EP0189799A1 - Process for separating cesium ions from aqueous solutions - Google Patents
Process for separating cesium ions from aqueous solutions Download PDFInfo
- Publication number
- EP0189799A1 EP0189799A1 EP86100612A EP86100612A EP0189799A1 EP 0189799 A1 EP0189799 A1 EP 0189799A1 EP 86100612 A EP86100612 A EP 86100612A EP 86100612 A EP86100612 A EP 86100612A EP 0189799 A1 EP0189799 A1 EP 0189799A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solution
- precipitant
- precipitation
- phenyl rings
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 229910052792 caesium Inorganic materials 0.000 title claims abstract description 15
- -1 cesium ions Chemical class 0.000 title claims abstract description 13
- 239000007864 aqueous solution Substances 0.000 title claims abstract description 12
- 239000000243 solution Substances 0.000 claims abstract description 32
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 15
- 239000002244 precipitate Substances 0.000 claims abstract description 11
- 239000011734 sodium Substances 0.000 claims abstract description 11
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 10
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 9
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims abstract description 8
- 125000001424 substituent group Chemical group 0.000 claims abstract description 7
- 229910001417 caesium ion Inorganic materials 0.000 claims abstract description 6
- 238000001556 precipitation Methods 0.000 claims description 41
- 150000001875 compounds Chemical class 0.000 claims description 14
- 238000000926 separation method Methods 0.000 claims description 13
- 238000000605 extraction Methods 0.000 claims description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 4
- 238000005202 decontamination Methods 0.000 claims description 4
- 230000003588 decontaminative effect Effects 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 3
- 125000001153 fluoro group Chemical group F* 0.000 claims description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims 3
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 claims 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 claims 2
- 239000003208 petroleum Substances 0.000 claims 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052744 lithium Inorganic materials 0.000 abstract description 11
- 229910052783 alkali metal Inorganic materials 0.000 abstract description 2
- 150000001642 boronic acid derivatives Chemical group 0.000 abstract 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 15
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical group [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 9
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 6
- 238000000975 co-precipitation Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- LWNGJAHMBMVCJR-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenoxy)boronic acid Chemical compound OB(O)OC1=C(F)C(F)=C(F)C(F)=C1F LWNGJAHMBMVCJR-UHFFFAOYSA-N 0.000 description 4
- OUHOZBRDLAZZLQ-UHFFFAOYSA-N (2,3,5,6-tetrafluorophenoxy)boronic acid Chemical compound OB(O)OC1=C(F)C(F)=CC(F)=C1F OUHOZBRDLAZZLQ-UHFFFAOYSA-N 0.000 description 4
- RJQFJWTVUVWMJG-UHFFFAOYSA-N (2,4-difluorophenoxy)boronic acid Chemical compound OB(O)OC1=CC=C(F)C=C1F RJQFJWTVUVWMJG-UHFFFAOYSA-N 0.000 description 4
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 229940126214 compound 3 Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000002901 radioactive waste Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- YSSSPARMOAYJTE-UHFFFAOYSA-N dibenzo-18-crown-6 Chemical compound O1CCOCCOC2=CC=CC=C2OCCOCCOC2=CC=CC=C21 YSSSPARMOAYJTE-UHFFFAOYSA-N 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910000104 sodium hydride Inorganic materials 0.000 description 2
- 239000012312 sodium hydride Substances 0.000 description 2
- QMPMMTQPOQXFKB-UHFFFAOYSA-N (2,4,6-trifluorophenoxy)boronic acid Chemical compound OB(O)OC1=C(F)C=C(F)C=C1F QMPMMTQPOQXFKB-UHFFFAOYSA-N 0.000 description 1
- PHBVXHIVWULVNF-UHFFFAOYSA-N (4-fluorophenoxy)boronic acid Chemical compound OB(O)OC1=CC=C(F)C=C1 PHBVXHIVWULVNF-UHFFFAOYSA-N 0.000 description 1
- MGHBDQZXPCTTIH-UHFFFAOYSA-N 1-bromo-2,4-difluorobenzene Chemical compound FC1=CC=C(Br)C(F)=C1 MGHBDQZXPCTTIH-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical group [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001663 caesium Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910000103 lithium hydride Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- NHKJPPKXDNZFBJ-UHFFFAOYSA-N phenyllithium Chemical class [Li]C1=CC=CC=C1 NHKJPPKXDNZFBJ-UHFFFAOYSA-N 0.000 description 1
- 150000003112 potassium compounds Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/10—Processing by flocculation
Definitions
- the invention relates to a method for separating. Cesium ions from aqueous solutions, in which a precipitant is added to the aqueous solution and the resulting precipitate containing the Cs + ions is separated from the solution.
- Cs-137 In its capacity as a hard gamma emitter, Cs-137 is a particularly undesirable fission product in medium-radioactive, aqueous waste (MAW). A selective separation of the Cs-137 would make the processing of medium-active waste considerably easier. After the Cs-137 has been separated from the MAW, the shielding for the concentrates and / or the solidified repository can be omitted entirely or at least partially.
- MAW medium-radioactive, aqueous waste
- Such a method can also be used well for the extraction or separation of Cs isotopes from highly active waste solutions, such as those which occur in the reprocessing of nuclear fuels in the first extraction cycle.
- highly active waste solutions such as those which occur in the reprocessing of nuclear fuels in the first extraction cycle.
- the extraction of pure isotopes or isotope mixtures of cesium would be of practical importance for radiochemical applications and as a radiation or heat source.
- the separation of cesium was mainly carried out by co-precipitation reactions using other known methods.
- the co-precipitation did not provide satisfactory decontamination factors (DF values) for Cs. Therefore: other processes were sought which should enable a selective separation of the cesium radionuclides.
