EP0363832A1 - Radiating device having a high output - Google Patents
Radiating device having a high output Download PDFInfo
- Publication number
- EP0363832A1 EP0363832A1 EP89118546A EP89118546A EP0363832A1 EP 0363832 A1 EP0363832 A1 EP 0363832A1 EP 89118546 A EP89118546 A EP 89118546A EP 89118546 A EP89118546 A EP 89118546A EP 0363832 A1 EP0363832 A1 EP 0363832A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrodes
- dielectric
- radiator according
- discharge
- power radiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 claims abstract description 18
- 239000007789 gas Substances 0.000 claims description 15
- 238000011049 filling Methods 0.000 claims description 12
- 239000003989 dielectric material Substances 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052756 noble gas Inorganic materials 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 2
- 229910000420 cerium oxide Inorganic materials 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 239000011810 insulating material Substances 0.000 claims 1
- 150000002835 noble gases Chemical class 0.000 claims 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims 1
- 229910003454 ytterbium oxide Inorganic materials 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 5
- 238000010276 construction Methods 0.000 abstract description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229910052743 krypton Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052724 xenon Inorganic materials 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- 229910052754 neon Inorganic materials 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002730 additional effect Effects 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- FIXNOXLJNSSSLJ-UHFFFAOYSA-N ytterbium(III) oxide Inorganic materials O=[Yb]O[Yb]=O FIXNOXLJNSSSLJ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
Definitions
- the invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, with pairs of electrodes which are connected in pairs to the two poles of a high-voltage source, with at least one dielectric material lying between two electrodes at different potentials that is adjacent to the discharge space.
- the invention relates to a state of the art, such as results from EP application 87109674.9 or US application 07/076926.
- UV sources The industrial use of photochemical processes depends heavily on the availability of suitable UV sources.
- the classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the low-pressure mercury lamps at 185 nm and especially at 254 nm.
- Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but distribute their radiation over a larger wavelength range.
- the new excimer lasers have some new wavelengths for basic photochemical experiments are provided. currently for cost reasons for an industrial process probably only suitable in exceptional cases.
- the invention has for its object to provide a high-performance radiator, in particular for UV or VUV light, which is characterized in particular by higher efficiency, is economical to manufacture and also enables the construction of very large area radiators.
- the electrode pairs mentioned, separated by dielectric material are arranged directly next to one another in such a way that the silent electrical discharge is formed in the discharge space in the region of the dielectric surface.
- the manufacture of the high-power radiator according to the invention is simplified and less expensive than in the known radiators. You can use materials that are easy to cast so that the electrodes can be cast in. This reduces problems when complying with tolerances (eg thickness of the dielectric or the distances). Also for the limiting glass / quartz material there are no very high demands, since the limiting walls only have to be transparent and are not stressed by the discharge. This leads to a longer lamp life.
- the gap width and its tolerances are also far less critical. In particular, because of the lower requirements with regard to tolerances, very large area radiators can be realized, which can be made very thin.
- the UV yield is very high. There are no transmission losses from an electrode grid or a partially permeable layer.
- the high-power radiator according to the invention permits radiator geometries of almost any shape.
- cylindrical or elliptical emitters can be created.
- the emitters do not necessarily have to be flat or elongated, but have to be curved or curved in one or more dimensions.
- the invention allows the applicant to provide the walls delimiting the discharge space with a luminescent layer either on the discharge space facing or on the outer wall in order to convert the UV -Light in visible light.
- the wall no longer has to be UV-permeable because it only has to let visible light through.
- Dielectrics which are not necessarily transparent to UV light can be used in the arrangement according to the invention, which means that particularly high efficiencies can be expected for special applications.
- UV light can be used directly for some applications without having to leave the discharge space. This applies in particular to those applications that can be carried out in the discharge space.
- Such applications with growing economic importance include, for example, use as a strong UV lamp for pre-ionization purposes of other discharges, for example lasers, and treatment of surfaces with UV exposure, chemical processes such as the preparation of new chemicals or surfaces and coating processes such as plasma CVD (Chemical Vapor Deposition), Photo-CVD, in which a substrate to be treated is brought as close as possible to the UV light source with a suitable filling gas.
- plasma CVD Chemical Vapor Deposition
- Photo-CVD Photo-CVD
- 1 and 2 consists of two spaced UV-transparent plates 1, 2 made of quartz glass, between which a further plate 3 made of dielectric material, e.g. Glass or ceramic or a plastic dielectric is arranged. Spacers 4, 5 distributed over the surface secure the spacing of the plates 1, 2 and 3 and at the same time serve to hold them together.
- metal electrodes, 6 ', 6' are embedded at regular intervals and spaced apart. As can be seen in Fig.2, the electrodes 6'6 ⁇ are alternately connected to one and the other pole of an alternating current source 7.
- the alternating current source 7 basically corresponds to those used for supplying ozone generators.
- an adjustable AC voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few kHz - depending on the electrode geometry, pressure in the discharge space and composition of the filling gas.
- the discharge spaces 8 and 9 between the plates 1 and 3 or 3 and 2 are filled with a filling gas which emits radiation under discharge conditions, for example mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas , preferably Ar, He, Ne, as a buffer gas.
- a filling gas which emits radiation under discharge conditions, for example mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas , preferably Ar, He, Ne, as a buffer gas.
- a substance / substance mixture according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm Argon + fluorine 180-200 nm Argon + chlorine 165-190 nm Argon + krypton + chlorine 165-190, 200-240 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124, 140-160 nm Krypton + fluorine 240 - 255 nm Krypton + chlorine 200-240 nm mercury 185.254, 320-360, 390-420 nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 400 - 550 nm Xenon + chlorine 300-320 nm
- an inert gas Ar, He, Kr, Ne, Xe
- Hg An inert gas or Hg with a gas or vapor from F2, J2, Br2, Cl2 or a compound that splits off one or more atoms F, J, Br or Cl in the discharge
- - A noble gas Ar, He, Kr, Ne, Xe
- Hg with O2 or a compound that releases one or more O atoms in the discharge
- an inert gas Ar, He, Kr, Ne, Xe
- the electron energy distribution can be optimally adjusted by the thickness of the dielectric plate 3 and its properties, distance between the electrodes 6 ', 6 ⁇ , pressure and / or temperature.
- a plurality of discharge channels 10 form from one electrode 6' through the dielectric 3 along the surface of the dielectric 3 and back into the dielectric 3 into the adjacent electrode 6 ⁇ .
- These sliding discharges 10 running along the surface emit the UV light, which then penetrates through the transparent plates 1, 2 in the example. If different filling gases are used in rooms 8 and 9, two different radiations can be generated with one and the same radiator if the electrode arrangement and distribution are selected accordingly.
- a coating 11, 12 to the two surfaces of the dielectric 3, lower ignition voltages for the discharge can be achieved, so that the costs for the supply can be reduced.
- the primary coating materials are the oxides of magnesium, ytterbium, lanthanum and cerium (MgO, Yb2O3, La2O3, CeO2).
- the UV light can also be used directly for some applications without it having to penetrate through the cover plates 1, 2. This applies to those applications that can be carried out in the discharge spaces 8, 9 themselves.
- Such applications with growing economic importance include, for example, the treatment of surfaces with UV exposure, chemical processes such as the preparation of new chemicals or surface coating such as plasma CVD, photo CVD, that is to say processes in which a treatment is carried out
- the substrate With a suitable filling gas, the substrate is brought as close as possible to the dielectric surface, i.e. where the radiation is generated.
- the production of the dielectric 3 together with the electrodes 6 ', 6' embedded in it is simplified compared to the known high-power radiators and thus less expensive. You can use materials that can be cast relatively easily, so that the electrodes 6 ', 6 ⁇ can be cast in at the same time. This eliminates problems with compliance with tolerances, e.g. the thickness of the dielectric 3 or the distances between the plates 1 and 3 or 3 and 2 is reduced. Also for the material of the UV-permeable plates - if they have to be UV-permeable at all - there are no very high demands, since they are not stressed by the discharge. This in turn leads to an increase in the total life of the lamp.
