EP0170796B1 - Process for separating great amounts of uranium from small amounts of fission products which are present in aqueous basic solutions containing carbonate - Google Patents
Process for separating great amounts of uranium from small amounts of fission products which are present in aqueous basic solutions containing carbonate Download PDFInfo
- Publication number
- EP0170796B1 EP0170796B1 EP85105864A EP85105864A EP0170796B1 EP 0170796 B1 EP0170796 B1 EP 0170796B1 EP 85105864 A EP85105864 A EP 85105864A EP 85105864 A EP85105864 A EP 85105864A EP 0170796 B1 EP0170796 B1 EP 0170796B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- concentration
- uranium
- fission products
- aqueous solution
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 37
- 230000004992 fission Effects 0.000 title claims description 29
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 title claims description 27
- 229910052770 Uranium Inorganic materials 0.000 title claims description 26
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 title claims description 17
- 239000003637 basic solution Substances 0.000 title claims 2
- 230000008569 process Effects 0.000 title description 17
- 239000000243 solution Substances 0.000 claims description 35
- 239000007864 aqueous solution Substances 0.000 claims description 15
- 150000002500 ions Chemical class 0.000 claims description 14
- 150000001450 anions Chemical class 0.000 claims description 13
- WYICGPHECJFCBA-UHFFFAOYSA-N dioxouranium(2+) Chemical compound O=[U+2]=O WYICGPHECJFCBA-UHFFFAOYSA-N 0.000 claims description 11
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 7
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 5
- 239000002699 waste material Substances 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 4
- 229920000098 polyolefin Polymers 0.000 claims description 3
- 238000001179 sorption measurement Methods 0.000 claims description 3
- 125000003277 amino group Chemical group 0.000 claims description 2
- 230000002285 radioactive effect Effects 0.000 claims description 2
- 238000007711 solidification Methods 0.000 claims description 2
- 230000008023 solidification Effects 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims 1
- 238000011084 recovery Methods 0.000 claims 1
- 239000000047 product Substances 0.000 description 25
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N activated carbon Substances [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- 229910017604 nitric acid Inorganic materials 0.000 description 7
- 239000003758 nuclear fuel Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- FHNFHKCVQCLJFQ-NJFSPNSNSA-N Xenon-133 Chemical compound [133Xe] FHNFHKCVQCLJFQ-NJFSPNSNSA-N 0.000 description 5
- -1 actinide ions Chemical class 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 239000010955 niobium Substances 0.000 description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 235000017550 sodium carbonate Nutrition 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 229910052747 lanthanoid Inorganic materials 0.000 description 3
- 150000002602 lanthanoids Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 3
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052768 actinide Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 235000012501 ammonium carbonate Nutrition 0.000 description 2
- 125000005587 carbonate group Chemical group 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005202 decontamination Methods 0.000 description 2
- 230000003588 decontaminative effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- OOAWCECZEHPMBX-UHFFFAOYSA-N oxygen(2-);uranium(4+) Chemical compound [O-2].[O-2].[U+4] OOAWCECZEHPMBX-UHFFFAOYSA-N 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 229940106670 xenon-133 Drugs 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910000711 U alloy Inorganic materials 0.000 description 1
- 150000001224 Uranium Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- HFNQLYDPNAZRCH-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O.OC(O)=O HFNQLYDPNAZRCH-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 238000005025 nuclear technology Methods 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- DSERHVOICOPXEJ-UHFFFAOYSA-L uranyl carbonate Chemical compound [U+2].[O-]C([O-])=O DSERHVOICOPXEJ-UHFFFAOYSA-L 0.000 description 1
- 125000005289 uranyl group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/12—Processing by absorption; by adsorption; by ion-exchange
Definitions
- the invention relates to a process for separating large amounts of uranium from small amounts of radioactive fission products which are present in aqueous basic, carbonate-containing solutions, using an organic, basic anion exchanger.
- nuclear reactor fuel elements for recycling irradiated nuclear fuels from compounds or alloys of highly enriched uranium have been dissolved in nitric acid and the uranium by liquid / liquid extraction, e.g. in the Purex process or in the amine extraction or in column-chromatographic separation operations, separated and worked up in nitric acid medium.
- the elements mainly consist of aluminum-coated uranium / aluminum alloy with the approximate composition UAl3; Because of the fluctuating Al content in the compound, the designation UAl x is mostly used.
- This type of fuel element is often used as a starting target for the production of fission product nuclides for nuclear medicine and technology; mostly smaller elements with thermal neutron fluxes of approx. Irradiated for 5 to 10 days. In order to minimize the decay losses of the desired nuclide, the targets are transported to the processing plant after a minimum cooling time of approx. 12 hours.
- the first chemical step is usually an alkaline digestion of the target with 3 to 6 molar sodium hydroxide solution or potassium hydroxide solution;
- the main constituent of the plate, aluminum, and the fission products soluble in this medium such as the alkali and alkaline earth cations, as well as antimony, iodine, tellurium, tin and molybdenum, go into solution, while the volatile fission products, especially xenon, go together with the Hydrogen formed from the Al solution, leave the dissolver at the upper end of the reflux condenser.
- the hydrogen can be oxidized to water via CuO, while the xenon is preferably retained at normal temperature on activated carbon delay lines.
- This residue is treated in a manner known per se under the action of air or an oxidizing agent, e.g. H2O2 or hypochlorite, treated with an aqueous solution containing carbonate and hydrogen carbonate ions from pH 5 to pH 11.
- the concentration of the carbonate ions in this solution can be a maximum of 2.5 M / l, that of the hydrogen carbonate ions a maximum of approximately 1.0 M / l.
- the oxides of uranium and the fission product species mentioned go into solution as carbonato complexes.
- the invention is based on the object of providing a method with which uranium values present in an aqueous, basic, carbonate-containing solution, on the one hand, of fission products from the ruthenium group, Zirconium, niobium and lanthanoids, on the other hand, can be separated from one another with a relatively high degree of decontamination.
- the process of the invention is said to be able to obtain largely decontaminated uranium or the fission products ruthenium, zirconium, niobium and lanthanoids after the alkaline digestion of a fuel element of a material test reactor (MTR).
- MTR material test reactor
- the process is said to be operationally reliable and low-waste and to be applicable to residues containing uranium dioxide and alkalidiuranate that have only cooled down for a few days.
