EP0402702A1 - Verfahren und Vorrichtung zur Klimatisierung von Spinngut - Google Patents
Verfahren und Vorrichtung zur Klimatisierung von Spinngut Download PDFInfo
- Publication number
- EP0402702A1 EP0402702A1 EP90110237A EP90110237A EP0402702A1 EP 0402702 A1 EP0402702 A1 EP 0402702A1 EP 90110237 A EP90110237 A EP 90110237A EP 90110237 A EP90110237 A EP 90110237A EP 0402702 A1 EP0402702 A1 EP 0402702A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- container
- spinning
- fluid
- spinning material
- air conditioning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H13/00—Other common constructional features, details or accessories
- D01H13/30—Moistening, sizing, oiling, waxing, colouring, or drying yarns or the like as incidental measures during spinning or twisting
- D01H13/304—Conditioning during spinning or twisting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H54/00—Winding, coiling, or depositing filamentary material
- B65H54/70—Other constructional features of yarn-winding machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/31—Textiles threads or artificial strands of filaments
Definitions
- the invention relates to a method and a device for air conditioning a spinning material located in a container, which is further processed on a spinning machine surrounded by a room climate.
- US Pat. No. 3,073,106 discloses the air conditioning of slivers and drafting devices for drawing the slivers.
- the air conditioning takes place in an air-conditioned housing mounted on the ring spinning machine.
- the housing is divided into an upper and a lower section, which are each closed with doors.
- the problem with such a device becomes clear. Due to the simultaneous air conditioning of a large number of fiber slivers and drafting systems, the air-conditioned room must be opened very often in order to replace the fiber slivers or to clean the drafting systems, as a result of which the optimal climate is disturbed. In addition, such doors are a hindrance to the increasingly important automation of the spinning process.
- the fiber material which is stored in a container, is exposed to a climate which is independent of the room climate surrounding the spinning machine, there are advantages both in terms of the quality of the product to be produced and also in that Energy expenditure required for air conditioning.
- the fluid volume to be air-conditioned, which surrounds the spinning material is kept very low.
- air conditioning of the spun material is made possible with regard to an optimal climatic condition without disturbing influences of the indoor climate. Because only that Spun material and not the larger environment and the containers have to be air-conditioned, a very exact setting of the climate, which is optimal for further processing of the spinning material, is made possible.
- spun material Any material that has a certain water absorption capacity can be considered as spun material. This enables the climate to influence running behavior and yarn quality.
- the different climates differ in terms of their temperature and humidity.
- Spun material that differs climatically from the optimal climate gradually assumes the surrounding optimal climate asymptotically depending on the time. This means that a certain amount of time is required for optimal air conditioning of a spinning material.
- the processing speed becomes ever faster, it is therefore necessary for the spinning material to be processed to be exposed to the optimum climate in good time. A sufficient exchange of moisture and temperature is only possible if the optimal climate has been in contact with the spun material for a sufficiently long time.
- the spinning material and fluid are in a state of equilibrium. If the fluid already has an optimal climatic value, it is important that it is kept essentially constant at this value so that the spun material can adjust to this value. This is preferably done by continuously exchanging the fluid, which gradually deviates from the optimal state, for a fluid which in turn has the optimal climate.
- an optimally conditioned fluid flows through the container that contains the spinning material, the entire spinning material is gradually brought into the optimum state.
- the fluid flows along the layers of material and then escapes the container.
- the open material layers adopt the optimal state faster than the hidden material layers of the spinning material. If the spinning material is removed from the open layers for further processing, this spinning material is in the optimally air-conditioned state and, after removal, releases the next previously hidden layers of the spinning material. These new layers are in turn contacted by the optimally air-conditioned fluid and an equilibrium state is established between the spinning material and the fluid.
- the fluid flows through the container in the removal direction of the spinning material, the fluid is advantageously discharged from the container. If the fluid flows through the container counter to the removal direction of the spinning material, there is the advantage that the optimally air-conditioned fluid acts on the spinning material that is next removed from the container. The fluid which comes into contact with the spun material removed next is thus not changed by the air conditioning of other layers of the spinning material which can be removed later.
- the flow rate of the fluid is advantageously selected as a function of the removal speed of the spinning material from the container. This has the advantage that when the spinning material is removed from the container more quickly, the transition from the original climate of the spinning material to the optimal climate of the fluid takes place more quickly.
- the described method can be carried out in particular by means of a device in which outlet openings of at least one air conditioning duct of an air conditioning system are arranged on the container in such a way that a conditioned fluid flowing from the outlet openings acts at least on the spun material to be removed next.
- the spinning material is influenced in such a way that, when it is processed further after the air conditioning, it has an optimal climatic state for this further processing.
- the fact that the outlet openings of the air-conditioning duct are directed directly onto the spinning material and are arranged in the immediate vicinity of the spinning material ensures that the spinning material is advantageously air-conditioned, with a small fluid volume to be generated or maintained in an optimally air-conditioned state .
- the spinning material is always in an optimally air-conditioned environment.
- This device works particularly effectively when the outlet openings of the air-conditioning duct are arranged in such a way that the air-conditioned fluid acts on the exposed layers of the spinning material in the container.
- the spinning material to be processed next assumes an equilibrium moisture content corresponding to the conditioned fluid.
- the container is closed by means of a cover in such a way that it prevents the fluid from escaping from the container without resistance, on the one hand the advantage is achieved that the fluid can act on the spun material for a long time without having to be renewed.
- the cover ensures that flying and dirt parts from the surroundings of the spinning machine fall onto the uppermost layers of the spinning material and thus deteriorate the running behavior during further processing.
- the conditioned fluid essentially extends to the volume between the uppermost layer of the spinning material and the cover of the container. This enables the fluid to be conditioned to be restricted to a small volume.
- the cover is arranged on the container, there are advantages when transporting the container to the spinning machine.
- the cover protects the spun material from contamination and from changes in the climate specific to the spinning material. It is also possible that the spun material is already prepared for removal from the container. If, for example, the spinning material is a sliver, it can be prepared apart from the spinning machine in that it is passed through the cover and an introduction into the spinning machine is facilitated.
- the cover has openings for the removal of the spinning material and for the escape of the fluid, it is advantageously achieved that the fluid essentially passes through other openings gives way than the spinning git. In this way, a gentle removal of the spinning material from the container is achieved, since a fraying of the spinning material during removal from the container is avoided by the fluid flowing along.
- the size of the openings is adjustable, on the one hand the fluid flow and on the other hand the gentle removal of the sliver or the threading of the sliver into the removal opening is made possible.
- the regulation of the air flow makes it possible to set the renewal rate of the fluid.
- the container can be connected to a central air-conditioning duct on the spinning machine, the total volume of the fluid to be air-conditioned on the spinning machine is reduced. All containers which result in the same spinning material or the same processing of the spinning material can be supplied from an air conditioning system. If the central air conditioning duct is arranged on a double-sided spinning machine, it supplies both sides of the spinning machine by connecting the containers on both sides of the spinning machine according to the division of the further processing points.
- the container is a supply can for fiber sliver and the conditioned fluid flows through the supply can in its air spaces, the lower layers of the spun material are pre-conditioned in addition to the air conditioning of the uppermost layers of the spinning material.
- the shape of the reference jug is not only limited to round jugs, but also applies to oval jugs, for example.
- the air conditioning takes place in the removal direction of the sliver, it is advantageous if openings are provided in the can plate on which the sliver is stored, through which openings the fluid flows into the air spaces of the stored fiber band entry. With a tape delivery of about 3 cm / sec, the top 3 to 5 layers of the fiber tape are exposed to the conditioned fluid for at least 20 minutes. This is sufficient to air-condition the fiber material appropriately before it enters the spinning unit. The optimum moisture and temperature content of the fiber material can be maintained.
- the container has a shape which tightly encloses the storage shape of the spinning material. It should be noted that at least the spinning material to be removed next from the container is stored in exposed positions in the container and the fluid can flow around it.
