EP0389980B1 - High power radiation device - Google Patents
High power radiation device Download PDFInfo
- Publication number
- EP0389980B1 EP0389980B1 EP90105531A EP90105531A EP0389980B1 EP 0389980 B1 EP0389980 B1 EP 0389980B1 EP 90105531 A EP90105531 A EP 90105531A EP 90105531 A EP90105531 A EP 90105531A EP 0389980 B1 EP0389980 B1 EP 0389980B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrodes
- radiation device
- power radiation
- cooling
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
- H01J65/04—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
- H01J65/042—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
Definitions
- the invention relates to a high-power radiator, in particular for ultraviolet light, according to the preamble of claim 1.
- the invention relates to a state of the art, such as results from EP-A 254 111 or the older EP-A-385205.
- UV sources The industrial use of photochemical processes depends heavily on the availability of suitable UV sources.
- the classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the mercury low-pressure lamps at 185 nm and especially at 254 nm.
- Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but distribute their radiation over a larger wavelength range.
- the new excimer lasers have some new wavelengths for basic photochemical experiments are currently available. for cost reasons for an industrial process probably only suitable in exceptional cases.
- the high-performance radiators mentioned are characterized by high efficiency, economical structure and enable the creation of large area radiators, with the restriction that large-area flat radiators require a rather large technical effort.
- a not inconsiderable proportion of the radiation is not used due to the shadow effect of the inner electrode.
- the invention has for its object to provide a high-performance radiator, in particular for UV or VUV radiation, which is characterized in particular by high efficiency, is economical to manufacture and enables the construction of very large area radiators.
- the electrodes are designed as metal strips, metal wires or metal coatings which run in the longitudinal direction of the tube and are spaced apart from one another in the circumferential direction of the tube, one electrode with one pole and the other electrode with the other Pole of the AC power source are connected.
- radiator elements designed in this way large-area radiators can be modularly constructed, in which any geometries can be composed of identical or similar discharge tubes, each of which is self-contained.
- the individual elements are electrically contacted on the side on the outside of the tubes, so that light emission is hardly impeded.
- the degree of utilization of the radiation generated can be improved by partial mirroring on the outside of the tubes.
- the advantages of the invention are as follows: Simple and inexpensive realization of the completed discharge volume possible. Similar basic elements (tubes) for all geometries, large areas can be easily realized with the appropriate number of tubes. Good stability of the discharge volume when using relatively robust tubes with a small diameter. Due to the generally large number of self-contained tubes, the failure of individual elements (e.g. due to contamination of the gas or the quartz surface, leaks) is less critical.
- the entire arrangement can cover a wide range of wavelengths by using tubes with different gas fillings. You only have to take the (quartz) quality for the individual tubes that is just necessary or optimal for the transmission of the generated radiation. Depending on the desired wavelength spectrum, this can lead to considerable savings in material costs.
- the light is coupled out of the tubes at a point that is hardly affected by the discharge. No transparent electrodes are necessary.
- pipes 1 are made of dielectric material, in particular glass or quartz, about half each in a casting compound 2 made of insulating material, e.g. Silicone rubber, embedded.
- Each tube 1 is provided with two strip-shaped metallizations 3 and 4 running in the longitudinal direction of the tube and spaced apart from one another in the circumferential direction as electrodes. These consist e.g. made of soft aluminum and at the same time act as reflectors.
- the metallizations 3, 4 lie entirely within the casting compound 2.
- the electrical contact is made laterally on the outside of the tubes 1, e.g. by means of cast-in contact elements 5 (FIG. 2) which protrude beyond the tubes 1 in the longitudinal direction of the tube, the contact elements 5 of each electrode 3, 4 being located in each case on the opposite tube end.
- Each module 6 consisting of a tube 1 with electrodes 3, 4 as well as contact elements and casting compound is arranged tightly packed on a carrier plate 7.
- the carrier plate can be cooled directly or indirectly by a coolant which can be passed through cooling bores 8.
- Another cooling option is the co-casting of cooling tubes 19 which touch the metallizations.
- the individual radiators are fed from an alternating current source 9, the poles of which are alternately connected to the interconnected contact elements 5 on both pipe ends.
- the tubes 1 are closed at both ends.
- the interior of the tubes, the discharge space 10, is filled with a gas / gas mixture which emits radiation under discharge conditions.
- the AC power source 9 basically corresponds to those used for feeding ozone generators. It typically delivers an adjustable AC voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the Range of technical alternating current up to a few 1000 kHz - depending on the electrode geometry, pressure in the discharge space and composition of the filling gas.
- the filling gas is e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
- a substance / substance mixture according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm Argon + fluorine 180-200 nm Argon + chlorine 165-190 nm Argon + krypton + chlorine 165-190, 200-240 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124, 140-160 nm Krypton + fluorine 240 - 255 nm Krypton + chlorine 200-240 nm mercury 185, 254, 320-370, 390-420 nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 340 - 360 nm, 400 - 550 nm Xenon + chlorine 300-320 nm
- the electron energy distribution can be optimally adjusted by the thickness of the dielectrics and their properties, pressure and / or temperature in the discharge space.