- the aqueous solution is adjusted to a ratio of the uranyl ion concentration to carbonate ions / hydrogen carbonate ion concentration of 1: 5 to 1: 8.
- the aqueous solution is adjusted at a uranium concentration of 60 g / l to a ratio of UO2++ concentration to CO3 ⁇ / HCO3 ⁇ concentration of 1: 5.
- the aqueous solution advantageously has a hydrogen carbonate ion concentration between 0 and 1 mol / l.
- the CO3 ⁇ concentration in the aqueous solution is a maximum of 2.5 M / l and the pH of the aqueous solution is in the range from pH 7 to pH 11.
- the process according to the invention can also be carried out in the absence of HCO3 ⁇ ions, but the process conditions can be set more easily if HCO3 ⁇ ions are present in the aqueous solution.
- the application of the method spans a large concentration fluctuation range of the uranium to be decontaminated. Is the uranium concentration in the solution compared to the carbonate concentration very small, so that, for example, a free CO3 ⁇ / HCO3 ⁇ concentration is greater than 0.6 mol / l, the excess carbonate excess can either be optimized by metering in a mineral acid, preferably HNO3, or optimized to optimize the fission product retention a certain amount of carbonate ions can be trapped by adding, for example, Ca (OH) 2.
- the uranium distribution coefficient must be minimized by adding sufficient amounts of CO3 ⁇ / HCO3 ⁇ ions so that the fission product species are not displaced by the uranium from the ion exchanger.
- the desired separations can still be carried out at uranium concentrations of approx. 60 g U / l.
- the limitation of the process to higher U concentrations is due to the uranium solubility in carbonate-hydrogen carbonate solutions.
- a method for the separation of actinide ions from aqueous, basic, carbonate-containing solutions from German Offenlegungsschrift 31 44 974 was known, in which the actinide ions as carbonato complexes are adsorbed on basic ion exchangers and after separation of the loaded ion exchanger from the starting solution using an aqueous solution are desorbed and further processed by the ion exchanger, and in which a basic anion exchanger from a is used with a predominantly tertiary and to a small extent quaternary ammonium group-provided polyalkene matrix, but this method is only meaningfully applicable to aqueous, carbonate-containing waste solutions or washing solutions etc.
- the main advantages of the method according to the invention are that the decontamination of the uranium from the fission products still present can be carried out with a relatively small amount of the anion exchanger, for example in a relatively small ion exchange column, that the ion exchanger loaded with the fission products can be used in the event that only the uranium values are to be recovered (with or without a column) without intermediate treatment directly can be given for waste treatment and disposal and, in the event that the fission product nuclides are to be obtained, can be carried out for further processing of the fission product nuclides and separation from one another.
- the cleavage products can be eluted from the ion exchange column with an alkali or ammonium carbonate solution of higher molarity (approx. 1 to 2 M / l) or with nitric acid.
- the method according to the invention is characterized by very reliable process control.
- the organic anion exchanger does not have to be brought into contact with corrosive or strongly oxidizing media in any phase of the process.
- the method according to the invention works with basic media which offer the highest possible security against the release of volatile iodine components.
- the solution used in the process according to the invention which can contain up to a maximum of 2.5 mol / l Na2CO3 and, at a lower CO3 ⁇ concentration, up to approx. 1 mol / l NaHCO3, is chemically very easy to control and radiation-chemical resistant. There are no corrosion problems.
- the outlay in chemicals, apparatus and working time is very low in the process according to the invention.
- the average fission product retention during a column run under the specified loading conditions was> 97% for cerium, zirconium and niobium; With ruthenium the retention was approx. 80%.
- Task solution Volume 100 ml U content: 1.19 g U: CO3 ⁇ / HCO3 ⁇ : 1: 7 or 1: 6 Na2CO3: 3.24 g ⁇ 90% or 2.78 g NaHCO3: 0.28 g ⁇ 10% or 0.24 g column Diameter: 15 mm Height: 130 mm Bed volume: 20 ml Feed speed: ⁇ 0.5 ml / cm2 ⁇ sec. Rinsing: 0.2 molar Na2CO3 solution *) Number of fractions: 4 x 20 *) Instead of a Na2CO3 solution, a corresponding other alkali or ammonium carbonate solution can also be used.
- Ion exchanger moderately basic anion exchanger made of polyalkene-epoxypolyamine with tertiary and quaternary ammonium groups with the trade name Bio-Rex 5 (from Bio-Rad Laboratories, USA).
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Trennung von großen Mengen Uran von geringen Mengen von radioaktiven Spaltprodukten, die in wäßrigen basischen, karbonathaltigen Lösungen vorliegen, unter Verwendung eines organischen, basischen Anionenaustauschers.The invention relates to a process for separating large amounts of uranium from small amounts of radioactive fission products which are present in aqueous basic, carbonate-containing solutions, using an organic, basic anion exchanger.
Bisher wurden Kernreaktorbrennelemente zur Rezyklierung bestrahlter Kernbrennstoffe aus Verbindungen bzw. Legierungen von hochangereichertem Uran in Salpetersäure gelöst und das Uran durch Flüssig/Flüssig-Extraktion, wie z.B. im Purex-Prozeß oder bei der Aminextraktion oder bei säulenchromatographischen Trennoperationen, abgetrennt und in salpetersaurem Medium aufgearbeitet.So far, nuclear reactor fuel elements for recycling irradiated nuclear fuels from compounds or alloys of highly enriched uranium have been dissolved in nitric acid and the uranium by liquid / liquid extraction, e.g. in the Purex process or in the amine extraction or in column-chromatographic separation operations, separated and worked up in nitric acid medium.
Die salpetersaure Rezyklierung von Kernbrennstoffen, vor allem der Purex-Prozeß, ist eine längst bekannte und bewährte Verfahrensweise; sie ist jedoch bei der Aufarbeitung kurz abgekühlter Targets (Kühlungsdauer beispielsweise 1 - 30 Tage) äußerst problematisch. Die Nachteile sind folgende:
- Die Anwesenheit der kürzer lebigen Spaltprodukte, vor allem Jod-131 und Xenon-133, macht den Einsatz von Rückhalte- bzw. Verzögerungsstrecken zwingend notwendig. Durch die Verwendung von Salpetersäure - andere Säuren scheiden aufgrund ihrer Korrosivität aus - und der damit verbundenen Möglichkeit einer NO₂-Entwicklung darf das wirksamste und zugleich wirtschaftlichste Filtermaterial Aktivkohle nicht eingesetzt werden, da sonst im Falle einer NO₂-Freisetzung akute Brandgefahr in den Abgasstrecken bestünde.