- the method and the device are therefore suitable for all spinning materials in which the removal from the container takes place so slowly on the one hand that an air-conditioned fluid can act on the spinning material for a sufficiently long time and which can be exposed to the fluid with the largest possible surface area.
- FIG. 1 shows one half of a double-sided OE rotor spinning machine 1, on which a dissolving device, a rotor and a winding device are shown as a schematic diagram.
- a sliver 3 stored in a can 2 is drawn into this spinning machine.
- the sliver 3 used as spinning material is deposited cycloidally in the can 2. This creates an air space 21 in the middle of the can 2, which is surrounded by the stored fiber material 31.
- the cans 2 are placed on an air conditioning duct 4 in FIG. 1.
- Recesses are provided in the bottom of the can and in the plate on which the fiber material 31 rests, through which a fluid flows.
- the air conditioning duct 4 is penetrated by a fluid in the flow direction S. flows.
- the fluid In terms of temperature and humidity, the fluid has an optimal climate for the further processing of the sliver 3.
- the fluid sweeps along the sliver 3 in the air space 21, as a result of which there is an exchange of temperature and moisture between the sliver 3 and the fluid. This exchange takes place until the sliver 3 is in a state of equilibrium with regard to temperature and humidity with the fluid flowing through.
- the sliver 3 there is thus a gradual adaptation of the sliver 3 to an optimal climatic state for the further processing of the respective sliver 3.
- the adaptation to the optimal state takes place up to a degree of saturation, the better the longer the fluid acts on the sliver 3.
- This method is therefore particularly suitable for use on spinning machines, on which the spinning material can be exposed to the influence of the conditioned fluid for a sufficiently long time.
- the advantage of the invention is that the cans 2 can stand in any climate in a spinning room and the spun material is processed in an optimally air-conditioned state.
- Another advantage results from the fact that the present invention can process different qualities of the spinning material on a spinning machine with several processing stations. Spun materials that are delivered to the processing site in different climatic conditions are subjected to different climates, which means that they have the same climatic condition at the time of processing. It is also possible with the present invention to produce different qualities on a spinning machine with several processing stations. In particular in spinning machines 1 with a plurality of spinning stations 11, spinning of the same type becomes the same goods produced different thread numbers. Different climatic conditions of the spun material are optimal for the individual thread numbers. With the present invention it is possible to generate different climatic conditions of the spinning material to be processed by supplying a spinning machine 1 with a plurality of mutually independent climatic channels 4.
- FIG. 2 shows the device according to FIG. 1 in a preferred embodiment of the invention, in which the cans 2 are provided with a cover 5.
- This has the advantage that the conditioned fluid introduced into the cans 2 does not escape without resistance. It is thereby ensured that the optimal climate, especially on the uppermost layers of the sliver 3 in the can 2, acts for a sufficiently long time so that the spun material which is processed next assumes the optimal climatic condition of the fluid.
- the covers 5 are plastic hoods which are placed over the individual cans 2. Through an opening in the plastic hood, the fiber sliver 3 is guided outwards to the processing point on the spinning machine 1. The plastic hood prevents the inflated, conditioned fluid from escaping unhindered. An air-conditioned area, which may differ significantly from the room climate, spreads over the uppermost layers of the fiber slivers 3 in the can 2.
- the conditioned fluid acts on the spun material for a considerably longer time, as a result of which there is a longer time available for the temperature and moisture exchange between the fluid and the fiber sliver.
- the temperature and humidity level The exchange between spinning material and fluid is essentially asymptotic. This means that initially a very rapid adaptation of the climatic condition of the spinning material to the approximate climatic condition of the fluid takes place. With increasing time, the adaptation to the actual climatic condition of the spinning material to the fluid becomes ever slower.
- Fig. 3 shows a spinning machine 1 with a central air duct 4 '.
- the central air conditioning duct 4 ' supplies both sides of the double-sided spinning machine with the air-conditioned fluid. Both the construction effort and the total amount of the conditioned fluid used on a spinning machine 1 are reduced compared to the exemplary embodiments in FIGS. 1 and 2, since the total volume of the line system through which the conditioned fluid is conveyed is reduced.
- the cans 2 stand on a platform 6 provided with outlet openings 41, through which the fluid which is branched off from the central air conditioning duct 4 'is supplied to the cans 2 in lines 60 and flow through them.
- the platform 6 is arranged at ground level in the embodiment of FIG. 3.
- Fig. 4 shows a spinning machine 1 with central air conditioning channels 4 'and 4 ⁇ .
- a mobile platform 61 is coupled to the air conditioning duct 4 '.
- a cover 51 is arranged on the mobile platform 61 net, which in this embodiment extends over two cans 2.
- the air-conditioned fluid flows from the central air-conditioning duct 4 'through a coupling 62 into the mobile platform 61 and from there into the cans 2.
- the coupling 62 allows the mobile platform 61 to be flanged onto the air-conditioning duct 4' after changing the cans.
- the cans 2 are delivered to the spinning station on the platform 61 and connected to the air conditioning duct 4 '.
- On the clutch 62 a closure is advantageously arranged, which closes the air conditioning duct 4 'at the location of the clutch 62 as soon as the platform 61 is removed. This prevents the conditioned air from escaping into the spinning room.
- a two-part, central air conditioning duct 4 ', 4 ⁇ is shown. This ensures that the spinning machine 1 can be supplied with two different climates. This enables optimal air conditioning of different qualities of spinning materials and / or products that are processed or produced on the machine.
- the cover 51 prevents the fluid from escaping unhindered. It therefore also acts on the uppermost layers of the sliver 3 in the can 2 for a longer time.
- the conditioned fluid flows out of the cover 51 either through the open underside or through exhaust air openings which are arranged on the top of the cover 51.
- the cover 51 includes openings on the top for removing the sliver 3 from the can 2.
- the platform 61 is either manually transported to the respective coupling point 62 of the central or a decentralized air conditioning duct 4 ', or it is automatically driven, for example, in the Type of driverless transport system assigned to its place.
- FIG. 5 shows an air conditioning of the spun material against the removal direction.
- the air conditioning duct 4 is arranged above the can 2 on the spinning machine 1.
- the climate outlet openings 41 are arranged on the air conditioning duct 4 in such a way that the outflowing climate acts on the uppermost layers of the fiber sliver 3.
- the cover 52 like the cover 51 in FIG. 4, contains openings for removing the sliver 3 and, in an advantageous embodiment, openings for regulating the climate exchange below the cover 52.
- the cover 52 is on the air-conditioning duct 4 or the spinning machine 1 arranged stationary.
- an embodiment is also advantageous in which the cover 52 is arranged on a can 2 and is coupled to the outlet opening 41 of the air conditioning duct 4.
- the embodiment according to FIG. 6 shows spinning cans 2 through which the conditioned fluid flows in the countercurrent principle.
- the air-conditioned fluid which flows out of the air conditioning duct 4 first acts on the upper layers of the sliver 3 in the can 2 and flows through the air space 21 which is formed in the middle of the can 2.
- the fluid is passed through the air space 21 and through the bottom of the can 2 into a platform 6, through which it flows outwards.
- an adjustable cover of the outflow openings in the pedestal 6 is advantageous, by which the flow rate can be influenced.
- the underside of the cover 50 advantageously closes tightly with the circumference of the cans 2, for example with rubber lips. This ensures the intended direction of flow of the fluid through the air flow 21.
- the cans 2 are replaced by opening a side surface of the cover 50.
- the cover 50 is designed such that the space between the can 2 and the point of further processing, in this case a opening roller 11, can be air-conditioned. This ensures that the sliver 3 is exposed to the optimal climate until immediately before it is processed, without the supplied optimal climate being sucked into the spinning machine 1 by the negative pressure prevailing in the spinning machine 1 and thus air conditioning the spinning material insufficiently.
- FIG. 7 shows a front view of a spinning machine 1 with spinning stations 11 arranged side by side.
