EP0363861B1 - Verfahren zur Gewinnung von Rohargon - Google Patents
Verfahren zur Gewinnung von Rohargon Download PDFInfo
- Publication number
- EP0363861B1 EP0363861B1 EP89118671A EP89118671A EP0363861B1 EP 0363861 B1 EP0363861 B1 EP 0363861B1 EP 89118671 A EP89118671 A EP 89118671A EP 89118671 A EP89118671 A EP 89118671A EP 0363861 B1 EP0363861 B1 EP 0363861B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- stage
- pressure
- argon
- raw argon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/04206—Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04096—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of argon or argon enriched stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04103—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/40—One fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/58—One fluid being argon or crude argon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/923—Inert gas
- Y10S62/924—Argon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/939—Partial feed stream expansion, air
Definitions
- the invention relates to a process for obtaining gaseous crude argon by low-temperature rectification of air, in which air is compressed, pre-cleaned, cooled and fed to the pressure stage of a two-stage rectification and in which crude argon is obtained in the liquid state after the two-stage rectification and evaporated under increased pressure is, with a partial stream of the air being branched off before cooling, post-compressed, cooled and then partially expanded to perform the work and fed to the low-pressure stage of the rectification, work obtained during the expansion of the post-compressed air being used for post-compression.
- WO 88/01037 shows a method of the type described in the introduction, in which crude argon is obtained in liquid form and is compressed hydrostatically.
- a coupled compressor / turbine unit is used, in which part of the separation air is post-compressed, all of the post-compressed air in the turbine is expanded and then fed to the low-pressure stage.
- a large part of the separation air is introduced into the low-pressure stage without pre-separation, as a result of which its rectifying effect deteriorates. This is reflected in an incompletely satisfactory cost-effectiveness of the process, especially with regard to the argon yield.
- a method with similar raw argon production is also known from DE-A 34 28 968, in which raw argon is removed from the top of a raw argon column in liquid form or liquefied after being removed from a raw argon column.
- the liquid raw argon experiences an increase in pressure using its hydrostatic potential in order to bring the raw argon, which is generally obtained approximately under atmospheric pressure, to the pressure of approximately 3.5 to 5 bar required for further processing.
- This procedure offers the advantage that a machine for compressing the raw argon, which is required, for example, in the case of gaseous extraction of the raw argon, can be saved.
- the raw argon which is under increased pressure, must be evaporated to obtain pure argon.
- the evaporation cold is removed in the process of DE-A 34 28 968 by heat exchange with nitrogen.
- such a process stream is not available at such a high pressure in a low-pressure system in which the air is compressed to about 6 bar that it could be liquefied against the crude argon to be evaporated at elevated pressure, so that only the heat capacity of the gaseous one Nitrogen and not its latent heat is available to dissipate the evaporative cold of the raw argon.
- the heat exchanger for crude argon evaporation must be made relatively large.
- the rectification is supplied with an amount of liquid which is equivalent to the amount of crude argon removed, for which additional cold has to be generated elsewhere.
- the object of the invention is to provide an improved process of the type mentioned at the outset for obtaining gaseous crude argons under increased pressure, in which in particular a high product yield is achieved with little expenditure on energy and apparatus.
- the invention shows two solutions to this problem.
- part of the post-compressed air is branched off before the expansion, brought into heat exchange with the crude argon obtained in liquid form and under increased pressure, and thereby liquefied.
- the liquefied air is fed to the pressure stage of the rectification as the return liquid.
- it is brought into heat exchange with gas in the head of a crude argon column from which the crude argon is removed.
- the air under increased pressure is also used to give off heat to liquid raw argon and to evaporate it in the process. Since the post-compressed air is under increased pressure, it is liquefied during the heat exchange with the evaporating raw argon. The latent heat of the air is thus also available for absorbing the evaporative cold of the crude argon, whereby on the one hand a relatively small process stream is sufficient for the evaporation and on the other hand liquid is generated which is required for the cold balance of the rectification.
- the peak cold transferred during the evaporation of the crude argon obtained in liquid form is particularly advantageously returned to the process; on the one hand as a return liquid for the pressure stage, on the other hand for the production of liquid during rectification, especially in the crude argon column.