- Sämtliche Flüssig/Flüssig-Extraktionsprozesse sind für hochgradig mit J-131 und Xe-133 befrachteten Systeme (wie in diesem Fall) außerordentlich schwer beherrschbar, da neben der Xe-133-Emissionsgefahr die weitere, erheblich folgenschwerere Möglichkeit der HJ- und Jod-Emission aus dem sauren System besteht.
Ein weiterer Nachteil der Flüssig/Flüssig-Extraktion ist der notwendige erhöhte Aufwand, um die Brandgefahr zu vermeiden, verursacht durch den Extraktionsmittelverdünner. Der Einsatz von nicht brennbaren Verdünnern, wie Tetrachlorkohlenstoff, ist in diesem extrem hochaktiven System aufgrund der ausgeprägten Strahlenempfindlichkeit und der erhöhten Korrosionsgefahr durch die freiwerdende Salzsäure nicht empfehlenswert. - Sämtliche bisher bekannten leistungsfähigen extraktionschromatografischen Verfahren erfolgen in sauren Systemen und beinhalten neben dem bereits angeführten Nachteil der HJ- bzw. J₂-Freisetzung einen weiteren großen Nachteil und zwar die Fixierung des Urans, dem Hauptanteil im Prozeßstrom, bei verminderter Rückhaltung der Spaltprodukte. Der Nachteil dieser Vorgehensweise liegt auf der Hand: Hier müssen zur Kernbrennstoffrückhaltung unvergleichbar größere Kolonnenvolumina bereitgestellt werden.
- The presence of the shorter, lively fission products, especially iodine-131 and xenon-133, makes the use of retention or delay lines imperative. By using nitric acid - other acids differ due to their corrosiveness from - and the associated possibility of NO₂ development, the most effective and at the same time most economical filter material activated carbon must not be used, since otherwise there would be an acute fire hazard in the exhaust system in the event of NO₂ release.
- All liquid / liquid extraction processes are extremely difficult to control for systems heavily loaded with J-131 and Xe-133 (as in this case), because in addition to the Xe-133 emission risk there is the further, considerably more serious possibility of HJ and iodine emissions consists of the acidic system.
Another disadvantage of liquid / liquid extraction is the increased effort required to avoid the risk of fire caused by the extractant thinner. The use of non-flammable thinners, such as carbon tetrachloride, is not recommended in this extremely highly active system due to its pronounced sensitivity to radiation and the increased risk of corrosion due to the hydrochloric acid released. - All previously known powerful extraction chromatography processes take place in acidic systems and, in addition to the already mentioned disadvantage of HJ or J₂ release, include a further major disadvantage, namely the fixation of uranium, the main part in the process stream, with reduced retention of the fission products. The disadvantage of this procedure is obvious: Here you have to Nuclear fuel retention incomparably larger column volumes are provided.
Aufarbeitung von durch Spaltprodukte extrem verunreinigtes Urandioxid bzw. Alkalidiuranatrückständen hoher U-235-Anreicherung, wie sie nach dem alkalischen Aufschluß von Material-Test-Reaktor-Brennelementen anfallen: Die Elemente bestehen überwiegend aus mit Aluminium umhüllter Uran/Aluminiumlegierung der ungefähren Zusammensetzung UAl₃; wegen des schwankenden Al-Gehaltes in der Verbindung wird meistens die Bezeichnung UAlx verwendet. Dieser Brennelementtyp wird häufig als Ausgangstarget zur Produktion von Spaltproduktnukliden für die Nuklearmedizin und -technik eingesetzt; dazu werden meist kleinere Elemente bei thermischen Neutronenflüssen von ca.
5 bis 10 Tage bestrahlt. Um die Zerfallsverluste des gewünschten Nuklids zu minimieren, werden die Targets nach einer Mindestabkühlzeit von ca. 12 Stunden zu der Aufarbeitungsanlage transportiert. Als erster chemischer Schritt dient in der Regel ein alkalischer Aufschluß des Targets mit 3 - 6 molarer Natronlauge bzw. Kalilauge; dabei gehen der Hauptbestandteil der Platte, das Aluminium, und die in diesem Medium löslichen Spaltprodukte, wie die Alkali- und Erdalkalikationen sowie Antimon, Jod, Tellur, Zinn und Molybdän in Lösung, während die flüchtigen Spaltprodukte, vor allem das Xenon, zusammen mit dem aus der Al-Auflösung gebildeten Wasserstoff, den Auflöser am oberen Ende des Rückflußkühlers verlassen. Der Wasserstoff kann über CuO zu Wasser oxidiert werden, während das Xenon vorzugsweise bei Normaltemperatur auf Aktivkohleverzögerungsstrecken zurückgehalten wird. Als unlöslicher Rückstand verbleiben das nicht abgebrannte Uran, in der Regel ca. 99 % der anfänglich bestrahlten Menge, als UO₂ bzw. Alkalidiuranat gemeinsam mit den unlöslichen Spaltproduktspezies, vor allem Ruthenium, Zirkonium, Niob und die Lanthanoide in Form ihrer Oxide.Processing of uranium dioxide or alkali metal diurate residues with a high concentration of U-235, which is extremely contaminated by fission products, as occurs after the alkaline digestion of material test reactor fuel elements: The elements mainly consist of aluminum-coated uranium / aluminum alloy with the approximate composition UAl₃; Because of the fluctuating Al content in the compound, the designation UAl x is mostly used. This type of fuel element is often used as a starting target for the production of fission product nuclides for nuclear medicine and technology; mostly smaller elements with thermal neutron fluxes of approx.
Irradiated for 5 to 10 days. In order to minimize the decay losses of the desired nuclide, the targets are transported to the processing plant after a minimum cooling time of approx. 12 hours. The first chemical step is usually an alkaline digestion of the target with 3 to 6 molar sodium hydroxide solution or potassium hydroxide solution; The main constituent of the plate, aluminum, and the fission products soluble in this medium, such as the alkali and alkaline earth cations, as well as antimony, iodine, tellurium, tin and molybdenum, go into solution, while the volatile fission products, especially xenon, go together with the Hydrogen formed from the Al solution, leave the dissolver at the upper end of the reflux condenser. The hydrogen can be oxidized to water via CuO, while the xenon is preferably retained at normal temperature on activated carbon delay lines. Remain as an insoluble residue the unburned uranium, usually about 99% of the initially irradiated amount, as UO₂ or alkalidiuranate together with the insoluble fission product species, especially ruthenium, zirconium, niobium and the lanthanoids in the form of their oxides.