- Each spinning station is assigned a can 2, which is arranged on an air conditioning duct 4.
- the cans 2 covered with a cover 52 are flowed through independently of one another by an air-conditioned fluid.
- Each can 2 is individually covered by a cover 52.
- the cover 52 is advantageously also arranged during the transport of the can 2 on the can 2, as a result of which a change in the climate of the fiber sliver 3 is delayed in contrast to an open storage.
- the sliver is already subjected to an air-conditioned fluid and thus extends the time in which the optimally air-conditioned fluid can act on the sliver 3 as a whole becomes. If the can 2 is covered during transport from the warehouse to the processing station, the stressed climate lasts longer ger in the can 2. In addition, the first processed fiber sliver 3 is supplied to the processing site in an already optimally conditioned condition.
- FIG. 8 shows the cover 52 in a top view.
- An opening 53 is arranged centrally on the cover 52, through which the sliver is removed from the can.
- an elongated slot 54 leads in the direction of the opening 53.
- the slot 54 facilitates removal of the fiber sliver 3 from the can 2 and insertion of the fiber sliver 3 into the opening 53.
- the sliver 3 is removed from the can 2 and threaded into the slot 54.
- the slot 54 is closed. This is done, for example, by rotating a disk that is mounted centrally to the opening 53. This ensures that the sliver 3 is not automatically threaded during removal from the can 2 for further processing and is damaged thereby.
- outflow openings 55 are arranged on the surface of the cover 52, through which the fluid introduced into the can 2 flows out.
- a change in the cross section of the openings 55 influences the flow velocity and thus the rate of renewal of the fluid. This takes place as a function of the removal speed of the sliver and the difference between the optimal climate and the initial climate of the sliver 3.
- the outflow openings 55 can also be closed by rotating a disk arranged below the cover 52. 8, the round outflow openings 55 are shown approximately half closed.
- the outflow openings 55 can of course also be arranged laterally from the cover 52.
- a container other than a jug is shown.
- the container 7 encloses a roving spool which carries a fiber sliver 32 for ring spinning.
- the container 7 is flowed through by optimally air-conditioned fluid.
- the fluid acts on the fiber sliver 32, whereby a climatic equilibrium state is achieved.
- the fiber sliver 32 is fed to further processing after the air conditioning.
- the fiber sliver 32 in the container 7, like the fiber sliver 3 in the spinning can 2, can be air-conditioned using the co-current or counter-current principle.
- openings for removing the fiber sliver as well as outflow openings and threading openings can be provided on the container 7.
- the air conditioning is not restricted to sliver and sliver on spinning machines, but extends to any spinning material that can be exposed to a certain climate for a sufficient time before it is processed to transition to a state of equilibrium with the fluid.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Spinning Or Twisting Of Yarns (AREA)
- Preliminary Treatment Of Fibers (AREA)
Abstract
Description
- Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Klimatisierung eines in einem Behälter befindlichen Spinngutes, das an einer von einem Raumklima umgebenen Spinnereimaschine weiterverarbeitet wird.
- Bekannt ist, daß der klimatische Zustand eines Spinngut direkten Einfluß auf die zu erzielende Qualität bei einer Weiterverarbeitung des Spinngutes, z. B. bei einer Verstreckung eines Faserbandes zur Folge hat. Es ist daher üblich, daß Spinnsäle ein konstantes Raumklima aufweisen. Konstantes Raumklima bedeutet dabei gleichzeitig ein direkt vom Raumklima abhängiges Spinnklima und ein im Gleichgewicht mit dem Raumklima stehendes Klima des Spinngutes. Nachteilig bei dieser Art der hlimatisierung ist der hohe Energieaufwand, der zur Klimatisierung des gesamten Spinnsaales benötigt wird.
- Weiterhin ist an einer Ringspinnmaschine durch die US-PS 3,073,106 die hlimatisierung von Faserbändern und Streckwerken zum Verziehen der Faserbänder bekannt. Die Klimatisierung erfolgt in einem auf der Ringspinnmaschine montierten und klimatisierten Gehäuse. Das Gehäuse ist in eine obere und eine untere Sektion unterteilt, welche jeweils mit Türen verschlossen sind. In dieser Ausführung wird die Problematik bei einer derartigen Vorrichtung deutlich. Durch die gleichzeitige Klimatisierung sehr vieler Faserbänder und Streckwerke muß zum Austausch der Faserbänder oder zur Reinigung der Streckwerke sehr häufig der klimatisierte Raum geöffnet werden, wodurch eine Störung des optimalen Klimas eintritt. Außerdem sind derartige Türen hinderlich bei der immer wichtiger werdenden Automatisierung des Spinnprozesses.
- Aufgabe der vorliegenden Erfindung ist es somit, die optimale Klimatisierung des Spinngutes zu gewährleisten, wobei der benötigte Aufwand zur Klimatisierung möglichst gering zu halten ist und einer Automatisierung der Weiterverarbeitung nicht hinderlich sein darf.
- Die Aufgabe wird durch die Merkmale der Ansprüche 1 und 8 gelöst.
- Wird für die Weiterverarbeitung des Spinngutes auf einer Spinnereimaschine das Fasermaterial, das in einem Behälter gelagert wird, einem Klima ausgesetzt, das unabhängig von dem die Spinnereimaschine umgebenden Raumklima ist, so ergeben sich Vorteile sowohl bezüglich der Qualität des zu erzeugenden Produktes, als auch bei dem Energieaufwand, der für die Klimatisierung benötigt wird. Durch die Klimatisierung ausschließlich des Spinngutes, das aus dem Behälter als nächstes entnommen wird, wird das zu klimatisierende Fluidvolumen, welches das Spinngut umgibt, sehr gering gehalten. Außerdem ist eine Klimatisierung des Spinngutes hinsichtlich eines optimalen klimatischen Zustandes ohne störende Einflüsse des Raumklimas ermöglicht. Dadurch, daß lediglich das Spinngut und nicht die größere Umgebung sowie die Behälter klimatisiert werden müssen, wird eine sehr exakte Einstellung des Klimas, das für eine Weiterverarbeitung des Spinngutes optimal ist, ermöglicht. Als Spinngut kommt jedes Material in Frage, das ein gewisses Wasseraufnahmevermögen besitzt. Hierdurch wird ein Einfluß des Klimas auf Laufverhalten und Garnqualität ermöglicht. Die unterschiedlichen Klimata unterscheiden sich hinsichtlich ihrer Temperatur und Feuchtigkeit. Ein sich klimatisch vom optimalen Klima unterscheidendes Spinngut nimmt asymptotisch abhängig von der Zeit allmählich das umgebende optimale Klima an. Dies bedeutet, daß zur optimalen Klimatisierung eines Spinngutes eine bestimmte Zeit nötig ist. Insbesondere bei modernen Spinnmaschinen, bei denen die Verarbeitungsgeschwindigkeit immer schneller wird, ist es somit nötig, daß das zu verarbeitende Spinngut rechtzeitig dem optimalen Klima ausgesetzt wird. Erst wenn das optimale Klima ausreichend lange mit dem Spinngut Kontakt hat, ist ein genügender Feuchtigkeits- und Temperaturaustausch möglich. Nach einer ausreichenden Zeit, in der das Spinngut von dem optimalen Klima umgeben ist, befinden sich Spinngut und Fluid in einem Gleichgewichtszustand. Besitzt das Fluid bereits einen optimalen klimatischen Wert, so ist es wichtig, daß es auf diesem Wert im wesentlichen konstant gehalten wird, so daß sich das Spinngut auf diesen Wert einstellen kann. Dies geschieht vorzugsweise durch einen kontinuierlichen Austausch des von dem optimalen Zustand allmählich abweichenden Fluids gegen ein Fluid, welches wiederum das optimale Klima aufweist.
