EP0486576B1 - Verfahren zur herstellung von manganhaltigen zinkphosphatschichten auf verzinktem stahl - Google Patents
Verfahren zur herstellung von manganhaltigen zinkphosphatschichten auf verzinktem stahl Download PDFInfo
- Publication number
- EP0486576B1 EP0486576B1 EP90912396A EP90912396A EP0486576B1 EP 0486576 B1 EP0486576 B1 EP 0486576B1 EP 90912396 A EP90912396 A EP 90912396A EP 90912396 A EP90912396 A EP 90912396A EP 0486576 B1 EP0486576 B1 EP 0486576B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phosphating
- galvanized steel
- anions
- steel strip
- electrolytically
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000008569 process Effects 0.000 title claims abstract description 39
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 36
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 36
- 238000000576 coating method Methods 0.000 title claims description 28
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 title claims description 25
- 229910000165 zinc phosphate Inorganic materials 0.000 title claims description 24
- 239000011572 manganese Substances 0.000 title abstract description 25
- 229910052748 manganese Inorganic materials 0.000 title abstract description 19
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title abstract description 13
- -1 nickel cations Chemical class 0.000 claims abstract description 31
- 239000002253 acid Substances 0.000 claims abstract description 21
- 230000002378 acidificating effect Effects 0.000 claims abstract description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 230000003213 activating effect Effects 0.000 claims description 4
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 claims description 3
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 2
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 41
- 239000011701 zinc Substances 0.000 abstract description 33
- 229910052759 nickel Inorganic materials 0.000 abstract description 22
- 229910052725 zinc Inorganic materials 0.000 abstract description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 15
- 229910002651 NO3 Inorganic materials 0.000 abstract description 13
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 abstract description 12
- 229910000831 Steel Inorganic materials 0.000 abstract description 6
- 239000010959 steel Substances 0.000 abstract description 6
- 150000007513 acids Chemical class 0.000 abstract description 3
- 150000001450 anions Chemical class 0.000 abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 32
- 239000000243 solution Substances 0.000 description 26
- 230000007797 corrosion Effects 0.000 description 17
- 238000005260 corrosion Methods 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 12
- 239000003973 paint Substances 0.000 description 10
- 229910019142 PO4 Inorganic materials 0.000 description 9
- 239000010452 phosphate Substances 0.000 description 9
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 8
- 150000001768 cations Chemical class 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229910001297 Zn alloy Inorganic materials 0.000 description 5
- 238000007598 dipping method Methods 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000001488 sodium phosphate Substances 0.000 description 4
- 229910000162 sodium phosphate Inorganic materials 0.000 description 4
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 229910001437 manganese ion Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910001453 nickel ion Inorganic materials 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 150000003608 titanium Chemical class 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical class [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241001499740 Plantago alpina Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- JCYPECIVGRXBMO-FOCLMDBBSA-N methyl yellow Chemical compound C1=CC(N(C)C)=CC=C1\N=N\C1=CC=CC=C1 JCYPECIVGRXBMO-FOCLMDBBSA-N 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000159 nickel phosphate Inorganic materials 0.000 description 1
- JOCJYBPHESYFOK-UHFFFAOYSA-K nickel(3+);phosphate Chemical compound [Ni+3].[O-]P([O-])([O-])=O JOCJYBPHESYFOK-UHFFFAOYSA-K 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- SQTLECAKIMBJGK-UHFFFAOYSA-I potassium;titanium(4+);pentafluoride Chemical compound [F-].[F-].[F-].[F-].[F-].[K+].[Ti+4] SQTLECAKIMBJGK-UHFFFAOYSA-I 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/18—Orthophosphates containing manganese cations
- C23C22/182—Orthophosphates containing manganese cations containing also zinc cations
- C23C22/184—Orthophosphates containing manganese cations containing also zinc cations containing also nickel cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
- C23C22/36—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
- C23C22/364—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
- C23C22/365—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations
Definitions
- the present invention relates to a method for phosphating electrolytically and / or hot-dip galvanized steel strip with the formation of zinc phosphate layers containing manganese and nickel. These manganese and nickel-containing zinc phosphate layers are applied by spraying, splash-dipping and / or dipping with aqueous solutions.