Dieser Rückstand wird in an sich bekannter Weise unter Einwirkung von Luft oder eines Oxidationsmittels, wie z.B. H₂O₂ oder Hypochlorit, mit einer wäßrigen, Karbonat- und Hydrogenkarbonationen enthaltenden Lösung von pH 5 bis pH 11 behandelt. Die Konzentration der Karbonationen kann in dieser Lösung maximal 2,5 M/l, die der Hydrogenkarbonationen maximal ca. 1,0 M/l betragen. Während dieser Behandlung gehen die Oxide des Urans und der genannten Spaltprodukt-Spezies als Karbonato-Komplexe in Lösung.This residue is treated in a manner known per se under the action of air or an oxidizing agent, e.g. H₂O₂ or hypochlorite, treated with an aqueous solution containing carbonate and hydrogen carbonate ions from pH 5 to pH 11. The concentration of the carbonate ions in this solution can be a maximum of 2.5 M / l, that of the hydrogen carbonate ions a maximum of approximately 1.0 M / l. During this treatment, the oxides of uranium and the fission product species mentioned go into solution as carbonato complexes.
Aus wirtschaftlichen und sicherheitstechnischen Aspekten muß dieser kurz gekühlte, extrem kontaminierte Kernbrennstoff rezykliert, erneut targetiert und dann ausgelagert werden. Der übliche Weg mit der salpetersauren Auflösung scheidet jedoch für eine im technischen Maßstab durchführbare Aufarbeitung kurz abgekühlter Brennelemente, wie bereits ausgeführt, aus, wegen der auch nach dem Aufschluß erhöhten Jod-131-Kontamination sowie der bekannten Brandgefahr der Aktivkohle in Gegenwart von Stickoxiden.For economic and safety reasons, this briefly cooled, extremely contaminated nuclear fuel has to be recycled, re-targeted and then outsourced. However, the usual route with nitric acid dissolution is ruled out for processing of briefly cooled fuel elements that can be carried out on an industrial scale, as already stated, because of the increased iodine-131 contamination after digestion and the known risk of fire of the activated carbon in the presence of nitrogen oxides.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu schaffen, mit welchem in einer wäßrigen, basischen, karbonathaltigen Lösung vorliegende Uran-Werte einerseits von Spaltprodukten aus der Gruppe Ruthenium, Zirkonium, Niob und Lanthanoiden andererseits, voneinander mit verhältnismäßig hohem Dekontaminationsgrad getrennt werden können. Insbesondere sollen mit dem erfindungsgemäßen Verfahren Uran oder die Spaltprodukte Ruthenium, Zirkonium, Niob und Lanthanoiden nach dem alkalischen Aufschluß eines Brennelementes eines Material-Test-Reaktors (MTR) weitgehend dekontaminiert erhalten werden können. Das Verfahren soll betriebssicher und abfallarm durchführbar sein und auf nur wenige Tage abgekühlte urandioxid- und alkalidiuranathaltige Rückstände anwendbar sein.The invention is based on the object of providing a method with which uranium values present in an aqueous, basic, carbonate-containing solution, on the one hand, of fission products from the ruthenium group, Zirconium, niobium and lanthanoids, on the other hand, can be separated from one another with a relatively high degree of decontamination. In particular, the process of the invention is said to be able to obtain largely decontaminated uranium or the fission products ruthenium, zirconium, niobium and lanthanoids after the alkaline digestion of a fuel element of a material test reactor (MTR). The process is said to be operationally reliable and low-waste and to be applicable to residues containing uranium dioxide and alkalidiuranate that have only cooled down for a few days.
Die Aufgabe wird in einfacher Weise erfindungsgemäß dadurch gelöst, daß
- a) die wäßrige Lösung auf ein Verhältnis der Uranylionen-Konzentration zu Karbonationen- bzw. CO₃⁻⁻/HCO₃⁻-Konzentration von 1(UO₂⁺⁺) zu 4,5(CO₃⁻⁻ bzw. CO₃⁻⁻/HCO₃⁻) oder darunter bei einer maximalen U-Konzentration von nicht mehr als 60 g/l eingestellt wird,
- b) die eingestellte Lösung zur Adsorption der Spaltproduktionen bzw. der Spaltprodukte enthaltenden Ionen über einen basischen Anionenaustauscher aus einer mit zu einem überwiegenden Teil tertiären und zu einem geringen Teil quarternären Ammoniumgruppen versehenen Polyalken-Matrix geleitet wird und der nicht adsorbierte Uranyl-karbonato-Komplex durch Abtrennen der uranhaltigen, verbleibenden Lösung vom Ionenaustauscher weitgehend spaltproduktfrei wiedergewonnen bzw. dekontaminiert wird und
- c) der mit Spaltprodukten beladene Ionenaustauscher zur Spaltproduktgewinnung oder zur Abfall-Verfestigung geführt wird.
- a) the aqueous solution to a ratio of the uranyl ion concentration to carbonate ions or CO₃⁻⁻ / HCO₃⁻ concentration of 1 (UO₂⁺⁺) to 4.5 (CO₃⁻⁻ or CO₃⁻⁻ / HCO₃⁻) or below that is set at a maximum U concentration of not more than 60 g / l,
- b) the set solution for the adsorption of the cleavage products or the ions containing the cleavage products is passed through a basic anion exchanger from a polyalkene matrix provided with a predominantly tertiary and to a small extent quaternary ammonium groups and the non-adsorbed uranyl carbonate complex Removing the uranium-containing, remaining solution from the ion exchanger is largely recovered or decontaminated without fission product and
- c) the ion exchanger loaded with fission products is led to fission product recovery or waste solidification.