- the invention has for its object to provide a method of the type mentioned above, with which cesium is selectively separated from other alkali metal cations, such as Li + , Na and K + , with high effectiveness from aqueous solutions, in particular from aqueous, radioactive waste solutions can.
- the precipitation reaction can be carried out in the presence of an acid concentration in the range from 0 to 6 mol / 1.
- the acid stability of the precipitant molecule and the resulting poorly soluble precipitate is increased by the introduction of electron-withdrawing substituents in the phenyl rings of the molecule, which largely prevent positive charges on the phenyl rings from stabilizing and thus initiate the breakdown of the molecule.
- the electron-withdrawing substituents protect the phenyl rings from electrophilic attacks.
- 2,4-difluorobromobenzene is mixed with n-butyllithium (n-BuLi) at -78 ° C in di-ethyl ether and a BC1 3 solution in hexane is added dropwise to the phenyllithium derivative formed.
- n-BuLi n-butyllithium
- BC1 3 solution in hexane is added dropwise to the phenyllithium derivative formed.
- hydrolysis is carried out, the ether is stripped off over water, the aqueous phase is mixed with a little activated carbon, filtered off and mixed with aqueous trimethylamine solution.
- the resulting trimethylammonium salt is recrystallized from methanol / water and dried. It is converted with sodium hydride into the corresponding alkali salt, which can be recrystallized from chloroform / acetone if necessary.
- the compound lithium tetrakis (2,3,5,6-tetrafluorophenyl) borate was prepared in the same way (with lithium hydride) instead of sodium hydride,
- Lithium tetrakis (pentafluorophenyl) borate production is carried out by AG Massey, AJ Park: J.Organometal.Chem., 2 (1964), pp. 245 to 25 o .
- the solubilities were determined using radiometry.
- composition of the simulate used is listed in Table 1.
- Inactive Cs + was added to the MAW simulate (Cs + concentrations 1.0 ⁇ 1 0 -3 or 1.0 ⁇ 10 -2 mol / 1); the solutions were doped with Cs-137, regardless of the inactive Cs + concentration with the same activity (1 / u Ci / ml). The precipitant was added in duplicate, regardless of whether it was added as a solution or as a solid. After about 24 hours, samples were taken, filtered, the activity of the filtrate was measured and the Cs concentration was then calculated by calibration. The results are shown in Tables 2 to 4.
- Sodium tetrakis (2,4-difluorophenyl) borate (compound 1) is acid-stable up to 6m-HNO 3 and at temperatures up to 293 K. Under conditions such as those prevailing in radioactive waste solutions, the Cs salt has the lowest solubility of the compounds examined.
- solubilities range between 1.0 ⁇ 10 -5 and 8.0 ⁇ 10 -5 mol / l. (In Kalignost such solubility determination can not be made because of the disintegration of the connection ntersuchungs committee under the U runs too fast).
- the precipitation of Cs + with compound (1) is not affected by K + . There is no coprecipitation with the potassium compound.
- the F ällungsenda are determined by the solubility of the corresponding Cs + salts.
- the composition of the HAW simulate can be seen in Table 7.
- the simulate solution was 5 molar in HN0 3 and contained most of the elements in the nitrate salt form.
- the solution was doped with Cs-137 (1 ⁇ Ci / ml - ).
- the precipitation was carried out as described in Example 2, but only with compound 3. The result is shown in Table 8:
- Inactive Cs + was added to water (Cs + concentration 1.0 ⁇ 10 -3 mol / 1). As in the previous examples, the solutions were doped with Cs-137. The precipitant was added in a simple excess. After 24 h, samples were taken (to compare the effectiveness of the precipitation separation methods, on the one hand filtration, on the other hand extraction), filtered and the residual concentration of Cs + in the filtrate solutions of the samples was determined. It was 6.5 ⁇ 10 -5 mol / l.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zum Abtrennen von Cäsiumionen aus wäßrigen Lösungen, bei welchem der wäßrigen Lösung ein Fällungsmittel zugegeben und die entstehende, die Cs<+>-Ionen enthaltende Fällung aus der Lösung abgetrennt wird. Mit dem Verfahren soll Cäsium selektiv gegenüber anderen Alkalimetallkationen mit hoher Wirksamkeit aus wäßrigen Lösungen, insbesondere aus wäßrigem MAW, abgetrennt werden. Dies wird dadurch erreicht, daß als Fällungsmittel ein an den Phenylringen elektronenziehende Substituenten tragendes Natrium- oder Lithium-tetraphenylborat verwendet wird.The invention relates to a process for separating cesium ions from aqueous solutions, in which a precipitant is added to the aqueous solution and the resulting precipitate containing the Cs + ions is separated from the solution. The process is intended to selectively separate cesium from other alkali metal cations with high effectiveness from aqueous solutions, in particular from aqueous MAW. This is achieved in that a sodium or lithium tetraphenyl borate bearing electron-withdrawing substituents on the phenyl rings is used as the precipitant.
Description
Die Erfindung betrifft ein Verfahren zum Abtrennen von . Cäsiumionen aus wäßrigen Lösungen, bei welchem der wäßrigen Lösung ein Fällungsmittel zugegeben und die - entstehende, die Cs+-Ionen enthaltende Fällung aus der Lösung abgetrennt wird.The invention relates to a method for separating. Cesium ions from aqueous solutions, in which a precipitant is added to the aqueous solution and the resulting precipitate containing the Cs + ions is separated from the solution.
Cs-137 ist in seiner Eigenschaft als harter Gammastrahler ein besonders unerwünschtes Spaltprodukt in mittelradioaktiven, wäßrigen Abfällen (MAW). Eine zuvor erfolgte selektive Abtrennung des Cs-137 würde die Weiterverarbeitung mittelaktiver Abfälle erheblich erleichtern. Nach Abtrennung des Cs-137 aus dem MAW kann die Abschirmung für die Konzentrate und/oder die verfestigten Endlagergebinde ganz oder zumindest teilweise entfallen.In its capacity as a hard gamma emitter, Cs-137 is a particularly undesirable fission product in medium-radioactive, aqueous waste (MAW). A selective separation of the Cs-137 would make the processing of medium-active waste considerably easier. After the Cs-137 has been separated from the MAW, the shielding for the concentrates and / or the solidified repository can be omitted entirely or at least partially.