- the air evaporated during the heat exchange with gas at the top of the crude argon column can be introduced into the low-pressure column.
- the invention is explained in more detail below with reference to an exemplary embodiment schematically illustrated in the drawing.
- the figure shows a form of the method according to the invention from sucking in the air to be broken down to evaporating and heating the crude argon, the less essential and known method steps being shown in a highly simplified manner.
- the work steps following the crude argon evaporation for the fine cleaning of the crude argon are not shown.
- Air is drawn in via line 1, compressed in an air compressor 2, pre-cleaned in a cleaning stage 3 - for example a molecular sieve system - and introduced through line 4 into a main heat exchanger 5, in which it is cooled in counterflow to product streams.
- the cold air becomes the Pressure stage 7 is fed to a two-stage rectification column 6, which is operated at a pressure of 5.0 to 7.0 bar and is in heat-exchanging connection with the low-pressure stage 8 via a condenser-evaporator 9.
- Liquid enriched with oxygen is removed from the bottom of pressure stage 7 via line 10 and throttled at a suitable point in low pressure stage 8, which is under a pressure of 1.0 to 2.0 bar. From the low-pressure stage, nitrogen (line 11) and oxygen (line 12) are led out as product streams and then warmed to almost ambient temperature in the main heat exchanger 5. In addition, a further oxygen stream, which has a relatively high argon concentration, is led out via line 13 and introduced into a crude argon column 14. Liquid also flows back from the crude argon column 14 into the low-pressure stage 8 via the same line 13.
- the crude argon column 14 is taken as liquid crude argon product (line 15).
- the crude argon could also be taken in whole or in part in gaseous form and then liquefied, as proposed in DE-OS 34 28 968.
- the hydrostatic potential of approx. 30 to 40 m along the line 15 the liquid raw argon experiences a pressure increase to 3.0 to 5.0 bar, preferably approx. 4.0 bar, is evaporated in a raw argon evaporator 16, in the main heat exchanger 5 warmed to about ambient temperature and fed via line 17 to a further cleaning stage.
- part of the air is branched off via line 18 after the preliminary cleaning (3), further compressed in a post-compressor 19 to a pressure of 7.0 to 11.0 bar, preferably 9.0 bar, in the main heat exchanger 5 to a medium one Cooled temperature and largely relaxed in a turbine 20 work and introduced into the low pressure stage 8 (line 21).
- the turbine 20 is mechanically coupled to the post-compressor 19.
- part of the post-compressed air is branched off via line 22 before decompression (20), passed in countercurrent to the evaporating crude argon through the crude argon evaporator 16 and at least partially liquefied and then via line 23 and throttle valve 24 as a return to the pressure stage 7 initiated.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3834793A DE3834793A1 (de) | 1988-10-12 | 1988-10-12 | Verfahren zur gewinnung von rohargon |
DE3834793 | 1988-10-12 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0363861A2 EP0363861A2 (de) | 1990-04-18 |
EP0363861A3 EP0363861A3 (en) | 1990-06-20 |
EP0363861B1 true EP0363861B1 (de) | 1992-06-03 |
Family
ID=6364973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89118671A Expired - Lifetime EP0363861B1 (de) | 1988-10-12 | 1989-10-07 | Verfahren zur Gewinnung von Rohargon |
Country Status (5)
Country | Link |
---|---|
US (1) | US4932212A (zh) |
EP (1) | EP0363861B1 (zh) |
CN (1) | CN1052940A (zh) |
CA (1) | CA2000595A1 (zh) |
