EP0498173A1 - Intrinsic medium actuated servo valve controlled by a bistable magnetic valve for a medium in a liquid and gaseous condition - Google Patents
Intrinsic medium actuated servo valve controlled by a bistable magnetic valve for a medium in a liquid and gaseous condition Download PDFInfo
- Publication number
- EP0498173A1 EP0498173A1 EP92100550A EP92100550A EP0498173A1 EP 0498173 A1 EP0498173 A1 EP 0498173A1 EP 92100550 A EP92100550 A EP 92100550A EP 92100550 A EP92100550 A EP 92100550A EP 0498173 A1 EP0498173 A1 EP 0498173A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnet
- valve
- servo valve
- magnet armature
- armature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims description 4
- 239000000696 magnetic material Substances 0.000 claims abstract description 8
- 239000003990 capacitor Substances 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 3
- 230000006978 adaptation Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 claims 2
- 238000007599 discharging Methods 0.000 claims 1
- 230000006835 compression Effects 0.000 abstract 2
- 238000007906 compression Methods 0.000 abstract 2
- 230000005415 magnetization Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000010584 magnetic trap Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F7/1607—Armatures entering the winding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/18—Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
- H01F7/1872—Bistable or bidirectional current devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F2007/1669—Armatures actuated by current pulse, e.g. bistable actuators
Definitions
- the invention relates to a servo valve for liquid and gaseous media, which is actuated by the medium and controlled by a bistable solenoid valve, with the features from the preamble of patent claim 1.
- bistable solenoid valves for servo control is known in many different designs and has the advantage that the lowest possible energy consumption can be used and, for example, direct control from the link level is possible without signal conditioning and the magnetic coil and the magnet armature do not heat up. In most cases it becomes bistable Operation of the solenoid valve achieved with the help of a permanent magnet and a spring matched to this. Solenoid valves are also known which are constructed without a permanent magnet. The bistable mode of operation of these valves is achieved through the use of relatively hard magnetic materials in the magnet system.
- the coercive field strength of these hard magnetic materials is brought to a value O for a short period of time, depending on the polarity of the magnetic coil, so that the magnet armature of the solenoid valve is either attracted to the pole face or not attracted under the action of a return spring.
- a valve In the hydraulic field, with the elimination of the permanent magnet, such a valve can no longer be regarded as a magnetic trap for ferritic floating particles in the medium.
- the invention has for its object to provide a servo valve of the type specified in the preamble of claim 1 so that the electrical control power can be reduced even further with an extremely simple construction, so that a control device fed from a battery can be used to control the bistable solenoid valve .
- the basic idea of the invention is to use soft magnetic materials in the magnet system of the bistable solenoid valve, for whose magnetic polarity reversal, because of the low coercive field strength, control pulses with very low electrical power are sufficient.
- the magnet armature cannot withstand the force of a return spring Magnet pole are held.
- a return spring was therefore dispensed with at all, and the weight of the magnet armature was matched to the holding force in such a way that when the coercive field strength is brought to 0 by the closing pulse, it drops due to its own weight.
- the invention also includes the operation of the servo valve according to the invention with opening and closing pulses for the bistable solenoid valve, or an electrical control device for generating the opening and closing pulses to which the solenoid valve is connected.
- the opening and closing pulses for switching the servo valve on and off must be different in a predetermined ratio so that when the magnet armature is detached due to the closing pulse, the magnet system does not re-magnetize, which would result in the magnet armature being tightened again. It has proven to be advantageous if the opening pulses to the closing pulses are designed in a power ratio of essentially 3: 1 to 5: 1, ie only 1/3 to 1/5 of the electrical power required to attract the Magnetic armature must be used. This type of operation is also particularly valuable from a safety point of view if the additional requirement is raised that the valve must still be able to close, even if a power failure occurs during the opening phase.
- the control device for controlling the solenoid valve is designed such that when the opening pulse is emitted, the electrical energy required to generate the closing pulse is simultaneously taken from the power source and stored.
- This has the advantage that a closing impulse can still be given if a power failure occurs or the supply battery fails.
- This coupling between the opening and closing impulse also prevents the solenoid valve from being switched on when the battery is discharged, which could possibly no longer apply the closing impulse. No current is drawn from the battery during the opening phase of the servo valve, not even for the switch-off pulse.
- the servo valve according to the invention can operate with an extremely low energy requirement for a control cycle of, for example, 10 mWs at 6 bar medium pressure. This energy requirement is approximately 70% below the energy requirement of the known bistable solenoid valve described in DE-OS 38 22 830.
- the valve shown in Fig. 1 has a valve housing 1 with an inlet connection Z, in which a strainer 13 is arranged, and an outlet connection A.
- a differential piston 2 is slidably arranged in the axial direction, which at its edges via a rolling membrane 2.2 is connected to the valve housing 1.
- the differential piston 2 carries on one side a valve disk 2.1, which is opposite a valve seat 3.
- the inlet connection Z ie the pressure connection, opens into an annular pressure chamber 4 which is connected to the outlet connection A via the valve seat 3.
- a control chamber 5 is arranged, which is delimited from the pressure chamber 4 by the differential piston 2 and the rolling diaphragm 2.2.
- the control chamber 5 is connected to the pressure chamber 4 via a control bore 10 arranged eccentrically in the differential piston 2.
- a return spring 12 for the movement of the differential piston 2 and a spring element 11, which is guided at one end through the control bore 10 into the pressure chamber 4. This spring element 11 is used in a manner known per se to keep the control bore 10 free of foreign bodies.
- the control room 5 is connected to the drain connection A via a drain channel, which is composed of the sections 6.1, 6.2 and 6.3.
- the section 6.1 connects the pressure chamber 5 with the solenoid valve chamber 7, which in turn via the solenoid valve seat 9 and Sections 6.2 and 6.3 of the relief channel is connected to the drain connection A.
- the arranged in the housing 1 solenoid valve chamber 7 with the solenoid valve seat 9 belongs to a bistable solenoid valve, which is designated M in FIG. 1 and which is arranged on the valve housing 1 essentially coaxially with the differential piston 2.
- the solenoid valve M has a solenoid 16, through which a guide tube 15 is guided, in which a magnet armature 14 is slidably guided, which carries at its end facing the valve housing 1 a magnet armature seal 8 which is opposite the solenoid valve seat 9.
- the other end of the Magnatanker 14 is opposite a head piece 17, which is fixedly arranged within the guide tube 15.
- the magnet coil 16 is surrounded by a magnet yoke 18, one leg 18.1, which comprises the lower end face of the magnet coil 16 in FIG. 1, is passed between the magnet coil 16 and the housing 1, while the other leg 18.2 comprises the magnet coil 16 on its upper side.
