EP0390972A1 - Arrangement and method to detect physical parameters of an elevator - Google Patents
Arrangement and method to detect physical parameters of an elevator Download PDFInfo
- Publication number
- EP0390972A1 EP0390972A1 EP89122928A EP89122928A EP0390972A1 EP 0390972 A1 EP0390972 A1 EP 0390972A1 EP 89122928 A EP89122928 A EP 89122928A EP 89122928 A EP89122928 A EP 89122928A EP 0390972 A1 EP0390972 A1 EP 0390972A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signals
- evaluation unit
- cable
- distance
- aid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/0087—Devices facilitating maintenance, repair or inspection tasks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/34—Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
- B66B1/3492—Position or motion detectors or driving means for the detector
Definitions
- the invention relates to a method for detecting physical parameters, in particular movement parameters, of a goods and / or passenger elevator, the elevator having at least one cable pull guided over a traction sheave, at one end of which the car and at the other end of which a counterweight is suspended , is driven by a drive motor controlled by an electrical control circuit and working on the traction sheave, and comprises a brake device connected to the traction sheave and controlled by the control circuit.
- the background for the present invention is safety checks on goods and passenger lifts. Such lifts must be subjected to regular checks, e.g. Characteristic values such as travel paths, braking distances, catching paths and the slip resistance (driving ability) of the cable pull driven by the traction sheave must be determined.
- this object is achieved in that the physical parameters are determined by connecting at least one distance sensor to the cable pull and / or the traction sheave in order to generate distance signals, the distance sensors are connected to an evaluation unit provided with a timer in order to determine the distance signals of the Supply evaluation unit, and by the evaluation unit is connected to switching points of the control circuit, at which signals controlling the movement sequence of the elevator are present, in order to form physical parameters from the distance signals and the control signals.
- kinematic data of the elevators that is to say travel path and associated time measurement values
- the determination and recording of distances, speed and acceleration values can advantageously take place as a function of time or of the path.
- the braking and catching curves recorded in this way are output on a screen or printer and with calculated envelopes (wel set permissible upper and lower limits) overlaid. This makes it easy to determine the effectiveness of the brake and safety gear.
- the determined curves can be saved on a data carrier.
- the cable pull is connected to a force measuring signal transmitter, by means of which the forces transmitted by the cable pull and determining the movement sequence of the car can be determined.
- a force measuring signal transmitter by means of which the forces transmitted by the cable pull and determining the movement sequence of the car can be determined.
- a computer preferably a personal computer, is expediently included in the method.
- test method according to the invention also represents a significant improvement in terms of safety, in that no high loads are placed on the elevator during the test.
- the reference numeral 1 denotes a traction sheave which has two guide grooves for a cable pull 2 formed in the present case by two cables.
- a car 3 is attached to one end of the cable 2.
- a counterweight 4 hangs at the other end of the cable 2.
- the mass of the counterweight 4 usually corresponds to the mass of the car 3 plus half the permissible car load.
- 5 denotes a motor-gear unit for driving the traction sheave 1, this unit having a handwheel 10 for rotating the traction sheave 1.
- a braking device not shown in FIG. 1, is arranged between the motor-transmission unit 5 and the traction sheave 1.
- the motor-gear unit 5 with the traction sheave 1 is arranged above a ceiling 11 which closes the elevator shaft upwards.
- the car 3 In driving mode, the car 3 is moved via the cable 2, which is driven by the motor-transmission unit via the traction sheave 1.
- the cable For the elevator system to work properly, it is necessary that the cable is laid over the traction sheave in a non-slip manner.
- the car can be used in an emergency as well Repairs or checks can also be moved by the handwheel 10.
- 6 denotes an evaluation unit, which in the present exemplary embodiment comprises a personal computer 12, an input / output interface 13 and an interface module 14.
- the dashed outline 6 ' is intended to indicate that the input / output interface 13 and the interface module 14 form a functional unit.
- the personal computer has a screen 36 as a display device and an input keyboard 37. Between the individual components of the evaluation unit, data traffic takes place in both directions in accordance with the arrows that connect the components.
- the evaluation unit 6 is in each case via one of the lines 15 to 17 with a first distance sensor 7, which can be connected to a cable of the cable 2, a second distance sensor 18, which can be connected to the traction sheave 1, and a force measuring signal transmitter 8 connected, the lines being connected to the evaluation unit via inputs provided on the interface module.
- 9 designates lines via which the evaluation unit is connected to the control circuit of the elevator system.
- the lines 9, like the lines 15 to 17, are connected to inputs which are provided on the interface module 14.
- the lines 9 are combined to form a 12-wire shielded cable which has at one end a test plug or terminals and which can be connected to the control circuit of the elevator system has a circuit board connector with a voltage protection circuit at the other end.
- the interface module 14 comprises four modules.
- a control subinterface For electrical signals that are transmitted from the control circuit via the lines 9 to the evaluation unit, a control subinterface is provided, which has an optocoupler for each input for a galvanic separation of the evaluation unit from the control circuit, one that can be operated with only one operating voltage, with a capacitive feedback provided operational amplifier for signal amplification and a Schmitt trigger.
- a largely symmetrical sensor sub-interface is provided for recording and preprocessing signals from the distance sensors and the force measuring signal transmitter. Pulse-forming Schmitt triggers are used as input modules, the output of which is connected to a monoflop with a narrow pulse width.
- logic modules are provided for linking signals from different inputs of the sensor subinterface.
- the interface module 14 has a divider module for dividing the system clock of the personal computer.
- the interface module contains an acoustic signal generator which has a monoflop with a pulse width of approximately 500 ms and a downstream piezo beeper.
- the input / output interface has a decoder, an input / output and a timer module.
- the timer block contains a universally programmable counter, whose clock input is connected to the via the divider block of the interface block System clock of the personal computer is connected.
- the distance sensor has a perforated disk 19 with light passage holes 20 arranged concentrically around the pivot point of the perforated disk at equal intervals.
- the perforated disk is concentrically connected to a drive disk 21 having a guide groove for a driving cable rope.
- the perforated disk 19 with the drive disk 21 has an axis of rotation 24 which is rotatably mounted in a holder 23.
- 25 denotes a first and 26 denotes a second light barrier measuring device, the light rays of which pass through the perforated disk or are interrupted by the perforated disk.
- the distance between the two light barriers and the distance between the light passage holes on the perforated disk was chosen so that when the perforated disk rotates in one direction for the signals of the two light barrier devices, the pulse diagrams shown in FIG. 5 with temporally offset pulses result.
- the direction of rotation can be determined by evaluating the measurement signals emitted by both light barriers.
- Such an evaluation circuit is shown in FIG. 6.
- the circuit In addition to travel pulses, the number of which is characteristic of the travel path of the car, the circuit also supplies a signal indicating the direction of travel of the car.
- FIG. 7 shows an exemplary embodiment of a force transducer 8 that can be used in an arrangement according to FIG. 2.
- the Force transducer has a helical compression spring 28 guided in a guide sleeve 27, which can be compressed by a pull rod 29 which has a disc 30 at one end against which the spring 28 comes into contact and an eyelet 31 at the other end.
- 32 with a distance transducer is designated by which a displacement of the pull rod 29 against the guide sleeve 27 can be detected and thus a measurement signal for the force acting on the pull rod can be supplied.
- the distance sensor 32 is shown separately in FIG. 8. 3 and 4, it has a perforated disk 19 'and two light barrier measuring devices 25' and 26 '(25' not visible in FIG. 8).
- the perforated disc 19 ' is connected via an axis of rotation 24' to a drive wheel 33 which comes against the tie rod 29 and is driven by the tie rod.
- FIG. 9 another embodiment of a force transducer is shown, which differs from the embodiment of FIG. 7 in that one end of the tie rod 29 'formed as a hook 34 and a distance sensor for detecting the displacement of the tie rod 29' against the guide sleeve 27 'is provided, which has a tie rod 29' connected to the guide sleeve displaceable perforated strip 35 with equidistantly arranged in a line light passage holes 20 '.
- a first light barrier device 25 ⁇ and a second light barrier device 26 ⁇ are provided to scan the through holes 20 '.