DE (2) | DE3834793A1 (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4126945A1 (de) * | 1991-08-14 | 1993-02-18 | Linde Ag | Verfahren zur luftzerlegung durch rektifikation |
US5235816A (en) * | 1991-10-10 | 1993-08-17 | Praxair Technology, Inc. | Cryogenic rectification system for producing high purity oxygen |
US5245831A (en) * | 1992-02-13 | 1993-09-21 | Air Products And Chemicals, Inc. | Single heat pump cycle for increased argon recovery |
US5255522A (en) * | 1992-02-13 | 1993-10-26 | Air Products And Chemicals, Inc. | Vaporization of liquid oxygen for increased argon recovery |
US5255524A (en) * | 1992-02-13 | 1993-10-26 | Air Products & Chemicals, Inc. | Dual heat pump cycles for increased argon recovery |
US5365741A (en) * | 1993-05-13 | 1994-11-22 | Praxair Technology, Inc. | Cryogenic rectification system with liquid oxygen boiler |
FR2706195B1 (fr) † | 1993-06-07 | 1995-07-28 | Air Liquide | Procédé et unité de fourniture d'un gaz sous pression à une installation consommatrice d'un constituant de l'air. |
US5366239A (en) * | 1993-09-27 | 1994-11-22 | Trw Inc. | Air bag inflator assembly |
FR2787562B1 (fr) * | 1998-12-22 | 2001-02-09 | Air Liquide | Procede et installation de distillation d'air avec production d'argon |
JP2002511136A (ja) * | 1998-04-21 | 2002-04-09 | レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | アルゴンの製造を伴う空気精留プロセスおよびプラント |
FR2777641B1 (fr) * | 1998-04-21 | 2000-05-19 | Air Liquide | Procede et installation de distillation d'air avec production d'argon |
US6397632B1 (en) | 2001-07-11 | 2002-06-04 | Praxair Technology, Inc. | Gryogenic rectification method for increased argon production |
DE102007051183A1 (de) * | 2007-10-25 | 2009-04-30 | Linde Aktiengesellschaft | Verfahren zur Tieftemperatur-Luftzerlegung |
FR2943773B1 (fr) * | 2009-03-27 | 2012-07-20 | Air Liquide | Procede et appareil de separation d'air par distillation cryogenique |
CN113959179B (zh) * | 2021-12-22 | 2022-05-03 | 杭州制氧机集团股份有限公司 | 一种用于液氩提纯的装置及方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988001037A1 (en) * | 1986-08-01 | 1988-02-11 | Erickson Donald C | Air distillation improvements for high purity oxygen |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2982107A (en) * | 1957-12-16 | 1961-05-02 | Air Reduction | Separation of the elements of air |
US3181306A (en) * | 1961-01-11 | 1965-05-04 | Air Prod & Chem | Argon separation |
DE1229561B (de) * | 1962-12-21 | 1966-12-01 | Linde Ag | Verfahren und Vorrichtung zum Zerlegen von Luft durch Verfluessigung und Rektifikation mit Hilfe eines Inertgaskreislaufes |
DE1667639A1 (de) * | 1968-03-15 | 1971-07-08 | Messer Griesheim Gmbh | Verfahren zum Gewinnen eines Krypton-Xenon-Gemisches aus Luft |
DE1922956B1 (de) * | 1969-05-06 | 1970-11-26 | Hoechst Ag | Verfahren zur Erzeugung von argonfreiem Sauerstoff durch Rektifikation von Luft |
US4615716A (en) * | 1985-08-27 | 1986-10-07 | Air Products And Chemicals, Inc. | Process for producing ultra high purity oxygen |
US4705548A (en) * | 1986-04-25 | 1987-11-10 | Air Products And Chemicals, Inc. | Liquid products using an air and a nitrogen recycle liquefier |
GB2198514B (en) * | 1986-11-24 | 1990-09-19 | Boc Group Plc | Air separation |
DE3643359C2 (de) * | 1986-12-18 | 1993-11-18 | Linde Ag | Verfahren und Vorrichtung zur Luftzerlegung durch zweistufige Rektifikation |
US4817394A (en) * | 1988-02-02 | 1989-04-04 | Erickson Donald C | Optimized intermediate height reflux for multipressure air distillation |
-
1988
- 1988-10-12 DE DE3834793A patent/DE3834793A1/de not_active Withdrawn
-
1989
- 1989-09-16 CN CN89107084A patent/CN1052940A/zh not_active Withdrawn
- 1989-10-07 DE DE8989118671T patent/DE58901598D1/de not_active Expired - Fee Related
- 1989-10-07 EP EP89118671A patent/EP0363861B1/de not_active Expired - Lifetime
- 1989-10-11 US US07/421,563 patent/US4932212A/en not_active Expired - Fee Related
