properties of an encoder system designated as a whole by means of both the number of revolutions carried out by the output element 11 of the drive device and, within each individual revolution, the angular position of the output element 11 with respect to a fixedly predetermined reference plane or orientation can be determined .
  • Modern encoder systems 12 of the type in question enable angular resolutions of 0.01 ° less.
  • the drive device 10 is intended for use in the context of CNC (Computer Numeric Control) -controlled machine tools or in the context of robots or with comparable manipulators or work tools which have multi-articulated arms or "arms", at the free end of which either a gripper or a tool is arranged which must be able to be guided along a precisely defined movement path and / or must be able to be brought into a specific position which is determined by specifying coordinate values, in the latter case it not being absolutely necessary for this position to be on a certain path must be reached, at least not if this position is only the starting point for a movement of the tool or gripper, From which a precisely defined path must first be maintained.
  • CNC Computer Numeric Control
  • the drive device 10 comprises as a power drive a hydraulic motor, generally designated 13, designed as an axial piston motor, and as a control element, a follow-up control valve, generally designated 14, which is provided with an electrically controllable rotational angle setpoint specification and mechanical actual value feedback of the current angular position of the overall designated 16 Rotor of the hydraulic motor 13 and thus also the output element 11 of the same works.
  • a follow-up control valve generally designated 14
  • an electric motor 17 is provided, which can be designed as a pulse-controlled stepper motor or can also be implemented as an AC motor. According to its function, it in turn is to be regarded as a control element of the follow-up control valve 14.
  • overrun control valve 14 which is represented in FIG. 1 essentially by its hydraulic switching symbol, the construction known in detail from DE 37 29 564 A1 is provided structurally, the contents of which reference is made to this extent. It is therefore only explained below with regard to its function in the context of the drive device 10, and construction details are only discussed to the extent that they are necessary for the explanation of the special exemplary embodiment.
  • the overrun control valve 14 is designed as a 4/3-way valve, the neutral position O of which the hydraulic motor 13 is at a standstill is a blocking position in which the P supply connection 18 of the hydraulic motor 13, via which the latter does not have a high-pressure output shown pressure supply unit is connected, and the T-supply connection 19, via which the hydraulic motor 13 with the unpressurized. ie is kept at atmospheric pressure reservoir of the pressure supply unit, both against the A-control connection 21 and against the B-control connection 22 of the hydraulic motor 13 are blocked, by their alternative connection to the P-supply connection 18 and the T-supply connection 19 the Rotary drive direction of the hydraulic motor 13 is controllable.
  • the overrun control valve 14 in accordance with the alternative directions of rotation in which the electric motor 17 is electrically controllable, can either be controlled into the functional position I, in which the P supply connection 18 with the A control connection 21 and the T-supply connection 19 are connected to the B-control connection 22 of the hydraulic motor 13, or to the functional position II, in which the P-supply connection 18 with the B-control connection 22 and the T-supply connection 19 with the A-control connection 21 of the hydraulic motor 13 are connected.
  • the control of the overrun control valve 14 takes place in its functional position I in that the electric motor 17, viewed in the direction of arrow 23 in FIG. 1, is driven in a clockwise direction and accordingly the overrun control valve 14 in its functional position II is controlled when the electric motor 17 rotates counterclockwise. Furthermore, it is assumed for the illustrated embodiment that the direction of rotation of the hydraulic motor 13 is in the same direction as that of the electric motor 17.
  • the rotation angle or position setpoint is specified, as indicated only schematically in FIG. 1, by means of a the rotor 24 of the electric motor 17 non-rotatably connected setpoint input shaft 26, by the rotation of which a valve actuating element designated overall by 27, depending on the direction of rotation of the rotor 24 of the electric motor 17 clockwise or counterclockwise, in the direction indicated by the double arrow 28 marked, alternative directions is displaceable, wherein a valve body of the follow-up control valve 14, which is a slide, is - between control flanges 27 'and 27' of the valve actuating element 27, seen in the direction of the central longitudinal axis 29 of the drive device 10, as it were "clamped” and accordingly the Sliding movements of the valve actuating element 27 with.
  • this valve actuating element 27 is designed as the setpoint input shaft 26, at least on longitudinal sections of the same, in the housing 31 of the follow-up control valve 14, arranged longitudinally displaceable but non-rotatably arranged threaded nut, which, as not specifically shown, is in meshing engagement with threaded balls with an external thread of the setpoint input shaft 26.
  • a follow-up control valve 14 is provided with a threaded spindle 32, which is in meshing engagement with an internal thread of the setpoint input shaft 26, as a “feedback spindle", which is rotatably coupled to the rotor 16 of the hydraulic motor 13.
  • the drive control circuit is closed from the actual value side to the setpoint side by the incremental travel or rotary position sensor system 12, which includes a first sensor 34, which detects the number of revolutions made by the rotor 16 of the hydraulic motor 13, and one second encoder 36 which resolves each of these revolutions into a number of angular increments.
  • This incremental encoder 36 is in turn, which is not shown in detail, realized by means of two encoder elements which, seen in the circumferential direction of a circumferential toothing 37 of an encoder disk 38 rotating with the rotor 16 of the hydraulic motor 13, are arranged offset with respect to one another such that the pulse-shaped or sinusoidal electrical - output signals of these encoder elements have a phase shift of 90 ° relative to one another, so that the direction of rotation of the rotor 16 of the hydraulic motor 13 can be recognized from the signal levels and the phase position of the output signals of the encoder elements in addition to the amount of the position changes.
  • the encoders 34 and 36 can be implemented with the aid of field plates or as inductive, possibly also as capacitive or electro-optical encoders of a type known per se.
  • the hydraulic motor 13 is also known in terms of its construction principle insofar as the implementation of axial movements drives the drive chambers 39 of a plurality of “small” linear cylinders 41 of piston elements 42 that move in a rotating manner in rotary movements of the rotor 16 by axially supporting these piston elements 42 on a housing-fixed one, on the other Linear cylinder 41 facing side "wavy" designed support plate 43 of the axial piston hydraulic motor 13 corresponds to the relevant prior art.
  • a hydraulic axial piston motor corresponding to this construction principle which, as is also provided in the exemplary embodiment according to FIG. 1, is controlled by means of a follow-up control valve, is explained in detail in German patent application P 38 27 365.9, on the description of which regarding the design of the drive part 44 of the Rotor 16 of the hydraulic motor 13 and the interaction between this hydraulic motor and the follow-up control valve 14 is also referred to. Accordingly, the following description of the special exemplary embodiment of the drive device 10 according to the invention shown in the drawing is - essentially - limited to the differences that exist compared to the drive device according to the cited patent application.
  • the rotor 16 of the axial piston hydraulic motor 13 is slidably rotatably mounted with an essentially circular-cylindrical tubular section 46 of its output shaft 47 on a pin 48, which in turn is essentially circular-cylindrical tubular, which axially extends a part receiving the electric motor 17 in the arrangement shown 49 of the total designated 50 housing of the drive device 10 forms.
  • this tubular spigot 48 the cylindrical-tubular housing 31 of the follow-up control valve 14 is firmly inserted and enclosed by the spigot 48 along its entire length.
  • the drive part 44 of the rotor 16, which forms a common housing for the small linear cylinders 41, is designed as a relatively thick-walled, radial flange, as seen in the axial direction, in one piece with its output shaft 47, as shown best in the axial direction the schematic developed view of Fig. 2, additional reference is made to the details of which, seen, sixteen in total, continuous in the axial direction of bores 51a are inserted p to 51, with an axially symmetrical distribution of their central longitudinal axes 52 about the central longitudinal axis 29 of the Drive device 10 are grouped.
  • the piston elements 42 - sealed against the bore surfaces - are slidably arranged, which are supported by balls 53 on the axially opposite end face 54 of an annular rib 56 of the support disk 43 fixed to the housing, which is concavely curved to complement the balls.
  • This annular rib 56 has, seen in the circumferential direction, a periodically varying "height" in the axial direction, such that for this end face 54, in the development view of FIG 2 seen, an overall triangular-wave-shaped course with a "periodicity length" p measured in angular degrees of 60 °, that is, a six-fold axial symmetry.
  • the ring rib 56 thus has the overall shape of a "six-pointed" crown, the points 57 a to 57 f of which are arranged pointing to the drive part 44 of the rotor 16.
  • the prongs 57 a) to 57 f) of the annular rib 56 which is circular at its base 58 have the shape of flat, isosceles-obtuse-angled triangles, the legs 59 a) to 59 f) and 61 a) to 61 f) include an obtuse angle ⁇ , which in practice has a value of 140 °, in a preferred embodiment of the axial piston motor 13 a value of 138 °.
  • the support balls 53 which together with the cylindrical-pot-shaped piston elements 42, the drive chambers 39 of the A total of 16 linear cylinders 41 forming pistons of these linear cylinders 41 which are movable in a pressure-tight manner, are freely rotatably mounted in concave bearing pans 64 of the piston elements 42 so that they can roll around easily on the running surface 54 of the annular rib 56.