- the electrodes 6, 6 ⁇ embedded in the dielectric 3 For an inexpensive production of the electrodes 6, 6 ⁇ embedded in the dielectric 3, techniques can also be used which are used in the production of plasma display cells (cf. "AC Plasma Display” by TNCriscimagna & P.Pleshko in “Display Devices”", JIPamkove (Ed.), Springer-Verlag Berlin, Heidelberg, New York 1980, pp. 92-150).
- the electrodes according to FIG. 3 are applied as discrete conductor tracks 6a, 6b to a substrate 13 made of glass, quartz or ceramic using thin-film or thick-film techniques.
- vaporization and sputtering processes are used for metallization on the one hand, and conductive pastes on the other.
- Fine conductor tracks can be produced by photo-lithographic processes, wider ones (> 25 micrometers) can be created by metal deposition through a mask.
- the conductor tracks (electrodes) thus applied are then covered by a dielectric layer 14.
- layers of lead oxide glass can be applied as a spray or paste and then heated, forming a continuous layer of glass.
- Layers of borosilicate glass can be made using evaporation techniques. It is also possible to deposit other dielectric layers using methods that are common in semiconductor technology, for example by means of plasma CVD or photo CVD.
- electrodes with an almost constant cross section can also be used.
- the electrodes also do not have to run in a straight line, but can also be arranged, for example, in a meandering shape or in a zigzag pattern next to one another.
- the electrodes 6 ′, 6 ⁇ as hollow electrodes, or in the dielectric 3 in FIG. 1 or in the substrate 13 in FIG. 3, additional channels running in the longitudinal direction of the electrode (item 15 in FIG. 3) to provide through which channels a liquid or gaseous coolant is passed.
- FIG. 6 a tube 21 made of dielectric material is arranged coaxially between two quartz tubes 19, 20. Spacers, not shown, secure the mutual position of the three tubes.
- metal electrodes 22 ′, 22 ⁇ are embedded in the dielectric tube 21, which are alternately connected to one and the other pole of an AC power source (not shown) analogously to FIG.
- the cylinder emitter according to FIG. 6 emits both inwards (into the interior of the tube 20) and outwards. If different filling gases are used in rooms 8 and 9, two different radiations can be generated with the same radiator if the electrode arrangement and distribution are selected accordingly. Of course, this also applies to a radiator according to Fig. 4.
- the desired reactions can also take place in the discharge space (s) 8 or 9 itself in the case of cylindrical radiators according to FIG. 6.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
Abstract
Description
Die Erfindung bezieht sich auf einen Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem unter Entladungsbedingungen Strahlung aussendendem Füllgas gefüllten Entladungsraum, mit Elektrodenpaaren, die paarweise an die beiden Pole einer Hochspannungsquelle angeschlossen sind, wobei zwischen zwei auf unterschiedlichem Potential liegenden Elektroden mindestens ein dielektrisches Material liegt, das an den Entladungsraum angrenzt.
Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er sich etwa aus der EP-Anmeldung 87109674.9 oder der US-Anmeldung 07/076926 ergibt.The invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, with pairs of electrodes which are connected in pairs to the two poles of a high-voltage source, with at least one dielectric material lying between two electrodes at different potentials that is adjacent to the discharge space.
The invention relates to a state of the art, such as results from EP application 87109674.9 or US application 07/076926.
Der industrielle Einsatz photochemischer Verfahren hängt stark von der der Verfügbarkeit geeigneter UV-Quellen ab. Die klassischen UV-Strahler liefern niedrige bis mittlere UV-Intensitäten bei einigen diskreten Wellenlängen, wie z.B. die Quecksilber-Niederdrucklampen bei 185 nm und insbesondere bei 254 nm. Wirklich hohe UV-Leistungen erhält man nur aus Hochdrucklampen (Xe, Hg), die dann aber ihre Strahlung über einen grösseren Wellenlängenbereich verteilen. Die neuen Excimer-Laser haben einige neue Wellenlängen für photchemische Grundlagenexperimente bereitgestellt, sind. z.Zt. aus Kostengründen für einen industriellen Prozess wohl nur in Ausnahmefällen geeignet.The industrial use of photochemical processes depends heavily on the availability of suitable UV sources. The classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the low-pressure mercury lamps at 185 nm and especially at 254 nm. Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but distribute their radiation over a larger wavelength range. The new excimer lasers have some new wavelengths for basic photochemical experiments are provided. currently for cost reasons for an industrial process probably only suitable in exceptional cases.
In der eingangs genannten EP-Patentanmeldung oder auch in dem Konferenzdruck "Neue UV- und VUV-Excimerstrahler¨ von U.Kogelschatz und B.Eliasson, verteilt an der 10.Vortragstagung der Gesellschaft Deutscher Chemiker, Fachgruppe Photochemie, in Würzburg (BRD) 18.- 20.November 1987, wird ein neuer Excimerstrahler beschrieben. Dieser neue Strahlertyp basiert auf der Grundlage, dass man Excimerstrahlung auch in stillen elektrischen Entladungen erzeugen kann, einem Entladungstyp, der in der Ozonerzeugung grosstechnisch eingesetzt wird. In den nur kurzzeitig (< 1 Mikrosekunde) vorhandenen Stromfilamenten dieser Entladung werden durch Elektronenstoss Edelgasatome angeregt, die zu angeregten Molekülkomplexen (Excimeren) weitereagieren. Diese Excimere leben nur einigen 100 Nanosekunden und geben beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung ab.
Der Aufbau eines derartigen Excimerstrahlers entspricht bis hin zur Stromversorgung weitgehend dem eines klassischen Ozonerzeugers, mit dem wesentlichen Unterschied, dass mindestens eine der den Entladungraum begrenzenden Elektroden und/oder Dielektrikumsschichten für die erzeugte Strahlung durchlässig ist.In the EP patent application mentioned at the beginning or in the conference paper "New UV and VUV excimer emitters" by U.Kogelschatz and B.Eliasson, distributed at the 10th lecture conference of the Society of German Chemists, Photochemistry Group, in Würzburg (FRG) 18 - November 20, 1987, a new excimer emitter is described, this new type of emitter is based on the fact that excimer radiation can also be generated in silent electrical discharges, a type of discharge that is used on a large scale in ozone generation Existing current filaments of this discharge are excited by electron impact, noble gas atoms, which further react to excited molecular complexes (excimers), which only live for a few 100 nanoseconds and release their binding energy in the form of UV radiation when they decay.
The construction of such an excimer radiator, up to the power supply, largely corresponds to that of a conventional ozone generator, with the essential difference that at least one of the electrodes and / or dielectric layers delimiting the discharge space is transparent to the radiation generated.
Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Hochleistungsstrahler, insbesondere für UV- oder VUV-Licht, zu schaffen, der sich insbesondere durch höhere Effizienz auszeichnet, wirtschaftlich zu fertigen ist und auch den Aufbau sehr grosser Flächenstrahler ermöglicht.Starting from the prior art, the invention has for its object to provide a high-performance radiator, in particular for UV or VUV light, which is characterized in particular by higher efficiency, is economical to manufacture and also enables the construction of very large area radiators.
Zur Lösung dieser Aufgabe bei einem Hochliestungsstrahler der eingangs genannten Gattung ist erfindungsgemäss vorgesehen, dass die genannten Elektrodenpaare, getrennt durch dielektrisches Material, unmittelbar nebeneinander angeordnet sind, derart, dass sich die stille elektrische Entladung im Entladungsraum im Bereich der Dielektrikumsoberfläche ausbildet.To solve this problem in a high-power radiator of the type mentioned at the outset, it is provided according to the invention that the electrode pairs mentioned, separated by dielectric material, are arranged directly next to one another in such a way that the silent electrical discharge is formed in the discharge space in the region of the dielectric surface.