- FIG. 3 illustrates a variant with tubes 12 with a square cross section placed on one edge and embedded in casting compound 2 up to the adjacent edge.
- the electrodes 13, 14 are not designed as strip-like metallizations, but rather as sheet-metal strips, which are also cast into the casting compound 2.
- this measure can also be taken in the arrangement according to FIG. 1.
- cooling pipes 15, 16 are fastened to the sides of the sheet metal strips 13, 14 facing away from the pipes 12, through which a coolant can be carried.
- pipes 15, 16 made of metal can also take over the function of the electrodes 13, 14, and separate sheet metal strips 13, 14 are then unnecessary. In this way, the cooling of the radiator modules via the support plate 7, on which the modules 6 are fastened in close proximity to one another, can - but does not have to - be omitted.
- a further cooling option which can also be used in addition, consists in providing cooling channels running in the pipe length direction, for example by co-casting pipes 15a.
- dielectric tubes 17 made of glass or quartz with a rectangular profile are embedded upright in the casting compound 2.
- wires 18 which are closely coexistent and which are cast into the casting compound 2 and run in the longitudinal direction of the tube.
- thin metal tubes 19 can be used instead of wires, through which a non-conductive cooling liquid can be passed as illustrated in the right module of Fig.4.
- the modules 6 are electrically connected to one another and are connected to the alternating current source 9 analogously to FIG. 2.
- the support plate 7 can also be curved in one direction, e.g. Circular arc shape, or the modules are arranged on the inner or outer surface of a tube.
- the tubes of the individual modules 6 can be filled with different gas fillings / gas pressure.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Discharge Lamp (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
Die Erfindung bezieht sich auf einen Hochleistungsstrahler, insbesondere für ultraviolettes Licht, gemäß dem Oberbegriff von Anspruch 1.The invention relates to a high-power radiator, in particular for ultraviolet light, according to the preamble of
Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er sich etwa aus der EP-A 254 111, oder der älteren EP-A-385205 ergibt.The invention relates to a state of the art, such as results from EP-A 254 111 or the older EP-A-385205.
Der industrielle Einsatz photochemischer Verfahren hängt stark von der Verfügbarkeit geeigneter UV-Quellen ab. Die klassischen UV-Strahler liefern niedrige bis mittlere UV-Intensitäten bei einigen diskreten Wellenlängen, wie z.B. die Quecksilber-Niederdrucklampen bei 185 nm und insbesondere bei 254 nm. Wirklich hohe UV-Leistungen erhält man nur aus Hochdrucklampen (Xe, Hg), die dann aber ihre Strahlung über einen grösseren Wellenlängenbereich verteilen. Die neuen Excimer-Laser haben einige neue Wellenlängen für photochemische Grundlagenexperimente bereitgestellt, sind z.Zt. aus Kostengründen für einen industriellen Prozess wohl nur in Ausnahmefällen geeignet.The industrial use of photochemical processes depends heavily on the availability of suitable UV sources. The classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the mercury low-pressure lamps at 185 nm and especially at 254 nm. Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but distribute their radiation over a larger wavelength range. The new excimer lasers have some new wavelengths for basic photochemical experiments are currently available. for cost reasons for an industrial process probably only suitable in exceptional cases.
In der eingangs genannten EP-Patentanmeldung oder auch in dem Konferenzdruck "Neue UV- und VUV Excimerstrahler" von U. Kogelschatz und B. Eliasson, verteilt an der 10. Vortragstagung der Gesellschaft Deutscher Chemiker, Fachgruppe Photochemie, in Würzburg (BRD) 18.-20. November 1987, wird ein neuer Excimerstrahler beschrieben. Dieser neue Strahlertyp basiert auf der Grundlage, dass man Excimerstrahlung auch in stillen elektrischen Entladungen erzeugen kann, einem Entladungstyp, der in der Ozonerzeugung grosstechnisch eingesetzt wird. In den nur kurzzeitig (< 1 Mikrosekunde) vorhandenen Stromfilamenten dieser Entladung werden durch Elektronenstoss Edelgasatome angeregt, die zu angeregten Molekülkomplexen (Excimeren) weiterreagieren. Diese Excimere leben nur einige 100 Nanosekunden und geben beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung ab.In the EP patent application mentioned at the beginning or in the conference paper "New UV and VUV excimer emitters" by U. Kogelschatz and B. Eliasson, distributed at the 10th lecture conference of the Society of German Chemists, Photochemistry Group, in Würzburg (FRG) 18. -20. November 1987, a new excimer radiator is described. This new type of emitter is based on the fact that excimer radiation can also be generated in silent electrical discharges, a type of discharge that is used on a large scale in ozone generation. In the current filaments of this discharge, which exist only for a short time (<1 microsecond), noble gas atoms are excited by electron impact, which react further to excited molecular complexes (excimers). These excimers only live for a few 100 nanoseconds and release their binding energy in the form of UV radiation when they decay.
