[go: up one dir, main page]

EP0280886A1 - Process for the production of decorative coatings on metals - Google Patents

Process for the production of decorative coatings on metals Download PDF

Info

Publication number
EP0280886A1
EP0280886A1 EP19880101400 EP88101400A EP0280886A1 EP 0280886 A1 EP0280886 A1 EP 0280886A1 EP 19880101400 EP19880101400 EP 19880101400 EP 88101400 A EP88101400 A EP 88101400A EP 0280886 A1 EP0280886 A1 EP 0280886A1
Authority
EP
European Patent Office
Prior art keywords
pulse
decorative
metals
von
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19880101400
Other languages
German (de)
French (fr)
Other versions
EP0280886B1 (en
Inventor
Waldemar Dr. Rer. Nat. Krysmann
Peter Dr. Sc. Nat. Kurze
Maria Chem -Ing. Berger
Klaus Dr.Rer.Nat. Rabending
Joachim Dipl.-Chem. Schreckenbach
Thomas Dipl.-Ing. Schwarz
Karl-Heinz Dipl.-Ing. Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aalberts Surface Technologies GmbH Kerpen
Original Assignee
Ahc-Oberflachentechnik Friebe & Reininghaus GmbH
Technische Hochschule Karl-Marx-Stadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25748112&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0280886(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DD29962087A external-priority patent/DD257275A1/en
Priority claimed from DD29961887A external-priority patent/DD257274B1/en
Application filed by Ahc-Oberflachentechnik Friebe & Reininghaus GmbH, Technische Hochschule Karl-Marx-Stadt filed Critical Ahc-Oberflachentechnik Friebe & Reininghaus GmbH
Priority to AT88101400T priority Critical patent/ATE76117T1/en
Publication of EP0280886A1 publication Critical patent/EP0280886A1/en
Application granted granted Critical
Publication of EP0280886B1 publication Critical patent/EP0280886B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge

Definitions

  • the invention relates to a process for the production of decorative coatings on metals, in particular on aluminum, titanium, niobium, zirconium, tantalum and their alloys, preferably for the jewelry industry, the arts and crafts, equipment manufacturing, cladding and coins, metal plastics and badges.
  • this carrier layer is produced by anodizing using direct or alternating current in electrolytes containing sulfur, phosphorus, maleic or salicylic oxalate. Such surfaces always show a "cold" shine. Also is in this relatively expensive multi-stage process a homogeneous surface decoration on, for example, plastics, badges, hollow bodies, delicate structures, brooches etc. not, or only realizable with high technical effort. Furthermore, transparent layers of aluminum oxide produced by anodic oxidation of aluminum are known, which can then be colored with various dyes (US 3031387). Since these layers are transparent, the metallic gloss of the surface is always retained. The organic compounds used to color the layers are also influenced by environmental influences such as radiation, temperature and air humidity and change their color.
  • DD-WP 204845 describes the use of electronic parts as jewelry.
  • DE-OS 1446289 presents a special enamelling process for decorative coatings on jewelry. Colored, anodized aluminum parts are also used as decorative elements.
  • the invention is based on the object of developing a process by means of which aluminum, titanium, niobium, zirconium, tantalum and their alloys on optically shaped surfaces of the metals are optically attractive, decorative-acting matt, white, black or colored layers on all sides with high dimensional accuracy, Adhesion strength and color homogeneity are generated.
  • the object is achieved in that aluminum, titanium, tantalum, zirconium, niobium or their alloys in an aqueous electrolyte on the barrier layer-forming metals by means of an electrochemical and plasma chemical reaction determined by pulse voltage in: - Voltage peaks from 250 V to 750 V - Pulse times from 20 ⁇ s to 2 ms - Pulse frequencies from 35 Hz to 300 Hz - Pulse currents from 10 A to 120 A. - Electrolyte temperatures from 318 K to 360 K. and - Average current densities from 0.1 A cm ⁇ 2 to 1 A cm ⁇ 2 matt, contour-true decorative layers with a homogeneous thickness of 3 ⁇ m to 30 ⁇ m are formed.
  • the voltage values which are assigned to the arc discharge area in the current-voltage characteristic of the electrolyte-metal pairing and usually lead to the destruction of the layer, but result in a homogeneous layer formation on all sides in pulse operation up to 300 Hz. It has been shown that the partial anode area is greatly minimized by the pulse operation, in particular with a needle pulse character, and the energy input into the base is localized in such a way that the individual discharge focal points overlap strongly and lead to a uniform layer thickness with only a small roughness.
  • the pulse operation according to the invention also enables colored layers of high quality and depth of color to be formed even in electrolytes with a high concentration (up to 20%) of transition metal ions.
  • copper ions in the electrolyte at light concentrations of 1% to 20% produce light yellow to ocher, manganese ions pink to umber-colored, chrome ions green to black, iron ions light gray to deep black, molybdenum ions light gray to dark gray layers.
  • the layers produced by the process according to the invention have an average surface roughness of 4 ⁇ m to 20 ⁇ m and consist of two different layer areas.
  • the layer area adjacent to the metal surface is transparent or white and has a thickness of 0.1 ⁇ m to 1.5 ⁇ m.
  • the cover layer area following this transparent or white layer area is white, black, colored, matt and opaque and has a thickness of 3 ⁇ m to 25 ⁇ m. With a maximum achievable layer thickness of 30 ⁇ m according to the invention, a transition zone occurs between the transparent or white layer region and the top layer region.
  • the transparent or white layer area contains no coloring transition metal ions and acts as an adhesion promoter to the top layer area.
  • the lattice parameter deviations of the metal from the transparent layer area are small because of the field crystallization effect, so that no mechanical stresses occur at the metal-metal oxide interface areas of transparent or white layer areas. Since the transparent or white layer area and the top layer area also consist of the same base metal oxide, a high bond stability between the two oxide layers is ensured despite the lattice expansion of the oxides in the top layer area, also due to built-in transition metal ions. The color in the top layer area is due to the incorporation of transition metal ions. With these inorganic color bodies there is a risk of bleaching not given. Lightfast spinels or mixed oxides are formed.
  • a multiple anodic treatment according to the invention in different electrolytes can form several differently colored cover layer regions, so that homogeneous and / or heterogeneous color distributions arise.
  • the matt appearance of these decorative covers is characterized by their very low gloss. Gloss measurements according to RICHTER showed gloss numbers from 0.5 to 1.5 regardless of the angle of reflection. That means a completely matt surface.
  • Different concentrations of the transition metal ions in the top layer area, the mass fraction of which ranges up to 20% gave color shades combined with a homogeneous or marbled or speckled or flamed or mosaic-like appearance. All or part of the metal surfaces can be provided with the anodic oxide layer.
  • Jewelry articles that are treated with the method according to the invention are notable for good body tolerance because the chemically indifferent oxide layers prevent direct contact between metal and skin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Adornments (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