Bei Anliegen der Spannung bildet sich eine Vielzahl von Gleitentladungen von einer Elektrode durch das Dielektrikum im wesentlichen längs der Oberfläche des Dielektrikums und wieder in das Dielektrikum hinein zur benachbarten Elektrode. Diese Entladungen strahlen das verwendbare UV-Licht ab, das dann z.B. durch die den Entladungsraum begrenzende Wand dringt. Im Gegensatz zu den bekannten Konfigurationen wird hier die gesamte Ausdehnung der Entladungskanäle zur Strahlungserzeugung ausgenutzt.When the voltage is applied, a large number of sliding discharges form from one electrode through the dielectric essentially along the surface of the dielectric and back into the dielectric to the adjacent electrode. These discharges emit the usable UV light, which then e.g. penetrates through the wall delimiting the discharge space. In contrast to the known configurations, the entire expansion of the discharge channels is used here to generate radiation.
Die Herstellung des erfindungsgemässen Hochleistungsstrahlers ist vereinfacht und kostengünstiger als bei den bekannten Strahlern. Man kann Materialien verwenden, die man leicht giessen kann, sodass die Elektroden eingegossen werden können. Dadurch werden Probleme beim Einhalten von Toleranzen (Z.B. Dicke des Dielektrikums oder der Abstände) verkleinert. Auch für das begrenzende Glas/Quarz-Material sind keine sehr hohen Ansprüche zu stellen, da die begrenzenden Wände lediglich transparent sein müssen und nicht durch die Entladung beansprucht werden. Dies führt zu einer höheren Lebensdauer des Strahlers. Auch ist die Spaltweite und deren Toleranzen weit weniger kritisch.Insbesondere lassen sich nunmehr wegen der geringeren Anforderungen bezüglich Toleranzen sehr grosse Flächenstrahler realisieren, die sehr dünn ausgeführt werden können.The manufacture of the high-power radiator according to the invention is simplified and less expensive than in the known radiators. You can use materials that are easy to cast so that the electrodes can be cast in. This reduces problems when complying with tolerances (eg thickness of the dielectric or the distances). Also for the limiting glass / quartz material there are no very high demands, since the limiting walls only have to be transparent and are not stressed by the discharge. This leads to a longer lamp life. The gap width and its tolerances are also far less critical. In particular, because of the lower requirements with regard to tolerances, very large area radiators can be realized, which can be made very thin.
Weil praktisch die gesamte Länge des Entladungsraum zu Emission beiträgt, ist die UV-Ausbeute sehr hoch. Transmissionsverluste eines Elektrodengitters oder einer teildurchlässigen Schicht liegen nicht vor.Because practically the entire length of the discharge space contributes to emission, the UV yield is very high. There are no transmission losses from an electrode grid or a partially permeable layer.
Der erfindungsgemässe Hochleistungsstrahler erlaubt Strahler-Goemetrien nahezu beliebiger Gestalt. Neben Flächenstrahlern, die nach einer oder nach beiden Flachseiten strahlen, können zylindrische oder elliptische Strahler geschaffen werden. Auch müssen die Strahler nicht notwendig eben oder langestreckt sein, sondern in einer oder mehreren Dimensionen gekrümmt oder gebogen sein.The high-power radiator according to the invention permits radiator geometries of almost any shape. In addition to surface emitters that emit on one or both flat sides, cylindrical or elliptical emitters can be created. Also, the emitters do not necessarily have to be flat or elongated, but have to be curved or curved in one or more dimensions.
Selbstverständlich erlaubt es die Erfindung in Analogie zur schweizerischen Patentanmeldung Nr.152/88-7 vom 15.1.1988 der Anmelderin, die den Entladungsraum begrenzenden Wände entweder auf der dem Entladungsraum zugewandten oder der äusseren Wand mit einer Lumineszenz-Schicht zu versehen zur Umwandlung des UV-Lichts in sichtbares Licht. Bei der ersten Alternative muss dann die Wand nicht mehr UV-durchlässig sein, weil sie nur noch sichtbares Licht durchlassen muss.Of course, in analogy to the Swiss patent application No. 152 / 88-7 dated January 15, 1988, the invention allows the applicant to provide the walls delimiting the discharge space with a luminescent layer either on the discharge space facing or on the outer wall in order to convert the UV -Light in visible light. In the first alternative, the wall no longer has to be UV-permeable because it only has to let visible light through.
Bei der erfindungsgemässen Anordnung können Dielektrika verwendet werden, die nicht notwendigerweise transparent für das UV-Licht sind, was für besondere Anwendungen besonders hohe Wirkungsgrade erwarten lässt. So kann insbesondere das UV-Licht für manche Anwendungen direkt verwendet werden, ohne dass es den Entladungsraum verlassen muss. Dies gilt insbesondere für solche Anwendungen, die sich im Entladungsraum durchführen lassen. Zu solchen Anwendungen mit wachsender wirtschaftlicher Bedeutung zählen z.B. der Einsatz als starker UV-Strahler für Vorionisierungszwecke anderer Entladungen, z.B. Laser, Behandlung von Oberflächen mit UV-Belichtung, chemische Prozesse wie Präparation neuer Chemikalien oder Oberflächen und Beschichtungsverfahren wie Plasma-CVD (Chemical Vapor Deposition), Photo-CVD, bei denen ein zu behandelndes Substrat bei geeignetem Füllgas möglichst dicht an UV-Lichtquelle gebracht wird. Die besonderen Vorteile einer solchen ¨Innen"-Anordnung liegen u.a. in der Vermeidung von Absorptionsverlusten durch Fenster und in der Ausnutzung zusätzlicher Effekte durch die Entladung selbst.Dielectrics which are not necessarily transparent to UV light can be used in the arrangement according to the invention, which means that particularly high efficiencies can be expected for special applications. In particular, UV light can be used directly for some applications without having to leave the discharge space. This applies in particular to those applications that can be carried out in the discharge space. Such applications with growing economic importance include, for example, use as a strong UV lamp for pre-ionization purposes of other discharges, for example lasers, and treatment of surfaces with UV exposure, chemical processes such as the preparation of new chemicals or surfaces and coating processes such as plasma CVD (Chemical Vapor Deposition), Photo-CVD, in which a substrate to be treated is brought as close as possible to the UV light source with a suitable filling gas. The particular advantages of such an "inner" arrangement are, among other things, the avoidance of absorption losses through windows and the exploitation of additional effects through the discharge itself.
