EP0149461B1 - Traitement de surface de bandes d'acier électroplaquées d'un alliage de zinc - Google Patents
Traitement de surface de bandes d'acier électroplaquées d'un alliage de zinc Download PDFInfo
- Publication number
- EP0149461B1 EP0149461B1 EP19850100123 EP85100123A EP0149461B1 EP 0149461 B1 EP0149461 B1 EP 0149461B1 EP 19850100123 EP19850100123 EP 19850100123 EP 85100123 A EP85100123 A EP 85100123A EP 0149461 B1 EP0149461 B1 EP 0149461B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- parts
- zinc
- strip
- zinc alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/82—After-treatment
- C23C22/83—Chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/38—Chromatising
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12556—Organic component
- Y10T428/12569—Synthetic resin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12674—Ge- or Si-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
- Y10T428/12847—Cr-base component
- Y10T428/12854—Next to Co-, Fe-, or Ni-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31688—Next to aldehyde or ketone condensation product
Definitions
- This invention relates to the surface treatment of zinc alloy electroplated steel strips or sheets for outstandingly improving the corrosion resistance thereof and such treated zinc alloy electroplated steel strips.
- the zinc alloy electroplated steel strips used herein designate composite zinc-plated steel strips, that is, steel strips having a zinc alloy layer electroplated thereon in which at least one metal is present in addition to zinc, including, for example, steel strips electroplated with Zn-Ni, Zn-Ni-Co, Zn-Ni-Cr, and Zn-Fe alloys.
- zinc plating has long been used as a typical metal plating for improving the corrosion resistance of steel strips.
- the zinc plating is to protect steel strips from corrosion by the sacrificial corrosion protection effect of zinc itself.
- the amount of zinc deposited must be increased in order to enhance corrosion resistance. Increased amounts of zinc deposited, however, not only detract from the workability, weldability, and productivity of zinc plated steel, but also increase the cost.
- One method for improving the corrosion resistance of such zinc electroplated steel strips is by incorporating an additional metal or metals into the zinc plating to produce zinc alloy plated steel strips. There are well known techniques for electroplating such alloys as Zn-Ni, Zn-Ni-Co, Zn-Ni-Cr, and Zn-Fe.
- the alloy plating methods mentioned above are successful to some extent in that since the resulting zinc alloy platings form passivated films effective in retarding or preventing dissolution of zinc, the corrosion resistance of composite zinc plated steel strips is improved by a factor of about 3 to 5 over that of conventional zinc plated steel strips and thus allows the amount of composite zinc platings deposited to be reduced.
- the composite zinc plated steel strips are still liable to formation of white rust and even red rust in relatively short time when they are allowed to stand indoors or outdoors and particularly when they are sprayed with water or salt water.
- chromate treatment was also proposed to carry out a chromate treatment after single or composite zinc plating in order to further improve corrosion resistance.
- the chromate treatment is effective, but not satisfactory to meet the needs of users in that white rust will appear after about 100 hours under high temperature and high humidity conditions and more under a salt-containing atmosphere.
- an overcoat film by applying an aqueous solution comprising 100 parts by weight calculated as solids of a dispersion of a carboxylated polyethylene resin containing 3 to 20 mol% of carboxyl group, 10 to 30 parts by weight calculated as solids of a water-soluble melamine resin, and up to 10 parts by weight of a water-soluble chromium compound, and drying the applied film at a strip temperature of at least 130°C such that the sum of the coating weights of both the films is 0.3 to 4 g/m 2 .
- an overcoat film by applying an aqueous solution comprising 100 parts by weight calculated as solids of a dispersion of a carboxylated polyethylene resin containing 3 to 20 mol% of carboxyl group, 10 to 60 parts by weight calculated as solids of colloidal silica, and optionally, up to 10 parts by weight of a water-soluble chromium compound, to such a thickness that the sum of the coating weights of the dried film and said chromate film is 0.8 to 4 g/m 2 .
- an object of the present invention to provide a novel and improved method for the surface treatment of a zinc alloy electroplated steel strip for providing extra corrosion resistance.
- the extra corrosion resistance used herein means that white rust does not form in surface-treated steel strips after about 500 hours and red rust does not form after about 1500 hours of salt water spraying.