Das Verfahren zur Herstellung dekorativer Ueberzuege auf Metallen findet vorwiegend Anwendung in der Schmuckindustrie, im Kunstgewerbe und Geraetebau. Die erfinderische Loesung besteht darin, matte konturentreue dekorative Schichten mit einer homogenen Dicke von 3 µm bis 30 µm mittels einer elektrochemischen und plasmachemischen Reaktion im Impulsbetrieb in waessrigen Elektrolyten bei Spannungsspitzen von 250 V bis 750 V, Impulszeiten von 20 µs bis 2 ms, Impulsfrequenzen von 35 Hz bis 300 Hz, Impulsstroemen von 20 A bis 120 A, Elektrolyttemperaturen zwischen 318 K und 360 K und mittleren Stromdichten von 0,1 A cm bis 1 A cm abzuschneiden.The process for the production of decorative coatings on metals is mainly used in the jewelry industry, in the arts and crafts and in device construction. The inventive solution consists in matt, contour-true decorative layers with a homogeneous thickness of 3 µm to 30 µm by means of an electrochemical and plasma-chemical reaction in pulse operation in aqueous electrolytes with voltage peaks of 250 V to 750 V, pulse times of 20 µs to 2 ms, pulse frequencies of Cut off 35 Hz to 300 Hz, pulse currents from 20 A to 120 A, electrolyte temperatures between 318 K and 360 K and average current densities from 0.1 A cm to 1 A cm.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung dekorati­ver Ueberzuege auf Metallen, insbesondere auf Aluminium, Tita­nium, Niobium, Zirkonium, Tantal und deren Legierungen, vor­zugsweise fuer die Schmuckindustrie, das Kunstgewerbe, den Geraetebau, Verkleidungen sowie Muenzen, Metallplastiken und Plaketten.The invention relates to a process for the production of decorative coatings on metals, in particular on aluminum, titanium, niobium, zirconium, tantalum and their alloys, preferably for the jewelry industry, the arts and crafts, equipment manufacturing, cladding and coins, metal plastics and badges.

Um auf relativ billigen, leicht be- und verarbeitbaren Metallen nichtglaenzende, matte Oberflaechen zu erzielen, werden gegenwaertig spezielle Mehrstufenverfahren angewandt, die die Oberflaeche aufrauhen, strukturieren, beschichten, einfaerben und versiegeln.
Auf den konventionellen Metallen der Schmuck- bzw. Bijouterieindustrie z.B. Silber, Gold, Platin, sind derartig matte Oberflaechen direkt nicht und indirekt nur durch organische bzw. anorganische Deckschichten zu erreichen. Sie mindern aber optisch den Wert des edlen und teuren Grundmaterials. Bekannte Verfahren zur Herstellung dekorativer, auch farbiger Metalloberflaechen sind der Kalcolor-Prozess bzw. das Farbanodisieren (US-3631384). Dabei wird die Farbe direkt durch den Elektrolyten erzeugt, oder es werden zur Farbgebung organische Farbstoffe bzw. anorganische Farbpigmente in die transparente Traegerschicht nachfolgend eingelagert. Diese Traegerschicht wird, wie z.B. beim Aluminium, durch Eloxieren mittels Gleich- oder Wechselstrom in schwefel-, phosphor-, malein-, salicyl-oxalsauren Elektrolyten hergestellt. Derartige Oberflaechen zeigen aber immer einen "kalten" Glanz. Ausserdem ist bei diesen relativ teuren Mehrstufenprozesses eine homogenen Oberflaechendekorierung an z.B. Plastiken, Plaketten, Hohlkoerpern, grazilen Gebilden, Broschen uzw. nicht, oder nur mit hohem technischen Aufwand realisierbar. Weiterhin sind durch anodische Oxidation von Aluminium hergestellte transparente Schichten aus Aluminiumoxid bekannt, die anschliessend mit verschiedenen Farbstoffen eingefaerbt werden koennen (US 3031387). Da diese Schichten transparent sind, bleibt immer der metallische Glanz der Oberflaeche erhalten. Die zur Faerbung der Schichten verwendeten organischen Verbindungen werden ausserdem durch Umwelteinfluesse wie Strahlung, Temperatur und Luftfeuchtigkeit beeinflusst und veraendern ihren Farbton.
Auch in der Schmuckindustrie sind verschiedenartige dekorative Metalloberflaechen bekannt. So wird beispielsweise im DD-WP 204845 der Einsatz von Elektronikteilen als Schmuck beschrieben. In DE-OS 1446289 wird ein spezielles Emaillierverfahren fuer dekorative Ueberzuege auf Schmuck vorgestellt. Auch eingefaerbte, eloxierte Aluminiumteile werden als Schmuckelemente verwendet.
In order to achieve non-glossy, matt surfaces on relatively cheap, easily machinable and processable metals, special multi-stage processes are currently used which roughen, structure, coat, color and seal the surface.
On the conventional metals of the jewelry and jewelry industry, for example silver, gold, platinum, such matt surfaces cannot be achieved directly and only indirectly through organic or inorganic cover layers. However, they visually reduce the value of the noble and expensive base material. Known processes for the production of decorative, also colored metal surfaces are the Kalcolor process or the color anodizing (US-3631384). The color is generated directly by the electrolyte, or organic dyes or inorganic color pigments are subsequently embedded in the transparent carrier layer for coloring. As with aluminum, this carrier layer is produced by anodizing using direct or alternating current in electrolytes containing sulfur, phosphorus, maleic or salicylic oxalate. Such surfaces always show a "cold" shine. Also is in this relatively expensive multi-stage process a homogeneous surface decoration on, for example, plastics, badges, hollow bodies, delicate structures, brooches etc. not, or only realizable with high technical effort. Furthermore, transparent layers of aluminum oxide produced by anodic oxidation of aluminum are known, which can then be colored with various dyes (US 3031387). Since these layers are transparent, the metallic gloss of the surface is always retained. The organic compounds used to color the layers are also influenced by environmental influences such as radiation, temperature and air humidity and change their color.
Various decorative metal surfaces are also known in the jewelry industry. For example, DD-WP 204845 describes the use of electronic parts as jewelry. DE-OS 1446289 presents a special enamelling process for decorative coatings on jewelry. Colored, anodized aluminum parts are also used as decorative elements.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu entwickeln, durch welches auf beliebig geformten Oberflaechen der Metalle Aluminium, Titanium, Niobium, Zirkonium, Tantal und deren Legierungen optisch attraktive, dekorativ wirkende matte, weisse, schwarze oder farbige Schichten allseitig mit hoher Masshaltigkeit, Haftfestigkeit und Farbhomogenitaet er­zeugt werden.The invention is based on the object of developing a process by means of which aluminum, titanium, niobium, zirconium, tantalum and their alloys on optically shaped surfaces of the metals are optically attractive, decorative-acting matt, white, black or colored layers on all sides with high dimensional accuracy, Adhesion strength and color homogeneity are generated.