  • the bearing pans 64 are in communicating connection with the drive chambers 39 of the linear cylinders 41 via central lubrication channels 65, so that during operation of the axial piston motor 13 there are between the sliding surfaces of the bearing pans 64 and the support balls 53 can form a thin lubricating film which ensures largely wear-free operation of the axial piston motor 13.
  • the T-supply connection 19 of the follow-up control valve 14 is in communication via a radial bore 68 of the housing 31 of the follow-up control valve 14 with an aligned, radial bore 69 of the pin 48 which passes through its cylindrical wall, in this transverse bore 69 opens into a longitudinal channel 71, which in turn is communicatively connected to the T-connector 74 via an oblique bore 72, which is arranged in a solid outer radial flange 73 of the housing part 49 accommodating the electric motor 17, via a hose, not shown - Or pipelines can be connected to the unpressurized tank of the pressure supply unit.
  • the P-supply connection 18 of the follow-up control valve 14 is via a further transverse bore 76 of the outer jacket of the valve housing 31 with a second radial bore 77 of the same which is aligned therewith Pin 48 in communicating connection, into which in turn a longitudinal channel 80 opens, which, viewed in the direction of the central longitudinal axis 29, passes at an azimuthal distance from the longitudinal channel 71 leading to the tank connecting piece 74 and, if so, via an oblique hole (not shown) leads to the P-connecting piece, also not shown, which is connected to the high-pressure outlet of the pressure supply unit.
  • the A control connection 21 of the follow-up control valve 14 communicates with an outer groove 78 of the valve housing 31, which is formed as an annular groove surrounding it and is accordingly shown in the development view of FIG. 2 as a pressure medium channel 78 extending over the entire development length.
  • the B control connection 22 of the follow-up control valve 14 is in communicating connection with a second outer groove 79, which is also designed as a closed annular groove extending over the entire circumference of the valve housing 31 and accordingly in FIG. 2 as one Pressure medium channel extending over the entire development length is shown.
  • these outer grooves 81a to 81f and 82a to 82f are alternately connected to the through essentially radially running bores 84a to 84f with the A-Stzuer connection of the follow-up control valve 14 in communicating connection annular groove 28 or via transverse bores 86a to 86f to the with the B control connection 22 of the after-run control valve 14 in communicating connection connected annular groove 79 of the valve housing 31.
  • the angular width of the sector-shaped outer grooves 81a to 81f or 82a to 82f measured in the circumferential direction plus the correspondingly measured angular width of one of the axial webs 83a to 831, each of which two of these grooves, z. B the grooves 82b and 81b against each other is 30 ° in total, the angular width of the sector-shaped grooves 81a to 81f and 82a to 82f being considerably larger, the ratio being between 5 and 10.
  • the angular width of the webs 83a to 83p corresponds to the azimuthal, i.e.
  • the linear cylinders connected "simultaneously" to one of the two ring grooves 78 and 79 each contribute in the same direction to the torque development of the axial piston motor 13 or are not involved in this, with FIG. 2 directly recognizing that, in the special exemplary embodiment , each contribute at least 6 of the linear cylinders and in extreme cases even 8 in the same direction to the torque development.
  • the constructional integration of the follow-up control valve 14 into the pin 48 of the housing part 49 explains the shortest possible dimensions of the pressure supply channels 84a to 84f and 86a to 86f leading from the follow-up control valve 14 to the drive chambers 39 of the linear cylinders 41, as well as the radial channels 87a to 87p, which is very important for a high "rigidity" of the drive.
  • the support disk 43 provided with the undulating annular rib 56 is between a cylindrical tubular housing part 88 which is sealed against the radial flange 73 of the housing part 49 receiving the electric motor 17 and essentially the radially outer boundary of the annular space 89 receiving the drive part 44 of the rotor 16 forms and axially clamps an externally and internally stepped cylindrical end part 91 of the housing 50 of the drive device 10, the support disc 43 by means of a centering ring 92 integral therewith, the outside diameter of which corresponds exactly to the inside diameter of the cylindrical-tubular housing part 88, with respect to this or the central part Longitudinal axis 29 of the drive device 10 is precisely centered and by means of an axial dowel pin 93, which passes through a bore of the support disk 43 aligned with coaxial bores of the cylindrical-tubular housing part 88 and the housing end part 91, against rotation en is secured relative to the housing parts 88 and 91.
  • the rotor shaft 47 is rotatably supported by means of a radial needle bearing 97 within the outer, output-side, the inner diameter after the smaller step 96 of the stepped-cylindrical housing part 91, this needle bearing 97, like the “journal bearing”, allowing the rotor 16 to be axially displaceable.
  • the centering ring 92 of the support disk 43 which rests radially on the outside with a cylindrical surface on the cylindrical inner surface of the cylindrical tubular housing part 88 and is sealed against this housing part 88 by means of an annular seal 98, has a conical chamfer surface 99 on its radially inner side, the clear diameter of which towards the drive part 44 of the rotor 16 increases.
  • the drive part 44 of the rotor 16 is in turn provided with an outer chamfer surface 101 arranged opposite the chamfer surface 99 of the centering ring 92 of the support disk 43, viewed in the axial direction, the inclination thereof with respect to the central longitudinal axis 29 of the drive device 10 of that of the chamfer surface 99 of the centering ring 92 corresponds to the support disk 43.
  • This position of the rotor 16 relative to the support disk 43 is determined by the contact of bearing rollers 105 of an axial roller bearing 103 on the annular surface 104 opposite the annular rib 56 of the support disk 43, the support opposite this annular surface 104 being formed by a bearing ring 106 which is fixedly connected to the rotor shaft 47 is.
  • the axial roller bearing 103 formed by the bearing rollers 102 and the bearing ring 106 is arranged within an annular space 107, the outer radial boundary of which is formed by the step 108 of the stepped housing part 91, which is larger on the inside diameter.
  • this annular space 107 is delimited by the annular shoulder 109 mediating between the two housing stages 96 and 108, on the one hand, and the support disk 43, on the other hand.
  • the clear axial distance between the bearing ring 106 and the annular shoulder 109 of the stepped housing part 91 is slightly larger than the clear axial distance between the two chamfer surfaces 99 and 101 of the centering ring 92 of the support disk 43 and the drive part 44 of the rotor 16, seen in the operating position shown
  • the drive device 10 is equipped with a locking device, generally designated 111, which when the drive device 10 is switched off, the rotor 16 is automatically locked in the angular position assumed at the moment of switching off.
  • the actuating elements of the "parking brake 111" are stamps 112 arranged in an axially symmetrical grouping around the central longitudinal axis 29 of the drive device 10, which by prestressed compression springs 113 in contact with the - rear - annular end facing away from the support disk 43 End face 114 of the drive part 44 of the rotor 16 can be pushed, as a result of which the rotor 16 experiences an axial displacement, through which the two chamfer surfaces 99 and 101 of the centering ring 92 and the drive part 44, which in this case act as friction surfaces of the locking device 111, come into contact with each other and a frictional fixation of the rotor 16 in the housing 50 of the drive device 10 is achieved.
  • the plungers 112 are connected to pistons 117 which can be displaced in a pressure-tight manner in axial bores 116 of larger diameter, on whose sides remote from the plungers 112 the prestressed compression springs 113 engage.
  • These pistons 117 also form the axially movable limits of control chambers 118, into which the high output pressure of the auxiliary pressure source is coupled during operation of the drive device 10, as a result of which the pistons 117 and with them the punches 112 into or away from the drive part 44 of the rotor 16 1, in which the locking device 111 is released and the rotor 16 - in its illustrated axial position - can be freely rotated.
  • the - slight - axial displaceability of the rotor 16 required to achieve the locking function in the particular exemplary embodiment shown is in the construction of its mounting explained - radially inside on the pin 48 of the housing part 49 receiving the electric motor 17 and radially outside by means of the needle bearing 97 can be realized on the housing end part 91 without difficulty.
  • an analog locking device can also be implemented in such a way that an annular disk-shaped brake shoe connected to the punches 112 in a manner that is resistant to shear and thrust is provided is, which can be urged in contact with the rear end face 114 of the drive part, which now in turn acts as a brake shoe, wherein the rotor 16 may be rotatably mounted axially fixed in the housing 50.
  • An axial mobility of the feedback spindle 32 relative to the rotor shaft 47 of the axial piston motor 13, which is required for the function of the follow-up control valve 14, can, as not specifically shown, be achieved in that the feedback spindle 32 is rotatably connected to the rotor shaft 47 via an axial toothing, but axially is movably coupled.
  • the outer groove 123 of the pin 48 leading the P supply pressure in the illustrated embodiment is arranged at a smaller axial distance from the orifice plane 126 of the longitudinal channel 119 communicating with it than the inner groove 124 of the rotor, with which the other longitudinal channel 121 communicates it is possible to guide these two longitudinal channels 119 and 121 at the same radial distance from the central longitudinal axis 29 of the drive device 10 and to make do with minimal radial cross-sectional dimensions of the annular cylindrical section 46 of the rotor shaft 47.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydraulic Motors (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Reciprocating Pumps (AREA)