- manganese-modified zinc phosphate coatings are known as a basis of liability for modern coatings.
- the use of manganese ions in addition to zinc and nickel ions in low-zinc phosphating processes has been shown to improve corrosion protection, in particular when using surface-coated thin sheets.
- the incorporation of manganese into the zinc phosphate coatings leads to smaller and more compact crystals with increased stability to alkali.
- the working range of phosphating baths is increased; Aluminum can also be phosphated in combination with steel and electrolytically or hot-dip galvanized steel to form a layer, whereby the generally achieved quality standard is guaranteed.
- DE-A-32 45 411 discloses a process for the phosphating of electrolytically galvanized metal products, in particular electrolytically galvanized steel strips, by short-term treatment with acid phosphating solutions which, in addition to zinc and phosphate ions, can contain further metal cations and / or anions of oxygen-containing acids with accelerating action .
- acid phosphating solutions which, in addition to zinc and phosphate ions, can contain further metal cations and / or anions of oxygen-containing acids with accelerating action .
- zinc phosphate layers with a mass per unit area of less than 2 g / m 2 are formed. It works with acid phosphating solutions, the content of Zn 2 + cations is about 1 to 2.5 g / I, while the free acid content in the range of 0.8 to 3 points and the total acid / free acid ratio in the range of 5 to 10 are held.
- the duration of the treatment should not be significantly longer than 5 s.
- nitrate-containing phosphating baths are used, the weight ratio of Zn 2+ / NO a - in the range from 1: 1 to 1: 8 and the weight ratio of PO 4 3 - / NO 3 - in the range from 1: 0.1 to 1 : 2.5 is held.
- EP-A-0 106 459 discloses a phosphating process in which zinc phosphate coatings containing manganese and nickel are formed.
- the presence of fluoride ions is considered essential, as is the upper limit of 10 g / l nitrate anions.
- a high nickel phosphating process is known from E-B-0 112 826.
- a molar ratio of nickel to zinc in the range from 5.2: 1 to 16: 1 is assumed.
- a phosphating process is known from EP-A-0 175 606, in which the use of iron-containing phosphating baths in particular is used.
- a number of organic substances are also used as accelerators, while the presence of manganese is not necessary.
- the setting of certain ratios of zinc to nickel and zinc to iron is required.
- JP-A-63-227786 - describes a process for the simultaneous degreasing and phosphating of galvanized steel sheet before cathodic electroplating thereof.
- preformed articles made of galvanized steel sheet are treated with acid phosphating solutions which contain the following components: 0.3 to 1.0 g / I Zn 2+ , 0.4 to 3.5 g / I Ni 2+ , 0.1 up to 3.5 g / I Mn 2+ , 10 to 20 g / I P0 4 3- , 0.5 to 1.5 g / IF, 15 g / I N0 3 -, 0.7 to 6 g / I surfactant , 2 to 6 points accelerator, based on the free acid content of the N0 2 -.
- EP-A-0 060 716 relates to a phosphating process for automobile bodies before a cathodic electro-coating thereof.
- the metal surfaces based on steel or zinc are treated with solutions containing 0.5 to 1.5 g / l zinc ions, 5 to 30 g / l phosphate ions, 0.6 to 3 g / l manganese ions and an accelerator.
- these solutions can contain 0.1 to 4 g / l of nickel ions.
- nitrite ions, m-nitrobenzenesulfonate ions and hydrogen peroxide can be used as accelerators, as well as nitrate and chlorine ions.
- the duration of treatment in the immersion process is at least 15 seconds, in particular 30 to 120 seconds.
- the layer weights of the resulting phosphating layers are in the range from 2.0 to 3.2 g / m 2 .
- EP-A-0 219 779 relates to a process for phosphating electrolytically galvanized metal products, preferably electrolytically galvanized steel strips.
- phosphating solutions which contain 0.1 to 0.8 g / l zinc cations and 0.5 to 2.0 g / l manganese cations and some Free acid content in the range of 4 to 8 points and an acid ratio in the range of 2.5 to 5.