Erfindungsgemaess wird die Aufgabe dadurch geloest, dass in einem waessrigen Elektrolyten auf den sperrschichtbildenden Metallen Aluminium, Titanium, Tantal, Zirkonium, Niobium oder deren Legierungen mittels einer impulsspannungsbestimmten elektrochemischen und plasmachemischen Reaktion bei:
- Spannungsspitzen von 250 V bis 750 V
- Impulszeiten von 20 µs bis 2 ms
- Impulsfrequenzen von 35 Hz bis 300 Hz
- Impulsstroemen von 10 A bis 120 A
- Elektrolyttemperaturen von 318 K bis 360 K
und
- mittleren Stromdichten von 0,1 A cm⁻² bis 1 A cm⁻²
matte, konturentreue dekorative Schichten mit einer homogenen Dicke von 3 µm bis 30 µm gebildet werden.
According to the invention, the object is achieved in that aluminum, titanium, tantalum, zirconium, niobium or their alloys in an aqueous electrolyte on the barrier layer-forming metals by means of an electrochemical and plasma chemical reaction determined by pulse voltage in:
- Voltage peaks from 250 V to 750 V
- Pulse times from 20 µs to 2 ms
- Pulse frequencies from 35 Hz to 300 Hz
- Pulse currents from 10 A to 120 A.
- Electrolyte temperatures from 318 K to 360 K.
and
- Average current densities from 0.1 A cm⁻² to 1 A cm⁻²
matt, contour-true decorative layers with a homogeneous thickness of 3 µm to 30 µm are formed.

Es wurde gefunden, dass die Spannungswerte, die in der Strom-­Spannungs-Charakteristik der Elektrolyt-Metall-Paarung dem Bogenentladungsbereich zugeordnet werden und ueblicher Weise zur Schichtzerstoerung fuehren, aber bei Impulsbetrieb bis 300 Hz eine allseitig homogene Schichtausbildung ergeben.
Es hat sich gezeigt, dass durch den Impulsbetrieb insbesondere mit Nadelimpulscharakter der Partialanodenbereich stark minimiert und der Energieeintrag in die Unterlage so lokalisiert wird, dass die Einzelentladungsbrennflecke sich stark ueberlappen und zu einer gleichmaessigen Schichtdicke mit nur geringer Rauheit fuehren. Der erfindungsgemaesse Impulsbetrieb ermoeglicht ausserdem, dass auch in Elektrolyten mit hoher Konzentration (bis 20 %) an Uebergangsmetallionen farbige Schichten von hoher Qualitaet und Farbtiefe gebildet werden.
Weiterhin wurde gefunden, dass eine Temperatur von 318 K bis 360 K der Elektrolyten mit farbgebenden Zusaetzen die Farbausbildung der Schicht foerdert und mittlere Stromdichten von 0,1 A bis 1,0 A cm⁻² zu besonders matten Oberflaechen fuehrte. Ueberraschend hat sich auch gezeigt, dass z.B. in einem Kobaltionen enthaltenden Elektrolyten bei Impulsspan­nungsbetrieb auf Aluminium nicht die bekannten schwarzgrauen Abscheidungen von Kobaltoxidverbindungen auf der Metalloberflaeche auftreten, sondern ein optisch und mechanisch hochwertiger Ueberzug aus mattblauem Kobalt-Aluminium-Spinell entsteht.
Auf diese Weise erzeugen Kupferionen in dem Elektrolyten bei gleichen Konzentrationen von 1 % bis 20 % hellgelbe bis ockerfarbene, Manganionen rosa- bis umbrafarbene, Chromionen gruene bis schwarze, Eisenionen hellgraue bis tiefschwarze, Molybdaenionen hellgraue bis dunkelgraue Schichten.
It was found that the voltage values, which are assigned to the arc discharge area in the current-voltage characteristic of the electrolyte-metal pairing and usually lead to the destruction of the layer, but result in a homogeneous layer formation on all sides in pulse operation up to 300 Hz.
It has been shown that the partial anode area is greatly minimized by the pulse operation, in particular with a needle pulse character, and the energy input into the base is localized in such a way that the individual discharge focal points overlap strongly and lead to a uniform layer thickness with only a small roughness. The pulse operation according to the invention also enables colored layers of high quality and depth of color to be formed even in electrolytes with a high concentration (up to 20%) of transition metal ions.
Furthermore, it was found that a temperature of 318 K to 360 K of the electrolytes with coloring additives promoted the color formation of the layer and average current densities of 0.1 A to 1.0 A cm⁻² led to particularly matt surfaces. Surprisingly, it has also been shown that, for example, in an electrolyte containing cobalt ions, the known black-gray deposits of cobalt oxide compounds on the metal surface do not occur when the pulse voltage is operated on aluminum, but rather optically and mechanically high quality cover made of matt blue cobalt aluminum spinel.
In this way, copper ions in the electrolyte at light concentrations of 1% to 20% produce light yellow to ocher, manganese ions pink to umber-colored, chrome ions green to black, iron ions light gray to deep black, molybdenum ions light gray to dark gray layers.