- Wird der Behälter, der das Spinngut beinhaltet, von einem optimal klimatisierten Fluid durchströmt, so wird das gesamte Spinngut allmählich in den optimalen Zustand gebracht. Das Fluid strömt dabei an den Materiallagen entlang und entweicht anschließend aus dem Behälter. Die offenen Materiallagen nehmen dabei schneller den optimalen Zustand an, als die verdeckt liegenden Materiallagen des Spinngutes. Wird das Spinngut von den offen liegenden Lagen für die Weiterverarbeitung entnommen, so befindet sich dieses Spinngut in dem optimal klimatisierten Zustand und gibt nach der Entnahme die nächsten bisher verdeckt liegenden Lagen des Spinngutes frei. Diese neuen Lagen werden wiederum von dem optimal klimatisierten Fluid kontaktiert und es stellt sich wiederum ein Gleichgewichtszustand zwischen Spinngut und Fluid ein.
- Wird der Behälter in Entnahmerichtung des Spinngutes von dem Fluid durchströmt, so ist eine Abführung des Fluids aus dem Behälter in vorteilhafter Weise gewährleistet. Wird der Behälter entgegen der Entnahmerichtung des Spinngutes von dem Fluid durchströmt, so ergibt sich der Vorteil, daß das Spinngut, das als nächstes aus dem Behälter entnommen wird, von dem optimal klimatisierten Fluid beaufschlagt wird. Das Fluid, welches mit dem als nächstes entnommenen Spinngut in Kontakt kommt, ist somit nicht durch das Klimatisieren von anderen, erst später zu entnehmenden Lagen des Spinngutes verändert.
- Die Strömungsgeschwindigkeit des Fluids wird vorteilhafterweise in Abhängigkeit von der Entnahmegeschwindigkeit des Spinngutes aus dem Behälter gewählt. Hierdurch ergibt sich der Vorteil, daß bei einer schnelleren Entnahme des Spinngutes aus dem Behälter der Übergang des ursprünglichen Klimas des Spinngutes auf das optimale Klima des Fluids schneller erfolgt.
- Wird die Erneuerungsrate des Fluids in dem Behälter in Abhängigkeit von der Entnahmegeschwindigkeit des Spinngutes und/oder der Unterschiedlichkeit von Spinngutklima und optimalem Klima des Fluids geregelt, so wird in vorteilhafter Weise erreicht, daß das Spinngut stets mit optimal klimatisiertem Fluid in Berührung kommt. Dies ist besonders wichtig, wenn eine hohe Entnahmegeschwindigkeit des Spinngutes vorliegt, da die Klimatisierung des Spinngutes hierbei schnell erfolgen muß. Sind die Klimata von Spinngut und Fluid stark unterschiedlich, d.h. muß das Spinngut eine starke Temperatur- und/oder Feuchtigkeitsänderung erfahren, so ist es vorteilhaft, wenn durch eine hohe Erneuerungsrate das Fluid in optimalen Zustand gehalten wird.
- Das beschriebene Verfahren ist insbesondere mittels einer Vorrichtung durchführbar, bei der Austrittsöffnungen wenigstens eines Klimakanales einer Klimaanlage derart an dem Behälter angeordnet sind, daß ein aus den Austrittsöffnungen strömendes klimatisiertes Fluid wenigstens auf das als nächstes zu entnehmende Spinngut einwirkt. Das Spinngut wird dabei derart beeinflußt, daß es bei seiner auf die Klimatisierung folgenden Weiterverarbeitung einen für diese Weiterverarbeitung optimalen klimatischen Zustand aufweist. Dadurch, daß die Austrittsöffnungen des Klimakanales direkt auf das Spinngut gerichtet sind und in unmittelbarer Nähe des Spinngutes angeordnet sind, wird gewährleistet, daß in vorteilhafter Weise das Spinngut klimatisiert wird, wobei ein geringes Fluidvolumen in einem optimal klimatisierten Zustand zu erzeugen bzw. zu halten ist. Das Spinngut befindet sich stets in einer optimal klimatisierten Umgebung. Besonders effektiv arbeitet diese Vorrichtung, wenn die Austrittsöffnungen des Klimakanals derart angeordnet sind, daß das klimatisierte Fluid auf die freiliegenden Lagen des Spinngutes in dem Behälter einwirkt. Dabei nimmt das als nächste weiterzuverarbeitende Spinngut eine dem klimatisierten Fluid entsprechende Gleichgewichtsfeuchte an.
- Wird der Behälter mittels einer Abdeckung derart verschlossen, daß er das Fluid am widerstandslosen Entweichen aus dem Behälter hindert, so wird einerseits der Vorteil erzielt, daß das Fluid lange Zeit auf das Spinngut einwirken kann, ohne daß es erneuert werden muß. Andererseits wird durch die Abdeckung erreicht, daß Flug- und Schmutzteile aus der Umgebung der Spinnereimaschine auf die obersten Lagen des Spinngutes fallen und somit das Laufverhalten bei der Weiterverarbeitung verschlechtern. Das klimatisierte Fluid erstreckt sich dabei im wesentlichen auf das Volumen zwischen der obersten Lage des Spinngutes und der Abdeckung des Behälters. Dadurch wird ermöglicht, daß das zu klimatisierende Fluid auf ein kleines Volumen beschränkbar ist.
- Ist die Abdeckung an dem Behälter angeordnet, so ergeben sich Vorteile beim Transport der Behälter an die Spinnereimaschine. Das Spinngut wird durch die Abdeckung vor Verschmutzung und vor Änderungen des dem Spinngutes eigenen Klimas geschützt. Außerdem ist es möglich, daß das Spinngut für die Entnahme aus dem Behälter bereits vorbereitet wird. Ist beispielsweise das Spinngut ein Faserband, so kann es abseits der Spinnereimaschine insofern vorbereitet werden, daß es durch die Abdeckung geführt wird und ein Einführen in die Spinnereimaschine erleichtert wird.
- Ist die Abdeckung an der Spinnereimaschine selbst angeordnet, ergeben sich wirtschaftliche Vorteile, da lediglich so viele Abdekkungen in einer Spinnerei benötigt werden, wie Verarbeitungsstellen vorhanden sind.
- Weist die Abdeckung Öffnungen zur Entnahme des Spinngutes und zum Entweichen des Fluids auf, so wird in vorteilhafter Weise erreicht, daß das Fluid im wesentlichen durch andere Öffnungen ent weicht als das Spinngtit. Hierdurch wird eine schonende Entnahme des Spinngutes aus dem Behälter erreicht, da eine Auffaserung des Spinngutes bei der Entnahme aus dem Behälter durch das Entlangströmen des Fluids vermieden wird. Ist die Größe der Öffnungen einstellbar, so ist einerseits der Fluidstrom und andererseits die schonende Entnahme des Faserbandes bzw. die Einfädelung des Faserbandes in die Entnahmeöffnung ermöglicht. Insbesondere durch die Regelung des Luftstromes ist eine Einstellung der Erneuerungsrate des Fluids ermöglicht.
- Ist der Behälter an einem zentralen Klimakanal an der Spinnereimaschine anschließbar, so verringert sich das an der Spinereimaschine benötigte Gesamtvolumen des zu klimatisierenden Fluids. Sämtliche Behälter, welche gleichartiges Spinngut bzw. gleichartige Verarbeitung des Spinngutes zur Folge haben, sind dabei von einer Klimaanlage aus versorgbar. Ist der zentrale Klimakanal an einer doppelseitigen Spinnereimaschine angeordnet, so versorgt er beide Seiten der Spinnereimaschine, indem die Behälter entsprechend der Teilung der Weiterverarbeitungsstellen auf beiden Seiten der Spinnereimaschine anschließbar sind.