- the solutions may additionally contain cobalt, the cobalt content being 1 part cobalt per 100 to 150 parts (Zn 2+ + Mn 2+ ).
- Layer weights of the phosphating layers of less than 2 g / m 2 result with treatment times that are not significantly more than 5 seconds.
- Nitrate serves as an accelerator.
- the object of the present invention was to avoid darkening of the zinc phosphate layers on electrolytically and / or hot-dip galvanized steel strip at treatment times of 3 to 20 s while maintaining the corrosion protection values.
- the nickel content of processes known from the literature should be greatly reduced by substitution with manganese in order to achieve corrosion protection and paint adhesion, as in the trication processes used in the automotive industry, also in the case of continuous strip phosphating.
- the term “electrolytically and / or hot-dip galvanized steel strip” also includes, of course, generally known zinc alloys (for example “Neuralyt”, ZNE electrolytically applied zinc alloy containing 10 to 13% Ni or “Galvannealed”, ZFE electrolytically applied zinc alloy containing Fe) with a.
- zinc alloys for example “Neuralyt”, ZNE electrolytically applied zinc alloy containing 10 to 13% Ni or “Galvannealed”, ZFE electrolytically applied zinc alloy containing Fe
- zinc alloys is generally understood to mean those zinc alloys which contain at least 45% by weight of zinc.
- the above-mentioned objects are achieved by a method for phosphating electrolytically and / or hot-dip galvanized steel strip with the formation of manganese and nickel-containing zinc phosphate layers, which have a mass per unit area of less than 2 g / m 2 , in particular in the range from 0.7 to 1. 6 g / m 2 , by brief treatment with acid phosphating solutions containing Zn 2 + - , Mn 2 + - , Ni 2 + - , P043 + - and NO 3 - -lons, characterized in that
- the duration of the treatment is 3 to 20 s
- the phosphating is carried out in the temperature range from 40 to 70 ° C. and the phosphating solutions - at least at the beginning of the treatment - contain the following constituents or correspond to the following parameters: in which the weight ratio of Ni 2 + cations to NO 3 - anions in the range from 1:10 to 1:60 and the weight ratio of Mn 2+ cations to N0 3 anions is set in the range from 1: 1 to 1:40.
- the above-mentioned content of PO 4 3- anions also includes HPO 4 2- and H 2 P0 4 - anions and undissociated H 3 PO 4 - in the form of the stoichiometric equivalent of P043- Anions - with a.
- the free acid score is accordingly defined as the number of ml 0.1 N NaOH required to titrate 10 ml bath solution against dimethyl yellow, methyl orange or bromophenol blue.
- the total acid score is calculated as the number of ml of 0.1 N NaOH required to titrate 10 ml of bath solution using phenolphthalein as an indicator until the first pink color.
- the phosphating solutions preferably contain no strong oxidizing agents, such as nitrites, chlorates or hydrogen peroxide.
- An essential part of the present invention is the weight ratio of nickel cations to nitrate anions and the weight ratio of manganese cations to nitrate anions.
- the simultaneous use of nickel and manganese cations leads to improved corrosion protection values, but in the processes known from the literature to a darkening of the zinc phosphate layer.
- the coloring of this zinc phosphate layer does not play a major role in the automotive industry, but the color of the zinc phosphate layer is extremely important, for example, in the manufacture of household appliances due to the very thin layers of lacquer that are often applied in the following.
- Another essential criterion of the present invention is the duration of the phosphating treatment. While times above 120 s are usually used for the phosphating in the automotive industry, a time below 1 min is in any case aimed for in the phosphating of galvanized steel strip. For the purposes of the present invention, the duration of the treatment will therefore be between 3 to 20 s.
- the main advantage of the present invention is that zinc phosphate coatings on galvanized steel strip can be produced according to the invention which have a bright surface appearance, although they contain nickel. At the same time, however, the nickel content could be significantly reduced compared to the prior art by substitution with manganese without loss of the corrosion protection value. This is of ecological as well as economic importance, as it is the first time that a manganese-containing trication process has been described for the band sector.