Description

  • Die Erfindung betrifft eine hydraulische Antriebsvorrichtung gemäß dem Oberbegriff des Patentanspruchs 1.
  • Eine derartige hydraulische Antriebsvorrichtung ist durch die DE-38 27 365 A1 bekannt.
  • Bei dieser bekannten Antriebsvorrichtung ist als Leistungsantrieb ein Axialkolben-Hydromotor vorgesehen, bei dem die Antriebskolben in axialsymmetrischer Gruppierung um die Drehachse des Motors angeordnet in Zylinderbohrungen des Rotors verschiebbar gelagert sind. Zur Bewegungssteuerung - Drehrichtung und Winkelgeschwindigkeit - dieses Hydromotors ist ein Nachlauf-Regelventil für sich bekannter Bauart vorgesehen, das mit elektrisch steuerbarer Sollwert-Vorgabe und mechanischer Istwert-Rückmeldung der genannten dynamischen Parameter arbeitet. Zur Sollwert-Einsteuerung ist ein seinerseits nach Drehrichtung und Rotationsgeschwindigkeit durch Ausgangssignale einer elektronischen Steuereinheit, welche eine Ausgangsstufe einer NC- oder einer CNC-Maschinen-Steuereinheit bildet, ansteuerbarer Schrittmotor oder ein AC-Motor vorgesehen. Zur mechanischen Positions-Istwert-Rückmeldung ist ein Spindel-Muttersystem vorgesehen, das für die regelungsgerechte Ventilbetätigung erforderliche, parallel zur zentralen Achse des Spindel-Muttersystems erfolgende Auslenkungen eines Ventilbetätigungsgliedes des Nachlauf-Regelventils vermittelt. Der elektrische Steuermotor, das Nachlauf-Regelventil und der Axialkolben-Hydromotor sind, in dieser Reihenfolge, entlang der gemeinsamen zentralen Längsachse der Antriebsvorrichtung und koaxial zu dieser neben- bzw. hintereinander angeordnet, wobei die Zuführung von Druckmittel zu den einzelnen Linearzylindern des Axialkolbenmotors über eine gehäusefest angeordnete und eine sich mit dem Rotor des Axialkolbenmotors drehende Steuerscheibe erfolgt, die, entlang der zentralen Längsachse gesehen, "zwischen" dem Nachlauf-Regelventil und dem Antriebsteil des Hydromotors angeordnet sind, und wobei der Rotor des Hydromotors mit seiner Abtriebswelle an einem Gehäuse-Abschlußteil mittels zweier Schräg-Kugellager drehbar gelagert ist, um eine möglichst große effektive axiale Länge der Lagerung zu erzielen, die bei der hohen Abtriebsleistung des Hydromotors erforderlich ist, um gleichwohl mit geringen axialen Abmessungen auszukommen.
  • Ungeachtet dieser insoweit durchaus geeigneten konstruktiven Maßnahmen und weiterer raumsparender Konstruktionsmaßnahmen, wie eine spezielle Art der die erforderlichen axialen Relativbewegungen ermöglichenden Ankopplung der Abtriebswelle des elektrischen Steuermotors an eine Sollwert-Vorgabespindel des Nachlauf-Regelventils und die innerhalb der Rotorwelle untergebrachte Ankopplung der Positions-Istwert-Rückmeldespindel des Nachlauf-Regelventils an den Rotor des Axialkolbenmotors ergibt sich für die bekannte Antriebsvorrichtung dennoch eine für eine Reihe von Einsatzzwecken ungünstig große Gesamtbaulänge, mit der zwangsläufig auch relativ große Längen der Flüssigkeitssäulen innerhalb der Antriebsvorrichtung und, damit einhergehend eine Einbuße an Steifigkeit des Antriebes insgesamt verknüpft sind.
  • Mit etwa denselben Nachteilen behaftet ist auch die aus der FR-A-2 048 993 bekannte hydraulische Antriebsvorrichtung, bei der jedoch die Antriebskolben des Axialkolben-Hydromotors in gehäusefesten Bohrungen geführt sind und der Rotor als eine mit der Abtriebswelle drefest verbundene Schrägscheibe ausgebildet ist, die an einer End-Stirnwand des Gehäuses der Antriebsvorrichtung und einer Zwischenwand desselben gelagert ist, was zusätzliche Baulänge der Antriebsvorrichtung insgesamt bedingt. Außerdem ist bei dieser Antriebsvorrichtung ein Nachlauf-Regelventil mit rotierendem Ventilkörper erforderlich, was zwangsläufig mit relativ hohen Leckölverlusten im Ventilbereich behaftet ist und die Steifigkeit des Antriebes erniedrigend beeinflußt.
  • Des weiteren ist durch die DE-A-14 26 488 eine mit elektrisch gesteuerter Positions-Sollwertvorgabe und mechanischer Positions-Istwert-Rückmeldung arbeitende hydraulische Antriebsvorrichtung bekannt, deren Leistungsantrieb wiederum ein Axialkolbenmotor ist, bei dem die Kolben im Rotor angeordnet sind und mit diesem um die zentrale Achse des Motors rotieren. Der Rotor ist auf einem zapfenförmigen, als Hohlrohr ausgebildeten inneren Gehäusefortsatz drehbar gelagert, in dem ein zur Erzielung der Nachlauf-Regelungsfunktion vorgesehenes erstes Ventil mit drehbarem Gehäuse angeordnet ist, das mit der Abtriebswelle drehfest gekoppelt ist und einen drehbar innerhalb des Gehäuses angeordneten Ventilkörper hat. Über dieses Ventil wird die Druckmittelzufuhr zu den Linearzylindern des Motors sowie die Druckmittelabfuhr von diesen gesteuert. Ein zweites Ventil, das ein drehbares Gehäuse und einen drehbaren Ventilkörper hat, ist mit parallelem Verlauf seiner zentralen Achse zur zentralen Achse des ersten Ventils seitlich von diesem in einem Block des Gehäuses der Antriebsvorrichtung angeordnet. Das Gehäuse dieses Ventils ist über ein Stirnradgetriebe mit dem drehbaren Ventilkörper des ersten Ventils bewegungsgekoppelt. Sein Kolben wird von dem Schrittmotor angetrieben. Durch diese beiden Ventile wird insgesamt die Funktion eines Nachlauf-Regelventils erzielt, wie schon anhand des vorstehend erläuterten Standes der Technik beschrieben.
  • Die bei dieser Bauweise erzielbare Einsparung an axialer Baulänge ist unbedeutend, da zumindest das seitlich von der zentralen Achse der Antriebsvorrichtung angeordnete zweite Ventil mit seiner axialen Ausdehnung zur Gesamt-Baulänge der Antriebsvorrichtung beiträgt. Nachteilig sind auch bei dieser Antriebsvorrichtung insbesondere die durch die ausgedehnten Gleitflächen der gegeneinander und gegenüber dem Gehäuse drehbar gelagerten Ventilelemente bedingten, entsprechend ausgedehnten Spalte und daraus resultierende Leckölverluste, die auch hier die Steifigkeit des Antriebs und damit die erreichbare Regelkreisverstärkung reduzieren.
  • Aufgabe der Erfindung ist es daher, eine hydraulische Antriebsvorrichtung der eingangs genannten Art dahingehend zu verbessern, daß sie bei vergleichbarer Leistungsdichte des Antriebes mit deutlich geringeren axialen Abmessungen realisierbar ist und eine günstig hohe "Steifigkeit" des Antriebs insgesamt vermittelt.
  • Diese Aufgabe wird erfindungsgemäß durch im kennzeichnenden Teil des Patentanspruchs 1 genannten Merkmale gelöst.
  • Durch die hiernach vorgesehene Lagerung des Rotors des Hydromotors an einem zapfenförmigen Fortsatz des den elektrischen Steuermotor aufnehmenden Gehäuseteils, der seinerseits hohlrohrförmig ausgebildet ist und das Nachlauf-Regelventil aufnimmt, das somit koaxial innerhalb des Antriebsteils des Rotors angeordnet ist sowie durch die Gestaltung und Anordnung von Steuerkanälen des Zapfen, radialen Querkanälen des Rotors und deren Verbindung mit Steueranschlüssen des Nachlauf-Regelventils, wird insgesamt eine dem Betrag nach etwa der axialen Ausdehnung des Antriebsteils des Rotors entsprechender Teil ansonsten erforderlicher Baulänge eingespart, und es werden auch auf kürzesten Wegen die Verbindungen der Steueranschlüsse des Nachlauf-Regelventils mit den Antriebskammern der Linearzylinder des Rotors erzielt, was der Steifigkeit der hydraulischen Säulen zugute kommt.
  • Die erfindungsgemäße Antriebsvorrichtung eignet sich aufgrund ihrer kompakten Bauweise mit besonderem Vorteil als Gelenkantrieb für einen mehrgelenkigen Roboterarm, der mehrere solcher Gelenkantriebe umfaßt, d.h. einen Einsatzzweck, für den durch die Merkmale des Anspruchs 2 eine besonders günstige Führung der Druckversorgungsleitungen über den Rotor je einer der hierfür benötigten Antriebsvorrichtungen angegeben ist, die ohne flexible - schlauchförmige - Druckmittelleitungen auskommt.
  • Auch wenn bei einem hydraulischen Antriebssystem, das über ein mit mechanischer Istwert-Rückmeldung arbeitendes Nachlauf-Regelventil gesteuert wird, zumindest nach einer Zeitspanne, die als Erfahrungswert berücksichtigt werden kann, zwangsläufig die Abweichung eines Positions-Istwertes vom eingesteuerten Positions-Sollwert unter einen - tolerierbaren - Wert abfällt, so ist es, um die guten dynamischen Eigenschaften der Antriebsvorrichtung ausnuten zu können, dennoch vorteilhaft, wenn der gesamte Positionier-Regelkreis, wie gemäß Anspruch 3, vorgesehen, zur Sollwert-Seite hin über ein elektronisches Gebersystem geschlossen wird, das für Änderungen des Istwert-Wertes der Dreh- oder Winkelstellung des Rotors und deren Änderungssinn charakteristische, in einer zentralen Seuereinheit auswertbare Ausgangssignale erzeugt.
  • In der bevorzugten Gestaltung der Antriebsvorrichtung gemäß Anspruch 4 ist diese, wiederum mit besonderem Vorteil im Hinblick auf einen Einsatz bei mehrgelenkigen Roboterarmen, mit einer bei einem Abschalten oder einem Ausfall der Druckversorgung selbsttätig eine Festsetzung des Rotors vermittelnden Feststell-Einrichtung versehen, wodurch einer Gefahr von Verletzungen im Bereich des Roboterarmes befindlicher Personen sowie der Beschädigung von Gegenständen wirksam vorgebeugt wird.
  • Eine derartige Feststell-Einrichtung ist mit durch die Merkmale des Anspruchs 5 angegebenen Betätigungselementen auf einfach Weise funktionell zuverlässig realisierbar.
  • Wenn solche Betätigungselemente, wie gemäß Anspruch 6, vorgesehen, parallel zur zentralen Längsachse der Antriebsvorrichtung verschiebbar sind, so können diese auf ein Feststell-Element wirken, das gegen eine Stirnfläche des Rotors preßbar ist, der dann zweckmäßigerweise axial unverrückbar gelagert ist, alternativ dazu, wie gemäß Anspruch 7 vorgesehen, unmittelbar auf einen axial verschiebbar gestalteten Rotor des Hydromotors, wobei für eine solche Gestaltung der Antriebsvorrichtung durch die Merkmale der weiteren Ansprüche 8 bis 10 alternativ oder in Kombination realisierbare, je für sich vorteilhaft einfache Ausgestaltungen angegeben sind.