- Ist der Behälter eine Vorlagekanne für Faserband und durchströmt das klimatisierte Fluid die Vorlagekanne in ihren Lufträumen, so erfolgt zusätzlich zur Klimatisierung der obersten Lagen des Spinngutes eine Vorklimatisierung der unteren Lagen des Spinngutes. Die Form der Vorlagekanne beschränkt sich dabei nicht nur auf runde Kannen, sondern betrifft auch beispielsweise ovale Vorlagekannen. Erfolgt hierbei die Klimatisierung in Entnahmerichtung des Faserbandes, so ist es vorteilhaft, wenn in dem Kannenteller, auf dem das Faserband gelagert wird, Öffnungen vorgesehen sind, durch die das Fluid in die Lufträume des gelagerten Faser bandes eintritt. Bei einer Bandlieferung von etwa 3 cm/sec werden die obersten 3 bis 5 Lagen des Faserbandes mindestens 20 min dem klimatisierten Fluid ausgesetzt. Dies ist ausreichend, um das Fasergut entsprechend zu klimatisieren, bevor es in die Spinneinheit einläuft. Der für das Verspinnen optimale Feuchtigkeits- und Temperaturgehalt des Fasergutes ist dabei einhaltbar.
- Der Behälter weist in einer vorteilhaften Ausführung eine Form auf, welche die Lagerform des Spinngutes eng umschließt. Es ist dabei zu beachten, daß wenigstens das als nächstes aus dem Behälter zu entnehmende Spinngut in freiliegenden Lagen in dem Behälter aufbewahrt ist und von dem Fluid umströmbar ist. Das Verfahren und die Vorrichtung eignen sich somit für sämtliche Spinngüter, bei denen die Entnahme aus dem Behälter einerseits derart langsam erfolgt, daß ein klimatisiertes Fluid auf das Spinngut ausreichend lange einwirken kann und welches mit einer möglichst großen Oberfläche dem Fluid aussetzbar ist.
- Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert.
- Es zeigt
- Fig. 1 die Klimatisierung von Spinngut in einem offenen Behälter;
- Fig. 2 die Klimatisierung von Spinngut in einem im wesentlichen geschlossenen Behälter;
- Fig. 3 die Klimatisierung der Behälter von einem zentralen Klimakanal aus;
- Fig. 4 die Klimatisierung von auf einem fahrbaren Podest stehenden Behältern;
- Fig. 5 die Klimatisierung von Spinngut im Gegenstromprinzip;
- Fig. 6 die Klimatisierung von Spinngut im Gegenstromprinzip mit Abführkanälen;
- Fig. 7 die Klimatisierung von Spinngut an mehreren Spinnstellen einer Spinnereimaschine;
- Fig. 8 einen Deckel eines Behälters in der Draufsicht;
- Fig. 9 die Klimatisierung einer in einem Behälter befindlichen Vorgarnspule.
- Fig. 1 zeigt eine Hälfte einer doppelseitigen OE-Rotorspinnmaschine 1, an der als Prinzipskizze eine Auflösevorrichtung, ein Rotor sowie eine Spulvorrichtung dargestellt sind. In diese Spinnmaschine wird ein in einer Kanne 2 gespeichertes Faserband 3 eingezogen. Das als Spinngut verwendete Faserband 3 ist in der Kanne 2 zykloidenförmig abgelegt. Hierdurch entsteht in der Mitte der Kanne 2 ein Luftraum 21, der von dem gelagerten Fasermaterial 31 umgeben ist.
- Die Kannen 2 sind in Fig. 1 auf einem Klimakanal 4 abgestellt. Im Kannenboden, sowie im Teller, auf dem das Fasermaterial 31 ruht, sind Aussparungen vorgesehen, durch die ein Fluid strömt. Der Klimakanal 4 ist von einem Fluid in Strömungsrichtung S durch strömt. Das Fluid weist in Bezug auf die Temperatur und Feuchtigkeit ein optimales Klima für die Weiterverarbeitung des Faserbandes 3 auf. Das Fluid streicht in dem Luftraum 21 an dem Faserband 3 entlang, wodurch ein Temperatur- und Feuchtigkeitsaustausch zwischen Faserband 3 und Fluid erfolgt. Dieser Austausch findet solange statt, bis das Faserband 3 in einem Gleichgewichtszustand bezüglich Temperatur und Feuchtigkeit mit dem durchströmenden Fluid ist. In vorteilhafter Weise findet somit eine allmähliche Anpassung des Faserbandes 3 an einen für die Weiterverarbeitung des jeweiligen Faserbandes 3 optimalen klimatischen Zustand statt. Die Anpassung an den optimalen Zustand erfolgt bis zu einem Sättigungsgrad umso besser, je länger das Fluid auf das Faserband 3 einwirkt. Dieses Verfahren eignet sich daher insbesondere für den Einsatz an Spinnereimaschinen, an denen das Spinngut ausreichend lange Zeit dem Einfluß des klimatisierten Fluids aussetzbar ist.
- Es ergibt sich durch die Erfindung der Vorteil, daß die Kannen 2 in einem Spinnsaal beliebigen Klimas stehen können und das Spinngut in einem optimal klimatisierten Zustand verarbeitet wird. Ein weiterer Vorteil ergibt sich dadurch, daß durch die vorliegende Erfindung an einer Spinnereimaschine mit mehreren Verarbeitungsstellen unterschiedliche Qualitäten des Spinngutes verarbeitbar sind. Hierbei werden Spinngüter, die in unterschiedlichen klimatischen Zuständen an die Verarbeitungsstelle angeliefert werden, mit unterschiedlichen Klimata beaufschlagt, wodurch sie zum Zeitpunkt der Verarbeitung gleichen Klimazustand aufweisen. Ebenso ist es möglich, mit der vorliegenden Erfindung an einer Spinnereimaschine mit mehreren Verarbeitungsstellen unterschiedliche Qualitäten zu produzieren. Insbesondere bei Spinnmaschinen 1 mit mehreren Spinnstellen 11 werden hierbei aus gleichartigen Spinn gütern unterschiedliche Garnnummern produziert. Für die einzelnen Garnnummern sind jeweils unterschiedliche Klimaverhältnisse des Spinngutes optimal. Mit der vorliegenden Erfindung ist es möglich, unterschiedliche Klimaverhältnisse des zu verarbeitenden Spinngutes zu erzeugen, indem eine Spinnmaschine 1 mit mehreren voneinander unabhängigen Klimakanälen 4 versorgt ist.
- In Fig. 2 ist die Vorrichtung gemäß Fig. 1 in einer bevorzugten Ausführungsform der Erfindung dargestellt, bei der die Kannen 2 mit einer Abdeckung 5 versehen sind. Hierdurch ergibt sich der Vorteil, daß das in die Kannen 2 eingeführte, klimatisierte Fluid nicht widerstandslos entweicht. Es wird dadurch gewährleistet, daß das optimale Klima insbesondere auf die obersten Lagen des Faserbandes 3 in der Kanne 2 ausreichend lange Zeit einwirkt, so daß das Spinngut, das als nächstes verarbeitet wird, den optimalen Klimazustand des Fluids annimmt. Die Abdeckungen 5 sind in dem Ausführungsbeispiel der Fig. 2 Plastikhauben, die über die einzelnen Kannen 2 gestülpt sind. Durch eine Öffnung in der Plastikhaube wird das Faserband 3 nach außen zu der Verarbeitungsstelle an der Spinnmaschine 1 geführt. Die Plastikhaube verhindert das ungehinderte Entweichen des eingeströmten, klimatisierten Fluids. Ein sich unter Umständen deutlich vom Raumklima unterscheidender, klimatisierter Bereich breitet sich dabei über den obersten Lagen der Faserbänder 3 in der Kanne 2 aus.
- Durch die Vermeidung des ungehinderten Abströmens des klimatisierten Fluids ist eine Energiekosteneinsparung resultierend. Das klimatisierte Fluid wirkt durch die gehinderte Abströmung wesentlich länger auf das Spinngut ein, wodurch längere Zeit für den Temperatur- und Feuchtigkeitsaustausch zwischen Fluid und Faserband zur Verfügung steht. Der Temperatur- und Feuchtigkeitsaus tausch zwischen Spinngut und Fluid erfolgt im wesentlichen asymptotisch. Dies bedeutet, daß anfangs eine sehr schnelle Anpassung des Klimazustandes des Spinngutes an den ungefähren Klimazustand des Fluids erfolgt. Mit zunehmender Zeit wird die Angleichung an den tatsächlichen Klimazustand des Spinngutes an das Fluid immer langsamer.