- FIGS. 10 and 11 show a catching test carried out in practice.
- the catching path s of the car over the catching time t is recorded in the form of a curve f.
- the slip resistance (driving ability) of the cable can also be advantageously determined.
- the pull rod of the force transducer (from FIG. 7 or FIG. 9) is to be connected to one or more cables of the cable pull with the aid of a suitable cable clamp.
- the guide sleeve of the force transducer is expediently attached to the ceiling 11 closing the elevator shaft at a fixed point.
- the driving capacity of the entire traction sheave is calculated from the value of the measured force of one x ropes.
- the onset of slipping at the maximum driving force that can be transmitted by the traction sheave can be registered by evaluating the signals of the first distance sensor that can be connected to the traction sheave or only visually by the elevator inspector.
- the control circuit of the elevator by checking the chronological sequence of the control signals. E.g. the time it takes for the control to switch off the drive or to apply a brake after a safety switch has been opened can be determined.
- the evaluation unit 6 has a number of functional devices (in the present exemplary embodiment partially implemented as a software solution).
- a functional device is provided for determining the speed and / or acceleration values.
- the measurement of the speed and acceleration can be triggered by actuating the keyboard of the personal computer or it can be triggered by signals from the control circuit of the elevator. Measurement results can be displayed on the screen of the personal computer and, if necessary, can be output as a complete test report on a connected printer.
- the acoustic signal transmitter contained in the interface module 14 or activatable via the software in the personal computer can be activated.
- the screen can also be used to display instructions for operating the device.
- the sensor interface causes the personal computer when an external event, e.g. Advance the perforated disc to interrupt its work and update the corresponding internal memory for distance and possibly time.
- an external event e.g. Advance the perforated disc to interrupt its work and update the corresponding internal memory for distance and possibly time.
- the timer and acoustic signal transmitter with the necessary control were accommodated in the sensor interface.
- the values to be measured were immediately converted into digital signals.
- the measured value acquisition analogously and, for example, of detecting speeds (and thus also distances and accelerations) with a tachometer generator, or forces can be measured using strain gauges or piezoelectric pressure transducers can be determined.
- These analog signals can be converted into digital signals with an A / D converter and then further processed with an evaluation unit.
- FIG. 12 shows a comparison of the forces occurring on the traction sheave when the elevator is loaded and when the dynamometer is connected.
- F F car force
- F L payload force
- F1 force / rope on the counterweight side
- F2 power / rope on the car side
- F5 force of the clamped rope ⁇ -> traction sheave
- F6 force of a rope from the car ⁇ -> clamping point
- F7 force fixed point ⁇ -> clamping point (measured)
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Computer Networks & Wireless Communication (AREA)
- Maintenance And Inspection Apparatuses For Elevators (AREA)
- Indicating And Signalling Devices For Elevators (AREA)
- Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Erfassen von physikalischen Kenngrößen, insbesondere von Bewegungsparametern, eines Lasten- und/oder Personenaufzugs, wobei der Aufzug wenigstens einen über eine Treibscheibe geführten Seilzug, an dessen einem Ende der Fahrkorb und an dessen anderem Ende ein Gegengewicht hängt, aufweist, von einem durch eine elektrische Steuerschaltung gesteuerten, auf die Treibscheibe arbeitenden Antriebsmotor angetrieben wird, und eine mit der Treibscheibe verbundene und durch die Steuerschaltung gesteuerte Bremsvorrichtung umfaßt.The invention relates to a method for detecting physical parameters, in particular movement parameters, of a goods and / or passenger elevator, the elevator having at least one cable pull guided over a traction sheave, at one end of which the car and at the other end of which a counterweight is suspended , is driven by a drive motor controlled by an electrical control circuit and working on the traction sheave, and comprises a brake device connected to the traction sheave and controlled by the control circuit.
Den Hintergrund für die vorliegende Erfindung bilden Sicherheitsprüfungen an Lasten- und Personenaufzügen. Solche Aufzüge müssen regelmäßigen Kontrollen unterworfen werden, wobei z.B. Kennwerte wie Fahrwege, Bremswege, Fangwege und die Rutschfestigkeit (Treibfähigkeit) des von der Treibscheibe angetriebenen Seilzugs zu ermitteln sind.The background for the present invention is safety checks on goods and passenger lifts. Such lifts must be subjected to regular checks, e.g. Characteristic values such as travel paths, braking distances, catching paths and the slip resistance (driving ability) of the cable pull driven by the traction sheave must be determined.
Die Überprüfung von Aufzügen erforderte bisher einen hohen Arbeitsaufwand, da die Überprüfung der Wirksamkeit der Bremse und der Fangvorrichtung ein Beladen des Aufzugs mit der zulässigen Nutzlast und bei der Überprüfung der Rutschfestigkeit sogar mit mindestens eineinhalbfacher Nutzlast erforderlich machte. Das Einund Ausladen von entsprechenden Gewichten ist nicht nur zeitraubend, sondern auch mit schwerer körperlicher Arbeit verbunden. Es kommt außerdem hinzu, daß bei der Gewichtsprobe die Bauteile der Aufzugsanlage stark beansprucht werden.Up to now, the inspection of elevators has required a lot of work, since the effectiveness of the brakes and the safety gear had to be loaded with the permissible payload and, when checking the slip resistance, even with at least one and a half times the payload. Loading and unloading appropriate weights is not only time-consuming, but also involves heavy physical work. It is coming furthermore, that the components of the elevator system are subjected to heavy loads during the weight test.
Es ist die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Überprüfung von Lasten- und/oder Personenaufzügen vorzuschlagen, durch die der Arbeitsaufwand für die Prüfung bei gleichzeitiger Erhöhung der Prüfqualität erheblich verringert ist.It is the object of the present invention to propose a method for checking freight and / or passenger lifts by means of which the workload for the test is considerably reduced while at the same time increasing the test quality.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die physikalischen Kenngrößen ermittelt werden, indem mit dem Seilzug und/oder der Treibscheibe wenigstens ein Wegstreckenaufnehmer verbunden wird, um Wegstreckensignale zu erzeugen, die Wegstreckenaufnehmer an eine mit einem Zeitgeber versehene Auswerteeinheit angeschlossen werden, um die Wegstreckensignale der Auswerteeinheit zuzuführen, und indem die Auswerteeinheit mit Schaltpunkten der Steuerschaltung, an denen den Bewegungsablauf des Aufzugs steuernde Signale anliegen, verbunden wird, um aus den Wegstreckensignalen und den Steuersignalen physikalische Kenngrößen zu bilden.According to the invention, this object is achieved in that the physical parameters are determined by connecting at least one distance sensor to the cable pull and / or the traction sheave in order to generate distance signals, the distance sensors are connected to an evaluation unit provided with a timer in order to determine the distance signals of the Supply evaluation unit, and by the evaluation unit is connected to switching points of the control circuit, at which signals controlling the movement sequence of the elevator are present, in order to form physical parameters from the distance signals and the control signals.
Nach einem derartigen Verfahren lassen sich kinematische Daten der Aufzüge, also Fahrweg- und zugehörige Zeitmeßwerte in Abhängigkeit von den den Bewegungsablauf des Aufzugs steuernden Signalen mit geringem Arbeitsaufwand bestimmen, wobei aus den kinematischen Daten die benötigen Prüfkennwerte ermittelt werden können. Insbesondere kann vorteilhaft die Bestimmung und Aufzeichnung von Strecken, Geschwindigkeits- und Beschleunigungswerten als eine Funktion der Zeit bzw. des Weges erfolgen. Die so aufgenommenen Brems- und Fangkurven werden auf einen Bildschirm bzw. Drucker ausgegeben und mit errechneten Hüllkurven (wel che zulässige Ober- und Untergrenzen festlegen) überlagert. Dadurch läßt sich auf einfache Art die Wirksamkeit von Bremse und Fangvorrichtung ermitteln. Die ermittelten Kurven können auf Datenträger gespeichert werden.Using such a method, kinematic data of the elevators, that is to say travel path and associated time measurement values, can be determined with little effort as a function of the signals controlling the movement sequence of the elevator, it being possible to determine the required test characteristic values from the kinematic data. In particular, the determination and recording of distances, speed and acceleration values can advantageously take place as a function of time or of the path. The braking and catching curves recorded in this way are output on a screen or printer and with calculated envelopes (wel set permissible upper and lower limits) overlaid. This makes it easy to determine the effectiveness of the brake and safety gear. The determined curves can be saved on a data carrier.