  • Weitere Einzelheiten und Merkmale ergeben sich aus der nachfolgenden Beschreibung eines speziellen Ausführungsbeispiels anhand der Zeichnung. Es zeigen:
  • Fig. 1
    eine erfindungsgemäße Antriebsvorrichtung mit einem von der Abtriebswelle eines als Leistungsantrieb vorgesehenen Axialkolben-Hydromotors aufgenommenen Nachlauf-Regelventil, im Schnitt längs einer die zentrale Achse der Antriebsvorrichtung enthaltenden Radialebene, im Maßstab 1:1, hinsichtlich der Wiedergabe des NachlaufRegelventils in vereinfachter Symbol-Darstellung und
    Fig. 2
    eine schematisch vereinfachte Abwicklungs-Darstellung des Antriebsteils des Rotors des Hydromotors gemäß Fig. 1.
  • Die in der Fig. 1, auf deren Einzelheiten ausdrücklich verwiesen sein, dargestellte, insgesamt mit 10 bezeichnete hydraulische Antriebsvorrichtung, ist für eine Vielzahl von Anwendungsfällen im Maschinenbau gedacht, bei denen rotatorische Antriebe hoher Leistungsdichte benötigt werden, die auf einfache Weise sowohl steuerbar als auch hinsichtlich der Zahl der ausgeführten Umdrehungen des allgemein mit 11 bezeichneten Abtriebselements der Antriebsvorrichtung 10 sehr genau überwachbar sind wobei die Genauigkeit dieser Überwachbarkeit auch innerhalb jeder einzelnen der von dem Abtriebselement 11 ausgeführten Umdrehungen mit einer definierten Winkelauflösung möglich sein soll, z.B. mit einer hohen Winkelauflösung von 0,1°, erforderlichenfalls auch noch genauer, wobei diese Genauigkeit im wesentlichen von den Eigenschaften eines insgesamt mit 12 bezeichneten Gebersystems abhängig ist, mittels dessen sowohl die Anzahl der von dem Abtriebselement 11 der Antriebsvorrichtung ausgeführten Umdrehungen als auch, innerhalb einer jeder einzelnen Umdrehung, die Winkelstellung des Abtriebselementes 11 bezüglich einer fest vorgegebenen Bezugsebene oder -orientierung erfaßbar ist.
  • Moderne Gebersysteme 12 der in Frage kommenden Art ermöglichen hierbei Winkelauflösungen von 0,01° weniger.
  • Insbesondere ist die Antriebsvorrichtung 10 für einen Einsatz im Rahmen CNC (Computer Numeric Control)-gesteuerter Werkzeugmaschinen oder im Rahmen von Robotern oder mit solchen vergleichbaren Manipulatoren oder Arbeitsgeräten gedacht, die mehrgelenkige Ausleger oder "Arme" haben, an deren freiem Ende entweder ein Greifer oder ein Werkzeug angeordnet ist, das entlang einer genau definierten Bewegungsbahn führbar sein muß und/oder in eine bestimmte Position, die durch Angabe von Koordinatenwerten bestimmt ist, bringbar sein muß, wobei es in diesem letztgenannten Fall nicht zwingend erforderlich ist, daß diese Position auf einem bestimmten Weg erreicht werden muß, dies jedenfalls dann nicht, wenn diese Position erst Ausgangspunkt für eine Bewegung des Werkzeuges oder Greifers ist, ab welcher erst eine genau definierte Bahn eingehalten werden muß.
  • Die Antriebsvorrichtung 10 umfaßt als Leistungsantrieb einen insgesamt mit 13 bezeichneten, als Axialkolbenmotor ausgebildeten Hydromotor und als Steuerelement ein insgesamt mit 14 bezeichnetes Nachlauf-Regelventil, das mit elektrisch steurbarer Drehwinkel-Sollwert-Vorgabe und mechanischer Istwert-Rückmeldung der momentanen Winkelstellung des insgesamt mit 16 bezeichneten Rotors des Hydromotors 13 und damit auch des Abtriebselements 11 desselben arbeitet. Zum Zweck einer inkrementalen Drehwinkel- bzw. Positions-Sollwert-Einsteuerung ist ein Elektromotor 17 vorgesehen, der als impulsgesteuerter Schrittmotor ausgebildet oder auch als AC-Motor realisiert sein kann. Er ist, seiner Funktion nach, seinerseits als Steuerelement des Nachlauf-Regelventils 14 anzusehen.
  • Für dieses Nachlauf-Regelventil 14, das in der Figur 1 im wesentlichen durch sein hydraulisches Schaltsymbol repräsentiert ist, ist konstruktiv der durch die DE 37 29 564 A1 im einzelnen bekannte Aufbau vorgesehen, auf deren Inhalt insoweit Bezug genommen sei. Es wird daher nachfolgend nur hinsichtlich seiner Funktion im Rahmen der Antriebsvorrichtung 10 erläutert und auf konstruktive Einzelheiten nur insoweit eingegangen, als diese für die Erläuterung des speziellen Ausführungsbeispiels erforderlich sind.
  • Das Nachlauf-Regelventil 14 ist als 4/3-Wegeventil ausgebildet, dessen neutrale, dem Stillstand des Hydromotors 13 zugeordnete Grundstellung O eine Sperrstellung ist, in welcher der P-Versorgungsanschluß 18 des Hydromotors 13, über den dieser mit dem Hochdruck-Ausgang eines nicht dargestellten Druckversorgungs-Aggregats verbunden ist, und der T-Versorgungsanschluß 19, über den der Hydromotor 13 mit dem drucklosen. d.h. auf Atmosphärendruck gehaltenen Vorratsbehälter des Druckversorgungs-Aggregats verbunden ist, sowohl gegen den A-Steueranschluß 21 als auch gegen den B-Steueranschluß 22 des Hydromotors 13 abgesperrt sind, durch deren alternativen Anschluß an den P-Versorgungsanschluß 18 und den T-Versorgungsanschluß 19 die Dreh-Antriebsrichtung des Hydromotors 13 steuerbar ist.
  • Aus der Grundstellung O heraus ist das Nachlauf-Regelventil 14, entsprechend den alternativen Drehrichtungen, in denen der Elektromotor 17 - elektrisch - ansteuerbar ist, entweder in die Funktionsstellung I steuerbar, in welcher der P-Versorgungsanschluß 18 mit dem A-Steueranschluß 21 und der T-Versorgungsanschluß 19 mit dem B-Steueranschluß 22 des Hydromotors 13 verbunden sind, oder in die Funktionsstellung II, in welcher der P-Versorgungsanschluß 18 mit dem B-Steueranschluß 22 und der T-Versorgunsanschluß 19 mit dem A-Steueranschluß 21 des Hydromotors 13 verbunden sind.
  • Für das dargestellte Ausführungsbeispiel sei angenommen, daß die Ansteuerung des Nachlauf-Regelventils 14 in seine Funktionsstellung I dadurch erfolgt, daß der Elektromotor 17, in Richtung des Pfeils 23 der Fig. 1 gesehen, im Uhrzeigersinn angetrieben wird und demgemäß das Nachlauf-Regelventil 14 in seine Funktionsstellung II gesteuert ist, wenn sich der Elektromotor 17 im Gegen-Uhrzeigersinn dreht. Des weiteren ist für das dargestellte Ausführungsbeispiel vorausgesetzt, daß die Drehrichtung des Hydromotors 13 gleichsinnig mit derjenigen des Elektromotors 17 ist.
  • Die Drehwinkel- bzw. Positions-Sollwert-Vorgabe erfolgt, wie in der Figur 1 lediglich schematisch angedeutet, über eine mit dem Rotor 24 des Elektromotors 17 drehfest verbundene Sollwert-Vorgabe-Welle 26, durch deren Rotation ein insgesamt mit 27 bezeichnetes Ventil-Betätigungselement, je nach Drehrichtung des Rotors 24 des Elektromotors 17 im Uhrzeiger- oder im Gegen-Uhrzeigersinn, in den durch den Doppelpfeil 28 markierten, alternativen Richtungen verschiebbar ist, wobei ein als Schieber vorausgesetzter Ventilkörper des Nachlauf-Regelventils 14 - zwischen Steuerflanschen 27′ und 27˝ des Ventilbetätigungselementes 27, in Richtung der zentralen Längsachse 29 der Antriebsvorrichtung 10 gesehen, gleichsam "eingespannt" ist und demgemäß die Verschiebebewegungen des Ventil-Betätigungselementes 27 mit ausführt. Dieses Ventil-Betätigungselement 27 ist in der durch die DE 27 29 564 A1 bekannten Gestaltung als die Sollwert-Vorgabewelle 26 mindestens auf Längenabschnitten derselben koaxial umschließende, in dem Gehäuse 31 des Nachlauf-Regelventils 14 längs-verschiebbar, jedoch unverdrehbar geführt angeordnete Gewindemutter ausgebildet, die, wie nicht eigens dargestellt, über Gewindekugeln mit einem Außengewinde der Sollwert-Vorgabe-Welle 26 in kämmendem Eingriff steht. Zur Positions-Istwert-Rückmeldung ist bei dem Nachlauf-Regelventil 14 eine mit einem Innengewinde der Sollwert-Vorgabe-Welle 26 in kämmendem Eingriff stehende Gewindespindel 32 als "Rückmeldespindel" vorgesehen, welche drehfest mit dem Rotor 16 des Hydromotors 13 gekoppelt ist.
  • Darüber hinaus wird der Antriebs-Regelkreis von der Istwert-Seite zur Sollwert-Seite durch das inkrementale Weg- bzw. Drehstellungs-Gebersystem 12 geschlossen, das einen ersten, die Anzahl der von dem Rotor 16 des Hydromotors 13 ausgeführten Umdrehungen erfassenden Geber 34 und einen zweiten, jede dieser Umdrehungen in eine Anzahl von Winkel-Inkrementen auflösenden Geber 36 umfaßt.
  • Dieser Inkrementalgeber 36 ist seinerseits, was nicht im Detail dargestellt ist, mittels zweier Geberelemente realisiert, die in Umfangsrichtung einer Umfangszahnung 37 einer sich mit dem Rotor 16 des Hydromotors 13 drehenden Geberscheibe 38 gesehen, derart versetzt gegeneinander angeordnet sind, daß die impulsförmigen oder sinusoidalen - elektrischen - Ausgangssignale dieser Geberelemente eine Phasenverschiebung von 90° gegeneinander haben, so daß aus den Signalpegeln und der Phasenlage der Ausgangssignale der Geberelemente zusätzlich zum Betrag der Positionsänderungen auch die Drehrichtung des Rotors 16 des Hydromotors 13 erkannt werden kann. Die Geber 34 und 36 können mit Hilfe von Feldplatten oder als induktive, ggf. auch als kapazitive oder elektro-optische Geber für sich bekannter Bauart realisiert sein.
  • Auch der Hydromotor 13 ist seinem Bauprinzip nach insoweit bekannt, als die Umsetzung von axialen Bewegungen die Antriebskammern 39 einer Mehrzahl von "kleinen" Linearzylindern 41 beweglich begrenzender Kolbenelemente 42 in Drehbewegungen des Rotors 16 durch axiale Abstützung dieser Kolbenelemente 42 an einer gehäusefesten, an ihrer den Linearzylindern 41 zugewandten Seite "wellig" gestalteten Stützscheibe 43 des Axialkolben-Hydromotors 13 einschlägigem Stand der Technik entspricht.