- Fig. 3 zeigt eine Spinnmaschine 1 mit einem zentralen Klimakanal 4′. Der zentrale Klimakanal 4′ versorgt beide Seiten der doppelseitigen Spinnmaschine mit dem klimatisierten Fluid. Sowhol der bauliche Aufwand, als auch die Gesamtmenge des an einer Spinnmaschine 1 eingesetzten klimatisierten Fluids ist hierbei gegenüber den Ausführungsbeispielen der Fig. 1 und 2 reduziert, da das Gesamtvolumen des Leitungssystems, durch das das klimatisierte Fluid gefördert wird, verringert ist. Auch hier stehen die Kannen 2 auf einem mit Auslaßöffnungen 41 versehenen Podest 6, durch welches das Fluid, das aus dem zentralen Klimakanal 4′ abgezweigt wird, in Leitungen 60 den Kannen 2 zugeführt werden und diese durchströmen. Das Podest 6 ist im Ausführungsbeispiel der Fig. 3 ebenerdig angeordnet. Dies ergibt Vorteile bei der Beschickung der Spinnmaschine 1 mit neuen Kannen 2, da die Kannen 2 an die jeweilige Position geschoben werden können. Bei einer nachträglichen Anordnung der Klimatisierung an Spinnereimaschinen ist es jedoch ebenso möglich, Podeste 6 auf dem Hallenboden zu installieren, wodurch ein leichter Absatz gegenüber dem Hallenboden entsteht, auf dem die Kannen 2 angeordnet sind.
- Fig. 4 zeigt eine Spinnmaschine 1 mit zentralen Klimakanälen 4′ und 4˝. An den Klimakanal 4′ ist ein fahrbares Podest 61 angekoppelt. An dem fahrbaren Podest 61 ist eine Abdeckung 51 angeord net, welche sich in diesem Ausführungsbeispiel über zwei Kannen 2 erstreckt. Das klimatisierte Fluid strömt aus dem zentralen Klimakanal 4′ durch eine Kupplung 62 in das fahrbare Podest 61 und von dort in die Kannen 2. Die Kupplung 62 erlaubt ein Anflanschen des fahrbaren Podestes 61 an den Klimakanal 4′ nach einem Kannenwechsel. Die Kannen 2 werden auf dem Podest 61 an die Spinnstelle angeliefert und mit dem Klimakanal 4′ verbunden. An der Kupplung 62 ist vorteilhafterweise ein Verschluß angeordnet, der den Klimakanal 4′ an der Stelle der Kupplung 62 verschließt, sobald das Podest 61 entfernt wird. Damit wird ein Austreten des klimatisierten Fluids in den Spinnsaal vermieden.
- In Fig. 4 ist ein zweigeteilter, zentraler Klimakanal 4′, 4˝ dargestellt. Damit wird gewährleistet, daß die Spinnmaschine 1 mit zwei unterschiedlichen Klimata versorgbar ist. Es ist damit eine optimale Klimatisierung unterschiedlicher Qualitäten von Spinngütern und/oder Produkten, die auf der Maschine verarbeitet oder erzeugt werden, ermöglicht.
- Durch die Abdeckung 51 wird das Fluid am ungehinderten Entweichen gehindert. Es wirkt somit auch hier längere Zeit auf die obersten Lagen des Faserbandes 3 in der Kanne 2 ein. Das klimatisierte Fluid entströmt der Abdeckung 51 entweder durch die offene Unterseite oder durch Abluftöffnungen, welche auf der Oberseite der Abdeckung 51 angeordnet sind. Die Abdeckung 51 beinhaltet an der Oberseite Öffnungen zur Entnahme des Faserbandes 3 aus der Kanne 2. Das Podest 61 wird entweder manuell an die jeweilige Kupplungsstelle 62 des zentralen oder eines dezentralen Klimakanals 4′ befördert, oder es wird automatisch, beispielsweise selbst angetrieben, in der Art eines fahrerlosen Transportsystems seinem Platz zugewiesen. Selbstverständlich ist es auch möglich, auf einem Podest 61 eine oder mehrere Kannen 2 vorzusehen, je nach Organisation des Kannenwechsels oder der Qualitäten der verarbeitenden Spinngüter.
- Während in den Ausführungsbeispielen von Fig. 1 bis Fig. 4 eine Durchströmung der Kannen 2 in Entnahmerichtung des Faserbandes 3 gezeigt wurde, ist in Fig. 5 eine Klimatisierung des Spinngutes entgegen der Entnahmerichtung dargestellt. Der Klimakanal 4 ist oberhalb der Kanne 2 an der Spinnmaschine 1 angeordnet. Die Klimaauslassöffnungen 41 sind derart an dem Klimakanal 4 angeordnet, daß das ausströmende Klima auf die obersten Lagen des Faserbandes 3 einwirkt. Die Abdeckung 52 beinhaltet ebenso wie die Abeckung 51 der Fig. 4 Öffnungen zur Entnahme des Faserbandes 3 sowie in einer vorteilhaften Ausgestaltung Öffnungen zur Regulierung des Klimaaustausches unterhalb der Abdeckung 52. Die Abdeckung 52 ist in diesem Ausführungsbeispiel an dem Klimakanal 4 bzw. der Spinnmaschine 1 stationär angeordnet. Es ist jedoch auch eine Ausführung vorteilhaft, bei der die Abdeckung 52 an einer Kanne 2 angeordnet ist und an der Auslassöffnung 41 des Klimakanals 4 angekoppelt wird.
- Die Ausführungsform gemäß Fig. 6 zeigt Spinnkannen 2, welche im Gegenstromprinzip von dem klimatisierten Fluid durchströmt werden. Das klimatisierte Fluid, das aus dem Klimakanal 4 auströmt, wirkt zuerst auf die oberen Lagen des Faserbandes 3 in der Kanne 2 ein und strömt durch den Luftraum 21, der in der Mitte der Kanne 2 gebildet wird. Das Fluid wird durch den Luftraum 21 und durch den Boden der Kanne 2 in ein Podest 6 geleitet, durch das es nach außen strömt. Auch hier ist wiederum eine regulierbare Abdeckung der Abströmöffnungen in dem Podest 6 vorteilhaft, durch die Strömungsgeschwindigkeit beeinflußbar ist.
- Die Unterseite der Abdeckung 50 schließt vorteilhafterweise mit dem Umfang der Kannen 2 dicht, beispielsweise mit Gummilippen, ab. Hierdurch wird die beabsichtigte Strömungsrichtung des Fluids durch den Luftstrom 21 gewährleistet. Das Auswechseln der Kannen 2 erfolgt durch Öffnung einer Seitenfläche der Abdeckung 50. Die Abdeckung 50 ist derart gestaltet, daß der Raum zwischen Kanne 2 und der Stelle der Weiterverarbeitung, in diesem Falle einer Auflösewalze 11, klimatisierbar ist. Hierdurch wird gewährleistet, daß das Faserband 3 bis unmittelbar vor seiner Verarbeitung dem optimalen Klima ausgesetzt ist, ohne daß das zugeführte optimale Klima durch den in der Spinnmaschine 1 herrschenden Unterdruck in die Spinnmaschine 1 gesaugt wird und somit das Spinngut nur unzureichend klimatisiert.