Die nach dem erfindungsgemaessen Verfahren erzeugten Schichten weisen eine mittlere Oberflaechenrauheit von 4 µm bis 20 µm auf und bestehen aus zwei unterschiedlichen Schichtbereichen. Der der Metalloberflaeche angrenzende Schichtbereich ist transparent bzw. weiss und besitzt eine Dicke von 0,1 µm bis 1,5 µm. Der sich diesem transparenten bzw. weissen Schichtbereich anschliessende Deckschichtbereich ist weiss, schwarz, farbig, matt und opak und weist eine Dicke von 3 µm bis 25 µm auf. Bei einer erfindungsgemaess maximal erreichbaren Schichtdicke von 30 µm tritt zwischen trans­parentem bzw. weissem Schichtbereich und dem Deckschichtbereich eine Uebergangszone auf.
Der transparente bzw. weisse Schichtbereich enthaelt keine farbgebenden Uebergangsmetallionen und wirkt als Haftvermittler zum Deckschichtbereich.
Die Gitterparameterabweichungen des Metalls zum transparenten Schichtbereich sind wegen des Feldkristallisationseffektes gering, so dass keine mechanischen Spannungen an den Grenzflaechen Metall-Metalloxid transparenter bzw. weisser Schichtbereiche auftreten. Da ausserdem der transparente bzw. weisse Schichtbereich und der Deckschichtbereich aus dem gleichen Grundmetalloxid bestehen, ist trotz der Gitteraufweitung der Oxide im Deckschichtbereich, auch bedingt durch eingebaute Uebergangsmetallionen, eine hohe Verbundstabilitaet zwischen beiden Oxidschichten gewaehrleistet. Die Farbigkeit im Deckschichtbereich ist durch die Einlagerung von Uebergangsmetallionen bedingt. Bei diesen anorganischen Farbkoerpern ist die Gefahr des Ausbleichens nicht gegeben. Es entstehen lichtechte Spinelle oder Mischoxide. Durch eine erfindungsgemaesse, mehrfache anodische Behandlung in verschiedenen Elektrolyten koennen mehrere verschiedenfarbige Deckschichtbereiche gebildet werden, so dass homogene und/oder heterogene Farbverteilungen entstehen. Das matte Aussehen dieser dekorativen Ueberzuege wird durch deren sehr geringen Glanz charakterisiert. Glanzmessungen nach RICHTER ergaben unabhaengig vom Reflexionswinkel Glanzzahlen von 0,5 bis 1,5. Das bedeutet eine voellig matte Oberflaeche. Unterschiedliche Konzentrationen der Uebergangsmetallionen im Deckschichtbereich, deren Masseanteil sich bis 20 % bewegt, ergaben Farbschattierungen verbunden mit einem homogenen oder marmorierten oder gesprenkelten oder geflammten oder mosaikartigen Aussehen. Die Metalloberflaechen koennen ganz oder teilweise mit der anodischen Oxidschicht versehen sein. Durch Kombination von Oberflaechenbezirken mit verschieden­farbigen und transparenten und/oder interferenzfarbenen und/­oder anderen konventionellen anodischen Ueberzuegen ergeben sich viele Gestaltungsvarianten.
The layers produced by the process according to the invention have an average surface roughness of 4 μm to 20 μm and consist of two different layer areas. The layer area adjacent to the metal surface is transparent or white and has a thickness of 0.1 µm to 1.5 µm. The cover layer area following this transparent or white layer area is white, black, colored, matt and opaque and has a thickness of 3 µm to 25 µm. With a maximum achievable layer thickness of 30 μm according to the invention, a transition zone occurs between the transparent or white layer region and the top layer region.
The transparent or white layer area contains no coloring transition metal ions and acts as an adhesion promoter to the top layer area.
The lattice parameter deviations of the metal from the transparent layer area are small because of the field crystallization effect, so that no mechanical stresses occur at the metal-metal oxide interface areas of transparent or white layer areas. Since the transparent or white layer area and the top layer area also consist of the same base metal oxide, a high bond stability between the two oxide layers is ensured despite the lattice expansion of the oxides in the top layer area, also due to built-in transition metal ions. The color in the top layer area is due to the incorporation of transition metal ions. With these inorganic color bodies there is a risk of bleaching not given. Lightfast spinels or mixed oxides are formed. A multiple anodic treatment according to the invention in different electrolytes can form several differently colored cover layer regions, so that homogeneous and / or heterogeneous color distributions arise. The matt appearance of these decorative covers is characterized by their very low gloss. Gloss measurements according to RICHTER showed gloss numbers from 0.5 to 1.5 regardless of the angle of reflection. That means a completely matt surface. Different concentrations of the transition metal ions in the top layer area, the mass fraction of which ranges up to 20%, gave color shades combined with a homogeneous or marbled or speckled or flamed or mosaic-like appearance. All or part of the metal surfaces can be provided with the anodic oxide layer. By combining surface areas with different colored and transparent and / or interference colored and / or other conventional anodic coatings there are many design variants.

Schmuckartikel, die mit dem erfindungsgemaessen Verfahren behandelt sind, zeichnen sich durch eine gute Koerperver­traeglichkeit aus, weil die chemisch indifferenten Oxidschichten einen direkten Kontakt zwischen Metall und Haut verhindern.Jewelry articles that are treated with the method according to the invention are notable for good body tolerance because the chemically indifferent oxide layers prevent direct contact between metal and skin.