  • Ein diesem Bauprinzip entsprechender hydraulischer Axialkolbenmotor, der, wie auch beim Ausführungsbeispiel gemäß Fig. 1 vorgesehen, mittels eines Nachlauf-Regelventils angesteuert wird, ist im Detail in der Deutschen Patentanmeldung P 38 27 365.9 erläutert, auf deren Beschreibung hinsichtlich der Gestaltung des Antriebsteils 44 des Rotors 16 des Hydromotors 13 und des Zusammenwirkens zwischen diesem Hydromotor und dem Nachlauf-Regelventil 14 ergänzend Bezug genommen sei. Demgemäß wird die nachfolgende Beschreibung des in der Zeichnung dargestellten speziellen Ausführungsbeispiels der erfindungsgemäßen Antriebsvorrichtung 10 - im wesentlichen - auf deren gegenüber der Antriebsvorrichtung gemäß der genannten Patentanmeldung bestehenden Unterschiede beschränkt.
  • Der Rotor 16 des Axialkolben-Hydromotors 13 ist mit einem im wesentlichen kreiszylindrisch-rohrförmigen Abschnitt 46 seiner Abtriebswelle 47 an einem seinerseits im wesentlichen kreiszylindrisch-rohrförmig ausgebildeten Zapfen 48 gleitend drehbar gelagert, der eine axiale Verlängerung eines den Elektromotor 17 in der dargestellten Anordnung aufnehmenden Teils 49 des insgesamt mit 50 bezeichneten Gehäuses der Antriebsvorrichtung 10 bildet. In diesen rohrförmigen Zapfen 48 ist das seinerseits zylindrisch-rohrförmige Gehäuse 31 des Nachlauf-Regelventils 14 fest eingesetzt und auf seiner gesamten Länge von dem Zapfen 48 umschlossen.
  • Das für die kleinen Linearzylinder 41 ein gemeinsames Gehäuse bildende Antriebsteil 44 des Rotors 16 ist als ein mit dessen Abtriebswelle 47 einstückig ausgeführter, gemäß der maßstäblichen Darstellung der Fig. 1 in axialer Richtung gesehen relativ dickwandiger, radialer Flansch ausgebildet, in den, wie am besten der schematischen Abwicklungs-Darstellung der Fig. 2, auf deren Einzelheiten ergänzend Bezug genommen sei, erkennbar, insgesamt sechzehn, in axialer Richtung durchgehende Bohrungen 51a bis 51p eingebracht sind, die mit axialsymmetrischer Verteilung ihrer zentralen Längsachsen 52 um die zentrale Längsachse 29 der Antriebsvorrichtung 10 gruppiert sind. In diesen Bohrungen 51a bis 51p sind die Kolbenelemente 42 - gegen die Bohrungsflächen abgedichtet - gleitend verschiebbar angeordnet, die über Kugeln 53 an der axial gegenüberliegenden, zu den Kugeln etwa komplementär konkav gewölbten Stirnfläche 54 einer Ringrippe 56 der gehäusefesten Stützscheibe 43 abgestützt sind. Diese Ringrippe 56, deren mittlerer Durchmesser demjenigen des Bohrungskreises der axialen Bohrungen 51a bis 51p entspricht, hat, in Umfangsrichtung gesehen, eine in axialer Richtung periodisch variierende "Höhe", derart, daß sich für diese Stirnfläche 54, in der Abwicklungsdarstellung der Fig. 2 gesehen, ein insgesamt dreieck-wellenförmiger Verlauf mit einer in Winkelgraden gemessenen "Periodizitätslänge" p von 60°, d.h. eine sechszählige Axialsymmetrie ergibt. Die Ringrippe 56 hat somit insgesamt die Form einer "sechszackigen" Krone, deren Zacken 57 a bis 57 f zum Antriebsteil 44 des Rotors 16 hinweisend angeordnet sind. In der Abwicklungs-Darstellung der Fig. 2 haben die Zacken 57 a) bis 57 f) der an ihrer Basis 58 kreisringförmigen Ringrippe 56 die Form flacher, gleichschenklig-stumpfwinkliger Dreiecke, deren Schenkel 59 a) bis 59 f) und 61 a) bis 61 f) einen stumpfen Winkel β einschließen, der in praxi einen Wert um 140°, in bevorzugter Gestaltung des Axialkolben-Motors 13 einen Wert von 138° hat.
  • Zwischen den "Spitzen" 62 a) bis 62 f) der Zacken 57 a) bis 57 f) und den dazwischen angeordneten "Tälern" 63 a) bis 63 f) der Ringrippe sind durch die Schenkel 59 a) bis 59 f) und 61 a) bis 61 f) abwechselnd aufsteigende und abfallende Rampen konstanter Steigung bzw. Neigung gebildet, die an den Spitzen und in den Tälern mit glatter Krümmung aneinander anschließen, wobei der Krümmungsradius mit dem je zwei Flanken in den Tälern 63 a) bis 63 f) aneinander anschließen, etwas größer ist als der Kugelradius der Stützkugeln 53.
  • Die Stützkugeln 53, die zusammen mit den zylindrisch-topfförmig gestalteten Kolbenelementen 42 die die Antriebskammern 39 der insgesamt 16 Linearzylinder 41 einseitig druckdicht beweglich begrenzenden Kolben dieser Linearzylinder 41 bilden, sind in konkaven Lagerpfannen 64 der Kolbenelemente 42 frei drehbar gelagert, damit sie sich an der Lauffläche 54 der Ringrippe 56 leichtgängig abwälzen können. Die Lagerpfannen 64, deren Krümmung sehr genau an diejenige der Stützkugeln 53 angepaßt ist, stehen über zentrale Schmierkanäle 65 mit den Antriebskammern 39 der Linearzylinder 41 in kommunizierender Verbindung, so daß sich im Betrieb des Axialkolbenmotors 13 zwischen den Gleitflächen der Lagerpfannen 64 und den Stützkugeln 53 ein dünner Schmierfilm bilden kann, der weitgehend verschleißfreien Betrieb des Axialkolbenmotors 13 gewährleistet.
  • Die rotorfesten axialen Begrenzungen der Antriebskammern 39 der Linearzylinder 41 sind durch in Gewindeabschnitte 66 der Bohrungen 51a bis 51p des Antriebsteils 44 einschraubbare, diese Bohrungen 51a bis 51p einseitig dicht verschließende Stopfen 67 gebildet. Der T-Versorgungsanschluß 19 des Nachlauf-Regelventils 14 steht über eine radiale Bohrung 68 des Gehäuses 31 des Nachlauf-Regelventils 14 mit einer mit dieser fluchtenden, radialen Bohrung 69 des Zapfens 48, die durch dessen zylindrische Wand hindurchtritt, in kommunizierender Verbindung, wobei in diese Querbohrung 69 ein Längskanal 71 mündet, der seinerseits über eine schräge Bohrung 72, die in einem massiven äußeren radialen Flansch 73 des den Elektromotor 17 aufnehmenden Gehäuseteils 49 angeordnet ist, kommunizierend mit dem T-Anschlußstutzen 74 verbunden ist, der über nicht-dargestellte Schlauch- oder Rohrleitungen an den drucklosen Tank des Druckversorgungs-Aggregats anschließbar ist. Der P-Versorgungsanschluß 18 des Nachlauf-Regelventils 14 steht über eine weitere Querbohrung 76 des äußeren Mantels des Ventilgehäuses 31 mit einer mit dieser fluchtenden, zweiten radialen Bohrung 77 des Zapfens 48 in kommunizierender Verbindung, in welche wiederum ein Längskanal 80 mündet, der, in Richtung der zentralen Längsachse 29 gesehen, in azimutalem Abstand an dem zum Tank-Anschlußstutzen 74 führenden Längskanal 71 vorbeitritt und eben falls über eine - nicht-dargestellte - schräge Bohrung zu dem ebenfalls nicht-dargestellten P-Anschlußstutzen führt, der an den Hochdruck-Ausgang des Druckversorgungs-Aggregats angeschlossen ist. Der A-Steueranschluß 21 des Nachlauf-Regelventils 14 steht mit einer Außennut 78 des Ventilgehäuses 31 in kommunizierender Verbindung, die als dieses umgebende Ringnut ausgebildet und demgemäß in der Abwicklungsdarstellung der Fig. 2 als ein sich über die gesamte Abwicklungslänge erstreckender Druckmittelkanal 78 dargestellt ist.
  • Desgleichen steht der B-Steueranschluß 22 des Nachlauf-Regelventils 14 in kommunizierender Verbindung mit einer zweiten Außennut 79, die ebenfalls als sich über den gesamten Umfang des Ventilgehäuses 31 erstreckende, in sich geschlossene Ringnut ausgebildet ist und demgemäß in der Fig. 2 als ein sich über die gesamte Abwicklungslänge erstreckender Druckmittelkanal dargestellt ist.
  • An der den beiden Ringnuten 78 und 79 gegenüberliegenden Außenseite des Zapfens 48 sind in insgesamt 12-zähliger axial-symmetrischer Gruppierung um die zentrale Längsachse 29, in Umfangsrichtung gesehen sektorförmige Außennuten 81a bis 81f sowie 82a bis 82f vorgesehen, die jeweils durch axiale Zwischenstege 83a bis 831 gegeneinander abgesetzt sind. Diese Außennuten 81a bis 81f sowie 82a bis 82f sind, in Umfangsrichtung gesehen, wie am besten der Figur 2 entnehmbar ist, alternierend über im wesentlichen radial verlaufende Bohrungen 84a bis 84f an die mit dem A-Stzueranschluß des Nachlauf-Regelventils 14 in kommunizierender Verbindung stehende Ringnut 28 bzw. über Querbohrungen 86a bis 86f an die mit dem B-Steueranschluß 22 des Nach lauf-Regelventils 14 in kommunizierender Verbindung stehende Ringnut 79 des Ventilgehäuses 31 angeschlossen.
  • Die in Umfangsrichtung gemessene Winkelbreite der sektorförmigen Außennuten 81a bis 81f bzw. 82a bis 82f zuzüglich der entsprechend gemessenen Winkelbreite eines der axialen Stege 83a bis 831, welche je zwei dieser Nuten, z. B die Nuten 82b und 81b gegeneinander absetzen, beträgt in der Summe 30°, wobei die Winkelbreite der sektorförmigen Nuten 81a bis 81f und 82a bis 82f wesentlich größer ist, wobei das Verhältnis zwischen 5 und 10 beträgt. Die Winkelbreite der Stege 83a bis 83p entspricht der azimutalen, d.h. in Umfangsrichtung gemessenen lichten Weite von radialen Durchgangsbohrungen 87a bis 87p des kreiszylindrisch-rohrförmigen Abschnittes 46 des Rotors 16 des Hydromotors 13, über die die Antriebskammern 39 der Linearzylinder 41, wenn der Rotor 16 sich dreht, alternierend mit dem A-Steueranschluß 21 und dem B-Steueranschluß 22 des Nachlauf-Regelventils 14 in kommunizierende Verbindung gelangen und beim Vorbeitreten an einem der Stege 83a bis 83p für einen kurzen Moment vollständig abgesperrt werden.
  • Aufgrund der erläuterten Symmetrieverhältnisse tragen die "gleichzeitig" an eine der beiden Ringnuten 78 und 79 angeschlossenen Linearzylinder jeweils gleichsinnig zur Drehmoment-Entfaltung des Axialkolbenmotors 13 bei bzw. sind daran nicht beteiligt, wobei anhand der Figur 2 unmittelbar erkennbar ist, daß, beim speziellen Ausführungsbeispiel, jeweils mindestens 6 der Linearzylinder und im Extremfall sogar 8 gleichsinnig zur Drehmoment-Entfaltung beitragen.
  • Der Vollständigkeit halber sei noch angemerkt, daß in der Figur 1 Bezugszeichen, die in der Figur 2 mit alphabetischen Indizes versehen sind, der Einfachheit halber ohne diese Indizes angegeben sind.
  • Durch die insoweit erläuterte bauliche Integration des Nachlauf-Regelventils 14 in den Zapfen 48 des Gehäuseteils 49 ergeben sich kürzestmögliche Abmessungen der vom Nachlauf-Regelventil 14 zu den Antriebskammern 39 der Linearzylinder 41 führenden Druck-Versorgungskanäle 84a bis 84f und 86a bis 86f sowie der radialen Kanäle 87a bis 87p, was für eine hohe "Steifigkeit" des Antriebes von großer Bedeutung ist.