- Fig. 7 zeigt eine Vorderansicht einer Spinnmaschine 1 mit nebeneinander angeordneten Spinnstellen 11. Jeder Spinnstelle ist eine Kanne 2 zugeordnet, welche auf einem Klimakanal 4 angeordnet ist. Die mit einer Abdeckung 52 bedeckten Kannen 2 werden bei diesem Ausführungsbeispiel unabhängig voneinander von einem klimatisierten Fluid durchströmt. Jede Kanne 2 ist individuell von einer Abdeckung 52 bedeckt. Die Abdeckung 52 ist vorteilhafterweise auch bei einem Transport der Kanne 2 auf der Kanne 2 angeordnet, wodurch eine Klimaveränderung des Faserbandes 3 im Gegensatz zu einer offenen Lagerung zeitlich verzögert wird. Hierdurch wird es ermöglicht, daß beispielsweise an einer Lagerstelle, an der die gefüllten Kannen 2 zwischengelagert werden, das Faserband bereits hier mit einem klimatisierten Fluid beaufschlagt wird und somit die Zeit, in der das optimal klimatisierte Fluid insgesamt auf das Faserband 3 einwirken kann, verlängert wird. Wird die Kanne 2 während des Transports von der Lagersielle zur Weiterverarbeitungsstelle abgedeckt, so hält sich das beaufschlagte Klima län ger in der Kanne 2. Außerdem wird das als erstes weiterverarbeitete Faserband 3 in einem bereits optimal klimatisierten Zustand der Weiterverarbeitungsstelle zugeführt.
- Fig. 8 zeigt die Abdeckung 52 in der Draufsicht. An der Abdeckung 52 ist zentrisch eine Öffnung 53 angeordnet, durch welche das Faserband aus der Kanne entnommen wird. Ausgehend vom Umfang der Abdeckung 52 führt ein länglicher Schlitz 54 in Richtung zu der Öffnung 53. Durch den Schlitz 54 wird ein Entnehmen des Faserbandes 3 aus der Kanne 2 sowie das Einführen des Faserbandes 3 in die Öffnung 53 erleichtert. Das Faserband 3 wird dabe aus der Kanne 2 entnommen und in den Schlitz 54 eingefädelt. Nachdem das Faserband 3 sich in der Öffnung 53 befindet, wird der Schlitz 54 verschlossen. Dies geschieht beispielsweise durch eine Verdrehung einer zentrisch zu der Öffnung 53 gelagerten Scheibe. Hierdurch wird sichergestellt, daß das Faserband 3 während der Entnahme aus der Kanne 2 für die Weiterverarbeitung nicht selbständig ausgefädelt und dadurch beschädigt wird. Außerdem sind an der Oberfläche der Abdeckung 52 Ausströmöffnungen 55 angeordnet, durch die das in die Kanne 2 eingeleitete Fluid ausströmt. Durch eine Veränderung des Querschnitts der Öffnungen 55 wird die Strömgeschwindigkeit und somit die Erneuerungsrate des Fluids beeinflußt. Dies geschieht in Abhängigkeit von der Entnahmegeschwindigkeit des Faserbandes sowie der Unterschiedlichkeit des optimalen Klimas zu dem anfänglichen Klima des Faserbandes 3. Die Ausströmöffnungen 55 sind ebenfalls durch Verdrehen einer unterhalb der Abdeckung 52 angeordneten Scheibe verschließbar. In Fig. 8 sind die runden Ausströmöffnungen 55 etwa halb verschlossen dargestellt. Die Ausströmöffnungen 55 sind selbstverständlich auch seitlich von der Abdeckung 52 anordenbar.
- In Fig. 9 ist ein anderer Behälter als eine Kanne gezeigt. Der Behälter 7 umschließt eine Vorgarnspule, welche eine Faserlunte 32 zum Ringspinnen trägt. Der Behälter 7 wird ebenso wie die Kanne 2 von optimal klimatisiertem Fluid durchströmt. Auch hier wirkt das Fluid auf die Faserlunte 32 ein, wodurch ein klimatischer Gleichgewichtszustand erreicht wird. Die Faserlunte 32 wird nach der Klimatisierung der Weiterverarbeitung zugeführt. Die Faserlunte 32 im Behälter 7 ist ebenso wie das Faserband 3 in der Spinnkanne 2 im Mitstrom- oder Gegenstromprinzip klimatisierbar. Ebenso wie in Fig. 8 dargestellt sind an dem Behälter 7 Öffnungen zur Entnahme des Faserbandes sowie Ausströmöffnungen und Einfädelöffnungen vorsehbar.
- Die Erfindung ist nicht auf die gezeigten Ausführungsbeispiele beschränkt. So sind selbstverständlich erfindungsgemäß Kombinationen der einzelnen Ausführungsbeispiele möglich. Die Klimatisierung beschränkt sich außerdem nicht auf Faserbänder und Faserlunten an Spinnmaschinen, sondern erstreckt sich auf jegliches Spinngut, das vor seiner Verarbeitung ausreichende Zeit einem bestimmten Klima zum Übergang in einen Gleichgewichtszustand mit dem Fluid ausgesetzt werden kann.
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3919284 | 1989-06-13 | ||
DE3919284A DE3919284A1 (de) | 1989-06-13 | 1989-06-13 | Verfahren und vorrichtung zur klimatisierung von spinngut |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0402702A1 true EP0402702A1 (de) | 1990-12-19 |
EP0402702B1 EP0402702B1 (de) | 1995-09-20 |
Family
ID=6382670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90110237A Expired - Lifetime EP0402702B1 (de) | 1989-06-13 | 1990-05-30 | Verfahren und Vorrichtung zur Klimatisierung von Spinngut |
Country Status (5)
Country | Link |
---|---|
US (1) | US5157910A (de) |
EP (1) | EP0402702B1 (de) |
JP (1) | JP2879462B2 (de) |
CN (1) | CN1051209A (de) |
DE (2) | DE3919284A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008083796A1 (de) * | 2007-01-11 | 2008-07-17 | Oerlikon Textile Gmbh & Co. Kg | Offenend-spinnmaschine |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2045513C (en) * | 1989-12-22 | 2001-02-20 | Freddy Wanger | Heat treatment and/or humidification of cops |
DE4109110A1 (de) * | 1991-03-20 | 1992-09-24 | Fritz Stahlecker | Spinnmaschine mit einer vielzahl nebeneinander angeordneter spinnstellen |
DE4123451A1 (de) * | 1991-07-16 | 1993-01-21 | Stahlecker Fritz | Spinnmaschine |
CH684101A5 (de) * | 1991-09-23 | 1994-07-15 | Luwa Ag | Verfahren und Vorrichtung zur Webmaschinenklimatisierung. |
DE4202352A1 (de) * | 1992-01-29 | 1993-08-05 | Rieter Ingolstadt Spinnerei | Verfahren und vorrichtung zur regulierung eines streckwerkes |
US5361450A (en) * | 1992-12-31 | 1994-11-08 | Zellweger Uster, Inc. | Direct control of fiber testing or processing performance parameters by application of controlled, conditioned gas flows |
DE4231728A1 (de) * | 1992-09-23 | 1994-03-24 | Stahlecker Fritz | Verfahren und Vorrichtung zum Spinnen von Garn |
US5321942A (en) * | 1992-11-30 | 1994-06-21 | Pneumafil Corporation | Method and apparatus for directing conditioned air to a spinning machine |
US5459990A (en) * | 1993-10-14 | 1995-10-24 | Tns Mills, Inc. | Facility and method for producing yarn |
US5575143A (en) * | 1995-04-19 | 1996-11-19 | Pneumafil Corporation | Air directing apparatus for use with textile machines and the like |
DE19518302A1 (de) * | 1995-05-18 | 1996-11-21 | Truetzschler Gmbh & Co Kg | Vorrichtung an einer Strecke mit einer Einlaufeinrichtung (Einlaufgatter) zum Absaugen von Staub, Faserflug u. dgl. |
US6029316A (en) * | 1997-01-08 | 2000-02-29 | Premier Polytronics Limited | Environmental conditioning methods and apparatus for improved materials testing: rapidcon and rapidair |
US6128832A (en) * | 1999-06-04 | 2000-10-10 | Ltg Air Engineering, Inc. | Method and system for providing conditioned air |