In zweckmäßiger Ausgestaltung wird bei dem erfindungsgemäßen Verfahren der Seilzug mit einem Kraftmeßsignalgeber verbunden, durch den die durch den Seilzug übertragenen, den Bewegungsablauf des Fahrkorbs bestimmenden Kräfte ermittelbar sind. Mit Hilfe einer solchen Kraftmessung läßt sich insbesondere die Prüfung der Rutschfestigkeit des durch die Treibscheibe angetriebenen Seilzugs vorteilhaft durchführen. Man kann die Treibfähigkeit von einem bis x Seilen bestimmen und auf die gesamte Treibfähigkeit hochrechnen.In an expedient embodiment, in the method according to the invention, the cable pull is connected to a force measuring signal transmitter, by means of which the forces transmitted by the cable pull and determining the movement sequence of the car can be determined. With the aid of such a force measurement, in particular the test of the slip resistance of the cable pull driven by the traction sheave can advantageously be carried out. You can determine the driving ability from one to x ropes and extrapolate it to the total driving ability.
Zweckmäßigerweise wird in das Verfahren ein Computer, vorzugsweise ein Personal-Computer, einbezogen.A computer, preferably a personal computer, is expediently included in the method.
Das erfindungsgemäße Prüfverfahren stellt auch in sicherheitstechnischer Hinsicht eine deutliche Verbesserung dar, indem keine hohen Belastungen des Aufzugs bei der Prüfung auftreten.The test method according to the invention also represents a significant improvement in terms of safety, in that no high loads are placed on the elevator during the test.
Weitere vorteilhafte Ausgestaltungsmöglichkeiten der Erfindung gehen aus den Unteransprüchen hervor.Further advantageous design options of the invention emerge from the subclaims.
Die Erfindung soll nun anhand von Ausführungsbeispielen und der beiliegenden Zeichnungen weiter erläutert und beschrieben werden. Es zeigen:
- Fig. 1 eine Aufzugsanlage (schematisch), zu deren Überprüfung das erfindungsgemäße Verfahren vorgesehen ist,
- Fig. 2 ein Ausführungsbeispiel für eine Vorrichtung gemäß dem erfindungsgemäßen Verfahren,
- Fig. 3 ein Ausführungsbeispiel für einen bei dem erfindungsgemäßen Verfahren verwendbaren Wegstreckenaufnehmer in Vorderansicht,
- Fig. 4 den Wegstreckenaufnehmer gemäß der Fig. 3 in Seitenansicht,
- Fig. 5 Zeitdiagramme der von dem Wegstreckenaufnehmer gemäß der Fig. 3 und 4 abgegebenen Meßsignale,
- Fig. 6 eine Auswerteschaltung für die von dem Wegstreckenaufnehmer gemäß der Fig. 3 und 4 abgegebenen Meßsignale,
- Fig. 7 ein Ausführungsbeispiel für einen bei dem erfindungsgemäßen Verfahren verwendbaren Kraftmeßsignalgeber,
- Fig. 8 ein bei dem Kraftmeßsignalgeber gemäß der Fig. 7 als Meßwandler verwendeter Wegstreckenaufnehmer.
- Fig. 9 ein weiteres Ausführungsbeispiel für einen bei dem erfindungsgemäßen Verfahren verwendbaren Kraftmeßsignalgeber.
- Fig.10 ein Fangdiagramm mit der tatsächlich aufgezeigten Funktion "Weg über Zeit",
- Fig.11 ein Fangdiagramm mit Hüllkurven als Grenzwerte für die Fangkurve, und
- Fig.12 eine Gegenüberstellung der Kräfte bei beladenem Aufzug und angeschlossenem Kraftmesser.
- 1 is an elevator system (schematic), for checking the method according to the invention is provided,
- 2 shows an embodiment for a device according to the inventive method,
- 3 shows an embodiment of a distance sensor that can be used in the method according to the invention in a front view,
- 4 shows the distance sensor according to FIG. 3 in side view,
- 5 shows time diagrams of the measurement signals emitted by the distance sensor according to FIGS. 3 and 4,
- 6 shows an evaluation circuit for the measurement signals emitted by the distance sensor according to FIGS. 3 and 4,
- 7 shows an exemplary embodiment of a force transducer which can be used in the method according to the invention,
- FIG. 8 shows a distance sensor used as a measuring transducer in the force measuring signal transmitter according to FIG. 7.
- Fig. 9 shows another embodiment of a force transducer usable in the inventive method.
- 10 shows a catch diagram with the function "way over time" actually shown,
- 11 shows a catch diagram with envelopes as limit values for the catch curve, and
- 12 shows a comparison of the forces when the elevator is loaded and the dynamometer is connected.
Um das erfindungsgemäße Verfahren später besser beschreiben zu können, soll anhand von Fig. 1 zunächst eine Aufzugsanlage beschrieben werden, zu deren Überprüfung das erfindungsgemäße Verfahren vorgesehen ist.In order to be able to describe the method according to the invention better later, an elevator installation is to be described first with reference to FIG. 1, the method according to the invention being provided for checking.
In Fig. 1 ist mit dem Bezugszeichen 1 eine Treibscheibe bezeichnet, die zwei Führungsrillen für einen im vorliegenden Fall durch zwei Seile gebildeten Seilzug 2 aufweist. An einem Ende des Seilzugs 2 ist ein Fahrkorb 3 befestigt. Am anderen Ende des Seilzugs 2 hängt ein Gegengewicht 4. Die Masse des Gegengewichts 4 entspricht üblicherweise der Masse des Fahrkorbes 3 zuzüglich der halben zulässigen Fahrkorbbeladung. Mit 5 ist eine Motor-Getriebe-Einheit für den Antrieb der Treibscheibe 1 bezeichnet, wobei diese Einheit ein Handrad 10 für die Drehung der Treibscheibe 1 aufweist. Zwischen der Motor-Getriebe-Einheit 5 und der Treibscheibe 1 ist eine in der Fig. 1 nicht dargestellte Bremsvorrichtung angeordnet. Die Motor-Getriebe-Einheit 5 mit der Treibscheibe 1 ist oberhalb einer den Aufzugsschacht nach oben abschließenden Decke 11 angeordnet.In Fig. 1, the reference numeral 1 denotes a traction sheave which has two guide grooves for a cable pull 2 formed in the present case by two cables. A
Im Fahrbetrieb wird der Fahrkorb 3 über den Seilzug 2, der von der Motor-Getriebe-Einheit über die Treibscheibe 1 angetrieben wird, bewegt. Für einen einwandfreien Betrieb der Aufzugsanlage ist es erforderlich, daß der Seilzug ausreichend rutschfest über die Treibscheibe verlegt ist. Der Fahrkorb kann im Notfall sowie bei Reparaturen oder bei Überprüfungen auch durch das Handrad 10 bewegt werden.In driving mode, the
In der Fig. 2 ist mit 6 eine Auswerteeinheit bezeichnet, die im vorliegenden Ausführungsbespiel einen Personalcomputer 12, eine Ein-/Ausgabeschnittstelle 13 und einen Schnittstellenbaustein 14 umfaßt. Mit der gestrichelten Umrandungslinie 6′ soll angedeutet werden, daß die Ein-/Ausgabeschnittstelle 13 und der Schnittstellenbaustein 14 eine Funktionseinheit bilden. Der Personalcomputer weist, wie üblich, einen Bildschirm 36 als Anzeigevorrichtung und eine Eingabetastatur 37 auf. Zwischen den einzelnen Bausteinen der Auswerteeinheit erfolgt entsprechend den eingezeichneten, die Bausteine verbindenden Pfeilen ein Datenverkehr in beiden Richtungen. Die Auswerteeinheit 6 ist im vorliegenden Ausführungsbeispiel jeweils über eine der Leitungen 15 bis 17 mit einem ersten Wegstreckenaufnehmer 7, der mit einem Seil des Seilzugs 2 verbunden sein kann, einem zweiten Wegstreckenaufnehmer 18, der mit der Treibscheibe 1 verbunden sein kann, und einem Kraftmeßsignalgeber 8 verbunden, wobei die Leitungen über am Schnittstellenbaustein vorgesehene Eingänge an der Auswerteeinheit angeschlossen sind. Mit 9 sind Leitungen bezeichnet, über die die Auswerteeinheit mit der Steuerschaltung der Aufzugsanlage verbunden ist. Die Leitungen 9 sind wie die Leitungen 15 bis 17 an Eingänge angeschlossen, die am Schnittstellenbaustein 14 vorgesehen sind.In FIG. 2, 6 denotes an evaluation unit, which in the present exemplary embodiment comprises a personal computer 12, an input /
Die Leitungen 9 sind im vorliegenden Ausführungsbeispiel zu einem 12-adrigen abgeschirmten Kabel zusammengefaßt, das an einem Ende einen mit der Steuerschaltung der Aufzugsanlage verbindbaren Prüfstecker bzw. Klemmen und am anderen Ende einen Platinenstecker mit einer Spannungsschutzbeschaltung aufweist.In the present exemplary embodiment, the lines 9 are combined to form a 12-wire shielded cable which has at one end a test plug or terminals and which can be connected to the control circuit of the elevator system has a circuit board connector with a voltage protection circuit at the other end.