  • Die mit der welligen Ringrippe 56 versehene Stützscheibe 43 ist zwischen einem zylindrisch-rohrförmigen Gehäuseteil 88, das gegen den radialen Flansch 73 des den Elektromotor 17 aufnehmenden Gehäuseteils 49 abgedichtet ist und im wesentlichen die radial äußere Begrenzung des das Antriebsteil 44 des Rotors 16 aufnehmenden Ringraumes 89 bildet und einem außen und innen gestuften zylindrischen Abschlußteil 91 des Gehäuses 50 der Antriebsvorrichtung 10 axial einspannt, wobei die Stützscheibe 43 mittels eines mit dieser einstückigen Zentrierringes 92, dessen Außendurchmesseer genau dem Innendurchmesser des zylindrisch-rohrförmigen Gehäuseteils 88 entspricht, bezüglich diesem bzw. der zentralen Längsachse 29 der Antriebsvorrichtung 10 genau zentriert ist und mittels eines axialen Paßstiftes 93, der eine mit koaxialen Bohrungen des zylindrisch-rohrförmigen Gehäuseteils 88 und des Gehäuse-Abschlußteils 91 fluchtende Bohrung der Stützscheibe 43 durchsetzt, gegen Verdrehungen relativ zu den Gehäuseteilen 88 und 91 gesichert ist. Das ge stufte Abschlußteil 91 des Gehäuses 50, aus der der Rotor 16 mit dem das Abtriebsteil 11 bildenden Endabschnitt einer dort massiv gestalteten Rotorwelle 47 austritt, ist gegen diese mittels einer Lippen-Ringdichtung 94 abgedichtet.
  • Innerhalb der äußeren, abtriebsseitigen, dem Innendurchmesser nach kleineren Stufe 96 des gestuft-zylindrischen Gehäuseteils 91 ist die Rotorwelle 47 mittels eines Radial-Nadellagers 97 drehbar gelagert, wobei dieses Nadellager 97, wie auch das "Zapfenlager" eine axiale Verschiebbarkeit des Rotors 16 zuläßt. Der radial außen mit einer zylindrischen Fläche an der zylindrischen Innenfläche des zylindrisch-rohrförmigen Gehäuseteils 88 anliegende und mittels einer Ringdichtung 98 gegen dieses Gehäuseteil 88 abgedichtete Zentrierring 92 der Stützscheibe 43 hat an seiner radial inneren Seite eine konische Fasenfläche 99, deren lichter Durchmesser zum Antriebsteil 44 des Rotors 16 hin zunimmt. Das Antriebsteil 44 des Rotors 16 ist seinerseits mit einer der Fasenfläche 99 des Zentrierringes 92 der Stützscheibe 43, in axialer Richtung gesehen, gegenüberliegend angeordneten, äußeren Fasenfläche 101 versehen, deren Neigung bezüglich der zentralen Längsachse 29 der Antriebsvorrichtung 10 derjenigen der Fasenfläche 99 des Zentrierringes 92 der Stützscheibe 43 entspricht.
  • In der in der Figur 1 dargestellten, einem Rotations-Betriebszustand des Axialkolben-Hydromotors 13 entsprechenden Position des Rotors 16 sind die beiden Fasenflächen 99 und 101 deer Stützscheibe 43 und des Antriebsteils 44 des Rotors 16, in "Höhe" eines gemeinsamen Wertes ihrer Durchmesser gesehen, in einem kleinen axialen Abstand von z.B. 1 bis 2 mm voneinander angeordnet, so daß zwischen den beiden Fasenflächen ein konischer Spalt 101 verbleibt, dessen senkrecht zu den Fasenflächen 99 und 102 gemessene lichte Weite einige Zehntel Millimeter beträgt. Diese Position des Rotors 16 zu der Stützscheibe 43 ist durch die Anlage von Lagerrollen 105 eines Axialrollenlagers 103 an der der Ringrippe 56 der Stützscheibe 43 gegenüberliegenden Ringfläche 104 derselben bestimmt, dessen dieser Ringfläche 104 gegenüberliegende Abstützung durch einen mit der Rotorwelle 47 verschiebefest verbundenen Lagerring 106 gebildet ist. Das durch die Lagerrollen 102 und den Lagerring 106 gebildete Axialrollenlager 103 ist innerhalb eines Ringraumes 107 angeordnet, dessen äußere radiale Begrenzung durch die dem Innendurchmesser nach größere Stufe 108 des gestuften Gehäuseteils 91 gebildet ist. In axialer Richtung ist dieser Ringraum 107 durch die zwischen den beiden Gehäusestufen 96 und 108 vermittelnde Ringschulter 109, einerseits und die Stützscheibe 43, andererseits, begrenzt. Der lichte axiale Abstand zwischen dem Lagerring 106 und der Ringschulter 109 des gestuften Gehäuseteils 91 ist etwas größer als der lichte axiale Abstand der beiden Fasenflächen 99 und 101 des Zentrierringes 92 der Stützscheibe 43 und des Antriebsteils 44 des Rotors 16, gesehen in der dargestellten Betriebsposition des Axialkolben-Hydromotors 13, in die dessen Rotor 16 durch die Druckbeaufschlagung von jeweils mindestens 6 Antriebskammern 39 seiner Linearzylinder 41 gedrängt wird.
  • Um zu vermeiden, daß bei einer Verwendung der Antriebsvorrichtung 10 zur Realisierung z.B. eines Roboterarmes, der als "Gelenke" mehrere Antriebsvorrichtungen 10 umfaßt, der Roboterarm "unkontrolliert zusammenklappt", ist die Antriebsvorrichtung 10 mit einer insgesamt mit 111 bezeichneten Feststell-Einrichtung ausgerüstet, die bei einem Abschalter der Antriebsvorrichtung 10 selbsttätig ein Festsetzen des Rotors 16 in der im Moment des Abschaltens eingenommenen Winkelstellung vermittelt.
  • Als Betätigungselemente der "Feststellbremse 111" sind beim dargestellten, speziellen Ausführungsbeispiel, in axial-symmetrischer Gruppierung um die zentrale Längsachse 29 der Antriebsvorrichtung 10 angeordnete Stempel 112 vorgesehen, die durch vorgespannte Druckfedern 113 in Anlage mit der der Stützscheibe 43 abgewandten - rückwärtigen - ringförmigen End-Stirnfläche 114 des Antriebsteils 44 des Rotors 16 drängbar sind, wodurch der Rotor 16 eine axiale Verschiebung erfährt, durch die die beiden Fasenflächen 99 und 101 des Zentrierringes 92 und des Antriebsteils 44, die in diesem Falle als Reibflächen der Feststell-Einrichtung 111 wirken, in Anlage miteinander gelangen und eine reibungsflüssige Fixierung des Rotors 16 im Gehäuse 50 der Antriebsvorrichtung 10 erzielt wird. Die Stempel 112 sind mit in axialen Bohrungen 116 größeren Durchmessers druckdicht verschiebbaren Kolben 117 verbunden, an deren den Stempeln 112 abgewandten Seiten die vorgespannten Druckfedern 113 angreifen. Diese Kolben 117 bilden auch die axial-beweglichen Begrenzungen von Steuerkammern 118, in die im Betrieb der Antriebsvorrichtung 10 der hohe Ausgangsdruck der Hilfsdruckquelle eingekoppelt ist, wodurch die Kolben 117 und mit diesen die Stempel 112 in eine von dem Antriebsteil 44 des Rotors 16 entfernte bzw. von diesem abgehobene, in der Figur 1 dargestellte Position gedrängt werden, in welcher die Feststell-Einrichtung 111 gelöst ist und der Rotor 16 - in seiner dargestellten axialen Position - frei drehbar ist.
  • Die für die Erzielung der Feststell-Funktion beim dargestellten, speziellen Ausführungsbeispiel erforderliche - geringfügige - axiale Verschiebbarkeit des Rotors 16 ist bei der erläuterten Konstruktion seiner Lagerung - radial innen an dem Zapfen 48 des den Elektromotor 17 aufnehmenden Gehäuseteils 49 und radial außen mittels des Nadellagers 97 an dem Gehäuseabschlußteil 91 ohne Schwierigkeit realisierbar.
  • Für Anwendungsfälle der Antriebsvorrichtung 10, bei denen die für die insoweit geschilderte Feststell-Einrichtung 111 erforderliche Verschiebbarkeit des Rotors 16 nicht zweckmäßig wäre, kann eine analog wirkende Feststelleinrichtung auch in der Weise realisiert werden, daß eine mit den Stempeln 112 zugund schubfest verbundene ringscheibenförmige Bremsbacke vorgesehen wird, die in Anlage mit der rückwärtigen Endstirnfläche 114 des Antriebsteil, das nunmehr seinerseits als Bremsbacke wirkt, drängbar ist, wobei der Rotor 16 axial verschiebefest im Gehäuse 50 drehbar gelagert sein kann.
  • Eine für die Funktion des Nachlauf-Regelventils 14 erforderliche axiale Beweglichkeit der Rückmeldespindel 32 relativ zu der Rotorwelle 47 des Axialkolbenmotors 13 kann, wie nicht eigens dargestellt, dadurch realisiert sein, daß die Rückmeldespindel 32 über eine Axialverzahnung, mit der Rotorwelle 47 verdrehfest, jedoch axial beweglich gekoppelt ist.
  • Die Weiterführung der in der Figur 1 durch den P-Versorgungsanschluß 18 und den T-Versorgungsanschluß 19 des Nachlauf-Regelventils 14 der Antriebsvorrichtung 10 repräsentierten, entsprechend zu bezeichnenden Versorgungsanschlüsse des Druckversorgungs-Aggregates zu einer weiteren, am Abtriebsteil 11 der dargestellten Antriebsvorrichtung 10 ansetzbaren Antriebsvorrichtung derselben Art erfolgt über in Richtung der zentralen Längsachse 29 der Antriebsvorrichtung 10 gesehen in azimutalem Abstand voneinander verlaufende Längskanäle 119 und 121 der Rotorwelle 47, wobei der eine Längskanal 119, der beim dargestellten, speziellen Ausführungsbeispiel dem P-Versorgungsanschluß 18 des Nachlauf-Regelventils 14 zugeordnet ist, über einen kurzen Querkanal 122 mit einer äußeren Ringnut 123 des Zapfens 48, in welcher der - hohe - Ausgangsdruck P des Druckversorgungs-Aggregates herrscht, in permanent-kommunizierender Verbindung steht, während der andere, dem T-Versorgungsanschluß 19 des Nachlauf-Regelventils 14 der dargestellten Antriebsvorrichtung 10 zugeordnete Längskanal 121 mit einer an der Rotorwelle 47 vorgesehenen, inneren Ringnut 124 kommuniziert, deren lichter Querschnitt permanent mit demjenigen der radialen Querbohrung 69 des Zapfens 48 überlappt, die über den Längskanal 71 dieses Zapfens und die schräge Bohrung 72 mit dem T-Anschlußstutzen 74 der Antriebsvorrichtung 10 in Verbindung steht.
  • Dadurch, daß die, beim dargestellten Ausführungsbeispiel den P-Versorgungsdruck führende Außennut 123 des Zapfens 48 in geringerem axialem Abstand von der Mündungsebene 126 des mit ihr kommunizierendem Längskanals 119 angeordnet ist als die Innennut 124 des Rotors, mit der dessen anderer Längskanal 121 kommuniziert, ist es möglich, diese beiden Längskanäle 119 und 121 in gleichem radialem Abstand von der zentralen Längsachse 29 der Antriebsvorrichtung 10 zu führen und mit minimalen radialen Querschnittsdimensionen des ringzylindrischen Abschnittes 46 der Rotorwelle 47 auszukommen.