Die Erfindung soll nachstehend an 5 Ausfuehrungsbeispielen naeher erlaeutert werden.

  • 1. Manschettenknoepfe aus Titan sind in einem Elektrolyten welcher 0,1 mol/l Na ₂ B₄ O₇ und 0,5 mol/l KH₂ PO₄ enthaelt als Anode geschaltet und bei einer Spannung von 60 V mit einer intensiv roten arteigenen Oxidschicht versehen. Die Knoepfe werden je zur Haelfte mit einer Schutzvorrichtung abgedeckt und in einem waessrigen Elektrolyten der Zusammensetzung 0,5 mol/l NaF, 0,3 mol/l NaH₂ PO₄, 0,1 mol/l Na₂ B₄O₇ und 0,5 mol/l K₄[Fe(CN)₆] bei einem pH-Wert von 8 bei einer Impulsstromdichte von 0,1 A/cm² und einer Zeit von 60 Sekunden anodisch oxidiert. Es entsteht eine Kombination von einer tiefroten interferenzfarbenen arteigenen Schicht mit einer tiefschwarzen matten oxidkeramischen Schicht.
  • 2. Eine Nachbildung einer antiken Gemme (Portraet) aus einer Aluminiumlegierung ist in einem waessrigen Elektrolyten der Konzentration 0,5 mol/l NaF, 0,5 mol/l NaH₂ PO₄ und 0,1 mol/l Na ₂ B₄ O₇ bei einer Impulsstromdichte von 0,2 A/cm² und einer Impulsspannung von 110 V anodisch oxidiert worden. Auf dem Schmuckgegenstand entsteht eine weisse, matte, porzellanartige Schicht mit einem elfenbeinartigen Aussehen. Die Oberflaechenrauheit betraegt 7,6 µm und die mittlere Schichtdicke 10,1 µm. Das Portraet ist konturengetreu wiedergegeben.
  • 3. Eine Aluminiumbrosche mit 12 cm² Oberflaeche und den Initialen C.D. wird in einem waessrigen Elektrolyten von 338 K, der 2 %ig an NaF, 7 %ig an NaH ₂ PO₄ , 4 %ig an Na₂ B₄ O₇ , 0,5 %ig an NH ₄ F und 1 %ig an ammoniakali­schem Co(OH)₂ ist, als Anode geschaltet und mittels Impulsspannung bei Spannungsspitzen von 500 V, einer Impulszeit von 1 ms und einer Impulsfrequenz von 100 Hz beschichtet. Der maximale Impulsstrom wurde mit 50 A gemessen. Es entsteht eine mattblaue, nichtglaenzende Oberflaeche von hohem dekrativem Wert. Die konturentreue Wiedergabe der Initialen ist mit einer Abweichung von nur 8 µm nach der Beschichtung gewaehrleistet.
  • 4. Eine Frontplatte eines elektronischen Verstaerkers von 400 cm² Oberflaeche aus Aluminium Al 99,5 wird in einem waessrigen Elektrolyten, der 4%ig an NaF, 6 %ig an NaCO₃ und 4 %ig an Na₂ B₄ O₇ ist, anodisch mit Impulsspannung behandelt. Dabei betrugen die Impulsspannungsspitzen 410 V, bei Impulszeiten von 0,5 ms, einem Impulsstrom von 35 A und einer Impulsfrequenz von 100 Hz. Nach 10 min Behandlungszeit ist die Frontplatte mit einer weissen, matten, porzellanartig aussehenden, dekorativ wirkenden Schicht von 9 µm Staerke allseitig homogen ueberzogen.
  • 5. Ein Bilderrahmen mit Mustergravur und 840 cm² Oberflaeche wird vorderseitig nach Maskierung der Rueckseite dekorativ in einem Elektrolyten, der 2 % KMnO₄ , 6 % NaF, 7 % NaH₂ PO₄ , 3 % NH ₄ F und 4 % Na ₂ B₄ O₇ enthaelt, bei Impulsspannungsspitzen von 550 V, Impulsstromspitzen von 58 A, Impulszeiten von 1,2 ms und Impulsfrequenzen von 100 Hz beschichtet. Die gebildete hell- bis rosabraune Schicht von 7 µm Staerke ist glanzlos, hat keramikartiges Aussehen und ist von besonderer dekorativer Ausstrahlung. Die Mustergravur wird konturengetreu mit einer gleichmaessigen Veraenderung von nur 12 µm nach der Beschichtung wiedergegeben. Die mittlere Rauheit betraegt 8 µm.
The invention will be explained in more detail below using 5 exemplary embodiments.
  • 1. Titanium cufflinks are in an electrolyte which contains 0.1 mol / l Na ₂ B₄ O₇ and 0.5 mol / l KH₂ PO₄ as an anode and at a voltage of 60 V with an intensely red species-specific oxide layer. Half of the buttons are covered with a protective device and in an aqueous electrolyte with the composition 0.5 mol / l NaF, 0.3 mol / l NaH₂ PO₄, 0.1 mol / l Na₂ B₄O₇ and 0.5 mol / l K₄ [Fe (CN) ₆] at a pH of 8 with an impulse current density of 0.1 A / cm² and a time of 60 seconds oxidized. The result is a combination of a deep red, interference-colored, native layer with a deep black matt oxide ceramic layer.
  • 2. A replica of an antique gem (portrait) made of an aluminum alloy is in an aqueous electrolyte with a concentration of 0.5 mol / l NaF, 0.5 mol / l NaH₂ PO₄ and 0.1 mol / l Na ₂ B₄ O₇ at a pulse current density of 0.2 A / cm² and a pulse voltage of 110 V anodized. A white, matt, porcelain-like layer with an ivory-like appearance is created on the jewelry item. The surface roughness is 7.6 µm and the average layer thickness is 10.1 µm. The portrait is reproduced true to the contours.
  • 3. An aluminum brooch with 12 cm² surface and the initials CD is in an aqueous electrolyte of 338 K, the 2% NaF, 7% NaH ₂ PO₄, 4% Na₂ B₄ O₇, 0.5% NH ₄ F and 1% ammoniacal Co (OH) ₂ is connected as an anode and coated by means of pulse voltage at voltage peaks of 500 V, a pulse time of 1 ms and a pulse frequency of 100 Hz. The maximum pulse current was measured at 50 A. The result is a matt blue, non-glossy surface with a high decrative value. The true-to-contour reproduction of the initials is guaranteed with a deviation of only 8 µm after coating.
  • 4. A front plate of an electronic amplifier of 400 cm² surface made of aluminum Al 99.5 is treated anodically with pulse voltage in an aqueous electrolyte which is 4% NaF, 6% NaCO₃ and 4% Na₂ B₄ O₇. The pulse voltage peaks were 410 V, with pulse times of 0.5 ms, a pulse current of 35 A and a pulse frequency of 100 Hz. After 10 minutes of treatment, the front panel is homogeneously coated on all sides with a white, matt, porcelain-looking, decorative-looking layer of 9 µm thickness.
  • 5. A picture frame with pattern engraving and 840 cm² surface is decorative on the front after masking the back in an electrolyte containing 2% KMnO₄, 6% NaF, 7% NaH₂ PO%, 3% NH ₄ F and 4% Na ₂ B bei O₇ Pulse voltage peaks of 550 V, pulse current peaks of 58 A, pulse times of 1.2 ms and pulse frequencies of 100 Hz coated. The light to pinkish brown layer of 7 µm thickness is lackluster, has a ceramic-like appearance and has a special decorative charisma. The pattern engraving is reproduced true to the contours with an even change of only 12 µm after coating. The average roughness is 8 µm.