Weiterhin kann ein solches Verfahren auch gut zur Gewinnung oder Abtrennung von Cs-Isotopen aus hochaktiven Abfallösungen angewendet werden, wie sie beispielsweise bei der Wiederaufarbeitung von Kernbrennstoffen im ersten Extraktionszyklus anfallen. Hier wäre die Gewinnung reiner Isotope oder Isotopengemische von Cäsium von praktischer Bedeutung für radiochemische Anwendungen und als Strahlungs- bzw. Wärmequelle.Furthermore, such a method can also be used well for the extraction or separation of Cs isotopes from highly active waste solutions, such as those which occur in the reprocessing of nuclear fuels in the first extraction cycle. Here, the extraction of pure isotopes or isotope mixtures of cesium would be of practical importance for radiochemical applications and as a radiation or heat source.
Es wurde versucht, die Cs+-Ionen mit Natriumtetraphenylborat (Handelsbezeichnung Kalignost) zu fällen, doch wurde festgestellt, daß eine solche Fällung weder selektiv noch in saurem Milieu durchführbar ist.Attempts have been made to precipitate the Cs + ions with sodium tetraphenylborate (trade name Kalignost), but it has been found that such a precipitation cannot be carried out selectively or in an acidic environment.
Die Abtrennung von Cäsium erfolgte nach anderen bekannten Verfahren hauptsächlich durch Mitfällungsreaktionen. Die Mitfällung lieferte für Cs jedoch keine befriedigenden Dekontaminations-Faktoren (DF-Werte). Deshalb wurden : andere Verfahren gesucht, die eine selektive Abtrennung der Cäsium-Radionuklide ermöglichen sollten.The separation of cesium was mainly carried out by co-precipitation reactions using other known methods. However, the co-precipitation did not provide satisfactory decontamination factors (DF values) for Cs. Therefore: other processes were sought which should enable a selective separation of the cesium radionuclides.
Die bisher für Cs+-Ionen entwickelten Extraktionsverfahren sind für die Abtrennung von Cs+ aus einem typischen MAW mit seinem hohen Gehalt an NaNO3 und freier Salpetersäure nicht geeignet.The extraction processes developed up to now for Cs + ions are not suitable for the separation of Cs + from a typical MAW with its high content of NaNO 3 and free nitric acid.
J. Rais und P. Selucky schlugen zur Abtrennung von Cs+ aus wäßrigen Lösungen ein Extraktionssystem vor, welches 2,3,11,12-Dibenzo-1,4,7,10,13,16-hexa-oxa-cyclo- octadeca-2,11-dien(Dibenzo-18-krone-6;Kurzbezeichnung DB-18-C-6) in Verbindung mit Natriumtetraphenylborat verwendet (CS-PS 149.404). Das Verfahren ist jedoch beschränkt auf alkalische Cs -Lösungen (pH 11 bis 13) : auch in dieser Lösung wird Natriumtetraphenylborat hydrolysiert. Das Verfahren funktioniert zudem nur gut in Abwesenheit größerer Na+- und K+-Mengen.J. Rais and P. Selucky proposed an extraction system for the separation of Cs + from aqueous solutions, which was 2,3,11,12-dibenzo-1,4,7,10,13,16-hexa-oxa-cyclo-octadeca -2,11-diene (Dibenzo-18-crown-6; short name DB-18-C-6) used in conjunction with sodium tetraphenylborate (CS-PS 149.404). However, the process is limited to alkaline Cs solutions (p H 11 to 13): sodium tetraphenylborate is also hydrolyzed in this solution. The process also only works well in the absence of larger amounts of Na + and K + .
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren nach der eingangs genannten Art zu schaffen, mit welchem Cäsium selektiv gegenüber anderen AlkalimetallKationen, wie z.B. Li+, Na und K+, mit hoher Wirksamkeit aus wäßrigen Lösungen, insbesondere aus wäßrigen, radioaktiven Abfallösungen abgetrennt werden kann.The invention has for its object to provide a method of the type mentioned above, with which cesium is selectively separated from other alkali metal cations, such as Li + , Na and K + , with high effectiveness from aqueous solutions, in particular from aqueous, radioactive waste solutions can.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß als Fällungsmittel ein an den Phenylringen elektronenziehende Substituenten tragendes Natrium- oder Lithium-tetraphenylborat verwendet wird. Die Abtrennung der Niederschläge erfolgt entweder durch Filtration, Flüssig-Extraktion, Zentrifugation oder durch Flotation. Als Fällungsmittel werden Verbindungen.verwendet; bei. welchen die Phenyl- ringe einfach bis fünffach substituiert sind. Besonders gute Ergebnisse lassen sich mit einer Verbindung, die jeweils in 2,4-Stellung der Phenylringe disubstituiert ist, erzielen. Aber auch Verbindungen, die jeweils in 2,3,5,6-Stellung der Phenylringe vierfach substituiert oder jeweils in 2,3,4,5,6-Stellung der Phenylringe fünffach substituiert sind, können mit Erfolg verwendet werden. Eine besonders vorteilhafte Version des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, daß die Substituenten an den Phenylringen Fluor-Atome sind. Eine wirkungsvolle Ausführung des Verfahrens ist dadurch gekennzeichnet, daß die Zugabe des Fällungsmittels und/oder die Fällungsreaktion als solche bei einer Temperatur zwischen 239 K und 303 K erfolgt bzw. durchgeführt wird. Das Fällungsmittel wird vorzugsweise in geringem Überschuß in bezug auf den Cäsiumgehalt, beispielsweise vom 1,2-fachen bis zum 5-fachen der stöchiometrisch erforderlichen Menge, der Lösung zugegeben. Eine besonders gute Abtrennung erhält man mit dem erfindungsgemäßen Verfahren, wenn die Cäsiumionen enthaltende Lösung
- a) auf eine Cs+-Konzentration im Bereich von 10-1 bis 10-3 mol/1 eingestellt wird,
- b) der Lösung aus Schritt a) das Fällungsmittel zugegeben und die entstehende Fällung abgetrennt wird und
- c) im Falle einer erwünschten Dekontamination von vorhandenem Cs-137 der Schritt a) mit inaktivem Cäsium (als Schlepper) und Schritt b) einmal oder mehrmals wiederholt werden.