- Magnetic armature 14, head piece 17 and magnetic yoke 18 are made of a soft magnetic material with a coercive field strength of less than 400 A / m, whereby the coercive field strength of the magnetic yoke 18 can be somewhat higher than the coercive field strength of the magnetic armature 14 and the head piece 17.
- the size of the magnet armature 14 is kept very short compared to conventional solenoid valves, so that the working air gap between the magnet armature 14 and the head piece 17, which is otherwise arranged approximately at the level of the transverse center plane of the magnet coil, in this case very clearly below the transverse center plane Q1 of the magnet coil 16 lies.
- the arrangement is also such that the transverse center plane Q2 of the magnet armature 14 is approximately at the level of the lower leg 18.1 of the magnet yoke 18.
- the weight of the magnet armature 14 is matched to the holding force of the magnet system in such a way that, after supplying an opening pulse which magnetizes the magnet coil 16, the very light magnet armature 14 is held on the head piece 17 by the coercive field strength via the coil feed 16.1.
- the solenoid valve M is open, in which the armature seal 8 lifts off the solenoid valve seat 9.
- the operation of the servo valve which is known per se, is such that, when the relief channel 6.1-6.2-6.3 is open, pressure equalization occurs between the control chamber 5 and the drain connection A and the differential piston 2 lifts off the valve seat 3 due to the pressure in the pressure chamber 4, so that the valve opens.
- control pulses which cause the magnetization of the magnet system to be reversed can be generated in various ways.
- a control device (not shown) for generating electrical pulses can generate pulses of the same amplitude and polarity, and the magnetic coil 16 has two windings with opposite winding directions and different electrical resistance, so that when the control pulses are emitted, the opening pulse and the closing pulse each have different pulses Currents flow that produce different magnetizations of opposite polarity.
- FIG. 2 shows schematically as current pulses I, plotted against time t, an opening pulse I1 and a closing pulse -I2, which have a power ratio of 3: 1 to 5: 1.
- This power ratio ensures that the closing pulse -I2 does not lead to magnetization of the head piece 17 again in such a way that the magnet armature 14 picks up again and the valve opens again.
- a hatched area I is indicated in FIG. 2 for the opening pulse, which indicates that the opening pulse has a portion which serves to charge a storage capacitor C1 arranged in the control circuit described below, which ensures the generation of a closing pulse even if the supply voltage fails.
- FIG. 3 schematically shows a control device STV for generating the opening and closing pulses, which is connected via a switch S to a current source V, for example a battery.
- the switch S can also be designed as proximity electronics and, for example, on the basis of infrared radiation, ultrasound, radar and the like.
- the current source supplies the supply voltage for a first control device ST1 for voltage monitoring and a second control device ST2 for pulse generation via supply inputs VE1 +, VE1- or VE2 +, VE2-.
- a bridge circuit is connected to the current source V1 via the switch S, which is designated overall by B and contains the four controllable switching elements S1, S2, S3 and S4, the control inputs of which are each connected to the signal outputs SA1, SA2, SA3 and SA4 of the second control circuit ST2 are connected for pulse generation.
- the switching elements S1 to S4 are shown in FIG. 3 as switches. Of course, electronic switching elements, ie switching transistors or IC circuits, can be used at this point.
- the magnetic coil 16 with its two input terminals 16.1 and 16.2 is located in the bridge branch of the bridge circuit B.
- a voltage limiter circuit Z for limiting the magnitude of the closing pulse is connected in parallel with the magnet coil 16. Parallel to the entire electronic bridge circuit B there is a second storage capacitor C1 for generating the closing pulse in the event of a failure of the supply voltage, a reverse discharge of the capacitor C1 being prevented via a diode D2.
- the circuit works as follows: When the switch S is closed, a control signal is emitted by the second control device ST2 via the signal outputs SA1 and SA2, which briefly closes the switching elements S1 and S2, so that the input terminal 16.1 of the magnetic coil 16 briefly on the negative pole and the input terminal 16.2 briefly on the positive pole of the voltage source and a corresponding current pulse flows through the magnet coil 16. During the further closed state of the switch S, all the switching elements S1 to S4 are opened again, so that no further current flows through the magnet coil 16. When the switch S is opened, the second control device ST2 now generates control signals at the signal outputs SA3 and SA4, which briefly close the switching elements S3 and S4.
- the input terminal 16.1 of the magnet coil 16 is now connected to the positive pole of the voltage source and the input terminal 16.2 is connected to the negative pole of the voltage source, and thus a current pulse flows in the opposite direction through the magnet coil 16.
- the voltage limiter circuit Z prevents the voltage across the input terminals 16.1 and 16.2 from rising above a certain value, which also limits the amplitude of the closing pulse flowing through the coil. That way it can Power ratio of opening pulse to closing pulse can be set.
- the storage capacitors C1 and C2 ensure the functioning of the control device, although when the switch S is opened there is no longer a supply voltage. This arrangement has the effect, as can be seen, that even in the event of a complete failure of the power source V, the valve is re-closed by a closing pulse being emitted.