Claims (5)

1. Verfahren zur Herstellung dekorativer Ueberzuege auf Metallen in einem waessrigen Elektrolyten unter Verwendung der sperrschichtbildenden Metalle Aluminium, Titanium, Tantal, Zirkonium, Niobium oder deren Legierungen, dadurch gekennzeichnet, dass mittels einer impulsspannungsbe­stimmten elektrochemischen und plasmachemischen Reaktion bei :
- Spannungsspitzen von 250 V bis 750 V
- Impulszeiten von 20 µs bis 2 ms
- Impulsfrequenzen von 35 Hz bis 300 Hz
- Impulsstroemen von 10 A bis 120 A
- Elektrolyttemperaturen von 318 K bis 360 K
und
- mittleren Stromdichten von 0,1 A cm ⁻² bis 1 A cm ⁻² matte konturentreue dekorative weisse Schichten mit einer homogenen Dicke von 3 µm bis 30 µm gebildet werden.
1. A process for producing decorative coatings on metals in an aqueous electrolyte using the barrier layer-forming metals aluminum, titanium, tantalum, zirconium, niobium or their alloys, characterized in that by means of an electrochemical and plasma chemical reaction determined by pulse voltage in:
- Voltage peaks from 250 V to 750 V
- Pulse times from 20 µs to 2 ms
- Pulse frequencies from 35 Hz to 300 Hz
- Pulse currents from 10 A to 120 A.
- Electrolyte temperatures from 318 K to 360 K.
and
- Average current densities of 0.1 A cm ² to 1 A cm ²², true-to-contour, decorative white layers with a homogeneous thickness of 3 µm to 30 µm are formed.
2. Verfahren nach Patentanspruch 1 dadurch gekennzeichnet, dass durch uebergangsmetallionenhaltige Zusaetze mit einer Konzentration von 1 % bis 20 % in waessrigen Elektrolyten farbige oder schwarze matte Schichten erzeugt werden.2. The method according to claim 1, characterized in that colored or black matt layers are produced by additives containing transition metals with a concentration of 1% to 20% in aqueous electrolytes. 3. Verfahren nach Patentanspruch 1 und 2 dadurch gekennzeichnet, dass eine mehrfache Verfahrensanwendung mit verschiedenen Elektrolyten verschiedenfarbige homogene und heterogene Farbverteilungen erzeugt.3. The method according to claim 1 and 2, characterized in that a multiple process application with different electrolytes produces different colored homogeneous and heterogeneous color distributions. 4. Verfahren nach Patentanspruch 1 bis 3, dadurch gekennzeichnet, dass als Unterlage Schmuckgegenstaende oder Gegenstaende mit Gravuren verwendet werden.4. The method according to claim 1 to 3, characterized in that decorative objects or objects with engravings are used as the base. 5. Verfahren nach Patentanspruch 1 bis 3, dadurch gekennzeichnet, dass als Unterlage ebene grossflaechige Elemente verwendet werden.5. The method according to claim 1 to 3, characterized in that flat large-area elements are used as a base.
EP88101400A 1987-02-02 1988-02-01 Process for the production of decorative coatings on metals Expired - Lifetime EP0280886B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88101400T ATE76117T1 (en) 1987-02-02 1988-02-01 PROCESS FOR PRODUCTION OF DECORATIVE COATINGS ON METALS.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DD29962087A DD257275A1 (en) 1987-02-02 1987-02-02 DECORATIVE TRANSFER TO METALS
DD299618 1987-02-02
DD29961887A DD257274B1 (en) 1987-02-02 1987-02-02 METHOD FOR PRODUCING DECORATIVE SURFACES ON METALS
DD299620 1987-02-02

Publications (2)

Publication Number Publication Date
EP0280886A1 true EP0280886A1 (en) 1988-09-07
EP0280886B1 EP0280886B1 (en) 1992-05-13

Family

ID=25748112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88101400A Expired - Lifetime EP0280886B1 (en) 1987-02-02 1988-02-01 Process for the production of decorative coatings on metals

Country Status (3)