Der Schnittstellenbaustein 14 umfaßt vier Baugruppen. Für elektrische Signale, die von der Steuerschaltung über die Leitungen 9 auf die Auswerteeinheit übertragen werden, ist eine Steuerungsteilschnittstelle vorgesehen, die je Eingang einen Optokoppler für eine galvanische Trennung der Auswerteeinheit von der Steuerschaltung, einen mit nur einer Betriebsspannung zu betreibenden, mit einer kapazitiven Rückkopplung versehenen Operationsverstärker für die Signalverstärkung und einen Schmitt-Trigger aufweist. Zur Erfassung und Vorverarbeitung von Signalen der Wegstreckenaufnehmer und des Kraftmeßsignalgebers ist eine weitgehend symmetrisch aufgebaute Sensorteilschnittstelle vorgesehen. Als Eingangsbaustein dienen hier jeweils impulsformende Schmitt-Trigger, deren Ausgang jeweils an einen Monoflop mit geringer Impulsbreite gelegt wird. Darüberhinaus sind Logikbausteine für die Verknüpfung von Signalen verschiedener Eingänge der Sensorteilschnittstelle vorgesehen. Als dritte Baugruppe weist der Schnittstellenbaustein 14 einen Teiler-Baustein zum Teilen des Systemtakts des Personalcomputers auf. Schließlich enthält der Schnittstellenbaustein einen akustischen Signalgeber, der ein Monoflop mit einer Impulsbreite von ca. 500 ms und einen nachgeschalteten Piezopiepser aufweist.The
Die Ein-/Ausgabeschnittstelle weist einen Decoder-, einen Ein-/Ausgabe- und einen Zeitgeberbaustein auf. Der Zeitgeberbaustein enthält einen universell programmierbaren Zähler, dessen Takteingang über den Teiler-Baustein des Schnittstellenbausteins mit dem Systemtakt des Personalcomputers verbunden ist.The input / output interface has a decoder, an input / output and a timer module. The timer block contains a universally programmable counter, whose clock input is connected to the via the divider block of the interface block System clock of the personal computer is connected.
Die Fig. 3 und 4 zeigen ein Ausführungsbeispiel für einen Wegstreckenaufnehmer in Vorder- bzw. Seitenansicht, wie er bei dem erfindungsgemäßen Verfahren verwendet werden kann. Der Wegstreckenaufnehmer weist eine Lochscheibe 19 mit konzentrisch um den Drehpunkt der Lochscheibe in gleichen Abständen angeordneten Lichtdurchgangslöchern 20 auf. Die Lochscheibe ist konzentrisch mit einer eine Führungsrille für ein antreibendes Seilzugseil aufweisenden Antriebsscheibe 21 verbunden. Die Lochscheibe 19 mit der Antriebsscheibe 21 weist eine in einer Halterung 23 drehbar gelagerte Drehachse 24 auf. Mit 25 ist eine erste und mit 26 ist eine zweite Lichtschrankenmeßeinrichtung bezeichnet, deren Lichtstrahlen durch die Lochscheibe hindurchtreten bzw. durch die Lochscheibe unterbrochen werden. Der Abstand zwischen den beiden Lichtschranken und der Abstand zwischen den Lichtdurchgangslöchern auf der Lochscheibe wurde so gewählt, daß sich bei Drehung der Lochscheibe in einer Richtung für die Signale der beiden Lichtschrankeneinrichtungen die in der Fig. 5 gezeigten Impulsdiagramme mit zeitlich versetzten Impulsen ergeben. Durch Auswertung der von beiden Lichtschranken abgegebenen Meßsignale kann die Drehrichtung ermittelt werden. Eine solche Auswerteschaltung ist in der Fig. 6 dargestellt. Neben Wegimpulsen, deren Anzahl für den Fahrweg des Fahrkorbes kennzeichnend ist, liefert die Schaltung auch ein die Bewegungsrichtung des Fahrkorbes anzeigendes Signal.3 and 4 show an embodiment of a distance sensor in front and side view, as it can be used in the inventive method. The distance sensor has a perforated
In Fig. 7 ist ein Ausführungsbeispiel für einen in einer Anordnung gemäß der Fig. 2 verwendbaren Kraftmeßsignalgeber 8 dargestellt. Der Kraftmeßsignalgeber weist eine in einer Führungshülse 27 geführte Schraubendruckfeder 28 auf, die durch eine Zugstange 29, die an einem Ende eine Scheibe 30, gegen die die Feder 28 zur Anlage kommt, und am anderen Ende eine Öse 31 aufweist, zusammendrückbar ist. Mit 32 ist ein Wegstreckenaufnehmer bezeichnet, durch den eine Verschiebung der Zugstange 29 gegen die Führungshülse 27 erfaßbar und damit ein Meßsignal für die an der Zugstange angreifende Kraft lieferbar ist. Der Wegstreckenaufnehmer 32 ist gesondert in Fig. 8 dargestellt. Er weist wie der Wegstreckenaufnehmer gemäß der Fig. 3 und 4 eine Lochscheibe 19′ und zwei Lichtschrankenmeßeinrichtungen 25′ und 26′ (25′ in Fig. 8 nicht sichtbar) auf. Die Lochscheibe 19′ ist über eine Drehachse 24′ mit einem Antriebsrad 33, das gegen die Zugstange 29 zur Anlage kommt und durch die Zugstange angetrieben ist, verbunden.FIG. 7 shows an exemplary embodiment of a
In Fig. 9 ist ein weiteres Ausführungsbeispiel für einen Kraftmeßsignalgeber dargestellt, das sich von dem Ausführungsbeispiel gemäß der Fig. 7 dadurch unterscheidet, daß das eine Ende der Zugstange 29′ als Haken 34 ausgebildet und ein Wegstreckenaufnehmer zum Erfassen der Verschiebung der Zugstange 29′ gegen die Führungshülse 27′ vorgesehen ist, der einen mit der Zugstange 29′ verbundenen, gegen die Führungshülse verschiebbaren Lochstreifen 35 mit äquidistant in einer Linie angeordneten Lichtdurchgangslöchern 20′ aufweist. Zur Abtastung der Durchgangslöcher 20′ sind eine erste Lichtschrankeneinrichtung 25˝ und eine zweite Lichtschrankeneinrichtung 26˝ vorgesehen.In Fig. 9, another embodiment of a force transducer is shown, which differs from the embodiment of FIG. 7 in that one end of the tie rod 29 'formed as a
Durch Verwendung von jeweils zwei Lichtschranken bei den Wegstreckenaufnehmern für die Kraftmeßsignalgeber kann eine Ermittlung der Bewegungsrichtung der Zugstange erfolgen.By using two light barriers for each of the distance sensors for the force transducers, a determination of the direction of movement of the Pull rod.