Der Aufbau eines derartigen Excimerstrahlers entspricht bis hin zur Stromversorgung weitgehend dem eines klassischen Ozonerzeugers, mit dem wesentlichen Unterschied, dass mindestens eine der den Entladungsraum begrenzenden Elektroden und/oder Dielektrikumsschichten für die erzeugte Strahlung durchlässig ist.The structure of such an excimer radiator, up to the power supply, largely corresponds to that of a conventional ozone generator, with the essential difference that at least one of the electrodes and / or dielectric layers delimiting the discharge space is transparent to the radiation generated.
Die genannten Hochleistungsstrahler zeichnen sich durch hohe Effizienz, wirtschaftlichen Aufbau aus und ermöglichen die Schaffung grosser Flächenstrahler, mit der Einschränkung, dass grossflächige Flachstrahler einen eher grossen technischen Aufwand erfordern. Bei der Bestrahlung ebener Flächen mit Rundstrahlern hingegen wird ein nicht unbeachtlicher Anteil der Strahlung durch Schattenwirkung der Innenelektrode nicht ausgenützt.The high-performance radiators mentioned are characterized by high efficiency, economical structure and enable the creation of large area radiators, with the restriction that large-area flat radiators require a rather large technical effort. In contrast, when irradiating flat surfaces with omnidirectional emitters, a not inconsiderable proportion of the radiation is not used due to the shadow effect of the inner electrode.
Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Hochleistungsstrahler, insbesondere für UV- oder VUV-Strahlung, zu schaffen, der sich insbesondere durch hohe Effizienz auszeichnet, wirtschaftlich zu fertigen ist und den Aufbau sehr grosser Flächenstrahler ermöglicht.Starting from the prior art, the invention has for its object to provide a high-performance radiator, in particular for UV or VUV radiation, which is characterized in particular by high efficiency, is economical to manufacture and enables the construction of very large area radiators.
Zur Lösung dieser Aufgabe bei einem Hochleistungsstrahler der eingangs genannten Gattung ist erfindungsgemäss vorgesehen, dass die Elektroden als in Rohrlängsrichtung verlaufende, räumlich voneinander in Rohrumfangsrichtung distanzierte Metallstreifen, Metalldrähte oder Metallbeschichtungen ausgebildet sind, wobei die eine Elektrode mit dem einen Pol die andere Elektrode mit dem anderen Pol der Wechselstromquelle verbunden sind.To solve this problem in a high-power radiator of the type mentioned at the outset, it is provided according to the invention that the electrodes are designed as metal strips, metal wires or metal coatings which run in the longitudinal direction of the tube and are spaced apart from one another in the circumferential direction of the tube, one electrode with one pole and the other electrode with the other Pole of the AC power source are connected.
Mit derart ausgebildeten Strahlerelementen lassen sich grossflächige Strahler modular aufbauen, bei denen beliebige Geometrien aus unter sich gleichartigen oder ähnlichen, jeweils in sich abgeschlossenen Entladungsröhrchen zusammengesetzt werden können. Die elektrische Kontaktierung der Einzelelemente erfolgt seitlich an der Aussenseite der Rohre, so dass die Lichtemission kaum behindert ist. Durch partielle Verspiegelung an der Aussenseite der Rohre kann der Ausnutzungsgrad der erzeugten Strahlung verbessert werden.With radiator elements designed in this way, large-area radiators can be modularly constructed, in which any geometries can be composed of identical or similar discharge tubes, each of which is self-contained. The individual elements are electrically contacted on the side on the outside of the tubes, so that light emission is hardly impeded. The degree of utilization of the radiation generated can be improved by partial mirroring on the outside of the tubes.
Die Vorteile der Erfindung stellen sich wie folgt dar:
Einfache und kostengünstige Realisierung des abgeschlossenen Entladungsvolumens möglich. Gleichartige Grundelemente (Rohre) für alle Geometrien, grosse Flächen durch entsprechende Anzahl Röhrchen leicht realisierbar.
Gute Stabilität des Entladungsvolumens bei Verwendung von relativ robusten Röhren mit kleinem Durchmesser.
Aufgrund der i.a. grossen Anzahl von jeweils in sich abgeschlossenen Röhren ist der Ausfall einzelner Elemente (z.B. wegen Verschmutzung des Gases oder der Quarzoberfläche, Lecks) weniger kritisch.The advantages of the invention are as follows:
Simple and inexpensive realization of the completed discharge volume possible. Similar basic elements (tubes) for all geometries, large areas can be easily realized with the appropriate number of tubes.
Good stability of the discharge volume when using relatively robust tubes with a small diameter.
Due to the generally large number of self-contained tubes, the failure of individual elements (e.g. due to contamination of the gas or the quartz surface, leaks) is less critical.
Die gesamte Anordnung kann ein breites Wellenlängenspektrum abdecken, indem man Rohre mit unterschiedlichen Gasfüllungen verwendet. Man muss für die einzelnen Rohre nur die (Quarz-) Qualität nehmen, die für die Transmission der erzeugten Strahlung gerade notwendig bzw. optimal ist. Dies kann je nach gewünschtem Wellenlängenspektrum zu beträchtlichen Einsparungen an Materialkosten führen.The entire arrangement can cover a wide range of wavelengths by using tubes with different gas fillings. You only have to take the (quartz) quality for the individual tubes that is just necessary or optimal for the transmission of the generated radiation. Depending on the desired wavelength spectrum, this can lead to considerable savings in material costs.