- a method for surface treating a zinc alloy electroplated steel strip for improving the corrosion resistance comprising the steps of
- a zinc alloy electroplated steel strip having improved corrosion resistance comprising:
- surface treated steel strips or sheets of this type are reguired to have excellent lacquer or paint adherence, spot weldability, solvent resistance, workability, and coating hardness as well as extra corrosion resistance.
- the surface treated steel strips or sheets of the present invention meet all these requirements as will be later illustrated in Examples.
- the zinc alloy layers electroplated on steel strips according to the present invention may preferably be alloys of zinc with at least one metal selected from nickel, cobalt, manganese, chromium, and iron. Other alloying metals will occur to those skilled in the art. Such a zinc alloy may be electroplated to a weight of at least 5 grams per square meter of steel surface.
- Zinc-nickel alloy electroplated steel strips were treated in chromate solution so as to deposit varying amounts of chromium and then coated with a polyethylene resin composition. The coated strips were examined for corrosion resistance. The chromate treatment, resin coating, and corrosion test were carried out under the following conditions.
- the starting steel strips are those having a thickness of 0.8 mm and electroplated with a zinc-nickel alloy (Ni 12.5%) to a weight of 20 grams per square meter (g/m 2 ).
- the strips were coated with the chromate solutions of varying concentrations, squeezed by means of a flat rubber roll, and dried for 3 seconds with hot air at 85°C.
- the resulting chromate films contained chromium in the range of 1.5 to 96 mg/m 2 .
- the steel strips chromated in (1) were coated with an aqueous composition which contained 100 parts by weight of a dispersion of a polyethylene resin having 10 mol% of carboxyl groups, 15 parts by weight of a water soluble melamine resin, and 20 parts by weight of colloidal silica, all the parts by weight being based on the solids of the respective components.
- the coated strips were then squeezed by means of a roll and dried for 30 seconds with hot air at 150°C.
- the resulting resin coatings all had a weight of 2.0 g/m 2 .
- the corrosion test was carried out according to the procedure of salt spray test JIS Z 2371. The percent formation of red rust was determined after the test period of 1500 hours of spraying of 5% salt water.
- the chromate solution for providing an undercoating is mainly composed of chromic anhydride (Cr0 3 ) and may contain, for example, etching and accelerating agents in the form of sulfuric acid or sulfates, phosphoric acid or phosphates, hydrofluoric acid or fluorides, boric acid, salt (sodium chloride), and the like.
- the chromate solution may be either of the reaction type or of the coating type as long as they can yield a chromate film mainly composed of hydrated chromium oxides in a weight of 2 to 60 mg/m 2 of chromium.
- Chromium weights of less than 2 mg/m 2 are insufficient to provide corrosion resistance whereas the appearance of products is impaired at chromium weights of more than 60 mg/m 2 due to non-uniform coating thickness and inconsistent color tone.
- the chromate solution may be applied by any well-known techniques including spraying, dipping, and roll coating followed by squeezing with a roll or air knife, and then by hot air drying.
- the coating composition which may be used to form a polyethylene resin overcoating is comprised of a carboxylated polyethylene resin dispersion, a melamine resin, and colloidal silica as mentioned above.
- the polyethylene resins used herein are those polyethylene resins having 3 to 20 mol% of carboxyl groups attached thereto. Although ethylene-vinyl acetate emulsions and polyethylene waxes are generally included in polyethylene resins, they result in less corrosion resistant coatings. No water-soluble polyethylene resit) is available at present. Carboxylated-polyethylene resins have besn found optimum for the present invention.
- Polyethylene resins having less than 3 mol% of carboxyl groups cannot be fully emulsion polymerized and thus result in less adherent coatings whereas polyethylene resins having more than 20 mol% of carboxyl groups result in coatings which are deteriorated in such properties as corrosion resistance.
- the polyethylene resins used herein may be either homopolymers or copolymers.
- the water-soluble melamine resin is used as a crosslinking agent in amounts of 10 to 30 parts by weight per 100 parts by weight of the solids of the carboxylated polyethylene resin dispersion. Good coating hardness and solvent resistance are not achieved with less than 10 parts by weight of the melamine resin. More than 30 parts weight of the melamine resin causes the composition to be gelled to reduce its pot life and adversely affects the corrosion resistance of the resulting coatings.