Claims (10)

  1. Hydraulische Antriebsvorrichtung als Dreh- oder Schwenkantrieb für NC- oder CNC-gesteuerte Werkzeugmaschinen, Vorschubeinrichtungen solcher Maschinen, Manipulatoren oder Roboter mit mehreren Dreh- oder Schwenkgelenken, und mit den weiteren Merkmalen:
    A) als Leistungsantrieb ist ein Axialkolben-Hydromotor (13) vorgesehen, bei dem die Antriebskolben (42) in axialsymmetrischer Gruppierung bezüglich der zentralen Achse (29) des Motors in dem Rotor (16) des Hydromotors druckdicht-verschiebbar gelagert sind;
    B) die Druckmittelversorgung des Hydromotors erfolgt mittels eines Nachlauf-Regelventils (14), das mit elektrisch gesteuerter Positions-Sollwertvorgabe mittels eines durch Ausgangssignale einer elektronischen Steuereinheit ansteuerbaren Elektromotors (24) und mit mechanischer Positions-Istwert-Rückmeldung mittels eines Spindel-Muttersystems arbeitet, das zur regelungsgerechten Ventilbetätigung erforderliche, parallel zur zentralen Achse (29) des Spindel-Muttersystems erfolgende Auslenkungen eines Ventilbetätigungsgliedes (27) des Nachlauf-Regelventils vermittelt;
    C) der Axialkolbenmotor, das Nachlauf-Regelventil und der zur Positions-Sollwert-Vorgabesteuerung vorgesehene Elektromotor sind koaxial bezüglich der gemeinsamen, durch die Drehachse des Elektromotors, des Hydromotors und die zentrale Achse des Spindel-Muttersystems markierten, zentralen Längsachse (29) angeordnet;
    gekennzeichnet durch die folgenden Merkmale:
    D) der Rotor (16) des Axialkolben-Hydromotors ist mit einem kreiszylindrisch-rohrförmigen Abschnitt (46) seiner Abtriebswelle (47) an einer äußeren Mantelfläche einer ihrerseits hohlrohrförmig ausgebildeten, einen Lagerzapfen für den Rotor (16) bildenden axialen Verlängerung eines den zur Sollwert-Vorgabesteuerung vorgesehenen Elektromotor (17) aufnehmenden Gehäusteils (49) drehbar gelagert;
    E) das Nachlauf-Regelventil ist innerhalb der den Lagerzapfen (48) für den Rotor (16) bildenden Verlängerung des den Elektromotor (17) aufnehmenden Gehäuseteils angeordnet;
    F) Steuerkanäle, über die im Betrieb der Antriebsvorrichtung (10) Druckmittel, in Umfangsrichtung des Rotors (16) gesehen, aufeinanderfolgend angeordneten Linearzylindern (41) des Rotors alternierend über die Steueranschlüsse des Nachlauf-Regelventils (14) zugeführt und von diesen wieder abgeführt wird, sind als sektorförmige Außennuten (81a bis 81f sowie 82a bis 82f) des Zapfens (48) ausgebildet, mit denen radiale Querkanäle (87a bis 87p) des Rotors (16), die zu den Antriebskammern (39) der Linearzylinder (41) des Rotors (16) führen, alternierend in Überdeckung gelangen;
    G) die Steueranschlüsse (21,22) des Nachlauf-Regelventils (14) sind mit je einer äußeren Ringnut (78 bzw. 79) des Gehäuses (31) des Nachlauf-Regelventils (14) verbunden, die, in axialer Richtung gesehen, unmittelbar nebeneinanderliegend derart angeordnet sind, daß eine Mittelebene des diese beiden Nuten trennenden Zwischensteges mit der gemeinsamen Mittelebene der sektorförmigen Steuernuten (81a bis 81f sowie 82a bis 82f) zusammenfällt und
    H) die beiden Ringnuten (78 und 79) sind alternierend über kurze, schräg verlaufende Querbohrungen (84a bis 84f und 86a bis 86f) mit den Steuernuten (81a bis 81f bzw. 82a bis 82f) verbunden.
  2. Antriebsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Versorgungsanschlüsse (18 und 19) des Nachlauf-Regelventils 814) an Querbohrungen (76 und 68) des Ventilgehäuses (31) angeschlossen sind, die in Querkanäle (77 und 79) des Zapfens (48) münden, die, in Umfangsrichtung des Ventilgehäuses (31) gesehen, versetzt angeordnet sind und über entsprechend versetzte Längskanäle mit an dem den Zapfen (48) bildenden Gehäuseteil (49) angeordneten Anschlußstutzen verbunden sind, daß einer dieser Querkanäle (77 oder 69) in eine Innennut (124) des den Zapfen (48) koaxial umschließenden, rohrförmig-zylindrischen Abschnittes (46) der Rotorwelle (47) des Axialkolben-Hydromotors (13) mündet und der andere Querkanal (69 oder 77) in eine Außennut (123) des Zapfens (48), in die ein Querkanal (122) der Rotorwelle (47) mündet, der zwischen der Innennut (124) und dem abtriebsseitigen Ende (11) der Rotorwelle (47) angeordnet ist, und daß von der Innennut (124) der Rotorwelle (47) und dem Querkanal (122) desselben je ein Versorgungs-Anschlußkanal (119 bzw. 121) zum abtriebsseitigen Ende (11) der Rotorwelle (47) geführt ist.
  3. Antriebsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein Gebersystem (12) vorgesehen ist, das für inkrementale Änderungen der Winkelstellung des Rotors (16) des Axialkolben-Hydromotors (13) nach Betrag und Änderungssinn charakteristische elektrische Ausgangssignale erzeugt, aus deren Verarbeitung die zentrale elektronische Steuereinheit den Positions-Soll-Istwert-Vergleich vermittelt.
  4. Antriebsvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß eine Feststell-Einrichtung (111) vorgesehen ist, die bei einem Abfall des Ausgangsdruckes des Druckversorgungs-Aggregates selbsttätig eine Festsetzung des Rotors (16) des Axialkolben-Hydromotors (13) vermittelt.
  5. Antriebsvorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß als Betätigungselemente federbelastete Stempel (112) vorgesehen sind, die durch eine vorgespannte Feder (113) in eine die Festsetzung des Rotors (16) vermittelnde Position gedrängt werden und mit Kolben (117) verbunden sind, welche Steuerkammern (11(9 druckdicht-beweglich begrenzen, durch deren Druckbeaufschlagung mit dem Ausgangsdruck (P) des Druckversorgungs-Aggregates die Stempel (112) in einer die Freigabe des Rotors (16) vermittelnden Lösestellung gehalten werden.
  6. Antriebsvorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß in axial-symmetrischer Gruppierung um die zentrale Längsachse (29) der Antriebsvorrichtung (10) mehrere Betätigungselemente (112, 113,117) vorgesehen sind, deren Stempel (112) parallel zur zentralen Längsachse (29) der Antriebsvorrichtung (10) verschiebbar sind und auf ein axial verschiebbares Bremsenelement wirken.
  7. Antriebsvorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Rotor (16) des Axialkolben-Hydromotors (13) axial verschiebbar gelagert ist und mit einer sich über einen peripheren 360°-Bereich erstreckenden Bremsfläche in reibungsschlüssige Anlage mit einer gehäusefesten Gegenfläche drängbar ist.
  8. Antriebsvorrichtung nach Anspruch 7, dadurch ge kennzeichnet, daß die Bremsfläche des Rotors (16) als eine konische Umfangsfase (101) seines die Linearzylinder (41) aufnehmenden Antriebsteils (44) ausgebildet ist, die an der der Stützscheibe (43) zugewandten Seite dieses Antriebsteils angeordnet ist und die gehäusefeste Gegenfläche als eine dazu komplementär-konische Fase (99) eines Zentrierringes (92) der Stützscheibe (43) ausgebildet ist.
  9. Antriebsvorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der Rotor (16), vom Antriebsteil (44) aus gesehen, jenseits der Stützscheibe (43) einen radialen Lagerring (106) für ein Axial-Rollenlager (103) trägt, dessen Rollen (105) an einer radial ebenen, an der Stützscheibe (43) vorgesehenen kreisringförmigen Gegenfläche (104) abwälzbar sind.
  10. Antriebsvorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß der Rotor (16) des Axialkolben-Hydromotors (13) mit dem das Abtriebsteil (11) bildenden Endabschnitt seiner Abtriebswelle (47) mittels eines als Nadellager (97) ausgebildeten Radiallagers drehbar und axial verschiebbar an dem abtriebsseitigen Gehäuseteil (91,97) des Gehäuses (50) der Antriebsvorrichtung (10) gelagert ist.
EP91920993A 1990-05-11 1991-05-08 Hydraulische antriebsvorrichtung Expired - Lifetime EP0527967B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4015101A DE4015101A1 (de) 1990-05-11 1990-05-11 Hydraulische antriebsvorrichtung
DE4015101 1990-05-11
PCT/EP1991/000859 WO1991018204A1 (de) 1990-05-11 1991-05-08 Hydraulische antriebsvorrichtung