Das Licht wird an einer Stelle aus den Röhren ausgekoppelt, die kaum von der Entladung beaufschlagt ist. Es sind keine transparenten Elektroden notwendig.The light is coupled out of the tubes at a point that is hardly affected by the discharge. No transparent electrodes are necessary.
In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt; darin zeigt
- Fig.1
- Ein erstes Ausführungsbeispiel eines Hochleistungsstrahlers mit einer Vielzahl nebeneinanderliegender kreisrunder Dielektriksrohre im Querschnitt;
- Fig.2
- eine vereinfachte Draufsicht auf den Strahler nach Fig.1, zur Verdeutlichung der elektrischen Anspeisung;
- Fig. 3
- eine Ausführungsform eines Flachstrahlers mit auf eine Kante gestellten Dielektrikumsrohren mit Rechteckprofil und gekühlten Elektroden;
- Fig.4
- eine Ausführungsform eines Flachstrahlers analog Fig.3 jedoch mit auf eine Flachseite gestellten Dielektrikumsrohren mit Rechteckprofil und Drahtelektroden.
- Fig. 1
- A first embodiment of a high-power radiator with a plurality of circular dielectric tubes lying side by side in cross section;
- Fig. 2
- a simplified plan view of the radiator according to Figure 1, to illustrate the electrical feed;
- Fig. 3
- an embodiment of a flat radiator with placed on an edge dielectric tubes with a rectangular profile and cooled electrodes;
- Fig. 4
- an embodiment of a flat radiator analogous to FIG. 3, however, with dielectric tubes with a rectangular profile and wire electrodes placed on a flat side.
In Fig. 1 sind Rohre 1 aus dielektrischem Material, insbesondere Glas oder Quarz, etwa zur Hälfte je in eine Giessmasse 2 aus Isoliermaterial, z.B. Silikonkautschuk, eingebettet. Jedes Rohr 1 ist mit je zwei in Rohrlängsrichtung verlaufenden, in Umfangsrichtung voneinander distanzierten, streifenförmigen Metallisierungen 3 bzw. 4 als Elektrode versehen. Diese bestehen z.B. aus aufgedämpftem Aluminium und wirken gleichzeitig als Reflektoren. Die Metallisierungen 3, 4 liegen vollständig innerhalb der Giessmasse 2. Die elektrische Kontaktierung erfolgt seitlich an der Aussenseite der Rohre 1, z.B. durch mit eingegossene Kontaktelemente 5 (Fig. 2) welche die Rohre 1 in Rohrlängsrichtung überragen, wobei sich die Kontaktelemente 5 jeder Elektrode 3, 4 jeweils am entgegengesetzten Rohrende befinden.In Fig. 1
Jedes aus einem Rohr 1 mit Elektroden 3, 4 sowie Kontaktelementen und Giessmasse bestehendes Modul 6 ist dicht an dicht gepackt auf einer Trägerplatte 7 angeordnet. Die Trägerplatte kann direkt durch ein durch Kühlbohrungen 8 hindurchleitbares Kühlmittel direkt oder indirekt gekühlt werden. Eine andere Kühlmöglichkeit besteht im Miteingiessen von Kühlrohren 19, welche die Metallisierungen berühren. Wie aus der schematischen Draufsicht der Fig. 2 hervorgeht, erfolgt die Anspeisung der Einzelstrahler aus einer Wechselstromquelle 9, deren Pole abwechselnd an die unmittelbar nebeneinaderliegenden miteinanderverbundenen Kontaktelemente 5 an beiden Rohrenden angeschlossen sind.Each
Die Rohre 1 sind an beiden Enden verschlossen. Das Innere der Rohre, der Entladungsraum 10, ist mit einem unter Entladungsbedingungen Strahlung aussendendem Gas/Gasgemisch gefüllt. Die Wechselstromquelle 9 entspricht grundsätzlich jenen, wie sie zur Anspeisung von Ozonerzeugern verwendet werden. Typisch liefert sie eine einstellbare Wechselspannung in der Grössenordnung von mehreren 100 Volt bis 20000 Volt bei Frequenzen im Bereich des technischen Wechselstroms bis hin zu einigen 1000 kHz - abhängig von der Elektrodengeometrie, Druck im Entladungsraum und Zusammensetzung des Füllgases.The
Das Füllgas ist z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-Gemisch, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases, vorzugsweise Ar, He, Ne, als Puffergas.The filling gas is e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz/Substanzgemisch gemäss nachfolgender Tabelle Verwendung finden:
Daneben kommen eine ganze Reihe weiterer Füllgase in Frage:
- Ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit einem Gas bzw. Dampf aus F₂, J₂, Br₂, Cl₂ oder eine Verbindung die in der Entladung ein oder mehrere Atome F, J, Br oder Cl abspaltet;
- ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit O₂ oder einer Verbindung, die in der Entladung ein oder mehrere 0-Atome abspaltet;
- ein Edelgas (Ar, He, Kr, Ne, Xe) mit Hg.