- the crosslinking melamine resins are thermosetting melamine-formaldehyde resins such as methylol melamine resins which are commercially available from various manufacturers.
- the colloidal silica is used in amounts of 10 to 60 parts per 100 parts by weight of the solids of the carboxylated polyethylene resin dispersion.
- the colloidal siJica is included in order to improve the hardness and corrosion resistance of coatings. Less than 10 parts by weight of colloidal silica fails to provide sufficient coating hardness whereas more than 60 parts by weight adversely affects the corrosion resistance and paint adherence.
- the colloidal silica used herein is also commercially available in aqueous dispersion form.
- the polyethylene based coating should preferably have a weight in the range of 0.3 to 5 g/ M 2 . Coatings of less than 0.3 g/m 2 are too thin to provide good corrosion resistance. Coatings of more than 5 g/m 2 provide good corrosion resistance, but disturb spot welding.
- the composition may be applied to steel strips by any well-known techniques including roll coating and dipping/grooved roll squeezing.
- the composition may be adjusted to any desired concentration depending on the particular coating technique employed.
- the applied composition is then dried into a coating with hot air while the underlying strip should be heated to a temperature of at least 130°C. Heat is applied for evaporating off the water and crosslinking the resins.
- the coating does not harden to a sufficient hardness at strip temperatures of less than 130°C. Increasing the strip temperature more than necessary is not economically desirable.
- a steel strip which had been electroplated with a zinc-nickel alloy (Ni 12.5 wt%) to a weight of 20 g/m 2 was spray coated with an undercoating chromate solution containing 20 grams/liter of CrO 3 and 4 grams/liter of Na 3 AIF 6 , squeezed by means of a flat rubber roll, and dried with hot air.
- the weight of chromium deposited was 20 g/ M 2 .
- This chromate treated strip was further coated with an aqueous composition composed of 100 parts by weight of a dispersion of a carboxylated polyethylene resin containing 12 mol% of carboxyl groups, 15 parts by weight of a water-soluble melamine resin, and 20 parts by weight of colloidal silica, all the parts by weight being based on the solids of the respective components.
- a resin coating having a weight of 2.5 g/m 2 was obtained by drying the applied composition at a strip temperature of 135°C.
- a steel strip which had been electroplated with a zinc-nickel alloy (Ni 12.5 wt%) to a weight of 20 g/m 2 was spray coated with an undercoating chromate solution containing 10 grams/liter of Cr0 3 and 2 grams/litter of Na 3 AIF 6 , squeezed by means of a flat rubber roll, and dried with hot air.
- the weight of chromium deposited was 16 mg/m 2 .
- This chromate treated strip was further coated with an aqueous composition composed of 100 parts by weight of the same carboxylated-polyethylene resin dispersion as used in Example 1, 20 parts by weight of a water-soluble melamine resin, and 30 parts by weight of colloidal silica, all the parts by weight being based on the solids of the respective components.
- a resin coating having a weight of 1.8 g/m 2 was obtained by drying the applied composition at a strip temperature of 140°C.
- a steel strip which had been electroplated with a zinc-nickel alloy (Ni 12.5 wt%) to a weight of 20 g/m 2 was spray coated with an undercoating chromate solution containing 10 grams/liter of Cr0 3 , 2 grams/liter of Na 3 AIF 6 , and 40 grams/liter of colloidal silica and then squeezed and dried in the same manner as in Example 1.
- the weight of chromium deposited was 10 mg/m 2.
- This chromate treated strip was further coated with an aqueous composition composed of 100 parts by weight of a dispersion of a carboxylated-polyethylene resin containing 10 mol% of carboxyl groups, 16 parts by weight of a water-soluble melamine resin, and 15 parts by weight of colloidal silica, all the parts by weight being based on the solids of the respective components.
- a resin coating having a weight of 3.8 g/m 2 was obtained by drying the applied composition at a strip temperature of 150°C.
- This example illustrates the control, that is, the zinc-nickel alloy electroplated steel strip having a plating weight of 20 g/m 2 as used in Example 1.
- This example illustrates the steel sample which was coated with a chromate film after zinc-nickel alloy plating in Example 1. That is, a zinc-nickel alloy electroplated steel strip was spray coated with an undercoating chromate solution containing 20 grams/liter of Cr0 3 and 4 grams/liter of Na 3 AIF 6 , squeezed by means of a flat rubber roll, and dried with hot air. The weight of chromium deposited was 20 mg/m 2 .