- a) is set to a Cs + concentration in the range from 10 -1 to 10- 3 mol / 1,
- b) the precipitant is added to the solution from step a) and the resulting precipitate is separated off and
- c) in the case of a desired decontamination of existing Cs-137, step a) with inactive cesium (as a tug) and step b) are repeated one or more times.
Die Fällungsreaktion kann in Gegenwart einer SäureKonzentration im Bereich von 0 bis 6 mol/1 durchgeführt werden.The precipitation reaction can be carried out in the presence of an acid concentration in the range from 0 to 6 mol / 1.
Die Säurestabilität des Fällungsmittel-Moleküls und des entstehenden schwerlöslichen Niederschlages wird durch die Einführung elektronenziehender Substituenten in den Phenylringen des Moleküls erhöht, die es weitgehend verhindern, daß sich positive Ladungen an den Phenylringen stabilisieren und so den Zerfall des Moleküls einleiten. Die elektronenziehenden Substituenten schützen die Phenylringe vor elektrophilen Angriffen.The acid stability of the precipitant molecule and the resulting poorly soluble precipitate is increased by the introduction of electron-withdrawing substituents in the phenyl rings of the molecule, which largely prevent positive charges on the phenyl rings from stabilizing and thus initiate the breakdown of the molecule. The electron-withdrawing substituents protect the phenyl rings from electrophilic attacks.
Die Synthese für das erfindungsgemäße Verfahren brauchbarer Fällungsmittel kann beispielsweise nach folgendem Schema verlaufen:
- Natriumtetrakis (2, 4-difluorchenyl)borat :
- Sodium tetrakis (2,4-difluorchenyl) borate:
2,4-Difluorbrombenzol wird bei -78°C in Di-ethyl-Ether mit n-Butyllithium (n-BuLi) versetzt und zu dem dabei entstandenen Phenyllithiumderivat eine BC13-Lösung in Hexan getropft. Nach Aufwärmen auf Raumtemperatur wird hydrolysiert, der Ether über Wasser abgezogen, die wäßrige Phase mit etwas Aktivkohle versetzt, abgefiltert und mit wäßriger Trimethylaminlösung versetzt. Das entstandene Trimethylammoniumsalz wird aus Methanol/ Wasser umkristallisiert und getrocknet. Es wird mit Natriumhydrid ins entsprechende Alkalisalz überführt, das bei Bedarf noch aus Chloroform/Aceton umkristallisiert werden kann.2,4-difluorobromobenzene is mixed with n-butyllithium (n-BuLi) at -78 ° C in di-ethyl ether and a BC1 3 solution in hexane is added dropwise to the phenyllithium derivative formed. After warming up to room temperature, hydrolysis is carried out, the ether is stripped off over water, the aqueous phase is mixed with a little activated carbon, filtered off and mixed with aqueous trimethylamine solution. The resulting trimethylammonium salt is recrystallized from methanol / water and dried. It is converted with sodium hydride into the corresponding alkali salt, which can be recrystallized from chloroform / acetone if necessary.
Die Verbindung Lithiumtetrakis(2,3,5,6-tetrafluorphenyl) borat wurde auf die gleiche Weise hergestellt (mit Lithiumhydrid) anstatt Natriumhydrid,The compound lithium tetrakis (2,3,5,6-tetrafluorophenyl) borate was prepared in the same way (with lithium hydride) instead of sodium hydride,
Die Lithiumtetrakis(pentafluorphenyl)borat-Herstellung ist von A.G. Massey, A.J. Park: J.Organometal.Chem., 2 (1964), S. 245 bis 25o übernommen.Lithium tetrakis (pentafluorophenyl) borate production is carried out by AG Massey, AJ Park: J.Organometal.Chem., 2 (1964), pp. 245 to 25 o .
Die Charakterisierung der Produkte erfolgte mit Hilfe von IR, NMR und Elementaranalyse. Um die Salze rein darzustellen, ist der "Umweg" über die Trimethylammonium- salze notwendig. Für Fällungsreaktionen genügen aber bereits die wäßrigen Lösungen der Fällungsreagenzien, deren Konzentrationen durch quantitative Ausfällung mit Trimethylamin einfach bestimmt werden können.The products were characterized using IR, NMR and elemental analysis. To make the salts pure, the "detour" via the trimethylammonium salts is necessary. For precipitation reactions, however, the aqueous solutions of the precipitation reagents are sufficient, the concentrations of which can be easily determined by quantitative precipitation with trimethylamine.
Löslichkeiten der entsprechenden Cs-Salze in reinem Wasser (298 K):
- Natriumtetrakis(2,4-difluorphenyl)borat: 2.O · 10-4 mol/1 Lithiumtetrakis(2,3,5,6-tetrafluorphenyl)borat:3.7 · 10-4 mol/1 Lithiumtetrakis(pentafluorphenyl)borat: 2.4 · 10-4 mol/1
- Sodium tetrakis (2,4-difluorophenyl) borate: 2.O.10 -4 mol / 1 lithium tetrakis (2,3,5,6-tetrafluorophenyl) borate: 3.7.10 -4 mol / 1 lithium tetrakis (pentafluorophenyl) borate: 2.4 10 -4 mol / 1
Die Löslichkeiten wurden mit Hilfe von Radiometrie be- stimmt.The solubilities were determined using radiometry.