Country Link
US (1) US4869789A (en)
EP (1) EP0280886B1 (en)
DE (1) DE3870925D1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4104847A1 (en) * 1991-02-16 1992-08-20 Friebe & Reininghaus Ahc Prodn. of uniform ceramic layers on metal surfaces by spark discharge - partic. used for metal parts of aluminium@, titanium@, tantalum, niobium, zirconium@, magnesium@ and their alloys with large surface areas
EP0514661A2 (en) * 1991-05-21 1992-11-25 JENOPTIK GmbH Process for manufacturing oxide-ceramic surface coatings on silicon containing light metal casting alloys
DE4139006A1 (en) * 1991-11-27 1993-06-03 Electro Chem Eng Gmbh METHOD FOR PRODUCING OXIDE CERAMIC LAYERS ON BARRIER-LAYING METALS
EP0563671A1 (en) * 1992-03-25 1993-10-06 Hauzer, Franciscus Johannes Matheus Process for electrolytical coating of material and so forth
WO1996033300A1 (en) * 1995-04-18 1996-10-24 Harbin Huanya Micro - Arc Co. Ltd. Process for producing ceramic layer by plasma enhanced electrolysis and product thereof
EP0884405A2 (en) * 1997-05-24 1998-12-16 Anatoli J. Prof. Dr. Vassiliev Process for obtaining hard oxide layers on the surface of a light metal based substrate
WO2015000003A1 (en) * 2013-07-05 2015-01-08 Münze Österreich Ag Metal plate

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD295198B5 (en) * 1990-06-14 1996-06-27 Physikalisch Tech Studien Gmbh Electrolyte for producing thin black conversion coatings on light metals
DE4239391C2 (en) * 1991-11-27 1996-11-21 Electro Chem Eng Gmbh Objects made of aluminum, magnesium or titanium with an oxide ceramic layer filled with fluoropolymers and process for their production
US5685970A (en) * 1992-07-01 1997-11-11 Gould Electronics Inc. Method and apparatus for sequentially metalized polymeric films and products made thereby
ES2052455B1 (en) * 1992-12-31 1994-12-01 Novamax Tech Holdings PROCEDURE FOR ELECTROLYTICALLY OBTAINING ON ANODIZED ALUMINUM OF A COLOR RANGE OF VISIBLE SPECTRUM.
US5720866A (en) * 1996-06-14 1998-02-24 Ara Coating, Inc. Method for forming coatings by electrolyte discharge and coatings formed thereby
RU2149929C1 (en) 1999-04-02 2000-05-27 Закрытое акционерное общество "Техно-ТМ" Process of microplasma electrolytic machining of surface of current-conducting materials
US6342145B1 (en) * 1999-07-14 2002-01-29 Nielsen & Bainbridge Llc Process for manufacturing multi-colored picture frames
US6290834B1 (en) 2000-04-12 2001-09-18 Ceramic Coatings Technologies, Inc. Ceramic coated liquid transfer rolls and methods of making them
DE10022074A1 (en) * 2000-05-06 2001-11-08 Henkel Kgaa Protective or priming layer for sheet metal, comprises inorganic compound of different metal with low phosphate ion content, electrodeposited from solution
US7578921B2 (en) * 2001-10-02 2009-08-25 Henkel Kgaa Process for anodically coating aluminum and/or titanium with ceramic oxides
US7820300B2 (en) * 2001-10-02 2010-10-26 Henkel Ag & Co. Kgaa Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating
US7569132B2 (en) * 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
US6916414B2 (en) 2001-10-02 2005-07-12 Henkel Kommanditgesellschaft Auf Aktien Light metal anodization
US7452454B2 (en) 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
US20060207884A1 (en) * 2005-03-17 2006-09-21 Volodymyr Shpakovsky Method of producing corundum layer on metal parts
DE102007046775A1 (en) * 2007-09-27 2009-04-02 Friedrich-Schiller-Universität Jena Generating nanocrystalline metallic oxide and metal mixed oxide layers on barrier layer-forming metals e.g. aluminum of substrate, comprises anodically degreasing the substrate in galvanic electrolysis and then anodizing in electrolytes
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
KR101642832B1 (en) * 2009-09-14 2016-07-27 삼성전자주식회사 Pellicle frame, pellicle, lithographic apparatus and method of fabricating pellicle frame
US8516663B2 (en) 2010-05-12 2013-08-27 Hollenwolff, Llc Cufflink technology
RU2457404C2 (en) * 2010-07-12 2012-07-27 Государственное образовательное учреждение высшего профессионального образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ) Sectional heating radiator
DE102016106588B4 (en) * 2016-04-11 2023-12-14 Neuman & Esser Process Technology Gmbh Sifter
US9975372B2 (en) 2016-06-21 2018-05-22 Charles White Multi-dimensional art works and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US926084A (en) 1906-04-23 1909-06-22 Gen Electric Process of purifying tungstic anhydrid.
DE1446289A1 (en) 1961-07-03 1969-03-20 Allegheny Ludlum Steel Stainless steel component for architectural purposes
US3956080A (en) * 1973-03-01 1976-05-11 D & M Technologies Coated valve metal article formed by spark anodizing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144142A (en) * 1975-11-04 1979-03-13 Riken Keikinzoku Kogyo Kabushiki Kaisha Method for producing colored anodic film on aluminum-based material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US926084A (en) 1906-04-23 1909-06-22 Gen Electric Process of purifying tungstic anhydrid.
DE1446289A1 (en) 1961-07-03 1969-03-20 Allegheny Ludlum Steel Stainless steel component for architectural purposes
US3956080A (en) * 1973-03-01 1976-05-11 D & M Technologies Coated valve metal article formed by spark anodizing

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Band 97, Nr. 8, August 1982, Seite 481, Zusammenfassung Nr. 63082b, Columbus, Ohio, US; & SU-A-926 084 (INSTITUTE OF INORGANIC CHEMISTRY, NOVOSIBIRSK) 07-05-1982 *
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 63082
METALLOBERFLÄCHE, Band 40, Nr. 12, Dezember 1986, Seiten 539-540, Carl Hanser Verlag, München, DE; P. KURZE et al.: "Beschichten durch anodische Oxidation unter Funkenentladung (ANOF)" *
P. KURZE ET AL.: "Metalloberfläche", vol. 40, 12 December 1986, CARL HAUSER VERLAG MÜNCHEN, article "Beschichten durch anodische Oxidation unter Funkenentladung", pages: 539 - 540