- the steel sample of Comparative Example 2 was further coated with an aqueous composition containing 12% by weight of a polyacrylic acid, which was dried into a coating of 2.5 g/m 2 .
- a salt spray test was carried out according to JIS Z 2371. The percent formation of rust was determined at the end of the test period.
- the hardness of the resinous coating was expressed in pencil hardness.
- a continuous welding test was carried out by using a stationary spot welding machine and repeating spot weldings until the nugget diameter reached 4 mm.
- a melamine alkyd resin type paint was applied to samples and baked at 150°C for 30 minutes into a paint film of 25 p m thick.
- the paint film was scribed and an Erichsen test was carried out by extruding the scribed sample by 7 mm. The sample was examined whether the paint film sections were peeled.
- a rubbing test was carried out by rubbing the sample surface with cotton impregnated with methylene chloride.
- a scribing peel test using a Scotch adhesive tape and a zero T-bend test were carried out.
- a steel strip which had been electroplated with zinc to a weight of 20 g/m 2 was spray coated with an undercoating chromate solution containing 10 grams/liter of Cr0 3 and 2 grams/liter of H 2 SiF 6 , squeezed by means of a flat rubber roll, and dried with hot air.
- the weight of chromium deposited was 40 mg/m 2 .
- This chromate treated strip was dipped in an aqueous composition composed of 10 wt% of a carboxylated polyethylene resin and 0.6 wt% of chromic anhydride. An overcoat having a weight of 1.4 g/m 2 was obtained after drying at 150°C.
- a steel strip which had been electroplated with zinc to a weight of 20 g/m 2 was spray coated with an undercoating chromate solution containing 10 grams/liter of Cr0 3 and 2 grams/liter of H 2 SiF 6 , squeezed by means of a flat rubber roll, and dried with hot air.
- the weight of chromium deposited was 28 mg/m 2 .
- This chromate treated strip was further coated with an aqueous composition composed of 100 parts by weight of a dispersion of a carboxylated-polyethylene resin containing 10 mol% of carboxyl groups, 15 parts by weight of a water-soluble melamine resin, and 5 parts by weight of ammonium chromate, the parts by weight of the former two components being based on their solids.
- a resin coating having a weight of 1.6 g/m 2 was obtained after drying at 135°C.
- a steel strip which had been electroplated with zinc to a weight of 20 g/m 2 was spray coated with an undercoating chromate solution containing 10 grams/liter of CrO 3 and 2 grams/liter of H 2 SiF 6 , squeezed by means of a flat rubber roll, and dried with hot air.
- the weight of chromium deposited was 38 mg/m 2 .
- This chromate treated strip was further coated with an aqueous composition composed of 100 parts by weight of a dispersion of a carboxylated-polyethylene resin containing 10 mol% of carboxyl groups, 30 parts by weight of colloidal silica, and 3 parts by weight of ammonium chromate, the parts by weight of the former two components being based on their solids.
- a resin coating having a weight of 1.7 g/m 2 was obtained after drying at 145°C.
- This example illustrates the coating of a Zn plated steel strip with a coating composition according to the present invention.
- a steel strip which had been electroplated with zinc to a weight of 20 g/m 2 was spray coated with an undercoating chromate solution containing 10 grams/liter of CrO 3 and 2 grams/liter of H 2 SiF 6 , squeezed by means of a flat rubber roll, and dried with hot air.
- the weight of chromium deposited was 38 mg/m 2 .
- This chromate treated strip was further coated with an aqueous composition composed of 100 parts by weight of a dispersion of a carboxylated-polyethylene resin containing 12 mol% of carboxyl groups, 15 parts by weight of a water-soluble melamine resin, and 20 parts by weight of colloidal silica, all the parts by weight being based on the solids of the respective components.
- a resin coating having a weight of 1.0 g/m 2 was obtained by drying the applied composition at a strip temperature of 140°C.
- the data for Comparative Examples 1 and 2 shows that the zinc alloy plating and the chromate film as exposed do not protect steel from rust.
- the data for Comparative Example 3 shows that a coat of ' polyacrylic acid is less rust preventive on zinc alloy plated steel with a chromate film.