In einer besonderen Ausbildung des erfindungsgemäßen Verfahrens wird die wäßrige Lösung auf ein Verhältnis der Uranylionen-Konzentration zu Karbonationen/Hydrogenkarbonationen-Konzentration von 1 : 5 bis 1 : 8 eingestellt. Vorteilhafterweise wird die wäßrige Lösung bei einer Uran-Konzentration von 60 g/l auf ein Verhältnis UO₂⁺⁺ -Konzentration zu CO₃⁻⁻ /HCO₃⁻ -Konzentration von 1 : 5 eingestellt.In a special embodiment of the method according to the invention, the aqueous solution is adjusted to a ratio of the uranyl ion concentration to carbonate ions / hydrogen carbonate ion concentration of 1: 5 to 1: 8. Advantageously, the aqueous solution is adjusted at a uranium concentration of 60 g / l to a ratio of UO₂⁺⁺ concentration to CO₃⁻⁻ / HCO₃⁻ concentration of 1: 5.
Als basischer Anionenaustauscher wird ein solcher aus Polyalken-epoxypolyamin mit tertiären und quarternären Ammoniumgruppen des chemischen Aufbaus R-N⁺H(CH₃)₂Cl⁻ und R-N⁺(CH₃)₂(C₂H₄OH)Cl⁻, wobei R das Molekül ohne Aminogruppen bedeutet, verwendet.As a basic anion exchanger, such a polyalkene-epoxypolyamine with tertiary and quaternary ammonium groups of chemical structure R-N⁺H (CH₃) ₂Cl⁻ and R-N⁺ (CH₃) ₂ (C₂H₄OH) Cl⁻, where R is the molecule without amino groups, is used.
Vorteilhafterweise weist die wäßrige Lösung eine Hydrogenkarbonationen-Konzentration zwischen 0 und 1 Mol/l auf. Die CO₃⁻⁻-Konzentration in der wäßrigen Lösung beträgt maximal 2,5 M/l und der pH-Wert der wäßrigen Lösung liegt im Bereich von pH 7 bis pH 11.The aqueous solution advantageously has a hydrogen carbonate ion concentration between 0 and 1 mol / l. The CO₃⁻⁻ concentration in the aqueous solution is a maximum of 2.5 M / l and the pH of the aqueous solution is in the range from pH 7 to pH 11.
Das erfindungsgemäße Verfahren ist auch in Abwesenheit von HCO₃⁻-Ionen durchführbar, doch sind die Verfahrensbedingungen leichter einstellbar, wenn in der wäßrigen Lösung HCO₃⁻-Ionen vorhanden sind.The process according to the invention can also be carried out in the absence of HCO₃⁻ ions, but the process conditions can be set more easily if HCO₃⁻ ions are present in the aqueous solution.
Der Einsatzbereich des Verfahrens umspannt einen großen Konzentrationsschwankungsbereich des zu dekontaminierenden Urans. Ist die Urankonzentration in der Lösung gegenüber der Karbonatkonzentration sehr klein, so daß beispielsweise eine freie CO₃⁻⁻/HCO₃⁻-Konzentration höher als 0,6 Mol/l vorliegt, so kann zur Optimierung der Spaltproduktrückhaltungen der zu große Karbonatüberschuß entweder durch Zudosierung einer Mineralsäure, vorzugsweise HNO₃, zerstört oder durch Zugabe von z.B. Ca(OH)₂ eine bestimmte Menge an Karbonationen weggefangen werden.The application of the method spans a large concentration fluctuation range of the uranium to be decontaminated. Is the uranium concentration in the solution compared to the carbonate concentration very small, so that, for example, a free CO₃⁻⁻ / HCO₃⁻ concentration is greater than 0.6 mol / l, the excess carbonate excess can either be optimized by metering in a mineral acid, preferably HNO₃, or optimized to optimize the fission product retention a certain amount of carbonate ions can be trapped by adding, for example, Ca (OH) ₂.
Im umgekehrten Fall jedoch, d.h. liegen höhere Urankonzentrationen vor, so muß durch Zugabe von ausreichenden Mengen an CO₃⁻⁻ /HCO₃⁻-Ionen der Uranverteilungskoeffizient so weit minimiert werden, daß die Spaltprodukt-Spezies nicht durch das Uran vom Ionenaustauscher verdrängt werden. Die gewünschten Trennungen lassen sich noch bei Urankonzentrationen von ca. 60 g U/l durchführen. Die Begrenzung des Verfahrens zu höheren U-Konzentrationen hin ist durch die Uranlöslichkeit in Karbonat-Hydrogenkarbonat-Lösungen begründet.In the opposite case, however, i.e. if higher uranium concentrations are present, the uranium distribution coefficient must be minimized by adding sufficient amounts of CO₃⁻⁻ / HCO₃⁻ ions so that the fission product species are not displaced by the uranium from the ion exchanger. The desired separations can still be carried out at uranium concentrations of approx. 60 g U / l. The limitation of the process to higher U concentrations is due to the uranium solubility in carbonate-hydrogen carbonate solutions.