- A noble gas (Ar, He, Kr, Ne, Xe) or Hg with a gas or vapor from F₂, J₂, Br₂, Cl₂ or a compound that splits off one or more atoms F, J, Br or Cl in the discharge;
- a noble gas (Ar, He, Kr, Ne, Xe) or Hg with O₂ or a compound that splits off one or more 0 atoms in the discharge;
- an inert gas (Ar, He, Kr, Ne, Xe) with Hg.
In der sich bildenden stillen elektrischen Entladung (silent discharge) kann die Elektronenenergieverteilung durch Dicke der Dielektrika und deren Eigenschaften, Druck und/oder Temperatur im Entladungsraum optimal eingestellt werden.In the silent discharge that forms, the electron energy distribution can be optimally adjusted by the thickness of the dielectrics and their properties, pressure and / or temperature in the discharge space.
Bei Anliegen einer Wechselspannung zwischen den Elektroden 3 und 4 bildet sich eine Vielzahl von Entladungskanälen 11 (Teilentladungen) im Entladungsraum 10 aus. Diese treten mit den Atomen/Molekülen des Füllgases in Wechselwirkung, was schlussendlich zur UV oder VUV-Strahlung führt.When an alternating voltage is applied between the
Anstelle von dielektrischen Rohren 1 mit kreisrundem Querschnitt können auch Glas- oder Quarzrohre mit anderen Geometrien, z.B. Rohre mit Rechteckprofil verwendet werden. Fig. 3 veranschaulicht eine Variante mit auf eine Kante gestellter, in Giessmasse 2 bis zur benachbarten Kante eingebetteter Rohre 12 mit quadratischem Querschnitt.
Abweichend zur Ausführungsform nach Fig. 1 sind hier die Elektroden 13, 14 nicht als streifenförmige Metallisierungen, sondern als Blechstreifen ausgebildet, welche mit in die Giessmasse 2 eingegossen sind. Diese Massnahme lässt sich selbstverständlich auch bei der Anordnung nach Fig. 1 treffen. Zusätzlich sind an den den Rohren 12 abgewandten Seiten der Blechstreifen 13, 14 Kühlrohre 15, 16 befestigt, durch welche ein Kühlmittel geführt werden kann. Verwendet man eine nichtleitende Kühlflüssigkeit, so können aus Metall bestehende Rohre 15, 16 die Funktion der Elektroden 13, 14 mitübernehmen, eigene Blechstreifen 13, 14 sind dann entbehrlich. Auf diese Weise kann - muss aber nicht - die Kühlung der Strahlermodule über die Trägerplatte 7 entfallen, auf welcher die Module 6 dicht aneinandergereiht befestigt sind.
Eine weitere, auch zusätzlich anzuwendende Kühklmöglichkeit besteht darin, in der Giessmasse in Rohrlängrichtung verlaufende Kühlkanäle, z.B. durch Miteingiessen von Rohren 15a, vorzusehen.Instead of
In a departure from the embodiment according to FIG. 1, the
A further cooling option, which can also be used in addition, consists in providing cooling channels running in the pipe length direction, for example by
In Fig. 4 sind dielektrische Rohre 17 aus Glas oder Quarz mit Rechteckprofil hochkant in die Giessmasse 2 eingebettet. In dieser Variante ist eine weitere Möglichkeit der Ausbildung der Elektroden veranschaulicht, nämlich in die Giessmasse 2 miteingegossene dicht nebeneinanderliegende, in Rohrlängsrichtung verlaufende Drähte 18. Analog Fig.3 können anstelle von Drähten dünnen Metallrohre 19 verwendet werden, durch welche eine nichtleitende Kühlflüssigkeit geleitet werden kann, wie es im rechten Modul der Fig.4 veranschaulicht ist.In FIG. 4,
Bei den Ausführungsformen nach Fig. 3 und 4 erfolgt die elektrische Verbindung der Module 6 untereinander sowie deren Verbindung mit der Wechselstromquelle 9 analog Fig. 2.In the embodiments according to FIGS. 3 and 4, the
Es versteht sich von selbst, dass neben dielektrischen Rohren mit rundem oder rechteckigem Querschnitt auch solche mit anderen Querschnittformen, z.B. hexagonal, verwendet werden können. Auch kann die Trägerplatte 7 in einer Richtung gekrümmt, z.B. Kreisbogenform, aufweisen, oder die Module sind an der Innen oder Aussenfläche eines Rohres angeordnet.It goes without saying that in addition to dielectric tubes with a round or rectangular cross-section, those with other cross-sectional shapes, e.g. hexagonal, can be used. The
Um UV- oder VUV-Licht zu erzeugen, das ein breites Wellenlängenspektrum abdeckt, können die Rohre der einzelnen Module 6 mit unterschiedlichen Gasfüllungen/Gasdruck gefüllt sein.In order to generate UV or VUV light, which covers a broad wavelength spectrum, the tubes of the
Claims (8)
- A high-power radiation device, in particular for ultraviolet light, with a discharge chamber(10) which is filled with a filling gas emitting radiation under discharge conditions, the walls of which are formed by a dielectric tube (1; 12; 17) permeable to radiation, which is provided on its surface facing away from the discharge chamber with first and second electrodes (3,4; 13,14; 18), and with an alternating current source (9) to supply the discharge, characterised in that the electrodes are constructed as metal strips (13,14), metal wires (18) or metal coatings (3,4) running in the longitudial direction of the tube and spaced apart from each other in the circumferential direction of the tube, in which one electrode is connected with one pole, and the other electrode is connected with the other pole of the alternating current source (9).