- the data for Comparative Examples 4, 5, and 6 shows that although the previously proposed coating compositions are satisfactorily rust preventive on zinc plated steel strips in a 200 hour salt spray test, they are not satisfactory in an extended (500 hour) salt spray test.
- the data for Comparative Example 7 shows taht the coating composition of the present invention is not fully satisfactory in rust prevention when applied to zinc plated steel strips.
- the coating composition of the present invention is fully effective in rust protection only when applied to zinc alloy plated steel via a chromate film.
- a steel strip which had been electroplated with a zinc-manganese alloy (Mn 21.0 wt%) to a weight of 30 g/m 2 was spray coated with an undercoating chromate solution containing 20 grams/liter of Cr0 3 , 2 grams/liter of Na 3 AlF 6 , and 40 grams/liter of colloidal silica, squeezed by means of a fluted rubber roll, and dried with hot air.
- the weight of chromium deposited was 50 mg/m 2.
- This chromate treated strip was further coated with an aqueous composition composed of 100 parts by weight of a dispersion of a carboxylated-polyethylene resin containing 12 mol% of carboxyl groups, 20 parts by weight of a water-soluble melamine resin, and 20 parts by weight of colloidal silica, all the parts by weight being based on the solids of the respective components.
- a resin coating having a weight of 2.1 g/m 2 was obtained by drying the applied composition at a strip temperature of 140°C.
- a steel strip which had been electroplated with a zinc-cobalt alloy (Co 5.0 wt%) to a weight of 30 g/m 2 was spray coated with an undercoating chromate solution containing 20 grams/liter of Cr0 3 , 3 grams/liter of Na a AIF 6' and 30 grams/liter of colloidal silica, squeezed by means of a flat rubber roll, and dried with hot air.
- the weight of chromium deposited was 45 mg/m 2.
- This chromate treated strip was further coated with an aqueous composition composed of 100 parts by weight of a dispersion of a carboxylated polyethylene resin containing 12 mol% of carboxyl groups, 15 parts by weight of a water-soluble melamine resin, and 20 parts by weight of colloidal silica, all the parts by weight being based on the solids of the respective components.
- a resin coating having a weight of 2.3 g/m 2 was obtained by drying the applied composition at a strip temperature of 140°C.
- the present invention provides surface coated steel strips which not only meet the extra corrosion resistance required particularly for steel strips useful in the manufacture of automobiles and electric appliances, but also exhibit excellent spot weldability, paint adhesion and solvent resistance. It is also demonstrated that the present invention is equally applicable to steel strips having any zinc alloys electroplated including zinc-mangahese and zinc-cobalt alloys as well as zinc-nickel alloy.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
- Chemical Treatment Of Metals (AREA)
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6061/84 | 1984-01-17 | ||
JP59006061A JPS60149786A (ja) | 1984-01-17 | 1984-01-17 | 耐食性に優れた亜鉛系合金電気めつき鋼板の表面処理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0149461A1 EP0149461A1 (fr) | 1985-07-24 |
EP0149461B1 true EP0149461B1 (fr) | 1988-06-29 |
Family
ID=11628071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19850100123 Expired EP0149461B1 (fr) | 1984-01-17 | 1985-01-08 | Traitement de surface de bandes d'acier électroplaquées d'un alliage de zinc |
Country Status (4)
Country | Link |