- a preferred embodiment of the present invention is that the weight ratio of nickel cations to nitrate anions is set in the range from 1:20 to 1:60. In the context of the present invention, it was found that an excessively large amount of nitrate has just as negative an effect on the phosphating process as an excessively low nickel content. This has a negative influence on the corrosion protection values. In a further preferred embodiment of the present invention, the weight ratio of manganese cations to nitrate anions is set in the range from 1: 6 to 1:20. This can have a particularly positive influence on the wet paint adhesion.
- a further preferred embodiment of the present invention is characterized in that the phosphating solutions contain a fluoride anion content of 0.1 to 1.0 g / l, preferably 0.4 to 0.6 g / l.
- fluoride anions is the phosphating solutions in the form of hydrofluoric acid or in the form of sodium or Potassium salts added to this acid.
- complex fluoride compounds such as fluoroborates or fluorosilicates can also be used.
- the phosphating itself takes place at moderately elevated temperatures in the range from about 40 to 70 ° C.
- the temperature range from 55 to 65 ° C. can be particularly suitable. Any technically useful way of applying the treatment solution is suitable. In particular, it is therefore possible to carry out the new method both by means of spraying technology and by immersion.
- the electrolytically and / or hot-dip galvanized surface must be completely water-wettable. This is usually the case in continuously operating conveyor systems. If the surface of the galvanized strip is oiled for storage and corrosion protection, this oil must be removed using suitable means and processes that are already known before phosphating.
- the water-wettable galvanized metal surface is then expediently subjected to an activating pretreatment known per se before the phosphating solution is applied. Suitable pretreatment processes are described in particular in DE-A-20 38 105 and DE-A-20 43 085.
- the metal surfaces to be phosphated subsequently are treated with solutions which contain, as activating agents, essentially titanium salts and sodium phosphate together with organic components such as, for example, alkyl phosphonates or polycarboxylic acids.
- Soluble compounds of titanium such as potassium titanium fluoride and in particular titanyl sulfate can preferably be used as the titanium component.
- Disodium orthophosphate is generally used as the sodium phosphate. Titanium-containing compounds and sodium phosphate are used in such proportions that the titanium content is at least 0.005% by weight, based on the weight of the titanium-containing compound and the sodium phosphate.
- the process according to the invention produces zinc phosphate coatings with a weight per unit area of the zinc phosphate layers of less than 2 g / m 2 , which have a closed, finely crystalline structure and give the electrolytically and / or hot-dip galvanized steel strip a desired, uniform, light gray appearance.
- a steel strip phosphated in this way can also be processed without subsequent coating.
- the thin phosphate layers produced by the method according to the invention behave more favorably in many shaping processes than the phosphate layers of a higher mass per unit area produced with the previously usual methods.
- organic coatings applied subsequently also show significantly improved adhesion compared to the prior art, both during and after the shaping processes.
- surface-based masses of the zinc phosphate layer in the range from 0.7 to 1.6 g / m 2 are produced when using electrolytically galvanized steel strip.
- the production of a mass per unit area of the zinc phosphate layer in the range from 0.8 to 1.6 g / m 2 should be emphasized as particularly advantageous.
- the method according to the invention allows the nickel and manganese-containing zinc phosphate layer to be applied by techniques known per se in the prior art, such as spraying, dipping and / or spray-dipping, in particular their combined methods.
- the acid ratio is determined when using electrolytically galvanized steel strip, i.e. the quotient from “total acid” to “free acid” is set in the range from 25: 1 to 10: 1, preferably in the range from 15: 1 to 10: 1.
- the surface layers produced with the aid of the method according to the invention can be used well in all fields in which phosphate coatings are used.
- a particularly advantageous application is the preparation of the metal surfaces for painting, in particular electrocoating.
- a mass per unit area of 0.6 to 1.6 g / m 2 was produced for electrolytically galvanized steel (ZE) and a mass per unit area of the phosphate layer of 0.8 to 1.6 g / m 2 for hot-dip galvanized steel (Z).