In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt; darin zeigt
- Fig. 1 Ein erstes Ausführungsbeispiel eines Flächenstrahlers mit beidseitiger Abstrahlung im Querschnitt;
- Fig. 2 der Flächenstrahler nach Fig.1 im Längsschnitt mit einer schematischen Darstellung der elektrischen Anspeisung;
- Fig. 3 eine eines erste Abwandlung des Flächenstrahlers nach Fig.1 und 2 mit einseitiger Abstrahlung und Elektroden, die auf ein Substrat aufgebracht und mit einer dielektrischen Schicht überzogen sind;
- Fig. 4 eine zweite Abwandlung des Flächenstrahlers nach Fig.1 und 2 mit inhomogenem Dielektrikum;
- Fig. 5 eine dritte Abwandlung des Flächenstrahlers nach Fig.1 und 2 mit von dielektrische nMaterial ummantelten Einzelelektroden;
- Fig. 6 ein Ausführungsbeispiel der Erfindung in Form eines Zylinderstrahlers im Querschnitt;
- Fig. 1 A first embodiment of a panel radiator with radiation on both sides in cross section;
- 2 shows the surface radiator according to FIG. 1 in longitudinal section with a schematic illustration of the electrical feed;
- 3 shows a first modification of the surface radiator according to FIGS. 1 and 2 with one-sided radiation and electrodes which are applied to a substrate and are coated with a dielectric layer;
- 4 shows a second modification of the surface radiator according to FIGS. 1 and 2 with an inhomogeneous dielectric;
- 5 shows a third modification of the surface radiator according to FIGS. 1 and 2 with individual electrodes coated with dielectric material;
- Fig. 6 shows an embodiment of the invention in the form of a cylinder radiator in cross section;
Der Flächenstrahler nach Fig.1 und 2 besteht aus zwei beabstandeten UV-durchlässigen Platten 1, 2 aus Quarzglas, zwischen denen eine weitere Platte 3 aus dielektrischen Material, z.B. Glas oder Keramik oder ein Kunststoff-Dielektrikum angeordnet ist. Ueber die Fläche verteilte Abstandshalter 4, 5 sichern die Distanzierung der Platten 1, 2 und 3 und dienen gleichzeitig deren Zusammenhalt. In die Platte 3 sind in regelmässigen Abständen und voneinander beabstandet Metallelektroden ,6′,6˝ eingebettet. Wie in Fig.2 zu erkennen ist, sind die Elektroden 6′6˝, abwechselnd mit dem einen und dem anderen Pol einer Wechselstromquelle 7 verbunden.Die Wechselstromquelle 7 entspricht grundsätzlich jenen, wie sie zur Anspeisung von Ozonerzeugern verwendet werden. Typisch liefert sie eine einstellbare Wechselspannung in der Grössenordnung von mehreren 100 Volt bis 20000 Volt bei Frequenzen im Bereich des technischen Wechselstroms bis hin zu einigen kHz - abhängig von der Elektrodengeometrie, Druck im Entladungsraum und Zusammensetzung des Füllgases.1 and 2 consists of two spaced UV-
Die Entladungsräume 8 und 9 zwischen den Platten 1 und 3 bzw. 3 und 2 sind mit einem unter Entladungsbedingungen Strahlung aussendenden Füllgas gefüllt, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-Gemisch, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases, vorzugsweise Ar, He, Ne, als Puffergas.The
Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz/Substanzgemisch gemäss nachfolgender Tabelle Vernwendung finden:
Daneben kommen eine ganze Reihe weiterer Füllgase in Frage:
- Ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit einem Gas bzw. Dampf aus F₂, J₂, Br₂, Cl₂ oder eine Verbindung, die in der Entladung ein oder mehrere Atome F, J, Br oder Cl abspaltet;
- ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit O₂ oder einer Verbindung, die in der Entladung ein oder mehrere O-Atome abspaltet;
- ein Edelgas (Ar, He, Kr, Ne, Xe) mit Hg.In addition, a whole series of other filling gases are possible:
- An inert gas (Ar, He, Kr, Ne, Xe) or Hg with a gas or vapor from F₂, J₂, Br₂, Cl₂ or a compound that splits off one or more atoms F, J, Br or Cl in the discharge ;
- A noble gas (Ar, He, Kr, Ne, Xe) or Hg with O₂ or a compound that releases one or more O atoms in the discharge;
- an inert gas (Ar, He, Kr, Ne, Xe) with Hg.
In der sich bildenden elektrischen Gleitentladung (surface discharge) kann die Elektronenenergieverteilung durch Dicke der dielektrischen Platte 3 und deren Eigenschaften, Abstand zwischen den Elektroden 6′,6˝, Druck und/oder Temperatur optimal eingestellt werden.In the forming electrical discharge (surface discharge) the electron energy distribution can be optimally adjusted by the thickness of the
Bei Anliegen einer Spannung zwischen je zwei benachbarten Elektroden 6′,6˝ bildet sich eine Vielzahl von Entladungskanälen 10 von einer Elektrode 6′ durch das Dielektrikum 3 längs der Oberfläche des Dielektrikums 3 und wieder in das Dielektrikum 3 hinein zur benachbarten Elektrode 6˝. Diese längs der Oberfläche verlaufenden Gleitentladungen 10 strahlen das UV-Licht ab, das dann durch die im Beispielsfall transparenten Platten 1, 2 dringt. Verwendet man in den Räumen 8 und 9 unterschiedliche Füllgase, so lassen sich bei entsprechender Wahl der Elektrodenanordnung und -verteilung mit einunddemselben Strahler zwei unterschiedliche Strahlungen erzeugen. Durch Aufbringen einer Beschichtung 11, 12 auf die beiden Oberflächen des Dielektrikums 3 lassen sich niedrigere Zündspannungen für die Entladung erzielen, so dass die Kosten für die Speisung reduziert werden können. Als Beschichtungsmaterial kommen in erster Linie die Oxide von Magnesium, Ytterbium, Lanthan und Cer (MgO, Yb₂O₃, La₂O₃, CeO₂) in Frage.When a voltage is applied between two
Das UV-Licht kann für manchen Anwendungen auch direkt verwendet werden, ohne dass es durch die Abdeckplatten 1, 2 dringen muss. Dies gilt für solche Anwendungen, die sich in den Entladungsräumen 8, 9 selbst durchführen lassen. Zu solchen Applikationen mit wachsender wirtschaftlicher Bedeutung zählen z.B. die Behandlung von Oberflächen mit UV-Belichtung, chemische Prozesse wie Präparation neuer Chemikalien oder Oberflächen-Beschichtung wie Plasma-CVD, Photo-CVD, also Verfahren, bei denen ein zu behandelndesThe UV light can also be used directly for some applications without it having to penetrate through the
Substrat bei geeignetem Füllgas möglichst dicht an die Dielektrikumsoberfläche, also dort wo die Strahlung entsteht, herangebracht wird.
Die besonderen Vorteile einer solchen "Innen"-Anordnung liegen u.a. in der Vermeidung von Absorptionsverlusten (durch die Platten 1,2) und in der Ausnutzung zusätzlicher Effekte durch die Entladung selbst, wobei die elektrischen Eigenschaften des zu behandelnden Substrats relativ unerheblich sind.With a suitable filling gas, the substrate is brought as close as possible to the dielectric surface, i.e. where the radiation is generated.
The particular advantages of such an “interior” arrangement include the avoidance of absorption losses (through the
Die Herstellung des Dielektrikums 3 samt der in ihm eingebetteten Elektroden 6′, 6˝ ist gegenüber den bekannten Hochleistungsstrahlern vereinfacht und damit kostengünstiger. Man kann Materialien verwenden, die man relativ einfach giessen kann, so dass die Elektroden 6′, 6˝ gleich miteingegossen werden können. Dadurch werden Probleme beim Einhalten von Toleranzen, z.B. die Dicke des Dielektrikums 3 oder der Abstände zwischen den Platten 1 und 3 bzw. 3 und 2 verkleinert. Auch für das Material der UV-durchlässigen Platten - sofern sie überhaupt UV-durchlässig sein müssen - sind keine sehr hohen Ansprüche zu stellen, da sie nicht durch die Entladung beansprucht sind. Dies führt wiederum zu einer Erhöhung der Gesamtlebensdauer des Strahlers.The production of the dielectric 3 together with the electrodes 6 ', 6' embedded in it is simplified compared to the known high-power radiators and thus less expensive. You can use materials that can be cast relatively easily, so that the
Für eine kostengünstige Herstellung der in das Dielektrikum 3 eingebetteten Elektroden 6, 6˝ kann auch auf Techniken zurückgegriffen werden, die bei der Herstellung von Plasmadisplay-Zellen Anwendung finden (vgl. "AC Plasma Display" von T.N.Criscimagna & P.Pleshko in "Display Devices", J.I.Pamkove (Ed.), Springer-Verlag Berlin, Heidelberg, New York 1980, S. 92 - 150).
Anstelle von metallischen Drähten 6′, 6˝ nach Fig.1 sind die Elektroden gemäss Fig.3 als diskrete Leiterbahnen 6a, 6b mittels Dünnfilm- oder Dickfilm-Techniken auf ein Substrat 13 aus Glas, Quarz oder Keramik aufgebracht. Dabei werden einerseits Bedampfungs- und Sputter-Prozesse zur Metallisierung verwendet, andererseits leitfähige Pasten.Feine Leiterbahnen können durch photo-lithographische Verfahren, breitere (> 25 Mikrometer) können durch Metallabscheidung durch eine Maske hindurch erzeugt werden. Die so aufgebrachten Leiterbahnen (Elektroden) werden danach durch eine dielektrische Schicht 14 abgedeckt. So kann man z.B. Schichten aus Bleioxydglas als Spray oder Paste auftragen und anschliessend erhitzen, wobei sich eine durchgehende Glasschicht bildet. Schichten aus Borsilikatglas kann man durch Verdampfungstechniken herstellen. Es ist auch möglich, dass man andere dielektrische Schichten abscheidet mit Methoden, die in der Halbleitertechnik üblich sind, z.B. mittels Plasma-CVD oder Photo-CVD.For an inexpensive production of the
Instead of
Ohne den durch die Erfindung gesteckten Rahmen zu verlassen, sind eine Fülle von Modifikationen des vorstehend beschriebenen UV-Hochleistungsstrahlers möglich, auf die nachstehend eingegangen werden soll.Without departing from the scope of the invention, a multitude of modifications of the UV high-power lamp described above are possible, which will be dealt with below.
So können statt zweier Entladungsräume 8,9 auch nur ein Entladungsraum vorgesehen sein. Dazu ist durch eine entsprechende Isolation, z.B.Schwefelhexafluorid oder Wasser, in dem einen Raum oder eine andere Geometrie des Dielektrikums und/oder der Elektroden, z.B. eine solche nach Fig.3, sicherzustellen, dass sich die Gleitentladungen nur in dem anderen Raum ausbilden.Instead of two
Statt runder Elektroden 6′,6˝ nach Fig.1 können auch Elektroden mit nahezu bliebigem Querschnitt verwendet werden. Auch müssen die Elektroden nicht geradlinig verlaufen, sondern können auch z.B. mäanderförmig oder im Zickzack nebeneinander angeordnet sein.Instead of
Zur Verbesserung der Wärmeabfuhr aus dem Dielektrikum ist es möglich, die Elektroden 6′,6˝ als Hohlelektroden auszuführen, oder im Dielektrikum 3 in Fig.1 oder im Substrat 13 in Fig.3 zusätzlich in Elektrodenlängsrichtung verlaufende Kanäle (Pos. 15 in Fig.3) vorzusehen, durch welche Kanäle ein flüssiges oder gasförmiges Kühlmittel geleitet wird.To improve the heat dissipation from the dielectric, it is possible to design the
Neben einzelnen in ein flächiges Dielektrikum 3 bzw. 14 eingebetteten Elektroden ist es darüber hinaus möglich, gemäss Fig.4 und 5 einzelne Drähte 16′,16˝ mit je einer dielektrischen Umhüllung 17 zu verwenden, die entweder dicht an dicht (Fig.5), locker nebeneinander oder durch Zwischenlagen 18 oder Abstandsstücke voneinander distanziert, zwischen den beiden Platten 1 und 2 angeordnet sind.In addition to individual electrodes embedded in a
Anstelle von Flächenstrahlern nach den Figuren 1 bis 5 sind auch Zylinderstrahler möglich, wie es in Fig.6 veranschaulicht ist. Dort ist zwischen zwei Quarzrohren 19, 20 ein Rohr 21 aus dielektrischen Material koaxial angeordnet. Nicht dargestellte Abstandhalter sichern die gegenseitige Lage der drei Rohre. Analog Fig.1 sind in das dielektrische Rohr 21 Metallelektroden 22′, 22˝ eingebettet, die analog Fig.2 abwechselnd mit dem einen und dem anderen Pol einer (nicht dargestellten) Wechselstromquelle verbunden sind.Instead of surface emitters according to FIGS. 1 to 5, cylindrical emitters are also possible, as is illustrated in FIG. 6. There, a
Der Zylinderstrahler nach Fig.6 strahlt im Beispielsfall sowohl nach innen (in den Innenraum des Rohres 20) als auch nach aussen ab. Verwendet man in den Räumen 8 und 9 unterschiedliche Füllgase, so lassen sich bei entsprechender Wahl der Elektrodenanordnung und -verteilung mit einunddemselben Strahler zwei unterschiedliche Strahlungen erzeugen. Dies gilt selbstverständlich auch für einen Strahler nach Fig.4.In the example, the cylinder emitter according to FIG. 6 emits both inwards (into the interior of the tube 20) and outwards. If different filling gases are used in
Wie bereits im Zusammenhang mit Fig.1 beschrieben, können auch bei Zylinderstrahlern nach Fig.6 die gewünschten Reaktionen in dem bzw. den Entladungsräumen 8 bzw. 9 selbst stattfinden.As already described in connection with FIG. 1, the desired reactions can also take place in the discharge space (s) 8 or 9 itself in the case of cylindrical radiators according to FIG. 6.
Die vorstehende Beschreibung von Ausführungsbeispielen der Erfindung konzentrierte sich auf die Erzeugung von UV- bzw. VUV-Strahlung. Durch Beschichtung der Platten 1, 2 bzw. der Rohre 19, 20 mit einer Lumineszenzschicht 23, 24 (Fig.1) lässt sich in Anlehung an die bei den Lumineszenzröhren für Beleuchtungszwecke bekannte Technik auch sichtbares Licht hoher Leistung erzeugen. Derartige Schichten sind bekannt und können auch auf die den Entladungsraum 8 bzw. 9 angrenzenden inneren Oberflächen der Platten 1, 2 bzw. der Rohre 19, 20 aufgeracht werden. Im letztren Fall brauchen diese Platten bzw. Rohre nicht mehr UV-durchlässig sondern nur für das sichtbare Licht transparent sein.The above description of exemplary embodiments of the invention concentrated on the generation of UV or VUV radiation. By coating the
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH3778/88A CH676168A5 (en) | 1988-10-10 | 1988-10-10 | |
CH3778/88 | 1988-10-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0363832A1 true EP0363832A1 (en) | 1990-04-18 |
EP0363832B1 EP0363832B1 (en) | 1993-06-16 |
Family
ID=4263286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89118546A Expired - Lifetime EP0363832B1 (en) | 1988-10-10 | 1989-10-06 | Radiating device having a high output |
Country Status (5)
Country | Link |
---|---|
US (1) | US5006758A (en) |
EP (1) | EP0363832B1 (en) |
JP (1) | JP2812736B2 (en) |
CH (1) | CH676168A5 (en) |
DE (1) | DE58904712D1 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0482230A1 (en) * | 1990-10-22 | 1992-04-29 | Heraeus Noblelight GmbH | High power radiation device |
EP0515711A1 (en) * | 1991-05-27 | 1992-12-02 | Heraeus Noblelight GmbH | High power radiator |
US5198717A (en) * | 1990-12-03 | 1993-03-30 | Asea Brown Boveri Ltd. | High-power radiator |
EP0661110A1 (en) * | 1993-11-26 | 1995-07-05 | Ushiodenki Kabushiki Kaisha | Process for oxidation of an article surface |
DE19526211A1 (en) * | 1995-07-18 | 1997-01-23 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Process for operating discharge lamps or emitters |
EP0607960B1 (en) * | 1993-01-20 | 1998-04-22 | Ushiodenki Kabushiki Kaisha | Dielectric barrier discharge lamp |
WO1998043276A2 (en) * | 1997-03-21 | 1998-10-01 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Gas discharge lamp with dielectrically impeded electrodes |
WO1998043280A1 (en) * | 1997-03-21 | 1998-10-01 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flat spotlight with discharge separated by a dielectric layer and device for the electrodes into the leading discharge area |
DE19811520C1 (en) * | 1998-03-17 | 1999-08-12 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Dielectrically hindered discharge lamp for direct or phosphor emission of visible, ultraviolet or vacuum ultraviolet light |
WO1999054916A2 (en) * | 1998-04-20 | 1999-10-28 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flat reflector lamp for dielectrically inhibited discharges with spacers |
DE19817478A1 (en) * | 1998-04-20 | 1999-11-04 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Flat discharge lamp and process for its manufacture |
DE19817476A1 (en) * | 1998-04-20 | 1999-11-04 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Fluorescent lamp with spacers and locally thinned fluorescent layer thickness |
DE19826809A1 (en) * | 1998-06-16 | 1999-12-23 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Dielectric layer for discharge lamps and associated manufacturing process |
DE19826808A1 (en) * | 1998-06-16 | 1999-12-23 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Discharge lamp with dielectric barrier electrodes |
US6034470A (en) * | 1997-03-21 | 2000-03-07 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Flat fluorescent lamp with specific electrode structuring |
US6060828A (en) * | 1996-09-11 | 2000-05-09 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Electric radiation source and irradiation system with this radiation source |
DE19919363A1 (en) * | 1999-04-28 | 2000-11-09 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Discharge lamp with spacer |
US6222317B1 (en) | 1997-03-21 | 2001-04-24 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Flat light emitter |
US6252352B1 (en) | 1997-03-21 | 2001-06-26 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Flat light emitter |
DE10026781C1 (en) * | 2000-05-31 | 2002-01-24 | Heraeus Noblelight Gmbh | Discharge lamp for dielectric discharge |
DE10048187A1 (en) * | 2000-09-28 | 2002-04-11 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Discharge lamp for dielectrically impeded discharges with base plate and top plate for light outlet also discharge chamber between plates and electrode set and dielectric layer |
US6984930B2 (en) | 2001-08-17 | 2006-01-10 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Discharge lamp with ignition aid of a UV/VIS material having high secondary electron emission coefficient |
DE102007048234A1 (en) | 2007-01-23 | 2008-09-25 | Chi-Mei Corp. | Mercury-free flat fluorescent lamp |
US7573201B2 (en) | 2004-09-29 | 2009-08-11 | Osram Gesellschaft Mit Beschraenkter Haftung | Dielectric barrier discharge lamp having pluggable electrodes |
WO2009103337A1 (en) * | 2008-02-21 | 2009-08-27 | Osram Gesellschaft mit beschränkter Haftung | Dielectric barrier discharge lamp with a retaining disc |
FR2936093A1 (en) * | 2008-09-12 | 2010-03-19 | Saint Gobain | Tubular discharge UV lamp e.g. tanning lamp, for e.g. refrigerator, has two electrodes associated to main faces of one of dielectric tubes, where electrodes are in form of bands that partially occupy, in projection, interelectrode spaces |
EP1839703B1 (en) * | 2006-03-31 | 2011-05-25 | Ushiodenki Kabushiki Kaisha | Phototherapy device |
WO2014166934A1 (en) * | 2013-04-11 | 2014-10-16 | Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg | Hf lamp having a dielectric waveguide |
Families Citing this family (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0521553B1 (en) * | 1991-07-01 | 1996-04-24 | Koninklijke Philips Electronics N.V. | High-pressure glow discharge lamp |
US5384515A (en) * | 1992-11-02 | 1995-01-24 | Hughes Aircraft Company | Shrouded pin electrode structure for RF excited gas discharge light sources |
US5865471A (en) | 1993-08-05 | 1999-02-02 | Kimberly-Clark Worldwide, Inc. | Photo-erasable data processing forms |
US6017661A (en) | 1994-11-09 | 2000-01-25 | Kimberly-Clark Corporation | Temporary marking using photoerasable colorants |
US5733693A (en) | 1993-08-05 | 1998-03-31 | Kimberly-Clark Worldwide, Inc. | Method for improving the readability of data processing forms |
US5773182A (en) | 1993-08-05 | 1998-06-30 | Kimberly-Clark Worldwide, Inc. | Method of light stabilizing a colorant |
CA2120838A1 (en) | 1993-08-05 | 1995-02-06 | Ronald Sinclair Nohr | Solid colored composition mutable by ultraviolet radiation |
US6017471A (en) | 1993-08-05 | 2000-01-25 | Kimberly-Clark Worldwide, Inc. | Colorants and colorant modifiers |
US5645964A (en) | 1993-08-05 | 1997-07-08 | Kimberly-Clark Corporation | Digital information recording media and method of using same |
US5721287A (en) | 1993-08-05 | 1998-02-24 | Kimberly-Clark Worldwide, Inc. | Method of mutating a colorant by irradiation |
US5643356A (en) | 1993-08-05 | 1997-07-01 | Kimberly-Clark Corporation | Ink for ink jet printers |
US6211383B1 (en) | 1993-08-05 | 2001-04-03 | Kimberly-Clark Worldwide, Inc. | Nohr-McDonald elimination reaction |
US5681380A (en) | 1995-06-05 | 1997-10-28 | Kimberly-Clark Worldwide, Inc. | Ink for ink jet printers |
TW348262B (en) * | 1993-09-08 | 1998-12-21 | Ushio Electric Inc | Dielectric barrier discharge lamp |
WO1997001605A1 (en) | 1995-06-28 | 1997-01-16 | Kimberly-Clark Worldwide, Inc. | Novel colorants and colorant modifiers |
AU2764595A (en) * | 1994-06-02 | 1996-01-04 | Gerald C. Monagan | Air purifier |
US5739175A (en) | 1995-06-05 | 1998-04-14 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition containing an arylketoalkene wavelength-specific sensitizer |
US6071979A (en) | 1994-06-30 | 2000-06-06 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition method of generating a reactive species and applications therefor |
US5685754A (en) | 1994-06-30 | 1997-11-11 | Kimberly-Clark Corporation | Method of generating a reactive species and polymer coating applications therefor |
US6242057B1 (en) | 1994-06-30 | 2001-06-05 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition and applications therefor |
US6008268A (en) | 1994-10-21 | 1999-12-28 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition, method of generating a reactive species, and applications therefor |
US5798015A (en) | 1995-06-05 | 1998-08-25 | Kimberly-Clark Worldwide, Inc. | Method of laminating a structure with adhesive containing a photoreactor composition |
US5811199A (en) | 1995-06-05 | 1998-09-22 | Kimberly-Clark Worldwide, Inc. | Adhesive compositions containing a photoreactor composition |
US5786132A (en) | 1995-06-05 | 1998-07-28 | Kimberly-Clark Corporation | Pre-dyes, mutable dye compositions, and methods of developing a color |
DE69609967T2 (en) | 1995-06-05 | 2001-04-12 | Kimberly-Clark Worldwide, Inc. | DYE PRECURSORS AND COMPOSITIONS CONTAINING THEM |
US5747550A (en) | 1995-06-05 | 1998-05-05 | Kimberly-Clark Worldwide, Inc. | Method of generating a reactive species and polymerizing an unsaturated polymerizable material |
US5849411A (en) | 1995-06-05 | 1998-12-15 | Kimberly-Clark Worldwide, Inc. | Polymer film, nonwoven web and fibers containing a photoreactor composition |
US6099628A (en) | 1996-03-29 | 2000-08-08 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5855655A (en) | 1996-03-29 | 1999-01-05 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
ATE215588T1 (en) | 1995-11-28 | 2002-04-15 | Kimberly Clark Co | LIGHT-STABILIZED FABRIC COMPOSITIONS |
US5782963A (en) | 1996-03-29 | 1998-07-21 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5891229A (en) | 1996-03-29 | 1999-04-06 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
DE19613502C2 (en) * | 1996-04-04 | 1998-07-09 | Heraeus Noblelight Gmbh | Durable excimer emitter and process for its manufacture |
JPH09283092A (en) * | 1996-04-19 | 1997-10-31 | Stanley Electric Co Ltd | Fluorescent lamp |
US6524379B2 (en) | 1997-08-15 | 2003-02-25 | Kimberly-Clark Worldwide, Inc. | Colorants, colorant stabilizers, ink compositions, and improved methods of making the same |
US20020098109A1 (en) * | 1997-09-17 | 2002-07-25 | Jerry Nelson | Method and apparatus for producing purified or ozone enriched air to remove contaminants from fluids |
US5945790A (en) * | 1997-11-17 | 1999-08-31 | Schaefer; Raymond B. | Surface discharge lamp |
US6015759A (en) * | 1997-12-08 | 2000-01-18 | Quester Technology, Inc. | Surface modification of semiconductors using electromagnetic radiation |
US6049086A (en) * | 1998-02-12 | 2000-04-11 | Quester Technology, Inc. | Large area silent discharge excitation radiator |
KR20010022593A (en) | 1998-06-03 | 2001-03-26 | 로날드 디. 맥크레이 | Novel Photoinitiators and Applications Therefor |
WO1999063006A2 (en) | 1998-06-03 | 1999-12-09 | Kimberly-Clark Worldwide, Inc. | Neonanoplasts produced by microemulsion technology and inks for ink jet printing |
JP2002520470A (en) | 1998-07-20 | 2002-07-09 | キンバリー クラーク ワールドワイド インコーポレイテッド | Improved inkjet ink composition |
JP3346291B2 (en) * | 1998-07-31 | 2002-11-18 | ウシオ電機株式会社 | Dielectric barrier discharge lamp and irradiation device |
GB9819504D0 (en) * | 1998-09-07 | 1998-10-28 | Ardavan Houshang | Apparatus for generating focused electromagnetic radiation |
DE69930948T2 (en) | 1998-09-28 | 2006-09-07 | Kimberly-Clark Worldwide, Inc., Neenah | CHELATE WITH CHINOIDS GROUPS AS PHOTOINITIATORS |
DE19922566B4 (en) * | 1998-12-16 | 2004-11-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Process for the generation of ultraviolet radiation |
ATE238393T1 (en) | 1999-01-19 | 2003-05-15 | Kimberly Clark Co | DYES, DYE STABILIZERS, INK COMPOSITIONS AND METHOD FOR THE PRODUCTION THEREOF |
US6331056B1 (en) | 1999-02-25 | 2001-12-18 | Kimberly-Clark Worldwide, Inc. | Printing apparatus and applications therefor |
US6294698B1 (en) | 1999-04-16 | 2001-09-25 | Kimberly-Clark Worldwide, Inc. | Photoinitiators and applications therefor |
DE19920693C1 (en) * | 1999-05-05 | 2001-04-26 | Inst Oberflaechenmodifizierung | Open UV / VUV excimer lamp and process for surface modification of polymers |
US6133694A (en) * | 1999-05-07 | 2000-10-17 | Fusion Uv Systems, Inc. | High-pressure lamp bulb having fill containing multiple excimer combinations |
US6368395B1 (en) | 1999-05-24 | 2002-04-09 | Kimberly-Clark Worldwide, Inc. | Subphthalocyanine colorants, ink compositions, and method of making the same |
US6613277B1 (en) | 1999-06-18 | 2003-09-02 | Gerald C. Monagan | Air purifier |
US6762556B2 (en) | 2001-02-27 | 2004-07-13 | Winsor Corporation | Open chamber photoluminescent lamp |
DE10134965A1 (en) * | 2001-07-23 | 2003-02-06 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Flat discharge lamp has outer side of front plate at least partly provided with opaque coating and inner side of front plate at least partly provided with fluorescent coating |
JP3929265B2 (en) * | 2001-07-31 | 2007-06-13 | 富士通株式会社 | Method for forming electron emission film in gas discharge tube |
DE10147961A1 (en) * | 2001-09-28 | 2003-04-10 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Igniting, operating dielectric barrier discharge lamp involves applying ignition voltage between sub-electrodes to ignite auxiliary discharge at gap between sub-electrodes during ignition |
DE10213327C1 (en) * | 2002-03-25 | 2003-06-18 | Heraeus Noblelight Gmbh | Discharge vessel used for dielectric barrier discharge lamps made from silica glass has a protective device consisting of a self-supporting component which is made from a part of a material absorbing ultraviolet radiation |
FR2843483B1 (en) * | 2002-08-06 | 2005-07-08 | Saint Gobain | FLASHLIGHT, METHOD OF MANUFACTURE AND APPLICATION |
US7029637B2 (en) * | 2003-01-09 | 2006-04-18 | H203, Inc. | Apparatus for ozone production, employing line and grooved electrodes |
US20040136885A1 (en) * | 2003-01-09 | 2004-07-15 | Hogarth Derek J. | Apparatus and method for generating ozone |
KR20060026404A (en) * | 2003-05-08 | 2006-03-23 | 에코-알엑스, 인코포레이티드 | System for purifying and removing contaminants from gaseous fluids |
DE102004047375A1 (en) * | 2004-09-29 | 2006-04-06 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Dielectric handicapped discharge lamp with cuff |
DE102004047373A1 (en) * | 2004-09-29 | 2006-04-06 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Lighting system with dielectrically impeded discharge lamp and associated ballast |
DE102005007370B3 (en) * | 2005-02-17 | 2006-09-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Ultraviolet light source for e.g. ultraviolet microscopy, has dielectric arranged between two electrodes, where one electrode includes tip directed to another electrode, such that shortest distance is defined between electrodes |
KR20080031957A (en) * | 2005-07-15 | 2008-04-11 | 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 | Arrays of microcavity plasma devices with dielectric encapsulated electrodes |
TWM283310U (en) * | 2005-08-09 | 2005-12-11 | Hung Mian Light Source Co Ltd | Slab-lamp structure with electrode-less |
DE102007020655A1 (en) | 2007-04-30 | 2008-11-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing thin layers and corresponding layer |
JP4424394B2 (en) * | 2007-08-31 | 2010-03-03 | ウシオ電機株式会社 | Excimer lamp |
DE102012017779A1 (en) * | 2012-09-07 | 2014-03-13 | Karlsruher Institut für Technologie | Dielectric barrier discharge lamp |
DE102021108009B4 (en) | 2021-03-30 | 2023-02-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Multi-wavelength UV radiation source and UV probe, especially for fluorescence analysis |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0254111B1 (en) * | 1986-07-22 | 1992-01-02 | BBC Brown Boveri AG | Ultraviolett radiation device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH152887A (en) * | 1930-02-04 | 1932-02-29 | Ig Farbenindustrie Ag | Process for the production of a nitrogenous vat dye. |
JPS599849A (en) * | 1982-07-09 | 1984-01-19 | Okaya Denki Sangyo Kk | High frequency discharge lamp |
JPS60172135A (en) * | 1984-02-15 | 1985-09-05 | Mitsubishi Electric Corp | Flat plate light source |
CH675178A5 (en) * | 1987-10-23 | 1990-08-31 | Bbc Brown Boveri & Cie |
-
1988
- 1988-10-10 CH CH3778/88A patent/CH676168A5/de not_active IP Right Cessation
-
1989
- 1989-10-05 US US07/417,473 patent/US5006758A/en not_active Expired - Lifetime
- 1989-10-06 DE DE8989118546T patent/DE58904712D1/en not_active Expired - Fee Related
- 1989-10-06 EP EP89118546A patent/EP0363832B1/en not_active Expired - Lifetime
- 1989-10-11 JP JP1263157A patent/JP2812736B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0254111B1 (en) * | 1986-07-22 | 1992-01-02 | BBC Brown Boveri AG | Ultraviolett radiation device |
Non-Patent Citations (2)
Title |
---|
DISPLAY DEVICES, 1980, Seiten 91-150, Springer-Verlag, Berlin, DE; T.N. CRISCIMAGNA et al.: "AC plasma display" * |
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 8 (E-373)[2065], 14. Januar 1986; & JP-A-60 172 135 (MITSUBISHI DENKI K.K.) 05-09-1985 * |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5283498A (en) * | 1990-10-22 | 1994-02-01 | Heraeus Noblelight Gmbh | High-power radiator |
EP0482230A1 (en) * | 1990-10-22 | 1992-04-29 | Heraeus Noblelight GmbH | High power radiation device |
US5198717A (en) * | 1990-12-03 | 1993-03-30 | Asea Brown Boveri Ltd. | High-power radiator |
EP0515711A1 (en) * | 1991-05-27 | 1992-12-02 | Heraeus Noblelight GmbH | High power radiator |
EP0607960B1 (en) * | 1993-01-20 | 1998-04-22 | Ushiodenki Kabushiki Kaisha | Dielectric barrier discharge lamp |
EP0661110A1 (en) * | 1993-11-26 | 1995-07-05 | Ushiodenki Kabushiki Kaisha | Process for oxidation of an article surface |
US5994849A (en) * | 1995-07-18 | 1999-11-30 | Patent-Treuhand-Gesellschaft Fuer Electrische Gluehlampen Mbh | Method for operating a lighting system and suitable lighting system therefor |
DE19526211A1 (en) * | 1995-07-18 | 1997-01-23 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Process for operating discharge lamps or emitters |
WO1997004625A1 (en) * | 1995-07-18 | 1997-02-06 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Method for operating a lighting system and suitable lighting system therefor |
CN1113582C (en) * | 1995-07-18 | 2003-07-02 | 电灯专利信托有限公司 | Method for operating a lighting system and suitable lighting system therefor |
US6060828A (en) * | 1996-09-11 | 2000-05-09 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Electric radiation source and irradiation system with this radiation source |
DE19636965B4 (en) * | 1996-09-11 | 2004-07-01 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Electrical radiation source and radiation system with this radiation source |
US6222317B1 (en) | 1997-03-21 | 2001-04-24 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Flat light emitter |
WO1998043276A2 (en) * | 1997-03-21 | 1998-10-01 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Gas discharge lamp with dielectrically impeded electrodes |
KR100417438B1 (en) * | 1997-03-21 | 2004-02-05 | 파텐트-트로이한트-게젤샤프트 퓌어 엘렉트리쉐 글뤼람펜 엠베하 | Flat radiator |
WO1998043280A1 (en) * | 1997-03-21 | 1998-10-01 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flat spotlight with discharge separated by a dielectric layer and device for the electrodes into the leading discharge area |
WO1998043276A3 (en) * | 1997-03-21 | 1998-12-17 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Gas discharge lamp with dielectrically impeded electrodes |
US6853124B1 (en) | 1997-03-21 | 2005-02-08 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Flat fluorescent lamp with specific electrode structuring |
US6034470A (en) * | 1997-03-21 | 2000-03-07 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Flat fluorescent lamp with specific electrode structuring |
US6252352B1 (en) | 1997-03-21 | 2001-06-26 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Flat light emitter |
WO1999048134A1 (en) * | 1998-03-17 | 1999-09-23 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Discharge lamp with dielectrically impeded electrodes |
US6304028B1 (en) | 1998-03-17 | 2001-10-16 | Patent-Treuhand-Gesellschaft Fuer Elektrishe Gluehlampen Mbh | Discharge lamp with dielectrically impeded electrodes |
DE19811520C1 (en) * | 1998-03-17 | 1999-08-12 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Dielectrically hindered discharge lamp for direct or phosphor emission of visible, ultraviolet or vacuum ultraviolet light |
US6659828B1 (en) | 1998-04-20 | 2003-12-09 | Patent-Treuhand-Gesellshaft Fuer Elektrische Gluehlampen Mbh | Flat discharge lamp and method for the production thereof |
DE19817476B4 (en) * | 1998-04-20 | 2004-03-25 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Fluorescent lamp with spacers and locally thinned fluorescent layer thickness |
WO1999054916A3 (en) * | 1998-04-20 | 1999-12-02 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Flat reflector lamp for dielectrically inhibited discharges with spacers |
DE19817478B4 (en) * | 1998-04-20 | 2004-03-18 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flat discharge lamp and process for its manufacture |
DE19817476A1 (en) * | 1998-04-20 | 1999-11-04 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Fluorescent lamp with spacers and locally thinned fluorescent layer thickness |
US6531822B1 (en) | 1998-04-20 | 2003-03-11 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Flat reflector lamp for dielectrically inhibited discharges with spacers |
DE19817478A1 (en) * | 1998-04-20 | 1999-11-04 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Flat discharge lamp and process for its manufacture |
WO1999054916A2 (en) * | 1998-04-20 | 1999-10-28 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flat reflector lamp for dielectrically inhibited discharges with spacers |
US6693377B1 (en) | 1998-06-16 | 2004-02-17 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Dielectric layer for discharge lamps and corresponding production method |
DE19826808A1 (en) * | 1998-06-16 | 1999-12-23 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Discharge lamp with dielectric barrier electrodes |
DE19826808C2 (en) * | 1998-06-16 | 2003-04-17 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Discharge lamp with dielectric barrier electrodes |
DE19826809A1 (en) * | 1998-06-16 | 1999-12-23 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Dielectric layer for discharge lamps and associated manufacturing process |
US6879108B1 (en) | 1999-04-28 | 2005-04-12 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Dielectrically impeded discharge lamp with a spacer |
DE19919363A1 (en) * | 1999-04-28 | 2000-11-09 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Discharge lamp with spacer |
DE10026781C1 (en) * | 2000-05-31 | 2002-01-24 | Heraeus Noblelight Gmbh | Discharge lamp for dielectric discharge |
DE10048187A1 (en) * | 2000-09-28 | 2002-04-11 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Discharge lamp for dielectrically impeded discharges with base plate and top plate for light outlet also discharge chamber between plates and electrode set and dielectric layer |
US6984930B2 (en) | 2001-08-17 | 2006-01-10 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Discharge lamp with ignition aid of a UV/VIS material having high secondary electron emission coefficient |
US7573201B2 (en) | 2004-09-29 | 2009-08-11 | Osram Gesellschaft Mit Beschraenkter Haftung | Dielectric barrier discharge lamp having pluggable electrodes |
EP1839703B1 (en) * | 2006-03-31 | 2011-05-25 | Ushiodenki Kabushiki Kaisha | Phototherapy device |
DE102007048234A1 (en) | 2007-01-23 | 2008-09-25 | Chi-Mei Corp. | Mercury-free flat fluorescent lamp |
WO2009103337A1 (en) * | 2008-02-21 | 2009-08-27 | Osram Gesellschaft mit beschränkter Haftung | Dielectric barrier discharge lamp with a retaining disc |
US8314538B2 (en) | 2008-02-21 | 2012-11-20 | Osram Ag | Dielectric barrier discharge lamp with a retaining disc |
FR2936093A1 (en) * | 2008-09-12 | 2010-03-19 | Saint Gobain | Tubular discharge UV lamp e.g. tanning lamp, for e.g. refrigerator, has two electrodes associated to main faces of one of dielectric tubes, where electrodes are in form of bands that partially occupy, in projection, interelectrode spaces |
WO2014166934A1 (en) * | 2013-04-11 | 2014-10-16 | Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg | Hf lamp having a dielectric waveguide |
Also Published As
Publication number | Publication date |
---|---|
JPH02158049A (en) | 1990-06-18 |
CH676168A5 (en) | 1990-12-14 |
US5006758A (en) | 1991-04-09 |
JP2812736B2 (en) | 1998-10-22 |
EP0363832B1 (en) | 1993-06-16 |
DE58904712D1 (en) | 1993-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0363832B1 (en) | Radiating device having a high output | |
EP0389980B1 (en) | High power radiation device | |
EP0371304B1 (en) | High-power radiation device | |
EP0482230B1 (en) | High power radiation device | |
DE19636965B4 (en) | Electrical radiation source and radiation system with this radiation source | |
EP0385205B1 (en) | High-power radiation device | |
EP0458140B1 (en) | High power radiator | |
EP0324953B1 (en) | High power radiation source | |
EP0254111B1 (en) | Ultraviolett radiation device | |
EP0509110B1 (en) | Irradation device | |
EP0839436B1 (en) | Method for operating a lighting system and suitable lighting system therefor | |
EP0449018A2 (en) | Irradiation device | |
DE2718735C2 (en) | High pressure mercury vapor discharge | |
EP0517929B1 (en) | Irradiation device with a high power radiator | |
EP0489184B1 (en) | High power radiation device | |
EP1118100B1 (en) | Dimmable discharge lamp for dielectrically impeded discharges | |
DE2529005B2 (en) | Low pressure gas discharge lamp | |
DE4022279A1 (en) | Irradiating non-electrolytes from gas - filled discharge chamber by applying high potential electric source to electrodes using cylindrical electrode connected by dielectric layer | |
DE4203345A1 (en) | High performance emitter, esp. for UV light - comprises discharge chamber filled with gas, and metallic outer electrodes coated with UV-transparent layer | |
DE4235743A1 (en) | High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically | |
DE2354341C3 (en) | Gas laser | |
EP0515711A1 (en) | High power radiator | |
DE102005007370B3 (en) | Ultraviolet light source for e.g. ultraviolet microscopy, has dielectric arranged between two electrodes, where one electrode includes tip directed to another electrode, such that shortest distance is defined between electrodes | |
RU2120152C1 (en) | Gas-discharge tube | |
WO2014037118A1 (en) | Dielectric barrier discharge lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19901004 |
|
17Q | First examination report despatched |
Effective date: 19921130 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 58904712 Country of ref document: DE Date of ref document: 19930722 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: HERAEUS NOBLELIGHT GMBH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: HERAEUS NOBLELIGHT GMBH |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930823 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020918 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020925 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020930 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20021009 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20021017 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040501 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031006 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040630 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051006 |