Publications (2)

Publication Number Publication Date
EP0527967A1 EP0527967A1 (de) 1993-02-24
EP0527967B1 true EP0527967B1 (de) 1994-08-17

Family

ID=6406162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91920993A Expired - Lifetime EP0527967B1 (de) 1990-05-11 1991-05-08 Hydraulische antriebsvorrichtung

Country Status (5)

Country Link
US (1) US5379678A (de)
EP (1) EP0527967B1 (de)
AT (1) ATE110140T1 (de)
DE (2) DE4015101A1 (de)
WO (1) WO1991018204A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19522768A1 (de) * 1995-06-27 1997-01-02 Eckehart Schulze Elektrohydraulische Steuerungseinrichtung für einen Rotations-Hydromotor
DE19650513A1 (de) * 1996-12-05 1998-06-10 Samsung Heavy Ind Hydrauliksystem zum Antreiben eines Axialkolbenhydromotors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1426488B2 (de) * 1960-09-03 1976-11-25 Fuji Tsushinki Seizo KiC., Tokio Zweistufige hydraulische steuerventileinrichtung
DE1816506A1 (de) * 1967-12-27 1969-08-28 Toyoda Machine Works Ltd Durch einen Elektromotor gesteuerter hydraulischer Stellmotor
US3596569A (en) * 1969-06-03 1971-08-03 Cincinnati Milling Machine Co Valve for a closed-loop hydraulic torque amplifier
DE2045736A1 (de) * 1970-09-16 1972-03-23 Hartmann & Laemmle Steuervorrichtung insbesondere für eine numerische Steuerung
JPS4845597Y1 (de) * 1970-12-26 1973-12-27
DE2130513A1 (de) * 1971-06-19 1972-12-21 Linde Ag Axialkolbenmaschine mit einer Schraegscheibe
US4630528A (en) * 1978-10-25 1986-12-23 Karl Eickmann Fluid motor with arresting and disarresting means
JPS59217004A (ja) * 1983-05-20 1984-12-07 Matsushita Electric Ind Co Ltd 流体サ−ボアクチエ−タ
FR2610072B1 (fr) * 1987-01-22 1989-05-19 Applic Mach Motrices Servovalve electrohydraulique pour la commande asservie d'un actionneur hydraulique, notamment dans les servomecanismes de commande de vol des aeronefs
DE3827365A1 (de) * 1988-08-12 1990-04-12 Eckehart Schulze Hydraulischer axialkolbenmotor

Also Published As

Publication number Publication date
US5379678A (en) 1995-01-10
DE4015101A1 (de) 1991-11-14
WO1991018204A1 (de) 1991-11-28
EP0527967A1 (de) 1993-02-24
DE59102576D1 (de) 1994-09-22
ATE110140T1 (de) 1994-09-15

Similar Documents

Publication Publication Date Title
DE69208199T2 (de) Universalwerkzeugverbindung
EP2780614B1 (de) Betätigungsvorrichtung für einen drehbaren verschlussteil eines ventils
EP0562269A1 (de) Drehdurchführung
DE2340663A1 (de) Servogesteuerte, hydraulische kraftuebertragungsvorrichtung
EP0163995A1 (de) Hydrostatische Axial-Kolbenmaschine mit schwenkbarer Schiefscheibe
EP3911475A1 (de) Spannvorrichtung
EP0254850A2 (de) Motorgetriebene Handschleifmaschine
EP0348854B1 (de) Steuervorrichtung für mindestens ein Ventil
DE69210564T2 (de) Vorrichtung zum Einstellen des Stösselhubes an einer Presse
EP0527967B1 (de) Hydraulische antriebsvorrichtung
EP1099055B1 (de) Radialkolbenmaschine mit rollenführungen
EP0471695A1 (de) Hydraulische antriebsvorrichtung.
DE1800430B2 (de) Werkzeugwechseleinrichtung fuer eine werkzeugmaschine
DE10044784A1 (de) Verstellvorrichtung für eine Axialkolbenmaschine in Schrägachsenbauweise
DE69422982T2 (de) Rotationsschalter mit externen lagern
DE2223964B2 (de) Servoverstelleinrichtung
DE9320601U1 (de) Fluidisch betätigbarer Drehantrieb
WO1988001697A1 (en) Hydraulic idling-regulating valve
DE3103446C2 (de) Antriebseinrichtung für einen schwenkbaren Werkzeugträger
DE3432279C2 (de)
EP2550461A1 (de) Vorrichtung zum verriegeln eines axial verschiebbaren bauteils einer hydraulischen anlage
EP0198055B1 (de) Einrichtung zur überwachung der position eines maschinenelementes
DE102021200980B4 (de) Linearantriebsvorrichtung
DE2221207B2 (de) Werkzeug zum Schleifen und/oder Honen von Mantelflächen
DE3818105C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19930719

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940817

REF Corresponds to:

Ref document number: 110140

Country of ref document: AT

Date of ref document: 19940915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59102576

Country of ref document: DE

Date of ref document: 19940922

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940906

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960517

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960521

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960606

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970508

Ref country code: AT

Effective date: 19970508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980528

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050508