- the substrate to be phosphated was selected to be electrolytically galvanized steel on both sides (7.5 / 7.5 ⁇ m zinc) for the test using the VW-P 1210 alternating climate test and hot-dip galvanized steel (10/10 ⁇ m zinc) for the salt spray test.
- Example 1 The sheets obtained with the aid of Example 1 and the comparative example were used to carry out corrosion tests with an alternating climate in accordance with VW standard P 1210 over a test period of 15 and 30 days, and corrosion tests in a salt spray test in accordance with DIN 50 021 SS, 1008 h.
- blistering that occurs in paints is defined by specifying the degree of blistering.
- the degree of bubbles according to this standard is a measure of the formation of bubbles on a coating according to the frequency of the bubbles per unit area and the size of the bubbles.
- the degree of bubbles is indicated by a code letter and a code number for the frequency of the bubbles per unit area as well as a code letter and a code number for the size of the bubbles.
- the code letter and the code m0 mean no bubbles, while m5 defines a certain frequency of bubbles per unit area according to the degree of bubbles according to DIN 53 209.
- the size of the bubbles is given the code letter g and the code number in the range from 0 to 5.
- Code letter and code number g0 has the meaning of freedom from bubbles, while with g5 the size of the bubbles is shown according to the degree of bubbles in DIN 53 209.
- the degree of bubbles is determined, the image of which is most similar to the appearance of the paint.
- the salt spray test according to this standard is used to determine the behavior of paints, coatings and similar coatings when exposed to sprayed sodium chloride solution. If the coating has weak points, pores or injuries, the coating preferably infiltrates from there. This leads to a reduction in adhesion or to loss of adhesion and corrosion of the metallic surface.
- the salt spray test is used so that such errors can be recognized and the infiltration can be determined.
- the test sheet is bombarded with a defined amount of steel shot with a certain grain size distribution.
- a key figure is assigned to the degree of corrosion.
- the key figure 1 denotes an invisible corrosion, while with a key figure 10 practically the entire surface is corroded.
- the sample is bent for 1 to 2 s with different bending radii parallel to the rolling direction by 180 ° , with the coating on the outside.
- the smallest bending radius which allows the sample to bend without tearing, determines the adherence at a 180 ° bend.
- the sheet is bent evenly through 180 ° within 1 to 2 s without an intermediate layer. The sheet is examined immediately after bending with a magnifying glass that magnifies ten times. The test procedure is made more difficult by firmly pressing an adhesive film onto the edge and tearing it off quickly. The amount of lacquer torn off is then assessed.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Coating With Molten Metal (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3927131A DE3927131A1 (de) | 1989-08-17 | 1989-08-17 | Verfahren zur herstellung von manganhaltigen zinkphosphatschichten auf verzinktem stahl |
DE3927131 | 1989-08-17 | ||
PCT/EP1990/001295 WO1991002829A2 (de) | 1989-08-17 | 1990-08-08 | Verfahren zur herstellung von manganhaltigen zinkphosphatschichten auf verzinktem stahl |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0486576A1 EP0486576A1 (de) | 1992-05-27 |
EP0486576B1 true EP0486576B1 (de) | 1995-04-26 |
Family
ID=6387273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90912396A Expired - Lifetime EP0486576B1 (de) | 1989-08-17 | 1990-08-08 | Verfahren zur herstellung von manganhaltigen zinkphosphatschichten auf verzinktem stahl |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0486576B1 (es) |