- 1989-10-12 CA CA002000595A patent/CA2000595A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988001037A1 (en) * | 1986-08-01 | 1988-02-11 | Erickson Donald C | Air distillation improvements for high purity oxygen |
Also Published As
Publication number | Publication date |
---|---|
US4932212A (en) | 1990-06-12 |
EP0363861A2 (de) | 1990-04-18 |
DE58901598D1 (de) | 1992-07-09 |
CN1052940A (zh) | 1991-07-10 |
CA2000595A1 (en) | 1990-04-12 |
DE3834793A1 (de) | 1990-04-19 |
EP0363861A3 (en) | 1990-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0377117B2 (de) | Verfahren und Vorrichtung zur Luftzerlegung | |
DE69509841T2 (de) | Verfahren und Vorrichtung zur Herstellung von Sauerstoff | |
EP0955509B1 (de) | Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff | |
DE68908187T2 (de) | Zwischenrückstrom, erzeugt von einer rektifikationsflüssigkeit für unterhalb der umgebungsbedingungen arbeitende, in kaskade geschaltete rektifikationskolonnen. | |
EP0363861B1 (de) | Verfahren zur Gewinnung von Rohargon | |
EP1067345B1 (de) | Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft | |
DE69214409T2 (de) | Verfahren und Apparat zur Herstellung unreinen Sauerstoffs | |
DE69619062T2 (de) | Lufttrennungsverfahren und Vorrichtung zur Herstellung von Stickstoff | |
DE3874731T2 (de) | Kryogene luftspaltung mit einem aufkocher mit totalkondensation durch kompression/expansion. | |
DE69201522T2 (de) | Hochdruck-Lufttrennungsverfahren mit Gewinnung von Flüssigkeit. | |
DE69030327T2 (de) | Stickstoffherstellungsverfahren | |
EP0948730B1 (de) | Verfahren und vorrichtung zur gewinnung von druckstickstoff | |
DE69414517T2 (de) | Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft für die Herstellung von Stickstoff unter erhöhtem Druck mittels gepumpten flüssigen Stickstoffs | |
DE3782660T2 (de) | Kaelteerzeugung durch teilexpansion der luft fuer die tieftemperatur-luftzerlegung. | |
DE3216510A1 (de) | Verfahren zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck | |
DE69314146T2 (de) | Kryogenisches Lufttrennungsverfahren | |
DE69709234T2 (de) | Verfahren und Vorrichtung zur Lufttrennung | |
DE68901667T2 (de) | Lufttrennung. | |
EP1134524B1 (de) | Verfahren zur Gewinnung von gasförmigem Stickstoff | |
DE10045128A1 (de) | Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung | |
DE19543953C1 (de) | Verfahren und Vorrichtung zur Gewinnung von Sauerstoff und Stickstoff unter überatmosphärischem Druck | |
EP1189002A1 (de) | Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Produkts durch Tieftemperaturzerlegung von Luft | |
DE19819338A1 (de) | Verfahren und Vorrichtung zur Gewinnung von hochreinem Druckstickstoff | |
EP0559117B1 (de) | Verfahren und Vorrichtung zur Zerlegung eines Gasgemisches | |
DE2307004A1 (de) | Verfahren und vorrichtung zur gewinnung von fluessigem stickstoff |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE DE ES FR GB IT NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE DE ES FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19900824 |
|
17Q | First examination report despatched |
Effective date: 19910314 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19920603 Ref country code: BE Effective date: 19920603 Ref country code: GB Effective date: 19920603 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19920603 Ref country code: SE Effective date: 19920603 Ref country code: FR Effective date: 19920603 Ref country code: NL Effective date: 19920603 |
|
REF | Corresponds to: |
Ref document number: 58901598 Country of ref document: DE Date of ref document: 19920709 |
|
EN | Fr: translation not filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19921205 Year of fee payment: 4 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19940701 |