- the first control device ST1 for voltage monitoring and the second control device ST2 for pulse generation can be constructed in a manner known per se. This is not described further. Of course, it can be provided that the voltage monitoring device emits an alarm signal in the event of a failure of the supply voltage or a drop in the supply voltage below a predetermined value.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Magnetically Actuated Valves (AREA)
- Electromagnets (AREA)
- Servomotors (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
Die Erfindung betrifft ein eigenmediumbetätigtes, durch ein bistabiles Magnetventil gesteuertes Servoventil für flüssige und gasförmige Medien, mit den Merkmalen aus dem Oberbegriff des Patentanspruchs 1.The invention relates to a servo valve for liquid and gaseous media, which is actuated by the medium and controlled by a bistable solenoid valve, with the features from the preamble of
Ein derartiges Ventil ist bekannt und bespielsweise in der DE-OS 38 22 830 beschrieben. Der Einsatz von bistabilen Magnetventilen zur Servosteuerung ist in vielfältigen Ausführungen bekannt und hat den Vorteil, daß mit geringstmöglichem Energieeinsatz gearbeitet werden kann und beispielsweise ohne Signalaufbereitung eine direkte Ansteuerung aus der Verknüpfungsebene heraus möglich ist und keine Erwärmung der Magnetspule und des Magnetankers auftreten. In den meisten Fällen wird die bistabile Wirkungsweise des Magnetventils mit Hilfe eines Dauermagneten und einer auf diesen abgestimmten Feder erreicht. Es sind auch Magnetventile bekannt, die ohne Permanentmagnet aufgebaut sind. Die bistabile Wirkungsweise dieser Ventile wird durch den Einsatz von relativ hartmagnetischen Werkstoffen im Magnetsystem erreicht. Die Koerzitivfeldstärke dieser hartmagnetischen Werkstoffe wird für einen kurzen Zeitraum - je nach Polung der Magnetspule - auf den Wert O gebracht oder verstärkt, so daß der Magnetanker des Magnetventils von der Polfläche entweder angezogen oder nicht angezogen unter der Wirkung einer Rückholfeder abgestoßen wird. Im hydraulischen Bereich ist mit dem Wegfall des Dauermagneten ein derartiges Ventil nicht mehr als Magnetfalle für ferritische Schwebeteilchen im Medium anzusehen.Such a valve is known and is described, for example, in DE-OS 38 22 830. The use of bistable solenoid valves for servo control is known in many different designs and has the advantage that the lowest possible energy consumption can be used and, for example, direct control from the link level is possible without signal conditioning and the magnetic coil and the magnet armature do not heat up. In most cases it becomes bistable Operation of the solenoid valve achieved with the help of a permanent magnet and a spring matched to this. Solenoid valves are also known which are constructed without a permanent magnet. The bistable mode of operation of these valves is achieved through the use of relatively hard magnetic materials in the magnet system. The coercive field strength of these hard magnetic materials is brought to a value O for a short period of time, depending on the polarity of the magnetic coil, so that the magnet armature of the solenoid valve is either attracted to the pole face or not attracted under the action of a return spring. In the hydraulic field, with the elimination of the permanent magnet, such a valve can no longer be regarded as a magnetic trap for ferritic floating particles in the medium.
Der Erfindung liegt die Aufgabe zugrunde, ein Servoventil der im Oberbegriff des Patentanspruchs 1 angegebenen Bauart so auszubilden, daß bei äußerst einfachem Aufbau die elektrische Steuerleistung noch weiter herabgesetzt werden kann, so daß zur Ansteuerung des bistabilen Magnetventils eine aus einer Batterie gespeiste Steuervorrichtung eingesetzt werden kann.The invention has for its object to provide a servo valve of the type specified in the preamble of
Die Lösung dieser Aufgabe geschieht erfindungsgemäß mit den Merkmalen aus dem kennzeichnenden Teil des Patentanspruchs 1. Vorteilhafte Weiterbildungen des erfindungsgemäßen Servoventils sind in den Unteransprüchen beschrieben.This object is achieved according to the invention with the features from the characterizing part of
Der Grundgedanke der Erfindung besteht darin, im Magnetsystem des bistabilen Magnetventils weichmagnetische Werkstoffe einzusetzen, zu deren magnetischer Umpolung wegen der niedrigen Koerzitivfeldstärke Steuerimpulse mit sehr geringer elektrischer Leistung ausreichen. Mit einer so geringen Koerzitivfeldstärke kann der Magnetanker aber nicht gegen die Kraft einer Rückholfeder am Magnetpol gehalten werden. Es wurde daher auf eine Rückholfeder überhaupt verzichtet und das Gewicht des Magnetankers so auf die Haltekraft abgestimmt, daß dieser, wenn durch den Schließimpuls die Koerzitivfeldstärke auf O gebracht ist, aufgrund seines Eigengewichtes abfällt. Dies hat zwar zur Folge, daß die Einbaulage des Ventils innerhalb gewisser Grenzen festgelegt ist, es hat sich aber gezeigt, daß eine solche Anpassung des Magnetankergewichtes an die Haltekraft möglich ist, daß die Einbaurichtung des Servoventils mit einem Winkel zwischen der Längsachse des Magnetsystems und der Vertikalen bis zu 30° möglich ist.The basic idea of the invention is to use soft magnetic materials in the magnet system of the bistable solenoid valve, for whose magnetic polarity reversal, because of the low coercive field strength, control pulses with very low electrical power are sufficient. With such a low coercive force, the magnet armature cannot withstand the force of a return spring Magnet pole are held. A return spring was therefore dispensed with at all, and the weight of the magnet armature was matched to the holding force in such a way that when the coercive field strength is brought to 0 by the closing pulse, it drops due to its own weight. Although this has the consequence that the installation position of the valve is defined within certain limits, it has been shown that such an adaptation of the magnet armature weight to the holding force is possible that the installation direction of the servo valve with an angle between the longitudinal axis of the magnet system and the Vertical up to 30 ° is possible.
Die Erfindung umfaßt auch die Betriebsweise des erfindungsgemäßen Servoventils mit Öffnungs- und Schließimpulsen für das bistabile Magnetventil, bzw. eine elektrische Steuervorrichtung zur Erzeugung der Öffnungs- und Schließimpulse, an welche das Magnetventil angeschlossen ist.The invention also includes the operation of the servo valve according to the invention with opening and closing pulses for the bistable solenoid valve, or an electrical control device for generating the opening and closing pulses to which the solenoid valve is connected.
Die Öffnungs- und Schließimpulse zum Ein- und Ausschalten des Servoventils müssen in einem vorgegebenen Verhältnis unterschiedlich sein, damit beim Ablösen des Magnetankers aufgrund des Schließimpulses kein erneutes Aufmagnetisieren des Magnetsystems erfolgt, was ein Wiederanziehen des Magnetankers zur Folge hätte. Es hat sich als vorteilhaft erwiesen, wenn die Öffnungsimpulse zu den Schließimpulsen in einem Leistungsverhältnis von im wesentlichen 3:1 bis 5:1 ausgelegt sind, d.h. zum Abschalten wird nur 1/3 bis 1/5 der elektrischen Leistung benötigt, die zum Anziehen des Magnetankers aufgewendet werden muß. Diese Art der Betriebsweise ist auch unter Sicherheitsgesichtspunkten besonders wertvoll, wenn die zusätzliche Forderung erhoben wird, daß das Ventil, auch wenn in der Öffnungsphase ein Stromausfall auftritt, noch in der Lage sein muß, zu schließen.The opening and closing pulses for switching the servo valve on and off must be different in a predetermined ratio so that when the magnet armature is detached due to the closing pulse, the magnet system does not re-magnetize, which would result in the magnet armature being tightened again. It has proven to be advantageous if the opening pulses to the closing pulses are designed in a power ratio of essentially 3: 1 to 5: 1, ie only 1/3 to 1/5 of the electrical power required to attract the Magnetic armature must be used. This type of operation is also particularly valuable from a safety point of view if the additional requirement is raised that the valve must still be able to close, even if a power failure occurs during the opening phase.