JP (1) | JPH04507436A (es) |
CN (1) | CN1034681C (es) |
AT (1) | ATE121803T1 (es) |
AU (1) | AU633135B2 (es) |
CA (1) | CA2065004A1 (es) |
DE (2) | DE3927131A1 (es) |
ES (1) | ES2071110T3 (es) |
WO (1) | WO1991002829A2 (es) |
ZA (1) | ZA906507B (es) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4326388A1 (de) * | 1993-08-06 | 1995-02-09 | Metallgesellschaft Ag | Verfahren zur phosphatierenden Behandlung von einseitig verzinktem Stahlband |
DE4443882A1 (de) * | 1994-12-09 | 1996-06-13 | Metallgesellschaft Ag | Verfahren zum Aufbringen von Phosphatüberzügen auf Metalloberflächen |
DE19808755A1 (de) | 1998-03-02 | 1999-09-09 | Henkel Kgaa | Schichtgewichtsteuerung bei Bandphosphatierung |
DE10010355A1 (de) * | 2000-03-07 | 2001-09-13 | Chemetall Gmbh | Verfahren zum Aufbringen eines Phosphatüberzuges und Verwendung der derart phosphatierten Metallteile |
KR100551583B1 (ko) * | 2000-05-30 | 2006-02-13 | 제이에프이 스틸 가부시키가이샤 | 유기피복 강판 및 그의 제조방법 |
JP4603502B2 (ja) * | 2006-03-30 | 2010-12-22 | 新日本製鐵株式会社 | 被覆鋼材 |
CN101660164B (zh) * | 2008-08-26 | 2011-12-28 | 宝山钢铁股份有限公司 | 一种润滑性电镀锌钢板及其生产方法 |
CN102677034A (zh) * | 2012-05-25 | 2012-09-19 | 衡阳市金化科技有限公司 | 一种中温低渣锌系磷化液 |
AT516956B1 (de) * | 2015-06-29 | 2016-10-15 | Andritz Ag Maschf | Vorrichtung und verfahren zur herstellung eines verzinkten stahlbandes |
CN112195429B (zh) * | 2020-09-25 | 2022-08-23 | 河钢股份有限公司承德分公司 | 一种无锌花900g/m2双面超厚锌层镀锌板的生产方法 |
CN112410768B (zh) * | 2020-10-30 | 2023-06-23 | 马鞍山钢铁股份有限公司 | 一种镀锌钢板表面处理剂、表面处理剂的制备方法及自润滑镀锌钢板、钢板的制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57152472A (en) * | 1981-03-16 | 1982-09-20 | Nippon Paint Co Ltd | Phosphating method for metallic surface for cation type electrodeposition painting |
JPS5935681A (ja) * | 1982-08-24 | 1984-02-27 | Nippon Paint Co Ltd | カチオン型電着塗装用金属表面のリン酸塩処理方法 |
DE3245411A1 (de) * | 1982-12-08 | 1984-07-05 | Gerhard Collardin GmbH, 5000 Köln | Verfahren zur phosphatierung elektrolytisch verzinkter metallwaren |
ATE99002T1 (de) * | 1985-08-27 | 1994-01-15 | Nippon Paint Co Ltd | Saure, waessrige phosphatueberzugsloesungen fuer ein verfahren zum phosphatbeschichten metallischer oberflaeche. |
DE3537108A1 (de) * | 1985-10-18 | 1987-04-23 | Collardin Gmbh Gerhard | Verfahren zur phosphatierung elektrolytisch verzinkter metallwaren |
DE3631759A1 (de) * | 1986-09-18 | 1988-03-31 | Metallgesellschaft Ag | Verfahren zum erzeugen von phosphatueberzuegen auf metalloberflaechen |
JPS63227786A (ja) * | 1987-03-16 | 1988-09-22 | Nippon Parkerizing Co Ltd | 鋼板の電着塗装前処理用りん酸塩処理方法 |
-
1989
- 1989-08-17 DE DE3927131A patent/DE3927131A1/de not_active Withdrawn
-
1990
- 1990-08-08 AU AU61675/90A patent/AU633135B2/en not_active Ceased
- 1990-08-08 EP EP90912396A patent/EP0486576B1/de not_active Expired - Lifetime
- 1990-08-08 WO PCT/EP1990/001295 patent/WO1991002829A2/de active IP Right Grant
- 1990-08-08 CA CA002065004A patent/CA2065004A1/en not_active Abandoned
- 1990-08-08 ES ES90912396T patent/ES2071110T3/es not_active Expired - Lifetime
- 1990-08-08 AT AT90912396T patent/ATE121803T1/de not_active IP Right Cessation
- 1990-08-08 JP JP2511444A patent/JPH04507436A/ja active Pending
- 1990-08-08 DE DE59008978T patent/DE59008978D1/de not_active Expired - Fee Related
- 1990-08-15 CN CN90106684A patent/CN1034681C/zh not_active Expired - Fee Related
- 1990-08-16 ZA ZA906507A patent/ZA906507B/xx unknown
Also Published As
Publication number | Publication date |
---|---|
CN1034681C (zh) | 1997-04-23 |
ZA906507B (en) | 1991-04-24 |
EP0486576A1 (de) | 1992-05-27 |
AU633135B2 (en) | 1993-01-21 |
DE59008978D1 (de) | 1995-06-01 |
ES2071110T3 (es) | 1995-06-16 |
WO1991002829A3 (de) | 1991-04-04 |
ATE121803T1 (de) | 1995-05-15 |
WO1991002829A2 (de) | 1991-03-07 |
JPH04507436A (ja) | 1992-12-24 |