Alle Reagenzien bilden schwerlösliche Niederschläge mit Cs+, jedoch nicht mit Kalium. Coprecipitation von Kalium tritt bei Lithiumtetrakis(2,3,5,6-tetrafluorphenyl)borat erst bei einem K- zu Cs-Verhältnis ≥ 100,bei Natriumtetrakis (2,4- difluorphenyl)borat und Lithiumtetrakis(pentafluorphenyl)-borat erst bei einem K+- zu Cs+-Verhältnis > 100 auf.All reagents form poorly soluble precipitates with Cs + , but not with potassium. Coprecipitation of potassium only occurs with lithium tetrakis (2,3,5,6-tetrafluorophenyl) borate with a K to Cs ratio ≥ 100, with sodium tetrakis (2,4-difluorophenyl) borate and lithium tetrakis (pentafluorophenyl) borate only with one K + - to Cs + ratio> 100.
Schwerlösliche Cs+-Niederschläge bilden auch Natriumtetrakis(4- fluorphenyl)borat und Lithiumtetrakis(2,4,6-trifluorphenyl)-borat, die erste Verbindung im neutralen und alkalischen Gebiet in guter Selektivität, die zweite Verbindung auch im sauren bis 3 molare Säure, jedoch erfolgt Coprecipitation mit K+ ab dem Verhältnis K+ : Cs+ wie 1 : 1.Slightly soluble Cs + precipitates also form sodium tetrakis (4-fluorophenyl) borate and lithium tetrakis (2,4,6-trifluorophenyl) borate, the first compound with good selectivity in neutral and alkaline areas, the second compound also in acidic to 3 molar acid , however coprecipitation with K + takes place from the ratio K + : Cs + as 1: 1.
Die Zusammensetzung des verwendeten Simulats ist in Tabelle 1 aufgeführt.
Das MAW-Simulat wurde mit inaktivem Cs+ versetzt (Cs+-Konzentrationen 1.0 · 10 -3 bzw. 1.0 · 10-2 mol/1); die Lösungen wurde mit Cs-137 dotiert und zwar unabhängig von der inaktiven Cs+-Konzentration mit der gleichen Aktivität (1 /u Ci/ml). Das Fällungsmittel wurde jeweils in doppeltem Übschuß zugegeben, wobei es ohne Bedeutung war, ob es als Lösung oder als Feststoff zugegeben wurde. Nach etwa 24 Stunden wurden Proben entnommen, abgefiltert, die Aktivität des Filtrats gemessen und über Eichung dann die Cs -Konzentration berechnet. Die Ergebnisse sind aus den Tabellen 2 bis 4 ersichtlich.Inactive Cs + was added to the MAW simulate (Cs + concentrations 1.0 · 1 0 -3 or 1.0 · 10 -2 mol / 1); the solutions were doped with Cs-137, regardless of the inactive Cs + concentration with the same activity (1 / u Ci / ml). The precipitant was added in duplicate, regardless of whether it was added as a solution or as a solid. After about 24 hours, samples were taken, filtered, the activity of the filtrate was measured and the Cs concentration was then calculated by calibration. The results are shown in Tables 2 to 4.
Als Fällungsmittel wurden hierbei verwendet:
- (1) Natriumtetrakis(2,4-difluorphenyl)borat
- (2) Lithiumtetrakis(2,3,5,6-tetrafluorphenyl)borat
- (3) Lithiumtetrakis(pentafluorphenyl)borat
- (1) Sodium tetrakis (2,4-difluorophenyl) borate
- (2) Lithium tetrakis (2,3,5,6-tetrafluorophenyl) borate
- (3) Lithium tetrakis (pentafluorophenyl) borate
Durchführung wie in Beispiel 1 beschrieben, jedoch nur mit Verbindung (1).Carried out as described in Example 1, but only with compound (1).
Die Zusammensetzung der verwendeten Lösung wurde so gewählt, daß sie in diesem Zusammenhang eine HAW-Konzentrats-Lösung zu simulieren vermag (HAW = Hochradioaktiver Abfall).The composition of the solution used was chosen so that it can simulate a HAW concentrate solution in this context (HAW = highly radioactive waste).
5 molare HNO3 wurde mit inaktivem Cs + versetzt (Cs+-Konzentration 1.0 · 10-2 mol/1).Die Lösungen wurden mit Cs-137 dotiert (1 /u Ci/.ml). Das Fällungsmittel wurde im doppelten Überschluß zugegeben. Nach 24 Stunden wurden Proben entnommen, abgefiltert, die Aktivität des Filtrats gemessen und über Eichung die Cs+-Konzen- : tration berechnet. Die Ergebnisse sind aus den Tabellen 5 und 6 ersichtlich.5 molar HNO 3 was treated with inactive Cs + (Cs + concentration 1.0 · 10 -2 mol / 1). The solutions were doped with Cs-137 (1 / u Ci / .ml). The precipitant was added in double excess. After 24 hours, samples were taken, filtered, the activity of the filtrate measured and the Cs + concentration: calculated by calibration. The results are shown in Tables 5 and 6.