---|---|
US (1) | US4548868A (fr) |
EP (1) | EP0149461B1 (fr) |
JP (1) | JPS60149786A (fr) |
DE (1) | DE3563545D1 (fr) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6233793A (ja) * | 1985-08-05 | 1987-02-13 | Usui Internatl Ind Co Ltd | 耐食性重合被覆鋼材 |
JPS62278298A (ja) * | 1985-08-28 | 1987-12-03 | Kawasaki Steel Corp | クロメート処理Zn系めっき鋼板 |
EP0222282A3 (fr) * | 1985-11-04 | 1987-08-19 | HENKEL CORPORATION (a Delaware corp.) | Procédé de dépôt de couches organiques sur des surfaces métalliques |
AU583444B2 (en) * | 1986-01-24 | 1989-04-27 | Kawasaki Steel Corporation | Organic coated steel strip having improved bake hardenability and method for making |
US4812365A (en) * | 1986-04-25 | 1989-03-14 | Weirton Steel Corporation | Composite-coated flat-rolled steel can stock and can product |
DE3639417C1 (de) * | 1986-11-18 | 1987-11-26 | Mannesmann Ag | Verfahren zum Ummanteln von Gegenstaenden aus Stahl mit Kunststoff |
US4889775A (en) * | 1987-03-03 | 1989-12-26 | Nippon Kokan Kabushiki Kaisha | Highly corrosion-resistant surface-treated steel plate |
JPH0737105B2 (ja) * | 1987-03-05 | 1995-04-26 | 日新製鋼株式会社 | 耐指紋性に優れたステンレス鋼板の製造方法 |
KR910002492B1 (ko) * | 1987-03-13 | 1991-04-23 | 닛뽄 고오깐 가부시끼가이샤 | 고내식성 복층피복 강판 |
DE3882769T2 (de) * | 1987-03-31 | 1993-11-11 | Nippon Steel Corp | Korrosionsbeständiges plattiertes Stahlband und Verfahren zu seiner Herstellung. |
JPS63283935A (ja) * | 1987-05-18 | 1988-11-21 | Nippon Steel Corp | 有機複合鋼板 |
JPS6411830A (en) * | 1987-07-06 | 1989-01-17 | Nippon Steel Corp | Organic composite plated steel plate excellent in press formability, weldability, electrocoating property and corrosion resistance |
JPH01127084A (ja) * | 1987-11-11 | 1989-05-19 | Nippon Steel Corp | 鮮映性及び耐クレータリング性に優れた表面処理鋼板の製造法 |
EP0344717B1 (fr) * | 1988-05-31 | 1994-01-05 | Kawasaki Steel Corporation | Bandes d'acier revêtus d'une résine lubrifiante ayant une aptitude à la déformation et une résistance à la corrosion modifiées |
JPH0735587B2 (ja) * | 1988-06-30 | 1995-04-19 | 日本鋼管株式会社 | 高耐食性表面処理鋼板の製造方法 |
JPH02194946A (ja) * | 1989-01-23 | 1990-08-01 | Nippon Steel Corp | 高カチオン電着塗装性有機複合めっき鋼板 |
EP0453374B1 (fr) * | 1990-04-20 | 1995-05-24 | Sumitomo Metal Industries, Ltd. | Toile d'acier améliorée résistant à la corrosion et ayant une surface recouverte |
US5043230A (en) * | 1990-05-11 | 1991-08-27 | Bethlehem Steel Corporation | Zinc-maganese alloy coated steel sheet |
US5108554A (en) * | 1990-09-07 | 1992-04-28 | Collis, Inc. | Continuous method for preparing steel parts for resin coating |
ES2070992T3 (es) * | 1990-09-07 | 1995-06-16 | Collis Inc | Metodo continuo para preparar partes de acero para recubrimiento con resina. |
JPH0753913B2 (ja) * | 1990-11-14 | 1995-06-07 | 新日本製鐵株式会社 | 有機複合めっき鋼板の製造方法 |
JP2844953B2 (ja) * | 1991-03-29 | 1999-01-13 | 日本鋼管株式会社 | 溶接可能な着色鋼板 |
ES2089976B1 (es) * | 1994-12-03 | 1997-08-01 | Galol Sa | Procedimiento de tratamiento anticorrosivo para cables trenzados. |
ES2125155B1 (es) * | 1994-12-03 | 1999-11-16 | Galol Sa | Mejoras introducidas a la patente n-9402488 po "procedimiento de tratamiento anticorrosivo para cables trenzados. |
WO1996017979A1 (fr) * | 1994-12-08 | 1996-06-13 | Sumitomo Metal Industries, Ltd. | Tole d'acier traitee en surface pour reservoirs de carburants |
WO1997046733A1 (fr) * | 1996-06-06 | 1997-12-11 | Sumitomo Metal Industries, Ltd. | Tole d'acier ayant subi un traitement de surface et presentant une excellente resistance a la corrosion apres usinage |
US6899770B1 (en) | 1999-03-04 | 2005-05-31 | Henkel Corporation | Composition and process for treating metal surfaces |