- A high-power radiation device according to Claim 1, characterised in that the dielectric tube (1; 12; 17) is partially embedded into an electrically insulating casting material (2).
- A high-power radiation device according to Claim 2, characterised in that in the case of electrodes in strip form (13,14) or in wire form (18), these are placed into the casting material (2) or are cast into it.
- A high-power radiation device according to Claims 2 or 3, characterised in that cooling channels (15,15a) are embedded in the casting material (2).
- A high-power radiation device according to Claims 1 to 3, characterised in that cooling devices (15,16;19) are associated with the electrodes (3,4;13,14;18), which are in direct thermal contact with the electrodes.
- A high-power radiation device according to Claim 4, characterised in that in the case of electrodes in strip form (13,14) the cooling device is constructed as cooling pipes (15,16) connected with the electrode.
- A high-power radiation device according to Claim 1,2 or 4, characterised in that the electrodes are constructed as cooling channels (15,16;19).
- A high-power radiation device according to one of Claims 1 to 7, characterised in that a common base plate (7), which is able to be cooled either directly or indirectly, is associated with several radiation devices (6).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1140/89A CH677557A5 (en) | 1989-03-29 | 1989-03-29 | |
CH1140/89 | 1989-03-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0389980A1 EP0389980A1 (en) | 1990-10-03 |
EP0389980B1 true EP0389980B1 (en) | 1994-06-01 |
Family
ID=4203425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90105531A Expired - Lifetime EP0389980B1 (en) | 1989-03-29 | 1990-03-23 | High power radiation device |
Country Status (6)
Country | Link |
---|---|
US (1) | US5049777A (en) |
EP (1) | EP0389980B1 (en) |
JP (1) | JPH02288061A (en) |
AT (1) | ATE106606T1 (en) |
CH (1) | CH677557A5 (en) |
DE (1) | DE59005866D1 (en) |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2577292Y2 (en) * | 1990-04-28 | 1998-07-23 | 日本電気ホームエレクトロニクス株式会社 | Rare gas discharge lamp |
US5062116A (en) * | 1990-05-17 | 1991-10-29 | Potomac Photonics, Inc. | Halogen-compatible high-frequency discharge apparatus |
DE59009300D1 (en) * | 1990-10-22 | 1995-07-27 | Heraeus Noblelight Gmbh | High power radiator. |
JP3532578B2 (en) * | 1991-05-31 | 2004-05-31 | 三菱電機株式会社 | Discharge lamp and image display device using the same |
EP0521553B1 (en) * | 1991-07-01 | 1996-04-24 | Koninklijke Philips Electronics N.V. | High-pressure glow discharge lamp |
US5645964A (en) | 1993-08-05 | 1997-07-08 | Kimberly-Clark Corporation | Digital information recording media and method of using same |
US5681380A (en) | 1995-06-05 | 1997-10-28 | Kimberly-Clark Worldwide, Inc. | Ink for ink jet printers |
US5733693A (en) | 1993-08-05 | 1998-03-31 | Kimberly-Clark Worldwide, Inc. | Method for improving the readability of data processing forms |
US5773182A (en) | 1993-08-05 | 1998-06-30 | Kimberly-Clark Worldwide, Inc. | Method of light stabilizing a colorant |
US6017471A (en) | 1993-08-05 | 2000-01-25 | Kimberly-Clark Worldwide, Inc. | Colorants and colorant modifiers |
US5865471A (en) | 1993-08-05 | 1999-02-02 | Kimberly-Clark Worldwide, Inc. | Photo-erasable data processing forms |
US5721287A (en) | 1993-08-05 | 1998-02-24 | Kimberly-Clark Worldwide, Inc. | Method of mutating a colorant by irradiation |
US6017661A (en) | 1994-11-09 | 2000-01-25 | Kimberly-Clark Corporation | Temporary marking using photoerasable colorants |
US6211383B1 (en) | 1993-08-05 | 2001-04-03 | Kimberly-Clark Worldwide, Inc. | Nohr-McDonald elimination reaction |
WO1997001605A1 (en) | 1995-06-28 | 1997-01-16 | Kimberly-Clark Worldwide, Inc. | Novel colorants and colorant modifiers |
US5685754A (en) | 1994-06-30 | 1997-11-11 | Kimberly-Clark Corporation | Method of generating a reactive species and polymer coating applications therefor |
US6242057B1 (en) | 1994-06-30 | 2001-06-05 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition and applications therefor |
US6071979A (en) | 1994-06-30 | 2000-06-06 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition method of generating a reactive species and applications therefor |
DE4430300C1 (en) * | 1994-08-26 | 1995-12-21 | Abb Research Ltd | Excimer emitters and their use |
US6008268A (en) | 1994-10-21 | 1999-12-28 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition, method of generating a reactive species, and applications therefor |
DE69609967T2 (en) | 1995-06-05 | 2001-04-12 | Kimberly-Clark Worldwide, Inc. | DYE PRECURSORS AND COMPOSITIONS CONTAINING THEM |