Gemäß der weiteren Erfindung ist daher vorgesehen, daß die Steuervorrichtung zur Ansteuerung des Magnetventils so ausgebildet ist, daß bei der Abgabe des Öffnungsimpulses gleichzeitig die zur Erzeugung des Schließimpulses notwendige elektrische Energie aus der Stromquelle entnommen und gespeichert wird. Dies hat den Vorteil, daß beim Auftreten eines Stromausfalls bzw. dem Versagen der Speisebatterie ein Schließimpuls noch abgegeben werden kann. Diese Kopplung zwischen dem Öffnungs- und Schließimpuls verhindert auch ein Einschalten des Magnetventils bei entladener Batterie, die den Schließimpuls eventuell nicht mehr aufbringen könnte. Während der Öffnungsphase des Servoventils wird der Batterie kein Strom entnommen, auch nicht für den Abschaltimpuls.According to the further invention it is therefore provided that the control device for controlling the solenoid valve is designed such that when the opening pulse is emitted, the electrical energy required to generate the closing pulse is simultaneously taken from the power source and stored. This has the advantage that a closing impulse can still be given if a power failure occurs or the supply battery fails. This coupling between the opening and closing impulse also prevents the solenoid valve from being switched on when the battery is discharged, which could possibly no longer apply the closing impulse. No current is drawn from the battery during the opening phase of the servo valve, not even for the switch-off pulse.
Es hat sich gezeigt, daß bei dem erfindungsgemäßen Servoventil mit außerordentlich niedrigem Energiebedarf für einen Steuerzyklus von beispielsweise 10 mWs bei 6 bar Mediumsdruck gearbeitet werden kann. Dieser Energiebedarf liegt ca. 70% unter dem Energiebedarf des bekannten in DE-OS 38 22 830 beschriebenen bistabilen Magnetventils.It has been shown that the servo valve according to the invention can operate with an extremely low energy requirement for a control cycle of, for example, 10 mWs at 6 bar medium pressure. This energy requirement is approximately 70% below the energy requirement of the known bistable solenoid valve described in DE-OS 38 22 830.
Im Folgenden wird anhand der beigefügten Zeichnungen ein Ausführungsbeispiel für ein Servoventil nach der Erfindung näher erläutert.An exemplary embodiment of a servo valve according to the invention is explained in more detail below with reference to the accompanying drawings.
In den Zeichnungen zeigen:
- Fig. 1
- im Querschnitt ein eigenmediumbetätigtes, durch ein bistabiles Magnetventil servogesteuertes Ventil für flüssige Medien;
- Fig. 2
- in einem Strom/Zeit-Diagramm eine Darstellung der Öffnungs- und Schließimpulse für das Ventil nach Fig. 1;
- Fig. 3
- in einem Prinzipschaltbild eine Steuereinrichtung zur Ansteuerung des Magnetventils für das Servoventil nach Fig. 1.
- Fig. 1
- in cross-section a self-actuated valve for liquid media that is servo-controlled by a bistable solenoid valve;
- Fig. 2
- in a current / time diagram a representation of the opening and closing pulses for the valve of FIG. 1;
- Fig. 3
- in a basic circuit diagram, a control device for controlling the solenoid valve for the servo valve according to FIG. 1.
Das in Fig. 1 dargestellte Ventil besitzt ein Ventilgehäuse 1 mit einem Zulaufanschluß Z, in dem ein Sieb 13 angeordnet ist, sowie einem Ablaufanschluß A. Im Ventilgehäuse 1 ist ein Differentialkolben 2 in axialer Richtung verschiebbar angeordnet, der an seinen Rändern über eine Rollmembran 2.2 mit dem Ventilgehäuse 1 verbunden ist. Der Differentialkolben 2 trägt an einer Seite einen Ventilteller 2.1, der einem Ventilsitz 3 gegenüberliegt. Der Zulaufanschluß Z, also der Druckanschluß, mündet in eine ringförmige Druckkammer 4, die über den Ventilsitz 3 mit dem Ablaufanschluß A verbunden ist.The valve shown in Fig. 1 has a
An der vom Ventilsitz 3 abgewandten Seite des Differentialkolbens 2 ist ein Steuerraum 5 angeordnet, der von der Druckkammer 4 durch den Differentialkolben 2 und die Rollmembran 2.2 abgegrenzt ist. Der Steuerraum 5 ist über eine im Differentialkolben 2 außermittig angeordnete Steuerbohrung 10 mit der Druckkammer 4 verbunden. Weiterhin sind im Steuerraum 5 angeordnet eine Rückstellfeder 12 für die Bewegung des Differentialkolbens 2 und ein Federelement 11, das mit einem Ende durch die Steuerbohrung 10 hindurch in den Druckraum 4 hineingeführt ist. Dieses Federelement 11 dient in an sich bekannter Weise dazu, die Steuerbohrung 10 von Fremdkörpern freizuhalten.On the side of the
Der Steuerraum 5 ist über einen Abflußkanal, der sich aus den Abschnitten 6.1, 6.2 und 6.3 zusammensetzt, mit dem Ablaufanschluß A verbunden. Dabei verbindet der Abschnitt 6.1 den Druckraum 5 mit der Magnetventilkammer 7, welche wiederum über den Magnetventilsitz 9 und die Abschnitte 6.2 und 6.3 des Entlastungskanals mit dem Ablaufanschluß A verbunden ist. Die im Gehäuse 1 angeordnete Magnetventilkammer 7 mit dem Magnetventilsitz 9 gehört zu einem bistabilen Magnetventil, das in Fig. 1 insgesamt M bezeichnet ist und das auf dem Ventilgehäuse 1 im wesentlichen koaxial mit dem Differentialkolben 2 angeordnet ist.The control room 5 is connected to the drain connection A via a drain channel, which is composed of the sections 6.1, 6.2 and 6.3. The section 6.1 connects the pressure chamber 5 with the solenoid valve chamber 7, which in turn via the
Das Magnetventil M besitzt eine Magnetspule 16, durch die ein Führungsrohr 15 geführt ist, in dem ein Magnetanker 14 verschiebbar geführt ist, der an seinem dem Ventilgehäuse 1 zugewandten Ende eine Magnetankerdichtung 8 trägt, die dem Magnetventilsitz 9 gegenüberliegt. Das andere Ende des Magnatankers 14 liegt einem Kopfstück 17 gegenüber, das innerhalb des Führungsrohres 15 fest angeordnet ist. Die Magnetspule 16 ist von einem Magnetjoch 18 umfaßt, dessen einer Schenkel 18.1, der die in Fig. 1 untere Stirnseite der Magnetspule 16 umfaßt, zwischen Magnetspule 16 und Gehäuse 1 hindurchgeführt ist, während der andere Schenkel 18.2 die Magnetspule 16 an ihrer Oberseite umfaßt.The solenoid valve M has a