Die Löslichkeiten bewegen sich je nach Temperatur (239 bis 293 K) zwischen 1.0 · 10-5 und 8.0 · 10-5 mol/l. (Bei Kalignost kann eine solche Löslichkeitsbestimmung nicht erfolgen, weil der Zerfall der Verbindung unter den Untersuchungsbedingungen zu schnell verläuft). Die Fällung von Cs+ mit Verbindung (1) wird durch K+ nicht beeinflußt. Es tritt keine Coprecipitation mit der Kaliumverbindung auf.Depending on the temperature (239 to 293 K), the solubilities range between 1.0 · 10 -5 and 8.0 · 10 -5 mol / l. (In Kalignost such solubility determination can not be made because of the disintegration of the connection ntersuchungsbedingungen under the U runs too fast). The precipitation of Cs + with compound (1) is not affected by K + . There is no coprecipitation with the potassium compound.
Die Fällungsendpunkte werden durch die Löslichkeit der entsprechenden Cs+-Salze bestimmt.The F ällungsendpunkte are determined by the solubility of the corresponding Cs + salts.
Die Zusammensetzung des HAW-Simulats ist aus Tabelle 7 zu ersehen. Die Simulatlösung war 5 molar an HN03 und enthielt die meisten Elemente in der Nitratsalzform.
Man kann nun durch Fällung, beispielsweise mit Verbindung (1), auf verschiedene Art und Weise hohe Dekontaminationen für Cs-137 erreichen:
- 1. Einstellen der MAW-Lösung auf eine inaktive Cs+-Konzentration von 1.0 · 10-3 mol/1. Fällung mit (1) in doppeltem überschuß und Abtrennung des Niederschlags (durch Filtration oder Zentrifugation) liefert einen Dekontaminationsfaktor (DF) von 17. Die resultierende Cs+-Konzentration von ca. 6.0 ' 10-5 mol/1 wird durch inaktives Cs+ wieder auf 1.0 · 10-3 mol/1 eingestellt, erneut gefällt und das ganze beliebig oft wiederholt. Beim viermaligen Cyclieren wird so ohne großen Materialaufwand ein DF für das aktive Cs von ca...80 000 erreicht (Fällungstemperatur jeweils 293K).
- 2. Einstellen der MAW-Lösung auf eine inaktive Cs+-Konzentration von 1.0 · 10-2 mol/1. Verfahren wie oben. Die erste Fällung liefert einen DF von 170, beim nächsten Cyclus einen DF von 29 000 usw. (Fällungstemperatur jeweils 293 K).
- 3. Wie bei 1., Fällungstemperaturen jetzt aber 277 K. Die erste Fällung liefert einen DF von 26, bei der viertel Fällung ist der DF größer als 400 000.
- 4. Wie bei 2., Fällungstemperaturen jetzt aber 277 K. Die erste Eällung liefert einen DF von 280, die zweite Fällung bereits einen DF größer 78 000.
- 5. Wie bei 1., Fällungstemperaturen aber 260 K. Die '1. Fällung liefert einen DF von 62, bei der 3. Fällung ist der DF > 230 000.
- 6. Wie bei 2., Fällungstemperaturen aber 260 K. Die 1. Fällung liefert einen DF von 770, die 2. Fällung bereits einen DF > 590 000.
- 7. Einstellen der 5m HNO3 auf eine inaktive Cs+-Konzentration won 10-2 mol/l. Verfahren sonst wie bei 1). Die 1. Fällung liefert einen DF von 384, die 2. Fällung bereits einen DF von 148 000 (Fällungstemperatur jeweils 293K).
- 8. Wie bei 7.), Fällungstemperaturen aber 260 K. Die 1. Fällung liefert einen DF von 667, die 2. Fällung bereits einen DF von 444 000.
- 1. Adjust the MAW solution to an inactive Cs + concentration of 1.0 · 10 -3 mol / 1. Precipitation with (1) in two-fold excess and separation of the precipitate by filtration (or centrifugation) provides a decontamination factor (DF) of 17. The resulting Cs + concentration of approximately 6.0 '10 -5 mol / 1 is inactive again Cs + set to 1.0 · 10 -3 mol / 1, precipitated again and repeated as often as required. When cycled four times, a DF for the active Cs of approx. 80,000 is achieved without great expenditure of material (precipitation temperature in each case 293K).
- 2. Adjust the MAW solution to an inactive Cs + concentration of 1.0 · 10 -2 mol / 1. Procedure as above. The first precipitation gives a DF of 170, for the next cycle a DF of 29,000 etc. (precipitation temperature 293 K each).
- 3. As for 1., but precipitation temperatures now 277 K. The first precipitation gives a DF of 26, with the quarter precipitation the DF is greater than 400,000.
- 4. As for the 2nd precipitation temperature, but now 277 K. The first precipitation gives a DF of 280, the second precipitation already a DF greater than 78,000.
- 5. As for 1., but precipitation temperatures 260 K. The '1. Precipitation delivers a DF of 62, with the 3rd precipitation the DF is> 230,000.
- 6. As for the 2nd precipitation temperature but 260 K. The 1st precipitation gives a DF of 770, the 2nd precipitation already a DF> 590,000.
- 7. Adjust the 5m HNO 3 to an inactive Cs + concentration won 10 -2 mol / l. Otherwise proceed as for 1). The 1st precipitation gives a DF of 384, the 2nd precipitation already a DF of 148,000 (precipitation temperature 293K each).
- 8. As for 7th), but precipitation temperatures 260 K. The 1st precipitation gives a DF of 667, the 2nd precipitation already a DF of 444,000.
Wasser wurde mit inaktivem Cs+ versetzt (Cs+-Konzentration 1.0·10-3 mol/1). Die Lösungen wurden wie in den vorangegangenen Beispielen mit Cs-137 dotiert. Das Fällungsmittel wurde in einfachem überschuß zugegeben. Nach 24 h wurden Proben entnommen (zum Vergleich der Wirksamkeit der Niederschlagsabtrennungsmethoden, einerseits Filtration, andererseits Extraktion), abgefiltert und die Restkonzentration an Cs+ in den Filtratlösungen der Proben bestimmt. Sie betrug 6.5 · 10-5 mol/l.Inactive Cs + was added to water (Cs + concentration 1.0 · 10 -3 mol / 1). As in the previous examples, the solutions were doped with Cs-137. The precipitant was added in a simple excess. After 24 h, samples were taken (to compare the effectiveness of the precipitation separation methods, on the one hand filtration, on the other hand extraction), filtered and the residual concentration of Cs + in the filtrate solutions of the samples was determined. It was 6.5 · 10 -5 mol / l.