Mit der anhand der Fig. 2 bis 9 beschriebenen Vorrichtung können nach dem erfindungsgemäßen Verfahren Messungen von Fahrtstrecken, Geschwindigkeiten und Beschleunigungen des Fahrkorbs als Funktion der Zeit bzw. des Weges in Abhängigkeit von den die Bewegung des Fahrkorbes steuernden Signalen der Steuerschaltung der Aufzugsanlage durchgeführt und aufgezeichnet werden.With the device described with reference to FIGS. 2 to 9, measurements of travel distances, speeds and accelerations of the car as a function of time or of the path as a function of the signals of the control circuit of the elevator system controlling the movement of the car can be carried out and recorded according to the inventive method will.
Diese Kurven können auf den Bildschirm des Computers bzw. auf einen Drucker ausgegeben werden.These curves can be output on the computer screen or on a printer.
Durch Vergleich mit den Sollkurven lassen sich damit Aussagen über die Wirksamkeit von Bremse und Fangvorrichtung machen.By comparing the target curves, statements can be made about the effectiveness of the brake and safety gear.
Die Figuren 10 und 11 zeigen einen in der Praxis durchgeführten Fangversuch. In Fig. 10 ist der Fangweg s des Fahrkorbes über die Fangzeit t in Form einer Kurve f aufgezeichnet.FIGS. 10 and 11 show a catching test carried out in practice. In FIG. 10, the catching path s of the car over the catching time t is recorded in the form of a curve f.
Die Fig. 11 zeigt die gleiche Kurve f, jedoch mit den als Grenzwerte errechneten Hüllkurven h.11 shows the same curve f, but with the envelope curves h calculated as limit values.
Mit Hilfe des neuen Verfahrens kann vorteilhaft auch die Rutschfestigkeit (Treibfähigkeit) des Seilzugs bestimmt werden. Dazu ist die Zugstange des Kraftmeßsignalgebers (von Fig. 7 oder Fig. 9) mit einem oder mehreren Seilen des Seilzugs mit Hilfe einer geeigneten Seilklemme zu verbinden. Die Führungshülse des Kraftmeßsignalgebers wird an einem Festpunkt zweckmäßig an der den Aufzugsschacht abschließenden Decke 11 befestigt. Durch Drehen des Handrades oder Bewegen des Antriebes ist bei der Rutschprüfung so lange die Zugkraft zu erhöhen, bis entweder ein ermittelter Grenzwert erreicht ist und der Signalgeber ein Warnsignal abgibt, oder das Seil oder die Seile auf der Treibscheibe zu rutschen beginnen. Die Treibfähigkeit der gesamten Treibscheibe wird aus dem Wert der gemessenen Kraft von einem x Seilen berechnet. Das einsetzende Rutschen bei der zu bestimmenden maximal durch die Treibscheibe übertragbaren Antriebskraft kann durch Auswertung der Signale des ersten mit dem Seilzug und des zweiten mit der Treibscheibe verbindbaren Wegstreckenaufnehmers oder auch nur visuell durch den Prüfer des Aufzugs registriert werden.With the help of the new method, the slip resistance (driving ability) of the cable can also be advantageously determined. For this purpose, the pull rod of the force transducer (from FIG. 7 or FIG. 9) is to be connected to one or more cables of the cable pull with the aid of a suitable cable clamp. The guide sleeve of the force transducer is expediently attached to the
Nach dem beschriebenen Verfahren ist es ferner möglich, die Steuerschaltung des Aufzugs zu überprüfen, indem die zeitliche Abfolge der Steuersignale kontrolliert wird. Z.B. läßt sich die Zeit ermitteln, die die Steuerung benötigt, um den Antrieb abzuschalten bzw. eine Bremse einfallen zu lassen, nachdem ein Sicherheitsschalter geöffnet wurde.According to the described method, it is also possible to check the control circuit of the elevator by checking the chronological sequence of the control signals. E.g. the time it takes for the control to switch off the drive or to apply a brake after a safety switch has been opened can be determined.
Die Auswerteeinheit 6 weist eine Reihe von (im vorliegenden Ausführungsbeispiel zum Teil als Software-Lösung realisierte) Funktionseinrichtungen auf. Eine Funktionseinrichtung ist für die Bestimmung der Geschwindigkeits- und/oder Beschleunigungswerte vorgesehen. Die Messung der Geschwindigkeit und Beschleunigung kann durch Betätigung der Tastatur des Personalcomputers getriggert sein oder es erfolgt eine Triggerung durch Signale der Steuerschaltung des Aufzugs. Meßergebnisse sind auf dem Bildschirm des Personalcomputers darstellbar und können im Bedarfsfall als vollständiges Prüfprotokoll über einen angeschlossenen Drucker ausgegeben werden. Um insbesondere auf unzulässige Prüfwerte aufmerksam zu machen, kann der im Schnittstellenbaustein 14 bzw. aktivierbar über die Software im Personalcomputer enthaltene akustische Signalgeber aktiviert werden. Der Bildschirm kann auch zur Darstellung von Hinweisen für die Bedienung der Vorrichtung benutzt werden.The
Bei dem beschriebenen Ausführungsbeispiel veranlaßt die Sensorschnittstelle den Personalcomputer beim Auftreten eines externen Ereignisse, z.B. Weiterrücken der Lochscheibe, seine Arbeit zu unterbrechen und die entsprechenden internen Speicher für Weg und evtl. Zeit zu aktualisieren.In the described embodiment, the sensor interface causes the personal computer when an external event, e.g. Advance the perforated disc to interrupt its work and update the corresponding internal memory for distance and possibly time.
Es besteht jedoch auch die Möglichkeit, diese Impulse einem Vorwärts-/Rückwärtszähler zuzuführen und das Ergebnis durch einen gewöhnlichen Displaybaustein darzustellen. Den dargestellten Werten lassen sich dann entsprechende Kräfte bzw. Strecken zuordnen.However, it is also possible to feed these pulses to an up / down counter and to display the result using a conventional display module. Corresponding forces or distances can then be assigned to the values shown.
Bei dem beschriebenen Ausführungsbeispiel wurden Zeitgeber und akustischer Signalgeber mit der nötigen Ansteuerung in der Seonsorschnittstelle untergebracht. Es besteht alternativ die Möglichkeit auf diese Baugruppen zu verzichten und stattdessen, durch Software gesteuert, die entsprechenden Baugruppen im Personalcumputer zu verwenden.In the exemplary embodiment described, the timer and acoustic signal transmitter with the necessary control were accommodated in the sensor interface. Alternatively, there is the option of dispensing with these modules and instead, controlled by software, using the corresponding modules in the personal computer.
Bei dem oben beschriebenen Ausführungsbeispiel wurden die zu messenden Werte unmittelbar in digitale Signale umgewandelt. Es besteht alternativ die Möglichkeit, die Meßwerterfassung auch analog vorzunehmen und z.B. Geschwindigkeiten (und damit auch Strecken und Beschleunigungen) mit einem Tachogenerator zu erfassen oder es können Kräfte mittels Dehnungsmeßstreifen oder piezoelektrischer Druckaufnehmer ermittelt werden. Diese Analogsignale lassen sich mit einem A/D-Wandler in Digitalsignale umwandeln und dann mit einer Auswerteinheit weiterverarbeiten.In the embodiment described above, the values to be measured were immediately converted into digital signals. As an alternative, there is the possibility of performing the measured value acquisition analogously and, for example, of detecting speeds (and thus also distances and accelerations) with a tachometer generator, or forces can be measured using strain gauges or piezoelectric pressure transducers can be determined. These analog signals can be converted into digital signals with an A / D converter and then further processed with an evaluation unit.