Magnetanker 14, Kopfstück 17 und Magnetjoch 18 bestehen aus einem weichmagnetischen Werkstoff mit einer Koerzitivfeldstärke von weniger als 400 A/m, wobei die Koerzitivfeldstärke des Magnetjochs 18 etwas höher liegen kann als die Koerzitivfeldstärke des Magnetankers 14 und des Kopfstücks 17. Wie aus Fig. 1 abzulesen, ist der Magnetanker 14 in seinen Abmessungen gegenüber üblichen Magnetventilen sehr kurzgehalten, so daß der Arbeitsluftspalt zwischen Magnetanker 14 und Kopfstück 17, der sonst etwa in Höhe der Quermittelebene der Magnetspule angeordnet wird, in diesem Fall sehr deutlich unterhalb der Quermittelebene Q1 der Magnetspule 16 liegt. Dabei ist die Anordnung weiterhin so, daß die Quermittelebene Q2 des Magnetankers 14 in etwa auf der Höhe des unteren Schenkels 18.1 des Magnetjochs 18 liegt. Das Gewicht des Magnetankers 14 ist auf die Haltekraft des Magnetsystems so abgestimmt, daß nach Zuführung eines die Magnetisierung der Magnetspule 16 bewirkenden Öffnungsimpulses über die Spulenzuführung 16.1 der sehr leichte Magnetanker 14 durch die Koerzitivfeldstärke am Kopfstück 17 festgehalten wird. In dieser Stellung ist das Magnetventil M geöffnet, in dem die Magnetankerdichtung 8 vom Magnetventilsitz 9 abhebt. Die an sich bekannte Wirkungsweise des Servoventils ist dann derart, daß bei geöffnetem Entlastungskanal 6.1-6.2-6.3 ein Druckausgleich zwischen dem Steuerraum 5 und dem Abflußanschluß A auftritt und der Differentialkolben 2 aufgrund des in der Druckkammer 4 anstehenden Druckes vom Ventilsitz 3 abhebt, so daß sich das Ventil öffnet.
Wird nun auf die Magnetspule 16 ein Schließimpuls gegeben, der ein Magnetfeld umgekehrter Polarität erzeugt, derart, daß die Koerzitivfeldstärke gerade aufgehoben wird und sich für die Haltekraft der Wert O ergibt, so fällt der Magnetanker 14 aufgrund seines Eigengewichtes vom Kopfstück 17 ab und die Magnetankerdichtung 8 verschließt den Magnetventilsitz 9, so daß der Entlastungskanal 6.1-6.2-6.3 verschlossen ist. Das durch den Zulaufanschluß Z unter Druck zuströmende Medium gelangt über die Druckkammer 4 und die Steuerbohrung 10 in den Steuerraum 5. Die Flächenverhältnisse am Differentialkolben 2 sind so gewählt, daß bei verschlossenem Entlastungskanal der Differentialkolben 2 unter dem Druck des Mediums sich auf den Ventilsitz 3 zu bewegt und sich das Ventil durch Aufsetzen des Ventiltellers 2.1 auf den Ventilsitz 3 schließt.If a closing pulse is now applied to the
Die Erzeugung der die Ummagnetisierung des Magnetsystems bewirkenden Steuerimpulse kann in verschiedener Weise erfolgen. So kann beispielsweise eine nicht eigens dargestellte Steuervorrichtung zur Erzeugung elektrischer Impulse jeweils Impulse gleicher Amplitude und gleicher Polarität erzeugen und die Magnetspule 16 weist zwei Wicklungen mit entgegengesetztem Wicklungssinn und unterschiedlichem elektrischem Widerstand auf, so daß bei Abgabe der Steuerimpulse jeweils für den Öffnungsimpuls und den Schließimpuls unterschiedliche Ströme fließen, die unterschiedliche Magnetisierungen entgegengesetzter Polarität erzeugen.The control pulses which cause the magnetization of the magnet system to be reversed can be generated in various ways. For example, a control device (not shown) for generating electrical pulses can generate pulses of the same amplitude and polarity, and the
Es ist aber auch möglich, von vornherein elektrische Steuerimpulse unterschiedlicher Amplitude und Polarität zu erzeugen und der mit nur einer Wicklung versehenen Magnetspule 16 zuzuführen.However, it is also possible to generate electrical control pulses of different amplitudes and polarities from the outset and to supply them to the
Fig. 2 zeigt schematisch als Stromimpulse I, aufgetragen gegen die Zeit t, einen Öffnungsimpuls I1 und einen Schließimpuls -I2, die ein Leistungsverhältnis von 3:1 bis 5:1 aufweisen. Mit diesem Leistungsverhältnis ist sichergestellt, daß der Schließimpuls -I2 nicht wieder zu einem Aufmagnetisieren des Kopfstücks 17 derart führt, daß der Magnetanker 14 wieder anzieht und das Ventil wieder öffnet. In Fig. 2 ist beim Öffnungsimpuls schraffiert ein Bereich I angedeutet der anzeigt, daß der Öffnungsimpuls einen Anteil besitzt, der zur Aufladung eines in der nachfolgend beschriebenen Steuerschaltung angeordneten Speicherkondensators C1 dient, der die Erzeugung eines Schließimpulses auch bei einem Ausfall der Speisespannung sicherstellt.2 shows schematically as current pulses I, plotted against time t, an opening pulse I1 and a closing pulse -I2, which have a power ratio of 3: 1 to 5: 1. This power ratio ensures that the closing pulse -I2 does not lead to magnetization of the
Fig. 3 zeigt schematisch eine Steuervorrichtung STV zur Erzeugung der Öffnungs- und Schließimpulse, die über einen Schalter S an eine beispielsweise als Batterie ausgebildete Stromquelle V angeschlossen ist. Der Schalter S kann auch als Näherungselektronik ausgebildet sein und dabei beispielsweise auf der Basis von Infrarotstrahlung, Ultraschall, Radar u. dgl. arbeiten. Die Stromquelle liefert die Versorgungsspannung für eine erste Steuervorrichtung ST1 zur Spannungsüberwachung und eine zweite Steuervorrichtung ST2 zur Impulserzeugung über Versorgungseingänge VE1+, VE1- bzw. VE2+, VE2-. Beim Schließen des Schalters S wird dem Signaleingang SE1 der ersten Steuervorrichtung ST1 ein Signal zugeführt und gleichzeitig ein Speicherkondensator C2 zur Aufrechterhaltung der Versorgungsspannung beim Öffnen des Schalters S aufgeladen, wobei durch eine Diode D1 eine Rückwärtsentladung des Kondensators C2 verhindert wird.3 schematically shows a control device STV for generating the opening and closing pulses, which is connected via a switch S to a current source V, for example a battery. The switch S can also be designed as proximity electronics and, for example, on the basis of infrared radiation, ultrasound, radar and the like. Like. work. The current source supplies the supply voltage for a first control device ST1 for voltage monitoring and a second control device ST2 for pulse generation via supply inputs VE1 +, VE1- or VE2 +, VE2-. When the switch S is closed, a signal is fed to the signal input SE1 of the first control device ST1 and at the same time a storage capacitor C2 is charged to maintain the supply voltage when the switch S is opened, a reverse discharge of the capacitor C2 being prevented by a diode D1.