US5786132A (en) | 1995-06-05 | 1998-07-28 | Kimberly-Clark Corporation | Pre-dyes, mutable dye compositions, and methods of developing a color |
US6099628A (en) | 1996-03-29 | 2000-08-08 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5855655A (en) | 1996-03-29 | 1999-01-05 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
ATE215588T1 (en) | 1995-11-28 | 2002-04-15 | Kimberly Clark Co | LIGHT-STABILIZED FABRIC COMPOSITIONS |
US5782963A (en) | 1996-03-29 | 1998-07-21 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5891229A (en) | 1996-03-29 | 1999-04-06 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US6524379B2 (en) | 1997-08-15 | 2003-02-25 | Kimberly-Clark Worldwide, Inc. | Colorants, colorant stabilizers, ink compositions, and improved methods of making the same |
US5945790A (en) * | 1997-11-17 | 1999-08-31 | Schaefer; Raymond B. | Surface discharge lamp |
US6049086A (en) * | 1998-02-12 | 2000-04-11 | Quester Technology, Inc. | Large area silent discharge excitation radiator |
KR20010022593A (en) | 1998-06-03 | 2001-03-26 | 로날드 디. 맥크레이 | Novel Photoinitiators and Applications Therefor |
WO1999063006A2 (en) | 1998-06-03 | 1999-12-09 | Kimberly-Clark Worldwide, Inc. | Neonanoplasts produced by microemulsion technology and inks for ink jet printing |
JP2002520470A (en) | 1998-07-20 | 2002-07-09 | キンバリー クラーク ワールドワイド インコーポレイテッド | Improved inkjet ink composition |
DE69930948T2 (en) | 1998-09-28 | 2006-09-07 | Kimberly-Clark Worldwide, Inc., Neenah | CHELATE WITH CHINOIDS GROUPS AS PHOTOINITIATORS |
US6559599B1 (en) * | 1998-11-17 | 2003-05-06 | Corning Incorporated | Internally channeled glass envelope with molded edge for affixing attachments |
ATE238393T1 (en) | 1999-01-19 | 2003-05-15 | Kimberly Clark Co | DYES, DYE STABILIZERS, INK COMPOSITIONS AND METHOD FOR THE PRODUCTION THEREOF |
US6331056B1 (en) | 1999-02-25 | 2001-12-18 | Kimberly-Clark Worldwide, Inc. | Printing apparatus and applications therefor |
US6294698B1 (en) | 1999-04-16 | 2001-09-25 | Kimberly-Clark Worldwide, Inc. | Photoinitiators and applications therefor |
US6368395B1 (en) | 1999-05-24 | 2002-04-09 | Kimberly-Clark Worldwide, Inc. | Subphthalocyanine colorants, ink compositions, and method of making the same |
US8734197B1 (en) * | 2000-01-12 | 2014-05-27 | Imaging Systems Technology, Inc. | Manufacturing process for plasma-shell gas discharge device |
DE10048186A1 (en) * | 2000-09-28 | 2002-04-11 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Discharge lamp for dielectrically impeded discharges with arrangement of supporting elements supporting cover plate opposite bottom plate and discharge chamber between plates |
DE10048187A1 (en) | 2000-09-28 | 2002-04-11 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Discharge lamp for dielectrically impeded discharges with base plate and top plate for light outlet also discharge chamber between plates and electrode set and dielectric layer |
JP3929265B2 (en) * | 2001-07-31 | 2007-06-13 | 富士通株式会社 | Method for forming electron emission film in gas discharge tube |
JP2003045337A (en) * | 2001-07-31 | 2003-02-14 | Fujitsu Ltd | Display tube and display device |
DE10145648B4 (en) * | 2001-09-15 | 2006-08-24 | Arccure Technologies Gmbh | Irradiation device with variable spectrum |
JP3836025B2 (en) * | 2001-12-28 | 2006-10-18 | 富士通株式会社 | Color display device using gas discharge tube |
US8736166B1 (en) * | 2002-05-21 | 2014-05-27 | Imaging Systems Technology, Inc. | Plasma-shell gas discharge device |
US7029637B2 (en) | 2003-01-09 | 2006-04-18 | H203, Inc. | Apparatus for ozone production, employing line and grooved electrodes |
US6872909B2 (en) * | 2003-04-16 | 2005-03-29 | Applied Science And Technology, Inc. | Toroidal low-field reactive gas and plasma source having a dielectric vacuum vessel |
US20060006804A1 (en) * | 2004-07-06 | 2006-01-12 | Lajos Reich | Dielectric barrier discharge lamp |
JP2006286620A (en) * | 2005-03-09 | 2006-10-19 | Ideal Star Inc | Linear light emitting device and display device |
CN101199035A (en) * | 2005-03-11 | 2008-06-11 | 筱田等离子有限公司 | Plasmatron array |
JPWO2007072565A1 (en) * | 2005-12-22 | 2009-05-28 | 篠田プラズマ株式会社 | Color display device |
JP2014175294A (en) * | 2013-03-13 | 2014-09-22 | Toppan Printing Co Ltd | Light-emitting tube array |
WO2015163948A1 (en) | 2014-04-22 | 2015-10-29 | Hoon Ahn | Power amplifying radiator (par) |
JP6919753B1 (en) | 2020-08-21 | 2021-08-18 | ウシオ電機株式会社 | Ultraviolet irradiation device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4038577A (en) * | 1969-04-28 | 1977-07-26 | Owens-Illinois, Inc. | Gas discharge display device having offset electrodes |
US4266167A (en) * | 1979-11-09 | 1981-05-05 | Gte Laboratories Incorporated | Compact fluorescent light source and method of excitation thereof |