Die Fig. 12 zeigt eine Gegenüberstellung der an der Treibscheibe auftretenden Kräfte bei beladenem Aufzug und bei angeschlossenen Kraftmesser. Es gelten die folgenden Abkürzungen:
FF = Fahrkorbkraft
FL = Nutzlastkraft
F1 = Kraft/Seil an Gegengewicht-Seite
F2 = Kraft/Seil an Fahrkorb-Seite
F5 = Kraft des eingespannten Seils <-> Treibscheibe
F6 = Kraft eines Seils vom Fahrkorb <-> Einspannstelle
F7 = Kraft Fixpunkt <->Einspannstelle (gemessen)
FQ = Tragkraft
n = Anzahl der TragseileFIG. 12 shows a comparison of the forces occurring on the traction sheave when the elevator is loaded and when the dynamometer is connected. The following abbreviations apply:
F F = car force
F L = payload force
F1 = force / rope on the counterweight side
F2 = power / rope on the car side
F5 = force of the clamped rope <-> traction sheave
F6 = force of a rope from the car <-> clamping point
F7 = force fixed point <-> clamping point (measured)
F Q = load capacity
n = number of suspension ropes
Betrachtet man die Kräfte bei einem beladenen Aufzug, so gelten folgende Formeln:
F1= (FF+.5*FQ)/n
F2= (FF/n)+(FL/n)
Dieser Fall ist in Fig. 12 links dargestellt.If you consider the forces in a loaded elevator, the following formulas apply:
F1 = (F F + .5 * F Q ) / n
F2 = (F F / n) + (F L / n)
This case is shown on the left in FIG. 12.
Rechts dagegen ist die Situation gezeigt, bei der ein Seil an einem Kraftmesser angeschlossen und deshalb festgespannt ist. Voraussetzung für die nachfolgenden Gleichungen ist, daß das Seil nicht über die Treibscheibe gerutscht ist.On the right, however, the situation is shown in which a rope is connected to a dynamometer and is therefore tightened. The prerequisite for the following equations is that the rope has not slipped over the traction sheave.
Dann gilt:
F3=F1; F6=FF/n
F5=(FF/n)+F7
F2=F5 =>
(FF/n)+(FL/n)=(FF/n)+F7
FL/n=F7
FL=F7*nThen:
F3 = F1; F6 = F F / n
F5 = (F F / n) + F7
F2 = F5 =>
(F F / n) + (F L / n) = (F F / n) + F7
F L / n = F7
F L = F7 * n
Claims (35)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3911391A DE3911391C5 (en) | 1989-04-07 | 1989-04-07 | Method and device for checking the driving ability |
DE3911391 | 1989-04-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0390972A1 true EP0390972A1 (en) | 1990-10-10 |
EP0390972B1 EP0390972B1 (en) | 1994-08-03 |
Family
ID=6378143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89122928A Expired - Lifetime EP0390972B1 (en) | 1989-04-07 | 1989-12-12 | Arrangement and method to detect physical parameters of an elevator |
Country Status (6)
Country | Link |
---|---|
US (1) | US5233139A (en) |
EP (1) | EP0390972B1 (en) |
JP (1) | JPH0367880A (en) |
AT (1) | ATE109427T1 (en) |
DE (2) | DE3911391C5 (en) |
ES (1) | ES2060733T3 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992008665A1 (en) * | 1990-11-12 | 1992-05-29 | Technischer Überwachungsverein Bayern E.V. | Measurement pick-up to detect physical characteristics of a lift for people or freight |
EP0563836A3 (en) * | 1992-04-03 | 1993-11-24 | Tech Ueberwachungs Verein Hann | Method to measure the driving capability of a transporting device |
EP0776855A1 (en) * | 1995-12-08 | 1997-06-04 | Kone Oy | Procedure and apparatus for analyzing elevator operation |
DE4217587C2 (en) * | 1992-05-21 | 1999-02-25 | Ernst Dipl Ing Kasten | Plant diagnostic procedures |
WO2001014237A1 (en) * | 1999-08-24 | 2001-03-01 | N.V. Teclion S.A. | A device for monitoring an operation of an elevator car |
EP1262437A2 (en) * | 2001-05-29 | 2002-12-04 | Aufzugswerke M. Schmitt & Sohn GmbH & Co. | Position sensing in an elevator plant |
DE102004029133A1 (en) * | 2004-06-17 | 2006-01-05 | TÜV Industrie Service GmbH - TÜV Rheinland Group | Force-reduced measuring method for traction drives, in particular traction sheave drives of elevators |
EP1700810A1 (en) | 2005-03-07 | 2006-09-13 | TÜV Rheinland Industrie Service GmbH | Checking device and method |
EP1832540A1 (en) * | 2006-03-09 | 2007-09-12 | TÜV Rheinland Industrie Service GmbH | Measuring device for power transmission measurement |
WO2014128347A1 (en) * | 2013-02-22 | 2014-08-28 | Kone Corporation | Method and arrangement for monitoring the safety of a counterweighted elevator |
CN104973475A (en) * | 2015-05-19 | 2015-10-14 | 绍兴市特种设备检测院 | Method for monitoring elevator quality safety index |
WO2019075919A1 (en) * | 2017-10-20 | 2019-04-25 | 中国矿业大学 | Multi-state health monitoring device and monitoring method for critical components of hoisting system |
CN111433146A (en) * | 2017-12-14 | 2020-07-17 | 三菱电机大楼技术服务株式会社 | Remote monitoring system for elevator |
CN113734924A (en) * | 2020-05-28 | 2021-12-03 | 广东省特种设备检测研究院东莞检测院 | Elevator braking performance and traction performance measurement and analysis system |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE8904375U1 (en) * | 1989-04-07 | 1989-07-27 | TÜV Bayern e.V., 8000 München | Device for recording physical parameters of an elevator |
AT395078B (en) * | 1990-07-06 | 1992-09-10 | Rudoba Klaus Dipl Ing | METHOD FOR REFURBISHING FLUORESCENT TUBES |
DE9109188U1 (en) * | 1991-07-25 | 1991-09-19 | Flexion B.V., Roermont | rolling gate |
DE4311011C2 (en) * | 1992-07-24 | 1994-07-14 | Arno John | Method and device for testing an elevator with a traction sheave drive |
DE19510786C2 (en) * | 1995-03-24 | 1997-04-10 | Stahl R Foerdertech Gmbh | Hoist with undercarriage and low oscillation when braking |
SG138440A1 (en) * | 1998-07-13 | 2008-01-28 | Inventio Ag | Rope traction elevator |
FI981887L (en) * | 1998-09-04 | 2000-03-05 | Kone Corp | Elevator arrangement for setting the output torque of the elevator machine motor |
JP2001019292A (en) * | 1999-06-25 | 2001-01-23 | Inventio Ag | Device and method to prevent vertical directional displacement and vertical directional vibration of load support means of vertical carrier device |
US6325179B1 (en) * | 2000-07-19 | 2001-12-04 | Otis Elevator Company | Determining elevator brake, traction and related performance parameters |
DE10042724A1 (en) * | 2000-08-31 | 2002-03-14 | Tech Ueberwachungs Ver Hannove | Measurement device for braking force, has hoisting rope with one end wound to drum winch and another end connected flexibly with fixed point via dynamometer |
CN1309646C (en) * | 2001-06-18 | 2007-04-11 | 王俊智 | Protection device for elevator release brake to prevent inertial slippage |
DE10150284A1 (en) * | 2001-10-12 | 2003-04-30 | Henning Gmbh | Diagnostic device and method for diagnosing elevator systems |
US7134645B1 (en) * | 2003-02-05 | 2006-11-14 | Advanced Design Consulting Usa | Winch assembly for use with synthetic ropes |
FI118684B (en) * | 2004-01-09 | 2008-02-15 | Kone Corp | Procedure and system for testing the condition of the brakes for an elevator |
DE102004004714A1 (en) * | 2004-01-30 | 2005-09-01 | Aufzugswerke M. Schmitt & Sohn Gmbh & Co. | Method for checking the braking device in a cable lift installation |
WO2006018884A1 (en) * | 2004-08-19 | 2006-02-23 | Mitsubishi Denki Kabushiki Kaisha | Brake device for elevator |
CN101128381B (en) * | 2005-02-25 | 2010-04-21 | 奥蒂斯电梯公司 | Elevator traction machine assembly and method of measuring loads in an elevator assembly |
DE102006011093A1 (en) * | 2006-03-08 | 2007-09-13 | TÜV Rheinland Industrie Service GmbH | Lift`s track rope slip-detector for determining dynamic state variable e.g. speed, has sensor for detecting dynamic state variable of track rope of lift, where detector is arranged in direct proximity to track rope |