DE10229353A1 (de) * | 2002-06-29 | 2004-01-15 | Rieter Ingolstadt Spinnereimaschinenbau Ag | Vorrichtung zum Schutz vor Verunreinigungen des Faserbandes |
CN108677286B (zh) * | 2018-06-28 | 2023-11-17 | 青岛诚利佳机械有限公司 | 一种新型滚球机 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1105090A (fr) * | 1953-07-22 | 1955-11-28 | Josef Pfenningsberg & Co | Procédé d'étirage de faisceaux de fibres |
US3247551A (en) * | 1963-03-11 | 1966-04-26 | Ideal Ind | Apparatus and method for conditioning textile material being drafted |
US3391428A (en) * | 1966-03-23 | 1968-07-09 | Ideal Ind | Apparatus for conditioning textile material being drafted |
DE2544643A1 (de) * | 1975-10-06 | 1977-04-14 | Saurer Allma Gmbh | Doppeldraht-zwirnmaschine |
DE2544141A1 (de) * | 1975-10-02 | 1977-04-21 | Ltg Lufttechnische Gmbh | Doppeldraht-zwirnmaschine |
FR2617202A1 (fr) * | 1987-06-29 | 1988-12-30 | Palitex Project Co Gmbh | Rotor de broche pour fabrication d'un file ou d'un retors et broche de retordage a double torsion munie de ce rotor |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2425578A (en) * | 1945-06-14 | 1947-08-12 | Meinard F Thoma | Method of and apparatus for air conditioning of spinning operations and the like |
US3073106A (en) * | 1960-01-14 | 1963-01-15 | Tsuzuki Ryohei | Spinning frames |
GB1255607A (en) * | 1967-12-23 | 1971-12-01 | Wool Ind Res Association | Conditioning of textile fabric |
GB1268985A (en) * | 1969-05-26 | 1972-03-29 | Teijin Ltd | Method of air-conditioning undrawn yarn packages in a drawing machine |
JPS5115050A (ja) * | 1974-07-24 | 1976-02-06 | Murata Machinery Ltd | Nijunenshikinokuchosochi |
US4183233A (en) * | 1977-05-02 | 1980-01-15 | Simon Klebanow | Apparatus for fluid treatment of textiles |
US4361006A (en) * | 1979-07-06 | 1982-11-30 | Luwa Ag | Spinning frame |
US4523441A (en) * | 1983-11-22 | 1985-06-18 | Alan Shelton Limited | Handling of textile yarn |
US4857090A (en) * | 1988-02-23 | 1989-08-15 | Pneumafil Corporation | Energy conservation system for cooling and conditioning air |
-
1989
- 1989-06-13 DE DE3919284A patent/DE3919284A1/de not_active Withdrawn
-
1990
- 1990-05-30 DE DE59009673T patent/DE59009673D1/de not_active Expired - Fee Related
- 1990-05-30 EP EP90110237A patent/EP0402702B1/de not_active Expired - Lifetime
- 1990-06-13 JP JP2152903A patent/JP2879462B2/ja not_active Expired - Fee Related
- 1990-06-13 CN CN90104901A patent/CN1051209A/zh active Pending
-
1991
- 1991-11-04 US US07/789,419 patent/US5157910A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1105090A (fr) * | 1953-07-22 | 1955-11-28 | Josef Pfenningsberg & Co | Procédé d'étirage de faisceaux de fibres |
US3247551A (en) * | 1963-03-11 | 1966-04-26 | Ideal Ind | Apparatus and method for conditioning textile material being drafted |
US3391428A (en) * | 1966-03-23 | 1968-07-09 | Ideal Ind | Apparatus for conditioning textile material being drafted |
DE2544141A1 (de) * | 1975-10-02 | 1977-04-21 | Ltg Lufttechnische Gmbh | Doppeldraht-zwirnmaschine |
DE2544643A1 (de) * | 1975-10-06 | 1977-04-14 | Saurer Allma Gmbh | Doppeldraht-zwirnmaschine |
FR2617202A1 (fr) * | 1987-06-29 | 1988-12-30 | Palitex Project Co Gmbh | Rotor de broche pour fabrication d'un file ou d'un retors et broche de retordage a double torsion munie de ce rotor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008083796A1 (de) * | 2007-01-11 | 2008-07-17 | Oerlikon Textile Gmbh & Co. Kg | Offenend-spinnmaschine |
Also Published As
Publication number | Publication date |
---|---|
DE3919284A1 (de) | 1990-12-20 |
DE59009673D1 (de) | 1995-10-26 |
EP0402702B1 (de) | 1995-09-20 |
US5157910A (en) | 1992-10-27 |
JP2879462B2 (ja) | 1999-04-05 |
JPH03279426A (ja) | 1991-12-10 |
CN1051209A (zh) | 1991-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0402702B1 (de) | Verfahren und Vorrichtung zur Klimatisierung von Spinngut | |
DE3025066C2 (de) | ||
EP3760772B1 (de) | Optimierung des betriebes einer spinnmaschine | |
DE2903139A1 (de) | Verfahren und vorrichtung zum verhindern der abgabe von staub und faserteilen aus den arbeitszonen einer textilmaschine | |
CH659662A5 (de) | Vorrichtung zum beschicken einer textilmaschine mit faserflocken. | |
DE2919768A1 (de) | Vorrichtung zum entstauben einer spulmaschine | |
DE3828189A1 (de) | Verfahren und vorrichtung zum anspinnen eines doppelfadens nach einem fadenbruch | |
EP0548026B1 (de) | Verfahren zur Klimatisierung von Vorgarn in Spinnmaschinen und eine Spinnmaschine zur Ausführung dieses Verfahrens | |
DE3916986A1 (de) | Verteiler zur speisung einer mehrzahl von schaechten | |
DD295672A5 (de) | Versandbox fuer disketten | |
EP0257464B1 (de) | Aufwindeverfahren, Vorrichtung, Produkt | |
DE10133152A1 (de) | Rotorspinnmaschine | |
DE2544643B2 (de) | Doppeldrahtzwirnmaschine | |
DE2505547A1 (de) | Verfahren und vorrichtung zur aufnahme und vorratsbildung fuer aus hochpolymeren spinnmassen erzeugte fadenbuendel | |
DE3416456C2 (de) | Verfahren und Vorrichtung zur Inbetriebnahme einer Friktionsspinnmaschine | |
CH662134A5 (de) | Spinnvorrichtung. | |
DE102015005392A1 (de) | Arbeitsstelle einer Auflaufspulen herstellenden Textilmaschine | |
DE2947342A1 (de) | Vorrichtung zum abtrennen eines faserbandes | |
CH633325A5 (de) | Verfahren und vorrichtung zum inbetriebsetzen einer einzelspinnstelle einer ringspinn- oder -zwirnmaschine mit luftgelagerten spinnringen. | |
DE202020101190U1 (de) | Vorrichtung zur Speisung von Karden | |
DE3315777A1 (de) | Spinnvorrichtung | |
EP0456865A1 (de) | Vorrichtung zum Verspinnen von Stapelfasern | |
DE4123451A1 (de) | Spinnmaschine | |
DE60104165T2 (de) | Käsebruchbeförderungsvorrichtung und Verfahren zur Beförderung eines vorgeformten Käsebruchblockes in einen Behälter | |
DE1685977A1 (de) | Verfahren und Vorrichtung zum Klimatisieren von Textilmaschinen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI |
|
17P | Request for examination filed |
Effective date: 19901224 |
|
17Q | First examination report despatched |
Effective date: 19930209 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950920 |
|
REF | Corresponds to: |
Ref document number: 59009673 Country of ref document: DE Date of ref document: 19951026 |
|
ITF | It: translation for a ep patent filed | ||
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: RIETER INGOLSTADT SPINNEREIMASCHINENBAU AKTIENGESE |
|
ET | Fr: translation filed | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 19950920 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: SCHUBERT & SALZER MASCHINENFABRIK AKTIENGESELLSCHA |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19970516 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980531 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20040527 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040608 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |