[go: up one dir, main page]

EP0517929B1 - Irradiation device with a high power radiator - Google Patents

Irradiation device with a high power radiator Download PDF

Info

Publication number
EP0517929B1
EP0517929B1 EP19910108988 EP91108988A EP0517929B1 EP 0517929 B1 EP0517929 B1 EP 0517929B1 EP 19910108988 EP19910108988 EP 19910108988 EP 91108988 A EP91108988 A EP 91108988A EP 0517929 B1 EP0517929 B1 EP 0517929B1
Authority
EP
European Patent Office
Prior art keywords
cooling medium
radiation
electrodes
dielectric
irradiation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19910108988
Other languages
German (de)
French (fr)
Other versions
EP0517929A1 (en
Inventor
Christoph Dr. Von Arx
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Priority to DE59104972T priority Critical patent/DE59104972D1/en
Priority to EP19910108988 priority patent/EP0517929B1/en
Priority to CA 2068574 priority patent/CA2068574A1/en
Priority to JP4140219A priority patent/JP2540415B2/en
Publication of EP0517929A1 publication Critical patent/EP0517929A1/en
Application granted granted Critical
Publication of EP0517929B1 publication Critical patent/EP0517929B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • the invention relates to an irradiation device with a high-power radiator, in particular for ultraviolet light, which has a discharge space filled with filling gas emitting radiation under discharge conditions, the walls of which are formed by a first dielectric, the first dielectric having first metallic electrodes on its surface facing away from the discharge space is provided, and has second electrodes, and with an alternating current source connected to the first and second electrodes for feeding the discharge, the high-power radiator being immersed in a coolant bath, in such a way that the coolant is at least partially washed around the first dielectric and at least the first electrodes , and that at least one wall of the coolant bath and the coolant itself are permeable to the radiation generated.
  • an irradiation device with a high-power radiator whereby a discharge space filled with filling gas emitting radiation under discharge conditions is specified, the walls of which are formed by a dielectric which has first metallic and second ones on its surfaces facing away from the discharge space Electrodes are provided; an AC power source connected to the first and second electrodes is provided for feeding the discharge, the radiator being immersed in a coolant bath in such a way that the dielectric and at least the first electrodes from Coolant is washed around, and that at least one wall of the coolant bath and the coolant itself are permeable to the radiation generated.
  • UV sources The industrial use of photochemical processes depends heavily on the availability of suitable UV sources.
  • the classic UV lamps provide low to medium UV intensities at some discrete wavelengths, e.g. the mercury low-pressure lamps at 185 nm and especially at 254 nm. Really high UV power can only be obtained from high-pressure lamps (Xe, Hg), which then distribute their radiation over a larger wavelength range.
  • high-pressure lamps Xe, Hg
  • the new excimer lasers have provided some new wavelengths for basic photochemical experiments. for cost reasons for an industrial process probably only suitable in exceptional cases.
  • the object of the invention is to create an irradiation device with a radiator, in particular for UV or VUV radiation, the electrodes of which shield the radiation as little as possible and the radiator can be optimally cooled.
  • the invention provides that the walls of the discharge space are further formed by a second dielectric, which is provided on its surface facing away from the discharge space with the second electrodes that the walls of the coolant bath with the exception of the radiation-permeable wall with a UV radiation reflecting layer are provided or in the case of walls made of aluminum or an aluminum alloy they are polished and that the first metallic electrode is designed in the form of a grid or a network.
  • the walls of the coolant bath must be provided with a layer that reflects UV radiation well, or, in the case of walls made of aluminum or an aluminum alloy, polished.
  • a grid-like or mesh-shaped metallic first electrode ensures a low level of shadowing of the radiation by the electrode.
  • Another variant consists in providing a part of the outer surface of the outer dielectric tube with a UV-reflecting layer. Yet another variant provides for a separate reflector to be installed in the coolant bath, which reflector is designed in such a way that a considerable part of the UV radiation generated by the radiator leaves the bath without it having to pass through the actual radiator again.
  • the coolant bath can also be used to cool the electrical and electronic components of the power source for feeding the radiator, e.g. in that the parts to be cooled are mounted directly on the outer walls.
  • the irradiation device shown schematically in FIGS. 1 and 2 comprises a UV high-power lamp with an outer dielectric tube 1, for example made of quartz glass, and an inner dielectric tube 2 arranged concentrically therewith, the inner wall of which is provided with an inner electrode 3.
  • the annular space between the two tubes 1 and 2 forms the discharge space 4 of the radiator.
  • the inner tube 2 is inserted gas-tight into the outer tube 1, which was previously filled with a gas or gas mixture that emits UV or VUV radiation under the influence of silent electrical discharges.
  • a wide-meshed metal net is used as the outer electrode 5, or it consists of individual metal wires or metal strips running in the longitudinal direction of the tube, which extends over approximately the upper half circumference of the outer tube 1.
  • both the outer electrode 5 and the outer dielectric tube 1 are transparent to the UV radiation generated.
  • the lower circumference of the tube 1 is provided with a reflector 6. This can be achieved, for example, with a vapor-deposited aluminum layer. This reflector is at the same electrical potential as the outer electrode 5.
  • the radiator just described is immersed in a coolant bath 10 delimited by metallic walls 7, 8, 9, 17, 18, through which coolant, preferably distilled water, flows through coolant inflow 11 or coolant outflow 12.
  • coolant preferably distilled water
  • a preferred embodiment optionally provides for mirroring the vessel walls to use a separate reflector 14 in the bottom section of the bath, which has a plurality of openings 15 and is at the same electrical potential as the vessel walls.
  • the breakthroughs allow a sufficient coolant flow from the inlet 11 to the outlet 12.
  • the reflector 14 is shaped in such a way that it reflects a large part of the UV light emitted downwards by the radiator without the radiation again passing through or even the two dielectric tubes 1 and 2 got to.
  • the cross section of the reflector 14 can be thought of as being composed of two parabolic sections.
  • the electrodes 3 and 5 are led to the two poles of an AC power source 16.
  • the AC power source 16 basically corresponds to those used for feeding ozone generators. Typically, it delivers an adjustable alternating voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few 1000 kHz - depending on the electrode geometry, pressure in the discharge space 4 and composition of the filling gas.
  • the filling gas is, for example, mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally under Use of an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
  • the electron energy distribution can be optimally adjusted by the thickness of the dielectrics 1 and 2 and their properties, pressure and / or temperature in the discharge space 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

Technisches GebietTechnical field

Die Erfindung bezieht sich auf eine Bestrahlungseinrichtung mit einem Hochleistungsstrahler, insbesondere für ultraviolettes Licht, der einen, mit unter Entladungsbedingungen Strahlung aussendendem Füllgas gefüllten Entladungsraum, dessen Wandungen durch ein erstes Dielektrikum gebildet sind, welches erstes Dielektrikum auf seiner dem Entladungsraum abgewandten Oberfläche mit ersten metallischen Elektroden versehen ist, und zweite Elektroden aufweist, und mit einer an die ersten und zweiten Elektroden angeschlossenen Wechselstromquelle zur Speisung der Entladung, wobei der Hochleistungsstrahler in ein Kühlmittelbad eingetaucht ist, derart, daß zumindest teilweise das erste Dielektrikum und zumindest die ersten Elektroden vom Kühlmittel umspült sind, und daß zumindest eine Wandung des Kühlmittelbades und das Kühlmittel selbst für die erzeugte Strahlung durchlässig sind.The invention relates to an irradiation device with a high-power radiator, in particular for ultraviolet light, which has a discharge space filled with filling gas emitting radiation under discharge conditions, the walls of which are formed by a first dielectric, the first dielectric having first metallic electrodes on its surface facing away from the discharge space is provided, and has second electrodes, and with an alternating current source connected to the first and second electrodes for feeding the discharge, the high-power radiator being immersed in a coolant bath, in such a way that the coolant is at least partially washed around the first dielectric and at least the first electrodes , and that at least one wall of the coolant bath and the coolant itself are permeable to the radiation generated.

Technologischer Hintergrund und Stand der TechnikTechnological background and state of the art

Aus der DE-A-38 42 993 ist eine Bestrahlungseinrichtung mit einem Hochleistungsstrahler bekannt, wobei ein mit unter Entladungsbedingungen Strahlung aussendendem Füllgas gefüllter Entladungsraum vorgegeben ist, dessen Wandungen durch ein Dielektrikum gebildet sind, welches auf seinen dem Entladungsraum abgewandten Oberflächen mit ersten metallischen und zweiten Elektroden versehen ist; zur Speisung der Entladung ist eine an die ersten und zweiten Elektroden angeschlossene Wechselstromquelle vorgesehen, dabei ist der Strahler in ein Kühlmittelbad so eingetaucht, daß das Dielektrikum und zumindest die ersten Elektroden vom Kühlmittel umspült sind, und daß zumindest eine Wandung des Kühlmittelbades und das Kühlmittel selbst für die erzeugte Strahlung durchlässig sind.From DE-A-38 42 993 an irradiation device with a high-power radiator is known, whereby a discharge space filled with filling gas emitting radiation under discharge conditions is specified, the walls of which are formed by a dielectric which has first metallic and second ones on its surfaces facing away from the discharge space Electrodes are provided; an AC power source connected to the first and second electrodes is provided for feeding the discharge, the radiator being immersed in a coolant bath in such a way that the dielectric and at least the first electrodes from Coolant is washed around, and that at least one wall of the coolant bath and the coolant itself are permeable to the radiation generated.

Der industrielle Einsatz photochemischer Verfahren hängt stark von der der Verfügbarkeit geeigneter UV-Quellen ab. Die klassischen UV-Strahler liefern niedrige bis mittlere UV-lntensi- täten bei einigen diskreten Wellenlängen, wie z.B. die Quecksilber-Niederdrucklampen bei 185 nm und insbesondere bei 254 nm. Wirklich hohe UV-Leistungen erhält man nur aus Hochdrucklampen (Xe, Hg), die dann aber ihre Strahlung über einen größeren Wellenlängenbereich verteilen. Die neuen Excimer-Laser haben einige neue Wellenlängen für photochemische Grundlagenexperimente bereitgestellt, sind z.Zt. aus Kostengründen für einen industriellen Prozeß wohl nur in Ausnahmefällen geeignet.The industrial use of photochemical processes depends heavily on the availability of suitable UV sources. The classic UV lamps provide low to medium UV intensities at some discrete wavelengths, e.g. the mercury low-pressure lamps at 185 nm and especially at 254 nm. Really high UV power can only be obtained from high-pressure lamps (Xe, Hg), which then distribute their radiation over a larger wavelength range. The new excimer lasers have provided some new wavelengths for basic photochemical experiments. for cost reasons for an industrial process probably only suitable in exceptional cases.

In der EP-A-254 111 oder auch in dem Konferenzdruck "Neue UV- und VUV-Excimerstrahler" von U. Kogelschatz und B. Eliasson, verteilt an der 10. Vortragstagung der Gesellschaft Deutscher Chemiker, Fachgruppe Photochemie, in Würzburg (BRD) 18.-20. November 1987, wird ein neuer Excimerstrahler beschrieben. Dieser neue Strahlertyp basiert auf der Grundlage, daß man Excimerstrahlung auch in stillen elektrischen Entladungen erzeugen kann, einem Entladungstyp, der in der Ozonerzeugung großtechnisch eingesetzt wird. In den nur kurzzeitig (< 1 Mikrosekunde) vorhandenen Stromfilamenten dieser Entladung werden durch Elektronenstoß Edelgasatome angeregt, die zu angeregten Molekülkomplexen (Excimeren) weiterreagieren. Diese Excimere leben nur einige 100 Nanosekunden und geben beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung ab.In EP-A-254 111 or in the conference paper "New UV and VUV excimer emitters" by U. Kogelschatz and B. Eliasson, distributed at the 10th lecture conference of the Society of German Chemists, Photochemistry Group, in Würzburg (FRG) 18th-20th November 1987, a new excimer radiator is described. This new type of radiator is based on the fact that excimer radiation can also be generated in silent electrical discharges, a type of discharge which is used on a large scale in ozone generation. In the current filaments of this discharge, which are only present for a short time (<1 microsecond), noble gas atoms are excited by electron impact, which react further to excited molecular complexes (excimers). These excimers only live for a few 100 nanoseconds and release their binding energy in the form of UV radiation when they decay.

Der Aufbau eines derartigen Excimerstrahlers entspricht bis hin zur Stromversorgung weitgehend dem eines klassischen Ozonerzeugers, mit dem wesentlichen Unterschied, daß mindestens eine der den Entladungsraum begrenzenden Elektroden und/oder Dielektrikumsschichten für die erzeugte Strahlung durchlässig ist. Zumindest eine dieser Elektroden dürfen die erzeugte Strahlung nur wenig abschatten. Eine weitere Anforderung an den Strahler besteht darin, daß er auch bei hohen Leistungsdichten möglichst wenig Wärme abstrahlt. Dies ist insbesondere bei Anwendungen in der grafischen Industrie wichtig, wo häufig Druckfarben auf einen hitzeempfindlichen Untergrund ausgehärtet werden müssen.The construction of such an excimer radiator, up to the power supply, largely corresponds to that of a classic ozone generator, with the essential difference that at least one of the electrodes and / or dielectric layers delimiting the discharge space is transparent to the radiation generated. At least one of these electrodes may only shade the radiation generated a little. Another requirement for the radiator is that it emits as little heat as possible, even at high power densities. This is particularly important for applications in the graphics industry, where printing inks often have to be cured on a heat-sensitive surface.

Kurze Darstellung der ErfindungBrief description of the invention

Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Bestrahlungseinrichtung mit einem Strahler, insbesondere für UV- oder VUV-Strahlung, zu schaffen, dessen Elektroden die Strahlung möglichst wenig abschatten und der Strahler optimal gekühlt werden kann.Starting from the prior art, the object of the invention is to create an irradiation device with a radiator, in particular for UV or VUV radiation, the electrodes of which shield the radiation as little as possible and the radiator can be optimally cooled.

Zur Lösung dieser Aufgabe ist erfindungsgemäß vorgesehen, daß die Wandungen des Entladungsraumes ferner durch ein zweites Dielektrikum gebildet sind, welches auf seiner dem Entladungsraum abgewandten Oberfläche mit den zweiten Elektroden versehen ist, daß die Wände des Kühlmittelbades mit Ausnahme der für die Strahlung durchlässigen Wandung mit einer UV-Strahlung reflektierenden Schicht versehen sind bzw. bei Wänden aus Aluminium oder einer Aluminium-Legierung diese poliert sind und daß die erste metallische Elektrode gitter- oder netzförmig ausgebildet ist.To solve this problem, the invention provides that the walls of the discharge space are further formed by a second dielectric, which is provided on its surface facing away from the discharge space with the second electrodes that the walls of the coolant bath with the exception of the radiation-permeable wall with a UV radiation reflecting layer are provided or in the case of walls made of aluminum or an aluminum alloy they are polished and that the first metallic electrode is designed in the form of a grid or a network.

Eine derart aufgebaute Bestrahlungseinrichtung erfüllt alle Anforderungen der Praxis:

  • Die Erfindung ermöglicht den Aufbau eines absolut kalten Strahlers, was insbesondere im Zusammenhang mit der Aushärtung von Druckfarben auf hitzeempfindlichen Untergrund wichtig ist.
  • Die Außenelektroden können von einfacher Konstruktion sein - es genügen einige wenige in Strahlerlängsrichtung verlaufende Metallstreifen oder Metalldrähte, die nicht notwenig auf dem äußeren Dielektrikum aufliegen müssen. Auf diese Weise können die Dielektrika leicht ausgewechselt werden.
  • Das Kühlmittel, bevorzugt Wasser, verhindert Außenentladungen zwischen Außenelektroden und Außenwand des Strahlers. Dies verhindert die Ozonbildung.
  • Weil sich keine Außenentladungen mehr ausbilden können, wird auch Metallabscheidung durch Sputtern verhindert, d.h. die UV-Durchlässigkeit wird auch nach längerer Betriebszeit nicht beeinträchtigt.
  • Falls die jeweilige Anwendung einen Betrieb nur mit einem allseitig abgeschlossenen Kühlmittelbad erlaubt und die UV-Strahlung dieses nur durch ein Fenster verlassen kann, ist dieses leicht zu reinigen oder auszuwechseln. Dies ist für die Verwendung des Strahlers in der grafischen Industrie bedeutsam, wo häufig Fabrrückstände entfernt werden müssen.
  • Die Erfindung ermöglicht neben einem streng modularem Aufbau auch die Integration mehrerer Strahler im selben Bad.
An irradiation device constructed in this way fulfills all practical requirements:
  • The invention enables the construction of an absolutely cold radiator, which is particularly important in connection with the curing of printing inks on a heat-sensitive surface.
  • The outer electrodes can be of simple construction - a few metal strips or metal wires running in the longitudinal direction of the radiator are sufficient, which do not necessarily have to rest on the outer dielectric. In this way, the dielectrics can be easily replaced.
  • The coolant, preferably water, prevents external discharges between the outer electrodes and the outer wall of the radiator. This prevents ozone formation.
  • Because external discharges can no longer form, metal deposition by sputtering is also prevented, ie the UV permeability is not impaired even after a long period of operation.
  • If the respective application only allows operation with a coolant bath sealed on all sides and the UV radiation can only leave it through a window, it is easy to clean or replace. This is important for the use of the heater in the graphic arts industry, where factory residues often have to be removed.
  • In addition to a strictly modular structure, the invention also enables the integration of several radiators in the same bathroom.

Für eine optimale Kühlung sind die Wände des Kühlmittelbades mit einer die UV-Strahlung gut reflektierenden Schicht zu versehen, oder bei Wänden aus Aluminium oder einer Aluminium-Legierung diese zu polieren. Die Verwendung einer gitter- oder netzförmig ausgebildeten metallischen ersten Elektrode gewährleistet eine geringe Abschattung der Strahlung durch die Elektrode.For optimal cooling, the walls of the coolant bath must be provided with a layer that reflects UV radiation well, or, in the case of walls made of aluminum or an aluminum alloy, polished. The use of a grid-like or mesh-shaped metallic first electrode ensures a low level of shadowing of the radiation by the electrode.

Eine andere Variante besteht darin, einen Teil der Außenfläche des äußeren Dielektrikumsrohres mit einer UV-reflektierenden Schicht zu versehen. Wieder eine andere Variante sieht vor, in das Kühlmittelbad einen separaten Reflektor einzubauen, der so gestaltet ist, daß ein beträchtlicher Teil der vom Strahler erzeugten UV-Strahlung das Bad verläßt, ohne daß diese den eigentlichen Strahler nochmals passieren muß.Another variant consists in providing a part of the outer surface of the outer dielectric tube with a UV-reflecting layer. Yet another variant provides for a separate reflector to be installed in the coolant bath, which reflector is designed in such a way that a considerable part of the UV radiation generated by the radiator leaves the bath without it having to pass through the actual radiator again.

Bei all diesen Varianten kann das Kühlmittelbad auch zur Kühlung der elektrischen und elektronischen Komponenten der Stromquelle für die Speisung des Strahlers herangezogen werden, z.B. dadurch, daß die zu kühlenden Teile direkt auf die Außenwände montiert sind.In all these variants, the coolant bath can also be used to cool the electrical and electronic components of the power source for feeding the radiator, e.g. in that the parts to be cooled are mounted directly on the outer walls.

Besondere Ausgestaltungen der Erfindung und die damit erzielbaren weiteren Vorteile werden nachstehend unter Bezugnahme auf die Zeichnungen näher erläutert.Particular embodiments of the invention and the further advantages which can be achieved thereby are explained in more detail below with reference to the drawings.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

In der Zeichnung sind Ausführungsformen der Hochleistungs-Bestrahlungseinrichtung in stark vereinfachter Form dargestellt; dabei zeigt

Fig.1
eine Bestrahlungseinrichtung mit einem UV-Zylinderstrahler, der in ein Kühlmittelbad eingetaucht ist, und bei dem die UV-Strahlung durch ein Fenster nach aussen dringen kann;
Fig.2
Einen Längsschnitt durch die Einrichtung nach Fig.1 längs deren Linie AA;
Fig.3
eine Abwandlung der Einrichtung gemäss Fig.1 mit einem separaten Reflektor im Kühlmittelbad.
In the drawing, embodiments of the high-power radiation device are shown in a highly simplified form; shows
Fig. 1
an irradiation device with a UV cylinder emitter which is immersed in a coolant bath and in which the UV radiation can penetrate outward through a window;
Fig. 2
A longitudinal section through the device of Figure 1 along the line AA;
Fig. 3
a modification of the device according to Figure 1 with a separate reflector in the coolant bath.

Detaillierte Beschreibung der ErfindungDetailed description of the invention

Die in Fig. 1 und 2 schematisch dargestellte Bestrahlungseinrichtung umfasst einen UV-Hochleistungsstrahler mit einem einem äusseren Dielektrikumsrohr 1, z.B. aus Quarzglas, einem dazu konzentrisch angeordneten inneren Dielelektrikumsrohr 2, dessen Innenwand mit einer Innenelektrode 3 versehen ist. Der Ringraum zwischen den beiden Rohren 1 und 2 bildet den Entladungsraum 4 des Strahlers. Das innere Rohr 2 ist gasdicht in das äussere Rohr 1 eingesetzt, das vorgängig mit einem Gas oder Gasgemisch gefüllt wurde, das unter Einfluss stiller elektrischer Entladungen UV oder VUV-Strahlung aussendet. Als äussere Elektrode 5 dient ein weitmaschiges Metallnetz oder es besteht aus einzelnen in Rohrlängsrichtung verlaufenden Metalldrähten oder Metallstreifen, das sich über etwa den oberen halben Umfang des äusseren Rohres 1 erstreckt. Bei einer streifenförmigen Elektrodenanordnung sind die einzelnen Streifen an mehreren axial verteilten Stellen untereinander verbunden. Sowohl die äussere Elektrode 5 als auch das äussere Dielektrikumsrohr 1 sind für die erzeugte UV-Strahlung durchlässig. Der untere Umfang des Rohres 1 ist mit einem Reflektor 6 versehen. Diese kann z.B. durch eine aufgedampfte Alumniumschicht realisiert werden. Diese Reflektor liegt auf dem selben elektrischen Potential wie die äussere Elektrode 5.The irradiation device shown schematically in FIGS. 1 and 2 comprises a UV high-power lamp with an outer dielectric tube 1, for example made of quartz glass, and an inner dielectric tube 2 arranged concentrically therewith, the inner wall of which is provided with an inner electrode 3. The annular space between the two tubes 1 and 2 forms the discharge space 4 of the radiator. The inner tube 2 is inserted gas-tight into the outer tube 1, which was previously filled with a gas or gas mixture that emits UV or VUV radiation under the influence of silent electrical discharges. A wide-meshed metal net is used as the outer electrode 5, or it consists of individual metal wires or metal strips running in the longitudinal direction of the tube, which extends over approximately the upper half circumference of the outer tube 1. In the case of a strip-shaped electrode arrangement, the individual strips are connected to one another at a plurality of axially distributed locations. Both the outer electrode 5 and the outer dielectric tube 1 are transparent to the UV radiation generated. The lower circumference of the tube 1 is provided with a reflector 6. This can be achieved, for example, with a vapor-deposited aluminum layer. This reflector is at the same electrical potential as the outer electrode 5.

Der soeben beschriebene Strahler ist in ein von metallischen Wänden 7, 8, 9, 17, 18 begrenztes Kühlmittelbad 10 eingetaucht, das via Kühlmittelzufluss 11 bzw. Kühlmittelabfluss 12 von Kühlmittel, vorzugsweise destilliertem Wasser, durchströmt wird. Im oberen Teil ist ein UV-durchlässiges Fenster 13, z.B. aus Quarzglas, vorgesehen.The radiator just described is immersed in a coolant bath 10 delimited by metallic walls 7, 8, 9, 17, 18, through which coolant, preferably distilled water, flows through coolant inflow 11 or coolant outflow 12. In the upper part there is a UV-permeable window 13, e.g. made of quartz glass.

Eine andere Möglichkeit, die entstehende Strahlung bevorzugt durch das Fenster 13 in den Aussenraum zu leiten besteht darin, die Innenseite der Wände 7, 8 und 9 zu verspiegeln, was bei Aluminiumwänden durch Polieren der Oberflächen erfolgen kann. Eine bevorzugte Ausführungsform sieht optional zur Verspiegelung der Gefässwände vor, im Bodenabschnitt des Bades einen separaten Reflektor 14 einzusetzen, der eine Vielzahl von Durchbrüchen 15 aufweist und auf dem selben elektrischen Potential wie die Gefässwände liegt. Die Durchbrüche ermöglichen einen ausreichenden Kühlmittelfluss vom Einlauf 11 zum Abfluss 12. Der Reflektor 14 ist so geformt, dass er einen Grossteil des vom Strahler nach unten ausgesandten UV-Lichtes reflektiert, ohne dass die Strahlung nochmals das oder gar die beiden Dielektrikumsrohre 1 und 2 passieren muss. Der Querschnitt des Reflektors 14 kann man sich aus zwei Parabelabschnitten zusammengesetzt denken.Another possibility of guiding the resulting radiation preferably through the window 13 into the outside space is to mirror the inside of the walls 7, 8 and 9, which can be done in aluminum walls by polishing the surfaces. A preferred embodiment optionally provides for mirroring the vessel walls to use a separate reflector 14 in the bottom section of the bath, which has a plurality of openings 15 and is at the same electrical potential as the vessel walls. The breakthroughs allow a sufficient coolant flow from the inlet 11 to the outlet 12. The reflector 14 is shaped in such a way that it reflects a large part of the UV light emitted downwards by the radiator without the radiation again passing through or even the two dielectric tubes 1 and 2 got to. The cross section of the reflector 14 can be thought of as being composed of two parabolic sections.

Die Elektroden 3 und 5 sind an die beiden Pole einer Wechselstromquelle 16 geführt. Die Wechselstromquelle 16 entspricht grundsätzlich jenen, wie sie zur Anspeisung von Ozonerzeugern verwendet werden. Typisch liefert sie eine einstellbare Wechselspannung in der Grössenordnung von mehreren 100 Volt bis 20000 Volt bei Frequenzen im Bereich des technischen Wechselstroms bis hin zu einigen 1000 kHz - abhängig von der Elektrodengeometrie, Druck im Entladungsraum 4 und Zusammensetzung des Füllgases.The electrodes 3 and 5 are led to the two poles of an AC power source 16. The AC power source 16 basically corresponds to those used for feeding ozone generators. Typically, it delivers an adjustable alternating voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few 1000 kHz - depending on the electrode geometry, pressure in the discharge space 4 and composition of the filling gas.

Das Füllgas ist, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-Gemisch, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases, vorzugsweise Ar, He, Ne, als Puffergas.The filling gas is, for example, mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally under Use of an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.

Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz/Substanzgemisch gemäß nachfolgender Tabelle Verwendung finden:

Figure imgb0001
Depending on the desired spectral composition of the radiation, a substance / substance mixture according to the following table can be used:
Figure imgb0001

Daneben kommen eine ganze Reihe weiterer Füllgase in Frage:

  • Ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit einem Gas bzw. Dampf aus F₂, I₂, Br₂, Cl₂ oder eine Verbindung die in der Entladung ein oder mehrere Atome F, I, Br oder Cl ab spaltet;
  • ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit O₂ oder einer Verbindung, die in der Entladung ein oder mehrere O-Atome abspaltet;
  • ein Edelgas (Ar, He, Kr, Ne, Xe) mit Hg.
In addition, a whole series of other filling gases are possible:
  • An inert gas (Ar, He, Kr, Ne, Xe) or Hg with a gas or vapor from F₂, I₂, Br₂, Cl₂ or a compound which splits off one or more atoms F, I, Br or Cl in the discharge;
  • a noble gas (Ar, He, Kr, Ne, Xe) or Hg with O₂ or a compound that releases one or more O atoms in the discharge;
  • an inert gas (Ar, He, Kr, Ne, Xe) with Hg.

In der sich bildenden stillen elektrischen Entladung (silent discharge) kann die Elektronenenergieverteilung durch Dicke der Dielektrika 1 und 2 und deren Eigenschaften Druck und/oder Temperatur im Entladungsraum 4 optimal eingestellt werden.In the silent discharge that forms, the electron energy distribution can be optimally adjusted by the thickness of the dielectrics 1 and 2 and their properties, pressure and / or temperature in the discharge space 4.

Bei Anliegen einer Wechselspannung zwischen den Elektroden 3, 5 bildet sich eine Vielzahl von Entladungskanälen (Teilentladungen) im Entladungsraum 4 aus. Diese treten mit den Atomen/Molekülen des Füllgases in Wechselwirkung, was schlussendlich zur UV oder VUV-Strahlung führt.When an alternating voltage is applied between the electrodes 3, 5, a large number of discharge channels (partial discharges) form in the discharge space 4. These interact with the atoms / molecules of the filling gas, which ultimately leads to UV or VUV radiation.

Claims (4)

  1. An irradiation device with a high power emitter, in particular for ultraviolet light, which has a discharge chamber (4), filled with a filling gas emitting radiation under discharge conditions, the walls of which discharge chamber (4) are formed by a first dielectric (1), which first dielectric (1) is provided on its surface facing away from the discharge chamber with first metallic electrodes (5), and has second electrodes (3), and with an alternating current source (16) connected to the first and second electrodes (5;3) to supply the discharge, in which the high power emitter is immersed into a bath (10) of cooling medium, such that at least partially the first dielectric (1) and at least the first electrodes (5) have the cooling medium flowing around them, and that at least one wall (13) of the cooling medium bath (10) and the cooling medium itself are permeable by the generated radiation, characterised in that the walls of the discharge chamber (4) are additionally formed by a second dielectric (2), which is provided with the second electrodes (3) on its surface facing away from the discharge chamber, that the walls (7,8,9) of the cooling medium bath (10), with the exception of the wall (13) permeable to radiation, are provided with a layer reflecting UV radiation or in the case of walls (7,8,9) of aluminium or an aluminium alloy, the latter are polished and that the first metal electrode (5) is constructed in a grid- or network form.
  2. An irradiation device according to Claim 1, characterised in that the first dielectric (1) is constructed as a tube and a part of its outer surface is provided with a UV-reflecting layer (6).
  3. An irradiation device according to Claim 1, characterised in that a separate reflector (14) is incorporated into the cooling medium bath (10), which reflector is designed such that a considerable portion of the UV radiation generated by the emitter leaves the cooling medium bath (10) without it having to pass through the actual emitter once again.
  4. An irradiation device according to one of Claims 1 to 3, characterised in that the cooling medium bath (10) is also able to be used to cool the electric and electronic components of the current source for supplying the emitter.
EP19910108988 1991-06-01 1991-06-01 Irradiation device with a high power radiator Expired - Lifetime EP0517929B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59104972T DE59104972D1 (en) 1991-06-01 1991-06-01 Irradiation device with a high-performance lamp.
EP19910108988 EP0517929B1 (en) 1991-06-01 1991-06-01 Irradiation device with a high power radiator
CA 2068574 CA2068574A1 (en) 1991-06-01 1992-05-13 Irradiation device having a high-power radiator
JP4140219A JP2540415B2 (en) 1991-06-01 1992-06-01 Irradiation device with high-power beam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19910108988 EP0517929B1 (en) 1991-06-01 1991-06-01 Irradiation device with a high power radiator

Publications (2)

Publication Number Publication Date
EP0517929A1 EP0517929A1 (en) 1992-12-16
EP0517929B1 true EP0517929B1 (en) 1995-03-15

Family

ID=8206793

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910108988 Expired - Lifetime EP0517929B1 (en) 1991-06-01 1991-06-01 Irradiation device with a high power radiator

Country Status (4)

Country Link
EP (1) EP0517929B1 (en)
JP (1) JP2540415B2 (en)
CA (1) CA2068574A1 (en)
DE (1) DE59104972D1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59604303D1 (en) 1995-04-27 2000-03-02 Metronic Geraetebau METHOD AND DEVICE FOR HARDENING UV PRINTING INKS
WO2000041215A1 (en) * 1998-12-28 2000-07-13 Japan Storage Battery Co., Ltd. Silent discharge tube and its use method
JP2000219214A (en) * 1999-01-29 2000-08-08 Sig Pack Syst Ag Film sealing device for sealing fusibly packaging film particularly in packaging device
US6567023B1 (en) 1999-09-17 2003-05-20 Kabushiki Kaisha Toshiba Analog to digital to analog converter for multi-valued current data using internal binary voltage
DE10112900C1 (en) * 2001-03-15 2002-07-11 Heraeus Noblelight Gmbh Excimer UV light source has elongate electrode carrier fixed between tapered end of discharge envelope and socket incorporating current feed
JP2004087270A (en) * 2002-08-26 2004-03-18 Orc Mfg Co Ltd Excimer lamp and excimer lamp device
JP3966284B2 (en) * 2004-01-14 2007-08-29 松下電器産業株式会社 Discharge lamp equipment
US20070210713A1 (en) * 2004-04-08 2007-09-13 Sen Engineering Co., Ltd. Dielectric Barrier Discharge Excimer Light Source
WO2005104184A1 (en) * 2004-04-22 2005-11-03 Futaba Technology Corporation Ultraviolet ray irradiation device
US20080030115A1 (en) * 2004-06-03 2008-02-07 Milhail Erofeev Barrier Discharge Lamp
FR2871290B1 (en) * 2004-06-03 2007-04-20 Dermoptics Soc Par Actions Sim RADIATION EMISSION METHOD AND DISCHARGE BARRIER LAMP FOR CARRYING OUT SAID METHOD
FR2874782B1 (en) 2004-08-26 2006-12-08 Brevetix Sarl DEVICE FOR HEATING FIELDS, IN PARTICULAR SPORTS
DE102004047376A1 (en) 2004-09-29 2006-04-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp with pluggable electrodes
DE102004047374A1 (en) * 2004-09-29 2006-04-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp with electrical shielding
EP1843981B1 (en) * 2005-01-28 2012-09-05 Philips Intellectual Property & Standards GmbH Treatment system comprising a dielectric barrier discharge lamp
JP2006331903A (en) * 2005-05-27 2006-12-07 Sen Engineering Kk Vacuum ultraviolet light source
GB2474032B (en) * 2009-10-01 2016-07-27 Heraeus Noblelight Gmbh Flash lamp or gas discharge lamp with integrated reflector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL48671C (en) *
US3911318A (en) * 1972-03-29 1975-10-07 Fusion Systems Corp Method and apparatus for generating electromagnetic radiation
US4503360A (en) * 1982-07-26 1985-03-05 North American Philips Lighting Corporation Compact fluorescent lamp unit having segregated air-cooling means
CH670171A5 (en) * 1986-07-22 1989-05-12 Bbc Brown Boveri & Cie
DE3842993A1 (en) * 1988-12-21 1990-07-05 Beerwald Hans Ignition device for water-cooled ring (toroidal, electrodeless) discharge tubes
CH677292A5 (en) * 1989-02-27 1991-04-30 Asea Brown Boveri

Also Published As

Publication number Publication date
DE59104972D1 (en) 1995-04-20
EP0517929A1 (en) 1992-12-16
JP2540415B2 (en) 1996-10-02
CA2068574A1 (en) 1992-12-02
JPH05174793A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
EP0517929B1 (en) Irradiation device with a high power radiator
EP0458140B1 (en) High power radiator
EP0389980B1 (en) High power radiation device
EP0363832B1 (en) Radiating device having a high output
EP0482230B1 (en) High power radiation device
EP0578953B1 (en) High power emitting device
EP0254111B1 (en) Ultraviolett radiation device
EP0385205B1 (en) High-power radiation device
EP0324953B1 (en) High power radiation source
EP0509110B1 (en) Irradation device
DE10151080C1 (en) Device for producing extreme ultraviolet radiation used in the semiconductor industry comprises a discharge chamber surrounded by electrode housings through which an operating gas flows under a predetermined pressure
DE19636965B4 (en) Electrical radiation source and radiation system with this radiation source
DE69501196T3 (en) Light source device with a dielectric limited discharge lamp
EP0547366B1 (en) High power radiator
EP0371304B1 (en) High-power radiation device
EP0782871A2 (en) Body ultra-violet radiation process, its device and its use
EP0489184B1 (en) High power radiation device
DE4010809A1 (en) High power esp. ultraviolet emitter - with electrode arrangement providing high efficiency
EP0393449A1 (en) Fluorescent lamp
DE4022279A1 (en) Irradiating non-electrolytes from gas - filled discharge chamber by applying high potential electric source to electrodes using cylindrical electrode connected by dielectric layer
DE4203345A1 (en) High performance emitter, esp. for UV light - comprises discharge chamber filled with gas, and metallic outer electrodes coated with UV-transparent layer
DE4235743A1 (en) High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically
EP0515711A1 (en) High power radiator
DE2953233T1 (en) PRE-IONISING ARRANGEMENT FOR ELECTRICAL DISCHARGE APPARATUS SUCH AS A GAS LASER
DE19613357A1 (en) Pulsed light source e.g. gas-discharge lamp for generating light of given wavelength in UV and visible light spectral range

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19930507

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS NOBLELIGHT GMBH

17Q First examination report despatched

Effective date: 19930909

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 59104972

Country of ref document: DE

Date of ref document: 19950420

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950608

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030520

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030530

Year of fee payment: 13

Ref country code: GB

Payment date: 20030530

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030603

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030611

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050601