DE102006011092A1 (en) * | 2006-03-08 | 2007-09-13 | TÜV Rheinland Industrie Service GmbH | Test lever with support |
JP4881072B2 (en) * | 2006-05-30 | 2012-02-22 | 伊藤超短波株式会社 | Traction equipment |
DE102007009602B4 (en) | 2007-02-26 | 2025-02-06 | TÜV Rheinland Industrie Service GmbH | Traction capacity measurement on traction sheave elevator systems |
GB0705110D0 (en) * | 2007-03-16 | 2007-04-25 | Lewis Ltd | Wireline intervention system |
FI119596B (en) * | 2007-08-24 | 2009-01-15 | Konecranes Oyj | Method for controlling the crane |
KR100919857B1 (en) * | 2007-09-18 | 2009-09-30 | 오티스 엘리베이터 컴파니 | Elevator motor brake torque measurement device |
EP2650245B1 (en) | 2009-02-20 | 2015-09-02 | DEKRA e.V. | Method and assembly for testing that a lift is functioning correctly |
DE102009026992A1 (en) | 2009-06-17 | 2010-12-30 | Dekra Testing & Inspection Gmbh | Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values |
DE102009028596A1 (en) | 2009-08-17 | 2011-03-03 | Dekra Testing & Inspection Gmbh | Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values |
DE102009001056A1 (en) | 2009-02-20 | 2010-09-02 | Dekra Testing & Inspection Gmbh | Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values |
DE102009001055A1 (en) * | 2009-02-20 | 2010-09-02 | Dekra Testing & Inspection Gmbh | Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values |
KR101164710B1 (en) | 2009-02-27 | 2012-07-12 | 박노억 | The system for analysis and inspection of braking capacity of emergency braking device in the elevator |
EP2460753A1 (en) * | 2010-12-03 | 2012-06-06 | Inventio AG | Method for testing elevator brakes |
KR101704149B1 (en) | 2011-12-15 | 2017-02-22 | 데크라 이.브이. | Method and arrangement for testing the proper functionality of an elevator |
WO2014124890A1 (en) * | 2013-02-12 | 2014-08-21 | Inventio Ag | Method for carrying out a safety gear test |
CN104418206A (en) * | 2013-08-23 | 2015-03-18 | 西安丰树电子科技发展有限公司 | Multifunctional safety monitoring system for construction hoist |
EP2883826B1 (en) * | 2013-12-16 | 2018-07-04 | Inventio AG | Brake for elevator systems |
CN106255657B (en) * | 2014-04-30 | 2020-03-03 | 三菱电机株式会社 | Elevator device and elevator spot inspection method |
DE202014010222U1 (en) | 2014-12-30 | 2016-03-31 | TÜV SÜD Industrie Service GmbH | Device for detecting at least one movement parameter of an engine roomless traction sheave elevator installation |
EP3106417B1 (en) * | 2015-06-16 | 2018-08-08 | KONE Corporation | A control arrangement and a method |
US10745244B2 (en) * | 2017-04-03 | 2020-08-18 | Otis Elevator Company | Method of automated testing for an elevator safety brake system and elevator brake testing system |
US10890288B2 (en) | 2018-04-13 | 2021-01-12 | Microsoft Technology Licensing, Llc | Systems and methods of providing a multipositional display |
DE102022104832A1 (en) | 2022-03-01 | 2023-09-07 | Henning Testing Systems Gmbh | Method for checking at least one safety-relevant parameter of an elevator system |
CN114873405B (en) * | 2022-06-18 | 2022-11-11 | 宁波昊鸿电子有限公司 | Elevator falling emergency control method and system, storage medium and intelligent terminal |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3773146A (en) * | 1972-05-09 | 1973-11-20 | Reliance Electric Co | Elevator electronic position device |
US3781901A (en) * | 1972-03-14 | 1973-12-25 | E Morrison | Method for evaluating elevator performance |
US4085823A (en) * | 1975-11-03 | 1978-04-25 | Westinghouse Electric Corporation | Elevator system |
GB2136158A (en) * | 1983-02-22 | 1984-09-12 | Otis Elevator Co | Servicing a software-controlled lift |
EP0192513A1 (en) * | 1985-02-12 | 1986-08-27 | Societe Logilift S.A.R.L. | Process for the regulated control of an electric motor for the displacement of a moving body, and control device for carrying out the process |
US4698780A (en) * | 1985-10-08 | 1987-10-06 | Westinghouse Electric Corp. | Method of monitoring an elevator system |
EP0252266A1 (en) * | 1986-07-07 | 1988-01-13 | Inventio Ag | Remote monitoring system for lift installations |
DE3822466A1 (en) * | 1987-07-21 | 1989-02-02 | Univ Magdeburg Tech | Method of checking the position and movement of transport equipment moved by rope |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2886137A (en) * | 1958-03-27 | 1959-05-12 | Westinghouse Electric Corp | Load measuring device for elevator systems |
US3973648A (en) * | 1974-09-30 | 1976-08-10 | Westinghouse Electric Corporation | Monitoring system for elevator installation |
JPS5299546A (en) * | 1976-02-16 | 1977-08-20 | Mitsubishi Electric Corp | Speed control device for elevator |
SU779845A1 (en) * | 1978-03-31 | 1980-11-15 | Московское Городское Производственное Объединение "Мослифт" | Method of measuring traction capacity of rope-guiding pulley lift winch |
WO1981002288A1 (en) * | 1980-02-08 | 1981-08-20 | R Payne | Monitoring and controlling lift positions |
US4738337A (en) * | 1987-07-29 | 1988-04-19 | Westinghouse Electric Corp. | Method and apparatus for providing a load compensation signal for a traction elevator system |
FI84050C (en) * | 1988-04-18 | 1991-10-10 | Kone Oy | FOERFARANDE FOER KONTROLL AV FRIKTIONEN MELLAN DRIVSKIVA OCH BAERLINOR TILL EN HISS. |
US4930604A (en) * | 1988-10-31 | 1990-06-05 | United Technologies Corporation | Elevator diagnostic monitoring apparatus |
-
1989
- 1989-04-07 DE DE3911391A patent/DE3911391C5/en not_active Expired - Lifetime
- 1989-12-12 ES ES89122928T patent/ES2060733T3/en not_active Expired - Lifetime
- 1989-12-12 AT AT89122928T patent/ATE109427T1/en not_active IP Right Cessation
- 1989-12-12 EP EP89122928A patent/EP0390972B1/en not_active Expired - Lifetime
- 1989-12-12 DE DE58908150T patent/DE58908150D1/en not_active Expired - Lifetime
-
1990
- 1990-02-23 US US07/484,569 patent/US5233139A/en not_active Expired - Fee Related
- 1990-04-07 JP JP2092975A patent/JPH0367880A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3781901A (en) * | 1972-03-14 | 1973-12-25 | E Morrison | Method for evaluating elevator performance |
US3773146A (en) * | 1972-05-09 | 1973-11-20 | Reliance Electric Co | Elevator electronic position device |
US4085823A (en) * | 1975-11-03 | 1978-04-25 | Westinghouse Electric Corporation | Elevator system |
GB2136158A (en) * | 1983-02-22 | 1984-09-12 | Otis Elevator Co | Servicing a software-controlled lift |
EP0192513A1 (en) * | 1985-02-12 | 1986-08-27 | Societe Logilift S.A.R.L. | Process for the regulated control of an electric motor for the displacement of a moving body, and control device for carrying out the process |
US4698780A (en) * | 1985-10-08 | 1987-10-06 | Westinghouse Electric Corp. | Method of monitoring an elevator system |
EP0252266A1 (en) * | 1986-07-07 | 1988-01-13 | Inventio Ag | Remote monitoring system for lift installations |
DE3822466A1 (en) * | 1987-07-21 | 1989-02-02 | Univ Magdeburg Tech | Method of checking the position and movement of transport equipment moved by rope |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5522480A (en) * | 1990-11-12 | 1996-06-04 | Technischer Uberwachungsverei Bayern Sachsen e.V. | Measurement pick-up to detect physical characteristics of a lift for people or freight |
WO1992008665A1 (en) * | 1990-11-12 | 1992-05-29 | Technischer Überwachungsverein Bayern E.V. | Measurement pick-up to detect physical characteristics of a lift for people or freight |
EP0563836A3 (en) * | 1992-04-03 | 1993-11-24 | Tech Ueberwachungs Verein Hann | Method to measure the driving capability of a transporting device |