Die Lösungen, die die Fällungen enthielten, wurden nun mit ver- schiedenen organischen Lösungsmitteln extrahiert und die Cs+-Restkonzentration in der wäßrigen Phase gemessen. Die Ergebnisse sind aus Tabelle 9 ersichtlich.
Durchführung der Versuche und des Vergleichs der Abtrennungsmethoden erfolgte wie in Beispiel 5 beschrieben, das Fällungsmittel wurde hier aber in doppeltem Überschuß zugesetzt. Die Cs+-Restkonzentration nach Filtration der Proben betrug 7.2 . 10-4 mol/1.The experiments and the comparison of the separation methods were carried out as described in Example 5, but the precipitant was added here in a double excess. The residual Cs + concentration after filtration of the samples was 7.2. 10 -4 mol / 1.
Die Ergebnisse der Extraktionen sind aus Tabelle 10 ersichtlich.
Als Extraktionsmittel können auch weitere organische Lösungsmittel verwendet werden, wurden jedoch auf ihre Wirksamkeit hin nicht untersucht.Other organic solvents can also be used as extractants, but their effectiveness has not been investigated.
Claims (11)
als Fällungsmittel ein an den Phenylringen elektronenziehende Substituenten tragendes Natrium- oder Lithium-tetraphenylborat verwendet wird.1. A process for separating cesium ions from aqueous solutions, in which a precipitant is added to the aqueous solution and the resulting precipitate containing the Cs + ions is separated from the solution, characterized in that
a sodium or lithium tetraphenylborate bearing electron-withdrawing substituents on the phenyl rings is used as the precipitant.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR8600354A BR8600354A (en) | 1985-01-30 | 1986-01-29 | PROCESS FOR THE EXTRACTION OF CESIO IONS FROM A WATER SOLUTION |
CA000500573A CA1288599C (en) | 1985-01-30 | 1986-01-29 | Process for the stripping of cesium ions from aqueous solutions |
JP61016987A JPH077100B2 (en) | 1985-01-30 | 1986-01-30 | Method for selectively separating cesium ions from aqueous solution |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19853502986 DE3502986A1 (en) | 1985-01-30 | 1985-01-30 | METHOD FOR SEPARATING CAESIUM IONS FROM AQUEOUS SOLUTIONS |
DE3502986 | 1985-01-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0189799A1 true EP0189799A1 (en) | 1986-08-06 |
EP0189799B1 EP0189799B1 (en) | 1988-08-17 |
Family
ID=6261095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86100612A Expired EP0189799B1 (en) | 1985-01-30 | 1986-01-17 | Process for separating cesium ions from aqueous solutions |
Country Status (3)
Country | Link |
---|---|
US (1) | US4790960A (en) |
EP (1) | EP0189799B1 (en) |
DE (2) | DE3502986A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5600003A (en) * | 1994-01-11 | 1997-02-04 | Hoechst Aktiengesellschaft | Process for isolating tetraphenylborates |
US11828272B2 (en) | 2009-06-24 | 2023-11-28 | Terralithium Llc | Process for producing geothermal power, selective removal of silica and iron from brines, and improved injectivity of treated brines |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL100353A (en) * | 1991-01-08 | 1997-06-10 | Zambon Spa | Preparation of 5-(2, 4-difluorophenyl)-salicylic acid and novel 2,4-difluorophenyl-boronic acid derivatives being intermediates therefor |
US5912180A (en) * | 1993-08-13 | 1999-06-15 | Hybrivet Systems, Inc. | Process and apparatus for testing for substances in liquids |
US5570469A (en) * | 1995-01-06 | 1996-10-29 | Lockheed Martin Corporation | Method for removing metal contaminants from flue dust |
US5540843A (en) * | 1995-01-12 | 1996-07-30 | Plesek; Jaromir | Method for preferential retention of cesium cations and their separation from other inorganic cations |
JP2997178B2 (en) * | 1995-01-19 | 2000-01-11 | 核燃料サイクル開発機構 | Separation method of exothermic elements from high-level radioactive liquid waste |
US6171503B1 (en) * | 1998-03-16 | 2001-01-09 | Dalhousie University | Use of tetraphenyloborate for extraction of ammonium ions and amines from water |
US9644866B2 (en) | 2009-06-24 | 2017-05-09 | Simbol, Inc. | Treated brine compositions with reduced concentrations of potassium, rubidium, and cesium |
WO2014172032A2 (en) * | 2013-03-13 | 2014-10-23 | Simbol Inc. | Methods for removing potassium, rubidium, and cesium, selectively or in combination, from brines and resulting compositions thereof |
JP6513909B2 (en) * | 2014-05-30 | 2019-05-15 | 株式会社東芝 | Radionuclide separation method for vitrified material |
AU2017230853B2 (en) | 2016-03-09 | 2021-06-17 | Studiengesellschaft Kohle Mbh | Process for removing radioactive isotopes from aqueous fluids by fluorine containing reagents, fluorine containing, water-insoluble salts of the radioactive isotopes, and their use as therapeutic agents |
CN114350950B (en) * | 2021-04-29 | 2024-03-15 | 四川恒成钾盐科技有限公司 | Method for extracting rubidium and cesium from complex underground brine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2982785A (en) * | 1959-01-07 | 1961-05-02 | Theodore R Mckenzie | Cesium recovery |
US3468959A (en) * | 1966-10-17 | 1969-09-23 | Research Corp | Separation of cesium from potassium and rubidium |
US4432893A (en) * | 1982-05-19 | 1984-02-21 | The United States Of America As Represented By The Department Of Energy | Precipitation-adsorption process for the decontamination of nuclear waste supernates |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3172917D1 (en) * | 1981-08-31 | 1985-12-19 | Kernforschungsz Karlsruhe | Process for separating cesium ions from aqueous solutions by using an addition compound consisting of a macrocyclic polyether and an inorganic heteropolyacid |