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4104847A1 (en) * 1991-02-16 1992-08-20 Friebe & Reininghaus Ahc Prodn. of uniform ceramic layers on metal surfaces by spark discharge - partic. used for metal parts of aluminium@, titanium@, tantalum, niobium, zirconium@, magnesium@ and their alloys with large surface areas
EP0514661A2 (en) * 1991-05-21 1992-11-25 JENOPTIK GmbH Process for manufacturing oxide-ceramic surface coatings on silicon containing light metal casting alloys
EP0514661A3 (en) * 1991-05-21 1993-04-28 Jenoptik Gmbh Process for manufacturing oxide-ceramic surface coatings on silicon containing light metal casting alloys
DE4139006A1 (en) * 1991-11-27 1993-06-03 Electro Chem Eng Gmbh METHOD FOR PRODUCING OXIDE CERAMIC LAYERS ON BARRIER-LAYING METALS
DE4139006C3 (en) * 1991-11-27 2003-07-10 Electro Chem Eng Gmbh Process for producing oxide ceramic layers on barrier layer-forming metals and objects produced in this way from aluminum, magnesium, titanium or their alloys with an oxide ceramic layer
EP0563671A1 (en) * 1992-03-25 1993-10-06 Hauzer, Franciscus Johannes Matheus Process for electrolytical coating of material and so forth
WO1996033300A1 (en) * 1995-04-18 1996-10-24 Harbin Huanya Micro - Arc Co. Ltd. Process for producing ceramic layer by plasma enhanced electrolysis and product thereof
EP0884405A2 (en) * 1997-05-24 1998-12-16 Anatoli J. Prof. Dr. Vassiliev Process for obtaining hard oxide layers on the surface of a light metal based substrate
EP0884405A3 (en) * 1997-05-24 1999-04-14 Anatoli J. Prof. Dr. Vassiliev Process for obtaining hard oxide layers on the surface of a light metal based substrate
WO2015000003A1 (en) * 2013-07-05 2015-01-08 Münze Österreich Ag Metal plate
AU2014286904B2 (en) * 2013-07-05 2016-09-29 Muenze Oesterreich Ag Metal plate
US11131035B2 (en) 2013-07-05 2021-09-28 Münze Österreich Ag Metal plate

Also Published As

Publication number Publication date
DE3870925D1 (en) 1992-06-17
US4869789A (en) 1989-09-26
EP0280886B1 (en) 1992-05-13

Similar Documents

Publication Publication Date Title
EP0280886B1 (en) Process for the production of decorative coatings on metals
DE2825513C2 (en) Gold-colored decorative part on the outside
DE69812613T2 (en) DIAL FOR WATCHES AND METHOD FOR THEIR PRODUCTION
DE3240730C2 (en)
DE1521063B2 (en) Acid galvanic nickel bath for depositing decorative fine-grained, satin to high-gloss coatings with improved corrosion resistance
DE60010604T2 (en) Glossy surface structure and process for its preparation
DE19638176A1 (en) Corrosion resistant hexavalent chromium-free chromate coating
CH654791A5 (en) DECORATED ARTICLE AND METHOD FOR PRODUCING SUCH IT.
DE2108849A1 (en) Process for producing colored luster coatings on ceramic, glass or similar substrates
DE2239255C3 (en) Aqueous alkaline solution for applying a corrosion- and heat-resistant, coatable and easily colored oxide coating to a substrate made of aluminum or an aluminum alloy
DE1496634C3 (en) Use of a sintered composite material consisting of metal powder and dye-containing glass powder as a building material and a method for producing this sintered composite material
DE19546325C1 (en) Process for coloring ceramic surfaces
DE2207232C3 (en) Process for the production of inherently colored anodic oxide layers on aluminum alloys
DE4123702A1 (en) Multicoloured fashion accessory prodn. - using laser beam to structure cover layer on coloured metal layer
US2022798A (en) Manufacture of coated aluminum articles
DD257274A1 (en) METHOD FOR PRODUCING DECORATIVE SURFACES ON METALS
DD257275A1 (en) DECORATIVE TRANSFER TO METALS
EP1047652A1 (en) Method for dying ceramic surfaces
US3863439A (en) Macrocystalline watch dial
US5037496A (en) Cobalt-containing precious metal material for decoration
JPS6070200A (en) Formation of colored and electrodeposition coated film
JPS62270760A (en) Production of external parts
JPH0645915B2 (en) How to decorate the surface of parts
DE69021251T2 (en) Colored zinc powder, process for its production and process for the production of colored moldings.
DE1019136B (en) Process for the galvanic production of jewelry and craft items

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19881108

17Q First examination report despatched

Effective date: 19900611

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KURZE, PETER, PROF. DR.SC.NAT.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AHC-OBERFLAECHENTECHNIK FRIEBE & REININGHAUS GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 76117

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HARTMANN, KARL-HEINZ, DIPL.-ING.

Inventor name: SCHWARZ, THOMAS, DIPL.-ING.

Inventor name: SCHRECKENBACH, JOACHIM, DIPL.-CHEM.

Inventor name: RABENDING, KLAUS, DR.RER.NAT.

Inventor name: BERGER, MARIA, CHEM,-ING.

Inventor name: KURZE, PETER, DR. SC. NAT.

Inventor name: KRYSMANN, WALDEMAR, DR. RER. NAT.

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3870925

Country of ref document: DE

Date of ref document: 19920617

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: NUSSBAUM OBERFLAECHENTECHNIKGMBH

Effective date: 19930215

NLR1 Nl: opposition has been filed with the epo

Opponent name: NUSSBAUM OBERFLACHENTECHNIK GMBH.

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19950312

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: AHC-OBERFLAECHENTECHNIK FRIEBE & REININGHAUS GMBH TRANSFER- AHC-OBERFLAECHENTECHNIK GMBH & CO. OHG

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: AHC-OBERFLAECHENTECHNIK GMBH & CO.OHG

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040113

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040128

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040216

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040223

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040224

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070425

Year of fee payment: 20