Weiterhin ist an die Stromquelle V1 über den Schalter S eine Brückenschaltung angeschlossen, die insgesamt mit B bezeichnet ist und die vier ansteuerbare Schaltelemente S1, S2, S3 und S4 enthält, deren Ansteuereingänge jeweils mit den Signalausgängen SA1, SA2, SA3 und SA4 der zweiten Steuerschaltung ST2 zur Impulserzeugung verbunden sind. Die Schaltelemente S1 bis S4 sind in Fig. 3 als Schalter dargestellt. Selbstverständlich können an dieser Stelle elektronische Schaltelemente, also Schalttransistoren oder IC-Schaltkreise, verwendet werden. Im Brückenzweig der Brückenschaltung B liegt die Magnetspule 16 mit ihren beiden Eingangsklemmen 16.1 und 16.2. Parallel zur Magnetspule 16 liegt eine Spannungsbegrenzerschaltung Z zur Begrenzung der Höhe des Schließimpulses. Parallel zur gesamten elektronischen Brückenschaltung B liegt ein zweiter Speicherkonendensator C1 zur Erzeugung des Schließimpulses bei einem Ausfall der Speisespannung, wobei über eine Diode D2 eine Rückwärtsentladung des Kondensators C1 verhindert wird.Furthermore, a bridge circuit is connected to the current source V1 via the switch S, which is designated overall by B and contains the four controllable switching elements S1, S2, S3 and S4, the control inputs of which are each connected to the signal outputs SA1, SA2, SA3 and SA4 of the second control circuit ST2 are connected for pulse generation. The switching elements S1 to S4 are shown in FIG. 3 as switches. Of course, electronic switching elements, ie switching transistors or IC circuits, can be used at this point. The
Die Funktionsweise der beschriebenen Schaltung ist folgende:
Beim Schließen des Schalters S wird von der zweiten Steuervorrichtung ST2 über die Signalausgänge SA1 und SA2 ein Steuersignal abgegeben, welches die Schaltelemente S1 und S2 kurzzeitig schließt, so daß die Eingangsklemme 16.1 der Magnetspule 16 kurzzeitig am negativem Pol und die Eingangsklemme 16.2 kurzzeitig am positiven Pol der Spannungsquelle liegt und ein entsprechender Stromimpuls durch die Magnetspule 16 fließt. Während des weiteren Schließzustandes des Schalters S sind alle Schaltelemente S1 bis S4 wieder geöffnet, so daß kein weiterer Strom durch die Magnetspule 16 fließt. Beim Öffnen des Schalters S erzeugt die zweite Steuervorrichtung ST2 nunmehr an den Signalausgängen SA3 und SA4 Steuersignale, die die Schaltelemente S3 und S4 kurzzeitig schließen. Dies hat zur Folge, daß nunmehr die Eingangsklemme 16.1 der Magnetspule 16 an den positiven Pol der Spannungsquelle und die Eingangsklemme 16.2 an den negativen Pol der Spannungsquelle angeschlossen ist und somit ein Stromimpuls umgekehrter Richtung durch die Magnetspule 16 hindurchfließt. Die Spannungsbegrenzerschaltung Z verhindert dabei das Ansteigen der an den Eingangsklemmen 16.1 und 16.2 anliegenden Spannung über einen bestimmten Wert, womit auch die Amplitude des durch die Spule fließenden Schließimpulses begrenzt ist. Auf diese Weise kann das Leistungsverhältnis von Öffnungsimpuls zu Schließimpuls eingestellt werden.The circuit works as follows:
When the switch S is closed, a control signal is emitted by the second control device ST2 via the signal outputs SA1 and SA2, which briefly closes the switching elements S1 and S2, so that the input terminal 16.1 of the
Die Speicherkondensatoren C1 und C2 stellen die Funktionsweise der Steuervorrichtung sicher, obwohl beim Öffnen des Schalters S keine Versorgungsspannung mehr anliegt. Diese Anordnung bewirkt, wie ersichtlich, daß auch bei einem vollständigen Ausfall der Stromquelle V das Wiederschließen des Ventils sichergestellt ist, indem ein Schließimpuls abgegeben wird.The storage capacitors C1 and C2 ensure the functioning of the control device, although when the switch S is opened there is no longer a supply voltage. This arrangement has the effect, as can be seen, that even in the event of a complete failure of the power source V, the valve is re-closed by a closing pulse being emitted.