DE4217587C2 (en) * | 1992-05-21 | 1999-02-25 | Ernst Dipl Ing Kasten | Plant diagnostic procedures |
EP0776855A1 (en) * | 1995-12-08 | 1997-06-04 | Kone Oy | Procedure and apparatus for analyzing elevator operation |
WO2001014237A1 (en) * | 1999-08-24 | 2001-03-01 | N.V. Teclion S.A. | A device for monitoring an operation of an elevator car |
EP1262437A3 (en) * | 2001-05-29 | 2007-05-23 | Aufzugswerke M. Schmitt & Sohn GmbH & Co. | Position sensing in an elevator plant |
EP1262437A2 (en) * | 2001-05-29 | 2002-12-04 | Aufzugswerke M. Schmitt & Sohn GmbH & Co. | Position sensing in an elevator plant |
US7673522B2 (en) | 2004-06-17 | 2010-03-09 | Tuv Rheinland Industrie Service Gmbh | Force-reduced measuring method for traction drives, particularly friction pulley drives for elevators |
DE102004029133A1 (en) * | 2004-06-17 | 2006-01-05 | TÜV Industrie Service GmbH - TÜV Rheinland Group | Force-reduced measuring method for traction drives, in particular traction sheave drives of elevators |
DE102005010346A1 (en) * | 2005-03-07 | 2006-09-14 | TÜV Rheinland Industrie Service GmbH | Test device and associated method |
EP1700810A1 (en) | 2005-03-07 | 2006-09-13 | TÜV Rheinland Industrie Service GmbH | Checking device and method |
EP1832540A1 (en) * | 2006-03-09 | 2007-09-12 | TÜV Rheinland Industrie Service GmbH | Measuring device for power transmission measurement |
CN105026297A (en) * | 2013-02-22 | 2015-11-04 | 通力股份公司 | Method and arrangement for monitoring the safety of a counterweighted elevator |
WO2014128347A1 (en) * | 2013-02-22 | 2014-08-28 | Kone Corporation | Method and arrangement for monitoring the safety of a counterweighted elevator |
CN105026297B (en) * | 2013-02-22 | 2018-01-19 | 通力股份公司 | For the method and apparatus for the security for monitoring counter weight type elevator |
US9981825B2 (en) | 2013-02-22 | 2018-05-29 | Kone Corporation | Monitoring elevator traction rope |
CN104973475A (en) * | 2015-05-19 | 2015-10-14 | 绍兴市特种设备检测院 | Method for monitoring elevator quality safety index |
CN104973475B (en) * | 2015-05-19 | 2017-11-03 | 绍兴市特种设备检测院 | A kind of monitoring method of quality of elevator safety index |
WO2019075919A1 (en) * | 2017-10-20 | 2019-04-25 | 中国矿业大学 | Multi-state health monitoring device and monitoring method for critical components of hoisting system |
US10815098B2 (en) | 2017-10-20 | 2020-10-27 | China University Of Mining And Technology | Multiple-state health monitoring apparatus and monitoring method for critical components in hoisting system |
CN111433146A (en) * | 2017-12-14 | 2020-07-17 | 三菱电机大楼技术服务株式会社 | Remote monitoring system for elevator |
CN111433146B (en) * | 2017-12-14 | 2021-07-30 | 三菱电机大楼技术服务株式会社 | Remote monitoring system for elevator |
CN113734924A (en) * | 2020-05-28 | 2021-12-03 | 广东省特种设备检测研究院东莞检测院 | Elevator braking performance and traction performance measurement and analysis system |
Also Published As
Publication number | Publication date |
---|---|
DE3911391C2 (en) | 1995-10-19 |
JPH0367880A (en) | 1991-03-22 |
DE3911391C5 (en) | 2010-04-29 |
ATE109427T1 (en) | 1994-08-15 |
DE3911391A1 (en) | 1990-10-11 |
US5233139A (en) | 1993-08-03 |
DE58908150D1 (en) | 1994-09-08 |
EP0390972B1 (en) | 1994-08-03 |
ES2060733T3 (en) | 1994-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0390972B1 (en) | Arrangement and method to detect physical parameters of an elevator | |
EP0391174B1 (en) | Arrangement and method to detect physical parameters of an elevator | |
EP1445075B2 (en) | Method for monitoring a robot and robot with monitoring means | |
EP0755894B1 (en) | Method and apparatus for measuring the load in an elevator car | |
DE2843810A1 (en) | PROCEDURE AND EQUIPMENT FOR GUEST INSPECTION AND DISPLAY DISPLAY WHEN TIGHTENING SCREW CONNECTIONS | |
DE4217587C2 (en) | Plant diagnostic procedures | |
EP1628900B1 (en) | Test lever | |
DE112014006714T5 (en) | LIFT POSITION DETECTION DEVICE | |
DE112016003550T5 (en) | BREAK DETECTION DEVICE | |
DE102009026992A1 (en) | Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values | |
EP2650245B1 (en) | Method and assembly for testing that a lift is functioning correctly | |
DE2642915A1 (en) | BRAKE, IN PARTICULAR FOR CONVEYOR MACHINES IN UNDERGROUND MINING | |
DE4311011C2 (en) | Method and device for testing an elevator with a traction sheave drive | |
EP1755998A1 (en) | Force-reduced measuring method for traction drives, particularly friction pulley drives for elevators | |
EP0628014B1 (en) | Device for monitoring the kinetic energy of a sliding door | |
DE4424094C1 (en) | Testing antilocking system of motor vehicle having separate pressure control valve for each wheel | |
DE102016204422A1 (en) | Device and method for checking a load limiting device esp. From a conveyor system | |
DE102007009602B4 (en) | Traction capacity measurement on traction sheave elevator systems | |
EP1914186B1 (en) | Method and device for checking suspension means on lifts | |
DE102017202589A1 (en) | Method and device for determining the driving capability of a conveyor system via a torque measurement | |
DE102012204080A1 (en) | Position determination by force measurement | |
DE102023133441A1 (en) | Method for operating an elevator system | |
EP3851410A1 (en) | Load torque measurement for industrial trucks | |
DE2413553A1 (en) | Conveyor belt tension measuring system - uses simple components and is unaffected by incorrect belt tracking | |
DE102019118669A1 (en) | Method and system for determining a position signal in an industrial truck |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE ES FR GB GR IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19901128 |
|
17Q | First examination report despatched |
Effective date: 19920206 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TECHNISCHER UEBERWACHUNGS-VEREIN BAYERN SACHSEN E. |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE ES FR GB GR IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19940803 |
|
REF | Corresponds to: |
Ref document number: 109427 Country of ref document: AT Date of ref document: 19940815 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 58908150 Country of ref document: DE Date of ref document: 19940908 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940920 |
|
ITF | It: translation for a ep patent filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19941103 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2060733 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3013751 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: TECHNISCHER UEBERWACHUNGS-VEREIN BAYERN HESSEN SAC Ref country code: CH Ref legal event code: PFA Free format text: TECHNISCHER UEBERWACHUNGS-VEREIN BAYERN SACHSEN E.V. TRANSFER- TECHNISCHER UEBERWACHUNGS-VEREIN BAYERN HESSEN SACHSEN E.V. |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19971125 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19971215 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19971216 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19980123 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19981127 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981231 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991231 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20000114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051212 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090129 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20081217 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20091211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20091211 |