Zwar wurde ein Verfahren zur Abtrennung von Aktinoidenionen aus wäßrigen, basischen, karbonathaltigen Lösungen aus der deutschen Offenlegungsschrift 31 44 974 bekannt, bei welchem die Aktinoidenionen als Karbonato-Komplexe an basischen Ionenaustauschern adsorbiert und nach Abtrennen des beladenen Ionenaustauschers von der Ausgangslösung mit Hilfe einer wäßrigen Lösung wieder vom Ionenaustauscher desorbiert und weiterverarbeitet werden, und bei welchem zur Adsorption der Aktinoidenionen ebenfalls ein basischer Anionenaustauscher aus einer mit zu einem überwiegenden Teil tertiären und zu einem geringen Teil quarternären Ammoniumgruppen versehenen Polyalken-Matrix verwendet wird, doch ist dieses Verfahren nur sinnvoll anwendbar auf wäßrige, karbonathaltige Abfall-Lösungen oder Waschlösungen etc. Für entsprechende Lösungen mit einem relativ hohen Gehalt an Uranyl-Ionen würde der apparative Aufwand zu groß werden und die genaue Einhaltung der Karbonationen-Konzentration im Bereich der Verhältnisse UO₂⁺⁺-Konzentration zu CO₃⁻⁻-Konzentration zwischen 1 : 3 und 1 : 4 nicht in jedem Falle problemlos sein. Außerdem wäre das Verfahren nach der DE-OS 31 44 974 für größere Uran-Konzentrationen in der Lösung zu umständlich, da die Uranylionen, im Gegensatz zum erfindungsgemäßen Verfahren, vom Anionenaustauscher adsorbiert werden, wobei die Spaltproduktionen mit der verbleibenden Lösung durch den Anionenaustauscher hindurch laufen, und das Uran vom Ionenaustauscher wieder eluiert werden muß. Dem gegenüber werden die Uranylionen im erfindungsgemäßen Verfahren an der gleichen Anionenaustauscherart nicht festgehalten, sondern nur die noch vorhandenen Spaltprodukt-Spezies.A method for the separation of actinide ions from aqueous, basic, carbonate-containing solutions from German Offenlegungsschrift 31 44 974 was known, in which the actinide ions as carbonato complexes are adsorbed on basic ion exchangers and after separation of the loaded ion exchanger from the starting solution using an aqueous solution are desorbed and further processed by the ion exchanger, and in which a basic anion exchanger from a is used with a predominantly tertiary and to a small extent quaternary ammonium group-provided polyalkene matrix, but this method is only meaningfully applicable to aqueous, carbonate-containing waste solutions or washing solutions etc. For corresponding solutions with a relatively high uranyl ion content the expenditure on equipment would be too great and the exact observance of the carbonate ion concentration in the range of the ratios UO₂⁺⁺ concentration to CO₃⁻⁻ concentration between 1: 3 and 1: 4 would not be problem-free in every case. In addition, the method according to DE-OS 31 44 974 would be too cumbersome for larger uranium concentrations in the solution since, in contrast to the method according to the invention, the uranyl ions are adsorbed by the anion exchanger, the cleavage products with the remaining solution passing through the anion exchanger , and the uranium must be eluted again from the ion exchanger. In contrast, the uranyl ions in the process according to the invention are not held to the same type of anion exchanger, but only the fission product species still present.
Die wesentlichen Vorteile des erfindungsgemäßen Verfahrens liegen darin, daß die Dekontamination des Urans von den noch vorhandenen Spaltprodukten mit einer verhältnismäßig kleinen Menge des Anionenaustauschers, z.B. in einer verhältnismäßig kleinen Ionenaustauschersäule, durchgeführt werden kann, daß der mit den Spaltprodukten beladene Ionenaustauscher in dem Falle, daß nur die Uranwerte wiedergewonnen werden sollen, (mit oder ohne Säule) ohne Zwischenbehandlung direkt zur Abfallbehandlung und -beseitigung gegeben werden kann und in dem Falle, daß die Spaltprodukt-Nuklide gewonnen werden sollen, zur Weiterverarbeitung der Spaltprodukt-Nuklide und Trennung voneinander geführt werden kann. Die Spaltprodukte können mit einer Alkali- oder Ammonium-Karbonatlösung höherer Molarität (ca. 1 bis 2 M/l) oder mit Salpetersäure aus der Ionenaustauschersäule eluiert werden. Durch ein- oder mehrmaliges Wiederholen des erfindungsgemäßen Verfahrens an weiteren kleinen Anionenaustauscherchargen erhält man einen hohen Reinheitsgrad des wiederzugewinnenden Urans.The main advantages of the method according to the invention are that the decontamination of the uranium from the fission products still present can be carried out with a relatively small amount of the anion exchanger, for example in a relatively small ion exchange column, that the ion exchanger loaded with the fission products can be used in the event that only the uranium values are to be recovered (with or without a column) without intermediate treatment directly can be given for waste treatment and disposal and, in the event that the fission product nuclides are to be obtained, can be carried out for further processing of the fission product nuclides and separation from one another. The cleavage products can be eluted from the ion exchange column with an alkali or ammonium carbonate solution of higher molarity (approx. 1 to 2 M / l) or with nitric acid. By repeating the process according to the invention one or more times on further small batches of anion exchangers, a high degree of purity of the uranium to be recovered is obtained.
Aufgrund der raschen Durchführbarkeit des erfindungsgemäßen Verfahrens fällt für die Wiederaufarbeitung und Rückführung des Urans in den Kernbrennstoffkreislauf eine nachteilige Bildung von Degradationsprodukten (wie z.B. bei den Extraktionsverfahren eine solche des Extraktionsmittels oder des Verdünnungsmittels) weg. Das erfindungsgemäße Verfahren zeichnet sich durch eine sehr sichere Prozeßführung aus. Beispielsweise muß der organische Anionenaustauscher in keiner Phase des Verfahrens mit korrosiven oder stark oxidierenden Medien in Kontakt gebracht werden.Due to the rapid feasibility of the process according to the invention, there is no disadvantageous formation of degradation products for the reprocessing and recycling of the uranium in the nuclear fuel cycle (such as, for example, that of the extraction agent or of the diluent in the extraction processes). The method according to the invention is characterized by very reliable process control. For example, the organic anion exchanger does not have to be brought into contact with corrosive or strongly oxidizing media in any phase of the process.
Das erfindungsgemäße Verfahren arbeitet mit basischen Medien, die die höchstmögliche Sicherheit gegen Freisetzung flüchtiger Jodkomponenten bieten. Die im erfindungsgemäßen Verfahren verwendete Lösung, welche bis zu maximal 2,5 Mol/l Na₂CO₃ und bei geringerer CO₃⁻⁻-Konzentration bis zu ca. 1 Mol/l NaHCO₃ enthalten kann, ist chemisch denkbar einfach zu beherrschen und strahlenchemisch resistent. Korrosionsprobleme sind nicht vorhanden. Außerdem ist bei dem erfindungsgemäßen Verfahren der Aufwand an Chemikalien, Apparaturen und Arbeitszeit sehr niedrig.The method according to the invention works with basic media which offer the highest possible security against the release of volatile iodine components. The solution used in the process according to the invention, which can contain up to a maximum of 2.5 mol / l Na₂CO₃ and, at a lower CO₃⁻⁻ concentration, up to approx. 1 mol / l NaHCO₃, is chemically very easy to control and radiation-chemical resistant. There are no corrosion problems. In addition, the outlay in chemicals, apparatus and working time is very low in the process according to the invention.
Im folgenden wird die Erfindung anhand zweier beispielhafter Versuche näher erläutert.The invention is explained in more detail below on the basis of two exemplary experiments.
In zwei dynamischen Kolonnendurchlaufexperimenten wurden bei verschiedenen Uran zu Karbonat-/Hydrogenkarbonat-Verhältnissen die Wirksamkeit des erfindungsgemäßen Verfahrens untersucht.In two dynamic column run-through experiments, the effectiveness of the method according to the invention was investigated at different uranium to carbonate / hydrogen carbonate ratios.