Die erste Steuervorrichtung ST1 zur Spannungsüberwachung sowie die zweite Steuervorrichtung ST2 zur Impulserzeugung können in an sich bekannter Weise aufgebaut sein. Dies wird nicht weiter beschrieben. Selbstverständlich kann vorgesehen sein, daß bei einem Ausfall der Speisespannung oder einem Absinken der Speisespannung unter einem vorgegebenen Wert die Spannungsüberwachungsvorrichtung ein Alarmsignal abgibt.The first control device ST1 for voltage monitoring and the second control device ST2 for pulse generation can be constructed in a manner known per se. This is not described further. Of course, it can be provided that the voltage monitoring device emits an alarm signal in the event of a failure of the supply voltage or a drop in the supply voltage below a predetermined value.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4103777A DE4103777A1 (en) | 1991-02-08 | 1991-02-08 | OWN MEDIUM-OPERATED, VALVE CONTROLLED BY A BISTABLE SOLENOID VALVE FOR LIQUID AND GASEOUS MEDIA |
DE4103777 | 1991-02-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0498173A1 true EP0498173A1 (en) | 1992-08-12 |
EP0498173B1 EP0498173B1 (en) | 1995-03-01 |
Family
ID=6424609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92100550A Expired - Lifetime EP0498173B1 (en) | 1991-02-08 | 1992-01-15 | Intrinsic medium actuated servo valve controlled by a bistable magnetic valve for a medium in a liquid and gaseous condition |
Country Status (7)
Country | Link |
---|---|
US (1) | US5180138A (en) |
EP (1) | EP0498173B1 (en) |
JP (1) | JPH04311007A (en) |
AT (1) | ATE119310T1 (en) |
DE (2) | DE4103777A1 (en) |
DK (1) | DK0498173T3 (en) |
ES (1) | ES2069321T3 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69316741T2 (en) * | 1992-11-10 | 1998-09-10 | Caterpillar Inc | MAGNETIC VALVE |
DE4326838C2 (en) * | 1993-08-10 | 1996-01-11 | Interelektrik Ges M B H & Co K | Bistable solenoid valve |
US5687693A (en) * | 1994-07-29 | 1997-11-18 | Caterpillar Inc. | Hydraulically-actuated fuel injector with direct control needle valve |
US5542444A (en) * | 1994-11-07 | 1996-08-06 | Abbott Laboratories | Valve and method of using |
US5738138A (en) * | 1997-03-10 | 1998-04-14 | The Horton Company | Reduced water hammer control valve |
DE19726225B4 (en) * | 1997-06-20 | 2008-02-07 | Robert Bosch Gmbh | Arrangement with one or more hydraulic actuators |
IT1308113B1 (en) * | 1999-06-02 | 2001-11-29 | Sit La Precisa Spa | VALVE UNIT FOR THE MODULATION OF THE DELIVERY PRESSURE OF A GAS. |
DE10005015B4 (en) * | 2000-02-04 | 2008-09-18 | Robert Bosch Gmbh | Method for operating a fuel injection valve |
DE20219358U1 (en) * | 2002-12-13 | 2004-04-22 | A. u. K. Müller GmbH & Co KG | Self-actuated servo solenoid valve for liquids, especially for sanitary fittings |
DE50303266D1 (en) * | 2002-02-19 | 2006-06-14 | Schrott Harald | Bistable electromagnetic valve |
DE102004050042B3 (en) * | 2004-10-08 | 2006-04-27 | J. Schmalz Gmbh | Ejector for generating negative pressure comprises a control device and/or a valve unit that are provided with an energy accumulator that supplies electrical energy |
US7370651B2 (en) * | 2005-04-01 | 2008-05-13 | Ric Investments, Llc | Gas conserving device |
JP4487845B2 (en) * | 2005-05-02 | 2010-06-23 | 株式会社デンソー | solenoid valve |
EP1749941A1 (en) * | 2005-08-01 | 2007-02-07 | Sanimatic Ag | Hydraulic actuator, particularly for a flushing control device. |
DE202006001009U1 (en) * | 2006-01-24 | 2007-06-06 | A. u. K. Müller GmbH & Co KG | Servo valve to be controlled by an armature and activated by its own medium has a step piston moving in a valve casing and supporting a valve disk with a pressure chamber linked to a valve inlet |
DE102008014099B4 (en) * | 2007-03-27 | 2012-08-23 | Mando Corp. | Valve for an anti-lock brake system |
US20090309054A1 (en) * | 2008-06-11 | 2009-12-17 | Automatic Switch Company | System and method of operating a solenoid valve at minimum power levels |
DE102009045773A1 (en) * | 2009-10-16 | 2011-04-21 | Prominent Dosiertechnik Gmbh | Pressure holding valve |
IT1403351B1 (en) * | 2010-12-21 | 2013-10-17 | Sit La Precisa Spa Con Socio Unico | DEVICE FOR CONTROLLING THE DISTRIBUTION OF A FUEL GAS TOWARDS A BURNER, PARTICULARLY FOR WATER HEATERS |
CN102705519A (en) * | 2012-06-12 | 2012-10-03 | 上海尚泰环保配件有限公司 | Electromagnetic pulse valve with cup-shaped slide valve plate |
CN206656002U (en) * | 2017-03-27 | 2017-11-21 | 上海荣威塑胶工业有限公司 | Thrift lock and squirt toy |
CN206617634U (en) * | 2017-03-27 | 2017-11-07 | 上海荣威塑胶工业有限公司 | Thrift lock and squirt toy |
DE202017103194U1 (en) | 2017-05-26 | 2018-08-28 | Neoperl Gmbh | sanitary valve |
EP3409989B1 (en) * | 2017-05-31 | 2021-09-15 | Hamilton Sundstrand Corporation | Pneumatic servo valve with adjustable drive unit |
US11306844B2 (en) | 2017-06-26 | 2022-04-19 | Lixil Corporation | Pilot solenoid valve |
CN113069654A (en) * | 2020-01-03 | 2021-07-06 | 通用电气精准医疗有限责任公司 | Magnetic damper, one-way valve comprising magnetic damper and anesthesia respirator |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3323982A1 (en) * | 1983-07-02 | 1985-01-10 | Messerschmitt Boelkow Blohm | BISTABLE, ELECTROMAGNETIC ACTUATOR |
DE3323370A1 (en) * | 1983-06-29 | 1985-01-17 | Cornelius Dipl Ing Lungu | Pulse-controlled lifting-magnet drives |
DE3402768A1 (en) * | 1984-01-27 | 1985-08-01 | Thyssen Edelstahlwerke Ag | Bistable magnetic actuating element |
DE3803938A1 (en) * | 1987-02-13 | 1988-08-25 | Lectron Products | DEVICE WITH A BISTABLE ELECTROMAGNETIC ACTUATOR |
DE3810154A1 (en) * | 1988-03-25 | 1989-10-05 | Kuhnke Gmbh Kg H | Solenoid valve having permanent-magnet latching |
DE3822830A1 (en) * | 1988-07-06 | 1990-01-11 | Mueller A & K Gmbh Co Kg | Valve for liquid media operated by its own medium and servo-controlled by a bistable solenoid valve |
DE3907057A1 (en) * | 1989-03-04 | 1990-09-13 | Thomson Brandt Gmbh | CIRCUIT ARRANGEMENT FOR REVERSING A MAGNETIC FIELD |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3424426A (en) * | 1965-07-19 | 1969-01-28 | Robert J Neff | Electrically-operated valve |
DE1650449B2 (en) * | 1967-04-26 | 1971-03-11 | Kabushiki Kaisha Meiki Seisakusho Nagova, Aichi (Japan) | ELECTROMAGNETIC VALVE |
SU777314A1 (en) * | 1979-02-26 | 1980-11-07 | Предприятие П/Я А-7899 | Electromagnetic valve |