AU6167590A (en) | 1991-04-03 |
CA2065004A1 (en) | 1991-02-18 |
CN1049531A (zh) | 1991-02-27 |
DE3927131A1 (de) | 1991-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0774016B1 (de) | Phosphatierverfahren ohne nachspülung | |
DE3234558C2 (es) | ||
EP0796356B1 (de) | Verfahren zum aufbringen von phosphatüberzügen auf metalloberflächen | |
EP0478648B1 (de) | Verfahren zur herstellung von mangan- und magnesiumhaltigen zinkphosphatüberzügen | |
EP0359296B1 (de) | Phosphatierverfahren | |
EP0155547B1 (de) | Verfahren zur Zink-Calcium-Phosphatierung von Metalloberflächen bei niedriger Behandlungstemperatur | |
EP0069950B1 (de) | Verfahren zum Aufbringen von Phosphatüberzügen auf Metalloberflächen | |
EP0486576B1 (de) | Verfahren zur herstellung von manganhaltigen zinkphosphatschichten auf verzinktem stahl | |
EP0361375A1 (de) | Verfahren zum Aufbringen von Phosphatüberzügen | |
EP0656957B1 (de) | Verfahren zur phosphatierung von einseitig verzinktem stahlband | |
EP0134895B1 (de) | Verfahren und Mittel zum beschleunigten und schichtverfeinernden Aufbringen von Phosphatüberzügen auf Metalloberflächen | |
EP0111246B1 (de) | Verfahren zur Phosphatierung elektrolytisch verzinkter Metall-waren | |
WO2004007799A2 (de) | Verfahren zur beschichtung von metallischen oberflächen | |
EP0931179B1 (de) | Verfahren zur phosphatierung von stahlband | |
EP0264811B1 (de) | Verfahren zum Erzeugen von Phosphatüberzügen | |
DE3927614A1 (de) | Verfahren zur erzeugung von phosphatueberzuegen auf metallen | |
DE4232292A1 (de) | Verfahren zum Phosphatieren von verzinkten Stahloberflächen | |
DE69024774T2 (de) | Verfahren zur chemischen Konversion von Metallgegenständen, verwendetes Bad dafür und Konzentrat zur Herstellung des Bades | |
EP1019564A1 (de) | Verfahren zur phosphatierung von stahlband | |
DE2851432A1 (de) | Kontinuierliches verfahren zum aufbringen eines phosphatbelags auf ein eisenhaltiges oder zinkhaltiges metallsubstrat | |
EP0866888B1 (de) | Verfahren zur phosphatierung von metalloberflächen | |
DE3239088A1 (de) | Verfahren zur phosphatierung von metalloberflaechen | |
DE10236526A1 (de) | Verfahren zur Beschichtung von metallischen Oberflächen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19920210 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB IT LI NL SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE DE ES FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19940420 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 121803 Country of ref document: AT Date of ref document: 19950515 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59008978 Country of ref document: DE Date of ref document: 19950601 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2071110 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950807 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19960828 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980301 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980301 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20010824 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020809 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030912 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050803 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050808 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060803 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060808 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20060811 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20061013 Year of fee payment: 17 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060808 |
|
BERE | Be: lapsed |
Owner name: *HENKEL K.G.A.A. Effective date: 20070831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070808 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 |