Die durchschnittliche Spaltprodukt-Rückhaltung lag bei einem Kolonnendurchlauf unter den angegebenen Beladebedingungen bei > 97 % für Cer, Zirkonium und Niob; bei Ruthenium lag die Rückhaltung bei ca. 80 %.The average fission product retention during a column run under the specified loading conditions was> 97% for cerium, zirconium and niobium; With ruthenium the retention was approx. 80%.
Nachfolgend sind die Ergebnisse im einzelnen angegeben:
Ionenaustauscher:
mäßig basischer Anionenaustauscher aus Polyalken-epoxypolyamin mit tertiären und quarternären Ammoniumgruppen mit der Handelsbezeichnung Bio-Rex 5 (der Firma Bio-Rad Laboratories, USA).Ion exchanger:
moderately basic anion exchanger made of polyalkene-epoxypolyamine with tertiary and quaternary ammonium groups with the trade name Bio-Rex 5 (from Bio-Rad Laboratories, USA).
W. = WaschlösungenDL = passage of the food solution (100 ml).
W. = washing solutions
W. = WaschlösungenDL = passage of the food solution (100 ml).
W. = washing solutions
Claims (7)
- Method of separating large quantities of uranium from small quantities of radioactive fission products, which are present in aqueous basic solutions containing carbonate, by utilising an organic, basic anion exchanger, characterised in thata) the aqueous solution is adjusted to a ratio of the uranyl ion concentration relative to the carbonate ion concentration, i.e. the CO₃⁻⁻/HCO₃⁻ concentration of 1(UO₂⁺⁺) to 4.5(CO₃⁻⁻), i.e. CO₃⁻⁻/HCO₃⁻) or less with a maximum U concentration of no more than 60 g/l;b) the adjusted solution for the adsorption of the fission product ions, i.e. the ions containing fission products, is conducted, via a basic anion exchanger, from a polyalkene matrix, which is provided with a large portion of tertiary ammonium groups and with a small portion of quaternary ammonium groups, and the non-adsorbed uranyl carbonato complex is recovered in a state largely free of fission products, i.e. decontaminated, by separating the remaining, uranium-containing solution from the ion exchanger; andc) the ion exchanger, which is charged with fission products, is passed-on for the recovery of fission products or for the solidification of waste.
- Method according to claim 1, characterised in that the aqueous solution is adjusted to a ratio of the uranyl ion concentration to the carbonate ion/hydrogen carbonate ion concentration of l : 5 to 1 : 8.
- Method according to claim 1, characterised in that the aqueous solution, with a U concentration of 60 g/l, is adjusted to a ratio of the UO₂⁺⁺ concentration to the CO₃⁻⁻/HCO₃⁻ concentration of 1 : 5.
- Method according to claim 1, characterised in that the basic anion exchanger used is one formed from polyalkene-epoxypolyamine with tertiary and quaternary ammonium groups of the chemical structure R-N⁺H(CH₃)₂Cl and R-N⁺(CH₃)₂(C₂H₄OH)Cl⁻, R representing the molecule without amino groups.
- Method according to claim 1, characterised in that the aqueous solution has a hydrogen carbonate ion concentration of between 0 and 1 mol/l.
- Method according to claim 1, characterised in that the maximum CO₃⁻⁻ concentration in the aqueous solution is 2.5 M/l.
- Method according to claim 1, characterised in that the pH value of the aqueous solution lies in the range of between pH 7 and pH 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3428877 | 1984-08-04 | ||
DE19843428877 DE3428877A1 (en) | 1984-08-04 | 1984-08-04 | METHOD FOR SEPARATING LARGE AMOUNTS OF URANIUM FROM LITTLE AMOUNTS OF RADIOACTIVE FUSE PRODUCTS EXISTING IN AQUEOUS BASIC SOLUTIONS CONTAINING CARBONATE |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0170796A2 EP0170796A2 (en) | 1986-02-12 |
EP0170796A3 EP0170796A3 (en) | 1989-02-22 |
EP0170796B1 true EP0170796B1 (en) | 1993-04-14 |
Family
ID=6242417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85105864A Expired - Lifetime EP0170796B1 (en) | 1984-08-04 | 1985-05-13 | Process for separating great amounts of uranium from small amounts of fission products which are present in aqueous basic solutions containing carbonate |
Country Status (4)
Country | Link |
---|---|
US (1) | US4696768A (en) |
EP (1) | EP0170796B1 (en) |
CA (1) | CA1239799A (en) |
DE (1) | DE3428877A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9238212B2 (en) | 2011-01-12 | 2016-01-19 | Mallinckrodt Llc | Process and apparatus for treating a gas stream |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3428877A1 (en) * | 1984-08-04 | 1986-02-13 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | METHOD FOR SEPARATING LARGE AMOUNTS OF URANIUM FROM LITTLE AMOUNTS OF RADIOACTIVE FUSE PRODUCTS EXISTING IN AQUEOUS BASIC SOLUTIONS CONTAINING CARBONATE |
DE3428878A1 (en) * | 1984-08-04 | 1986-02-13 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | METHOD FOR RECOVERY OF URAN VALUES IN AN EXTRACTIVE REPROCESSING PROCESS FOR IRRADIATED FUELS |
JPS63239128A (en) * | 1986-12-26 | 1988-10-05 | Unitika Ltd | Production of uranium oxide |
DE3708751C2 (en) * | 1987-03-18 | 1994-12-15 | Kernforschungsz Karlsruhe | Process for the wet dissolution of uranium-plutonium mixed oxide nuclear fuels |
GB2326268A (en) * | 1997-06-12 | 1998-12-16 | British Nuclear Fuels Plc | Recovery of uranium carbonato complex by ion flotation |
US6329563B1 (en) | 1999-07-16 | 2001-12-11 | Westinghouse Savannah River Company | Vitrification of ion exchange resins |
DE202004021710U1 (en) * | 2004-05-05 | 2010-09-30 | Atc Advanced Technologies Dr. Mann Gmbh | Device for removing uranium (VI) species in the form of uranyl complexes from water |
US8088749B2 (en) * | 2007-12-12 | 2012-01-03 | The Regents Of The University Of Michigan | Compositions and methods for treating cancer |
KR100961832B1 (en) * | 2008-04-25 | 2010-06-08 | 한국원자력연구원 | Separation Recovery Method of Uranium for Spent Fuel Using High Alkaline Carbonate Solution System and Its Apparatus |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2811412A (en) * | 1952-03-31 | 1957-10-29 | Robert H Poirier | Method of recovering uranium compounds |