SU1003769A3 (en) * | 1979-10-24 | 1983-03-07 | Цанрадфабрик Фридрихсхафен Аг (Фирма) | Electrohydraulic servo valve |
DE3237532A1 (en) * | 1982-10-09 | 1984-04-12 | Robert Bosch Gmbh, 7000 Stuttgart | CONTROL VALVE |
SU1188382A1 (en) * | 1983-06-15 | 1985-10-30 | Предприятие П/Я В-8670 | Electro-hydraulic switching device |
SU1207318A1 (en) * | 1983-11-21 | 1987-03-07 | Всесоюзный научно-исследовательский и проектно-конструкторский институт промышленных гидроприводов и гидроавтоматики | Proportional electromagnet |
SU1451358A1 (en) * | 1986-12-18 | 1989-01-15 | Borisov Lev A | Electrohydraulic switching device |
JP2742792B2 (en) * | 1988-06-28 | 1998-04-22 | 清原 まさ子 | Electromagnetic control device |
-
1991
- 1991-02-08 DE DE4103777A patent/DE4103777A1/en not_active Withdrawn
-
1992
- 1992-01-15 ES ES92100550T patent/ES2069321T3/en not_active Expired - Lifetime
- 1992-01-15 EP EP92100550A patent/EP0498173B1/en not_active Expired - Lifetime
- 1992-01-15 DK DK92100550.0T patent/DK0498173T3/en active
- 1992-01-15 DE DE59201479T patent/DE59201479D1/en not_active Expired - Fee Related
- 1992-01-15 AT AT92100550T patent/ATE119310T1/en not_active IP Right Cessation
- 1992-02-04 US US07/831,136 patent/US5180138A/en not_active Expired - Fee Related
- 1992-02-05 JP JP4020223A patent/JPH04311007A/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3323370A1 (en) * | 1983-06-29 | 1985-01-17 | Cornelius Dipl Ing Lungu | Pulse-controlled lifting-magnet drives |
DE3323982A1 (en) * | 1983-07-02 | 1985-01-10 | Messerschmitt Boelkow Blohm | BISTABLE, ELECTROMAGNETIC ACTUATOR |
DE3402768A1 (en) * | 1984-01-27 | 1985-08-01 | Thyssen Edelstahlwerke Ag | Bistable magnetic actuating element |
DE3803938A1 (en) * | 1987-02-13 | 1988-08-25 | Lectron Products | DEVICE WITH A BISTABLE ELECTROMAGNETIC ACTUATOR |
DE3810154A1 (en) * | 1988-03-25 | 1989-10-05 | Kuhnke Gmbh Kg H | Solenoid valve having permanent-magnet latching |
DE3822830A1 (en) * | 1988-07-06 | 1990-01-11 | Mueller A & K Gmbh Co Kg | Valve for liquid media operated by its own medium and servo-controlled by a bistable solenoid valve |
DE3907057A1 (en) * | 1989-03-04 | 1990-09-13 | Thomson Brandt Gmbh | CIRCUIT ARRANGEMENT FOR REVERSING A MAGNETIC FIELD |
Also Published As
Publication number | Publication date |
---|---|
EP0498173B1 (en) | 1995-03-01 |
DE59201479D1 (en) | 1995-04-06 |
ATE119310T1 (en) | 1995-03-15 |
ES2069321T3 (en) | 1995-05-01 |
JPH04311007A (en) | 1992-11-02 |
US5180138A (en) | 1993-01-19 |
DK0498173T3 (en) | 1995-07-24 |
DE4103777A1 (en) | 1992-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0498173B1 (en) | Intrinsic medium actuated servo valve controlled by a bistable magnetic valve for a medium in a liquid and gaseous condition | |
EP0643872B1 (en) | Bistable electromagnet, in particular magnetic valve | |
DE2739085A1 (en) | MAGNETIC VALVE | |
DE2110596B2 (en) | magnetic valve | |
DE102014117656A1 (en) | Valve device with a valve based on an electrodynamic actuator and method for controlling a valve with an electrodynamic actuator | |
EP1031792A2 (en) | Gas control device with a direct modulating gas control valve | |
DE1923525A1 (en) | Motor arrangement in which the magnetic circuit has a thin layer of a hard magnetic material | |
DE4415068C2 (en) | Bistable solenoid valve | |
EP0693788A1 (en) | Bending actuator | |
DE2059290C3 (en) | Device for clamping, releasing and demagnetizing workpieces to be clamped on an electromagnetic holding device | |
DE3412545A1 (en) | AUTOMATICALLY CONTROLLED VALVE DEVICE | |
DE1775108A1 (en) | Regulation and control device, in particular for washing machines, dishwashers or the like. | |
DE9116498U1 (en) | Magnet with stable anchor positions, especially for use in a sanitary fitting | |
DE1113721B (en) | Arrangement for feeding the magnetizing coil of a microwave ferrite | |
DE1279743B (en) | Non-destructive readable storage device and method for its control | |
DE19742283A1 (en) | Electromagnetically actuated pneumatic valve | |
DE69903991T2 (en) | Ultra-fast electromagnetic drive without spring | |
DE3614528A1 (en) | METHOD FOR OPERATING A MULTIPLE ELECTROMAGNET ARRANGEMENT | |
DE1109421B (en) | Device for indicating the correct work of electromagnetic circuit elements | |
DE3117375A1 (en) | Relay circuit | |
DE1474473C3 (en) | ||
DE102013016991A1 (en) | Electronic circuit device for 2-pole operation of pulse magnetic valve, has two coils operated in two modes by first and second nodes in configuration and by first, second and third nodes in another configuration, respectively | |
DE2410767A1 (en) | Reversible throttle device for hydraulically operated equipment - armature of magnetic valve has locking piece acting with valve seat on first magnetic core | |
DE2519361A1 (en) | METHOD AND DEVICE FOR POWERING UP AN AC-POWERED TRANSFORMER | |
DE3427582A1 (en) | Method for triggering Wiegand pulses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE DK ES FR IT LI NL |
|
17P | Request for examination filed |
Effective date: 19920909 |
|
17Q | First examination report despatched |
Effective date: 19940719 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE DK ES FR IT LI NL |
|
REF | Corresponds to: |
Ref document number: 119310 Country of ref document: AT Date of ref document: 19950315 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 59201479 Country of ref document: DE Date of ref document: 19950406 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2069321 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 19990128 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000115 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20011212 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20011219 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20011221 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020129 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020131 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020211 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030801 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030801 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030930 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20030801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050115 |