JPS61185857A (en) * | 1985-02-13 | 1986-08-19 | Matsushita Electric Works Ltd | Electrodeless discharge lamp |
JPS62208540A (en) * | 1986-03-07 | 1987-09-12 | Matsushita Electric Works Ltd | Non-electrode discharge lamp |
JPS6313257A (en) * | 1986-07-03 | 1988-01-20 | Canon Inc | Lighting equipment |
CH670171A5 (en) * | 1986-07-22 | 1989-05-12 | Bbc Brown Boveri & Cie | |
JP2509621B2 (en) * | 1987-05-26 | 1996-06-26 | ファナック株式会社 | Laser oscillator |
JPS63314753A (en) * | 1987-06-17 | 1988-12-22 | Matsushita Electric Works Ltd | Electrodeless discharge lamp |
CH675178A5 (en) * | 1987-10-23 | 1990-08-31 | Bbc Brown Boveri & Cie |
-
1989
- 1989-03-29 CH CH1140/89A patent/CH677557A5/de not_active IP Right Cessation
-
1990
- 1990-03-16 US US07/494,424 patent/US5049777A/en not_active Expired - Fee Related
- 1990-03-23 AT AT90105531T patent/ATE106606T1/en not_active IP Right Cessation
- 1990-03-23 DE DE59005866T patent/DE59005866D1/en not_active Expired - Fee Related
- 1990-03-23 EP EP90105531A patent/EP0389980B1/en not_active Expired - Lifetime
- 1990-03-29 JP JP2079052A patent/JPH02288061A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JPH02288061A (en) | 1990-11-28 |
ATE106606T1 (en) | 1994-06-15 |
CH677557A5 (en) | 1991-05-31 |
US5049777A (en) | 1991-09-17 |
EP0389980A1 (en) | 1990-10-03 |
DE59005866D1 (en) | 1994-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0389980B1 (en) | High power radiation device | |
EP0385205B1 (en) | High-power radiation device | |
EP0509110B1 (en) | Irradation device | |
EP0482230B1 (en) | High power radiation device | |
DE4140497C2 (en) | High-power radiation | |
EP0363832B1 (en) | Radiating device having a high output | |
DE4222130C2 (en) | High-power radiation | |
EP0324953B1 (en) | High power radiation source | |
EP0371304B1 (en) | High-power radiation device | |
DE19636965B4 (en) | Electrical radiation source and radiation system with this radiation source | |
EP0458140A1 (en) | High power radiator | |
EP0254111B1 (en) | Ultraviolett radiation device | |
EP0449018A2 (en) | Irradiation device | |
EP0839436B1 (en) | Method for operating a lighting system and suitable lighting system therefor | |
EP0517929B1 (en) | Irradiation device with a high power radiator | |
EP0312732A1 (en) | High power radiator | |
EP0489184B1 (en) | High power radiation device | |
DE4010809A1 (en) | High power esp. ultraviolet emitter - with electrode arrangement providing high efficiency | |
EP0122597A2 (en) | Transversely excited gas laser | |
DE4022279A1 (en) | Irradiating non-electrolytes from gas - filled discharge chamber by applying high potential electric source to electrodes using cylindrical electrode connected by dielectric layer | |
DE4235743A1 (en) | High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically | |
DE4203345A1 (en) | High performance emitter, esp. for UV light - comprises discharge chamber filled with gas, and metallic outer electrodes coated with UV-transparent layer | |
DE2953233T1 (en) | PRE-IONISING ARRANGEMENT FOR ELECTRICAL DISCHARGE APPARATUS SUCH AS A GAS LASER | |
CH678128A5 (en) | High power ultraviolet lamp with particle density control - heats and cools mercury reservoir connected to discharge space above dielectric covered wire counter electrode | |
DE9218324U1 (en) | Gas discharge laser with pre-ionization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19910316 |
|
17Q | First examination report despatched |
Effective date: 19930528 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HERAEUS NOBLELIGHT GMBH |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 106606 Country of ref document: AT Date of ref document: 19940615 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59005866 Country of ref document: DE Date of ref document: 19940707 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940610 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020222 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020225 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020228 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20020307 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020309 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020315 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20020322 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030323 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030331 |
|
BERE | Be: lapsed |
Owner name: *HERAEUS NOBLELIGHT G.M.B.H. Effective date: 20030331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031001 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030323 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031127 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20031001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050323 |