US2864667A (en) * | 1953-06-16 | 1958-12-16 | Richard H Bailes | Anionic exchange process for the recovery of uranium and vanadium from carbonate solutions |
US3155455A (en) * | 1960-12-12 | 1964-11-03 | Phillips Petroleum Co | Removal of vanadium from aqueous solutions |
US3835044A (en) * | 1972-10-16 | 1974-09-10 | Atomic Energy Commission | Process for separating neptunium from thorium |
US3922231A (en) * | 1972-11-24 | 1975-11-25 | Ppg Industries Inc | Process for the recovery of fission products from waste solutions utilizing controlled cathodic potential electrolysis |
US4280985A (en) * | 1979-03-16 | 1981-07-28 | Mobil Oil Corporation | Process for the elution of ion exchange resins in uranium recovery |
DE3144974C2 (en) * | 1981-11-12 | 1986-01-09 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Process for the separation of actinide ions from aqueous, basic, carbonate-containing solutions |
DE3428877A1 (en) * | 1984-08-04 | 1986-02-13 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | METHOD FOR SEPARATING LARGE AMOUNTS OF URANIUM FROM LITTLE AMOUNTS OF RADIOACTIVE FUSE PRODUCTS EXISTING IN AQUEOUS BASIC SOLUTIONS CONTAINING CARBONATE |
-
1984
- 1984-08-04 DE DE19843428877 patent/DE3428877A1/en active Granted
-
1985
- 1985-05-13 EP EP85105864A patent/EP0170796B1/en not_active Expired - Lifetime
- 1985-08-02 CA CA000488036A patent/CA1239799A/en not_active Expired
- 1985-08-05 US US06/762,364 patent/US4696768A/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9238212B2 (en) | 2011-01-12 | 2016-01-19 | Mallinckrodt Llc | Process and apparatus for treating a gas stream |
Also Published As
Publication number | Publication date |
---|---|
CA1239799A (en) | 1988-08-02 |
EP0170796A2 (en) | 1986-02-12 |
DE3428877C2 (en) | 1990-10-25 |
DE3428877A1 (en) | 1986-02-13 |
US4696768A (en) | 1987-09-29 |
EP0170796A3 (en) | 1989-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2210106C2 (en) | Process for the selective extraction of metal ions from aqueous solutions | |
DE1215669B (en) | Process for processing irradiated nuclear reactor fuel | |
DE2154655C3 (en) | Process for the separation of uranium, transuranium elements and mixtures containing elements occurring as fission products of nuclear fuels by countercurrent or cross-current electrolysis | |
DE2610948C3 (en) | Process for the extraction of molybdenum -99 from a matrix containing fissile substances and fission products irradiated with neutrons | |
DE69507709T2 (en) | DECONTAMINATION PROCEDURE | |
DE2855821A1 (en) | METHOD OF RECOVERING PALLADIUM AND TECHNETIUM | |
EP0170796B1 (en) | Process for separating great amounts of uranium from small amounts of fission products which are present in aqueous basic solutions containing carbonate | |
DE69216795T2 (en) | Process for decontaminating transition metal | |
DE2449589C2 (en) | Process for the removal of decomposition products from extraction agents used for the reprocessing of spent nuclear fuel and / or breeding material | |
DE3144974C2 (en) | Process for the separation of actinide ions from aqueous, basic, carbonate-containing solutions | |
EP1793387B1 (en) | Extraction of radionuclides using extractants containing crown ethers | |
EP0170795B1 (en) | Method for recovering uranium values in an extractive reprocessing process for irradiated nuclear-fuel materials | |
DE1592418B2 (en) | PROCESS FOR PROCESSING AQUATIC SOLUTIONS OF IRRADIATED REACTOR FUELS | |
DE2951510A1 (en) | METHOD FOR DISSOLVING HEAVY-SOLUBLE FUELS | |
DE3346405A1 (en) | METHOD FOR THE IMPROVED SEPARATION OF THE RECOVERY OF THE URAN AND PLUTONIUM FUELS AND THE IMPROVED SEPARATION OF THE FUELS TO BE RECOVERED FROM HIM IN A REPROCESSING PROCESS | |
DE2610947C3 (en) | Process for the extraction of molybdenum-99 from a matrix containing fissile substances and fission products irradiated with neutrons | |
DE69311161T2 (en) | Process for dissolving plutonium dioxide by means of OH radicals obtained by water radiolysis, applicable for the treatment of plutonium-containing sludges and waste | |
DE2365114C2 (en) | Process for purifying solutions containing plutonium and / or neptunium by separating plutonium and / or neptunium | |
DE3708751C2 (en) | Process for the wet dissolution of uranium-plutonium mixed oxide nuclear fuels | |
DE2633112C2 (en) | Process for the removal of decomposition products from extraction agents which are used for the reprocessing of spent nuclear fuel and / or breeding material | |
DE2316091A1 (en) | PROCESS FOR REALIZATION OF AMERICIUM AND CURIUM FROM AQUATIC SOLUTIONS OF IRRADIATED NUCLEAR FUEL AND / OR INCIDENTAL MATERIALS | |
DE3114211C2 (en) | Process for the extraction of fluoride ions from a solution of nuclear fuel | |
DE1946716C3 (en) | Process for converting single phase uranium plutonium monocarbide contained in irradiated nuclear fuel into (UPu) O2 | |
EP0347625A2 (en) | Method for separating technetium, ruthenium and palladium from solutions of nuclear fuels | |
DE2014284A1 (en) | Process for the extraction of molybdenum-99 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19860110 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE FR GB NL |
|
17Q | First examination report despatched |
Effective date: 19911129 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE FR GB NL |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930706 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040317 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20040506 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040528 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040530 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20050512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20050513 |
|
BE20 | Be: patent expired |
Owner name: KERNFORSCHUNGSZENTRUM *KARLSRUHE G.M.B.H. Effective date: 20050513 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20050513 |
|
BE20 | Be: patent expired |
Owner name: KERNFORSCHUNGSZENTRUM *KARLSRUHE G.M.B.H. Effective date: 20050513 |