EP0073261B1 (en) * | 1981-08-31 | 1985-11-13 | Kernforschungszentrum Karlsruhe Gmbh | Process for removing cesium ions from solutions by using an addition compound in solid form of a macrocyclic polyether and an inorganic heteropolyacid |
-
1985
- 1985-01-30 DE DE19853502986 patent/DE3502986A1/en not_active Withdrawn
-
1986
- 1986-01-17 DE DE8686100612T patent/DE3660570D1/en not_active Expired
- 1986-01-17 EP EP86100612A patent/EP0189799B1/en not_active Expired
- 1986-01-30 US US06/824,326 patent/US4790960A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2982785A (en) * | 1959-01-07 | 1961-05-02 | Theodore R Mckenzie | Cesium recovery |
US3468959A (en) * | 1966-10-17 | 1969-09-23 | Research Corp | Separation of cesium from potassium and rubidium |
US4432893A (en) * | 1982-05-19 | 1984-02-21 | The United States Of America As Represented By The Department Of Energy | Precipitation-adsorption process for the decontamination of nuclear waste supernates |
Non-Patent Citations (1)
Title |
---|
CHEMICAL ABSTRACTS, Band 56, 1962, Zusammenfassung Nr. 15117ihio, US; J. RABIANT et al.: "Alkali metal tetraalkylborates: formation of sodium and lithium phenyltri-1-naphthylborates", & COMPT. REND. 1962, 254, 1819-20 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5600003A (en) * | 1994-01-11 | 1997-02-04 | Hoechst Aktiengesellschaft | Process for isolating tetraphenylborates |
US5693867A (en) * | 1994-01-11 | 1997-12-02 | Hoechst Aktiengesellschaft | Process for isolating tetraphenylborates |
US11828272B2 (en) | 2009-06-24 | 2023-11-28 | Terralithium Llc | Process for producing geothermal power, selective removal of silica and iron from brines, and improved injectivity of treated brines |
Also Published As
Publication number | Publication date |
---|---|
EP0189799B1 (en) | 1988-08-17 |
DE3660570D1 (en) | 1988-09-22 |
US4790960A (en) | 1988-12-13 |
DE3502986A1 (en) | 1986-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2210106C2 (en) | Process for the selective extraction of metal ions from aqueous solutions | |
EP0189799B1 (en) | Process for separating cesium ions from aqueous solutions | |
EP0073261B1 (en) | Process for removing cesium ions from solutions by using an addition compound in solid form of a macrocyclic polyether and an inorganic heteropolyacid | |
DE2610948C3 (en) | Process for the extraction of molybdenum -99 from a matrix containing fissile substances and fission products irradiated with neutrons | |
DE1217351B (en) | Process for the extraction of Cs 137 salts from irradiated nuclear fuel | |
EP0073262B1 (en) | Process for separating cesium ions from aqueous solutions by using an addition compound consisting of a macrocyclic polyether and an inorganic heteropolyacid | |
EP1793387B1 (en) | Extraction of radionuclides using extractants containing crown ethers | |
DE4237431C2 (en) | Process for the separation of radioactive iodine compounds from a liquid waste generated in nuclear plants | |
DE2140998C3 (en) | Process for the extraction of molybdenum | |
DE3028024A1 (en) | METHOD FOR SEPARATING PLUTONIUM FROM AQUEOUS, SULFURIC ACID SOLUTIONS | |
EP0170796B1 (en) | Process for separating great amounts of uranium from small amounts of fission products which are present in aqueous basic solutions containing carbonate | |
EP0228051A2 (en) | Process for selectively separating plutonium from uranium and other metals | |
DE102008064682B4 (en) | Anionic borane polymer, as well as its use and preparation | |
DE69208544T2 (en) | Method for producing a sorbent for metal element and method for adsorbing and separating the metal element | |
DE2656602C3 (en) | Method for extracting 2-hydroxymethyl-3,4,5-trihydroxypiperidine from mulberry plants | |
DE2610947C3 (en) | Process for the extraction of molybdenum-99 from a matrix containing fissile substances and fission products irradiated with neutrons | |
EP0662236B1 (en) | Process for treating dissolution residues | |
DE3904167C1 (en) | ||
DE2365114C2 (en) | Process for purifying solutions containing plutonium and / or neptunium by separating plutonium and / or neptunium | |
DE10146928A1 (en) | Calix [6] arenes, process for their preparation and their use | |
DD152774A1 (en) | METHOD FOR THE SEPARATION OF PALLADIUM AND TECHNETIUM FROM SOLUTIONS OF THE CORE FUEL REPRODUCTION | |
AT215961B (en) | Process for the reduction of plutonium, in particular in connection with the separation of plutonium from uranium | |
EP0073263A1 (en) | Process for separating cesium ions from aqueous solutions | |
DE3140657C2 (en) | Process for the final conditioning of aqueous solution containing pollutants, in particular radioactive and / or toxic pollutants | |
DE820303C (en) | Process for the production of organic acids and their esters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19860715 |
|
17Q | First examination report despatched |
Effective date: 19870826 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 3660570 Country of ref document: DE Date of ref document: 19880922 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19891130 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19891229 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19901204 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19910117 |
|
ITTA | It: last paid annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19910930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19921001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050117 |