DE10149148B4 (de) | 2000-10-11 | 2006-06-14 | Chemetall Gmbh | Verfahren zur Beschichtung von metallischen Oberflächen mit einer wässerigen, Polymere enthaltenden Zusammensetzung, die wässerige Zusammensetzung und Verwendung der beschichteten Substrate |
ES2623850T3 (es) * | 2000-10-11 | 2017-07-12 | Chemetall Gmbh | Procedimiento para el revestimiento de superficies metálicas antes de la conformación con un revestimiento similar a un barniz, y utilización de los substratos revestidos de tal manera |
WO2006138540A1 (fr) * | 2005-06-14 | 2006-12-28 | Henkel Kommanditgesellschaft Auf Aktien | Procede de traitement de surfaces galvanisees passivees pour ameliorer l'adherence de la peinture |
US20100221574A1 (en) * | 2009-02-27 | 2010-09-02 | Rochester Thomas H | Zinc alloy mechanically deposited coatings and methods of making the same |
DE102012024616A1 (de) * | 2012-12-17 | 2014-06-18 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Stahlblech und Formteil daraus |
TWI551435B (zh) | 2014-05-05 | 2016-10-01 | 國立臺灣大學 | 鋼材及其製造方法 |
DE102018128131A1 (de) * | 2018-11-09 | 2020-05-14 | Thyssenkrupp Ag | Gehärtetes Bauteil umfassend ein Stahlsubstrat und eine Korrosionsschutzbeschichtung, entsprechendes Bauteil zur Herstellung des gehärteten Bauteils sowie Herstellverfahren und Verwendung |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2220600B2 (fr) * | 1973-03-09 | 1976-09-10 | Mecano Bundy Gmbh | |
JPS51128650A (en) * | 1974-10-15 | 1976-11-09 | Kawasaki Steel Co | Process for fabricating electric steel having coatings superior in punchhworkability and weldability |
DE2909697A1 (de) * | 1978-03-14 | 1979-09-20 | Centre Rech Metallurgique | Verfahren zur oberflaechenbehandlung von metallband |
US4373968A (en) * | 1981-06-24 | 1983-02-15 | Amchem Products, Inc. | Coating composition |
US4500610A (en) * | 1983-03-16 | 1985-02-19 | Gunn Walter H | Corrosion resistant substrate with metallic undercoat and chromium topcoat |
US4497876A (en) * | 1983-03-16 | 1985-02-05 | Kidon William E | Corrosion resistant metal composite with zinc and chromium coating |
-
1984
- 1984-01-17 JP JP59006061A patent/JPS60149786A/ja active Granted
-
1985
- 1985-01-02 US US06/688,425 patent/US4548868A/en not_active Expired - Fee Related
- 1985-01-08 EP EP19850100123 patent/EP0149461B1/fr not_active Expired
- 1985-01-08 DE DE8585100123T patent/DE3563545D1/de not_active Expired
Also Published As
Publication number | Publication date |
---|---|
US4548868A (en) | 1985-10-22 |
JPS60149786A (ja) | 1985-08-07 |
EP0149461A1 (fr) | 1985-07-24 |
DE3563545D1 (en) | 1988-08-04 |
JPH0144387B2 (fr) | 1989-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0149461B1 (fr) | Traitement de surface de bandes d'acier électroplaquées d'un alliage de zinc | |
CA1215934A (fr) | Tole d'acier traitee en surface aux fins du peinturage | |
US4411964A (en) | Composite coating steel sheets having good corrosion resistance paintability and corrosion resistance after paint coating | |
JP3418177B2 (ja) | 燃料タンク用表面処理鋼板及びその製造方法 | |
GB2230974A (en) | Coated steel sheet | |
CA1253113A (fr) | Application d'une composition de chrome hexavalente, renfermant des particules metalliques, sur un substrat en metal | |
JPH04107274A (ja) | 亜鉛系メッキ鋼板のクロメート処理方法 | |
US4500610A (en) | Corrosion resistant substrate with metallic undercoat and chromium topcoat | |
JPH0513828B2 (fr) | ||
JPH0380874B2 (fr) | ||
JP2816559B2 (ja) | 黒色亜鉛めっき鋼板の製造方法 | |
JPH09183186A (ja) | 有機後処理金属板 | |
JP2623351B2 (ja) | 耐食性クロムキレート被膜付きめっき鋼板の製造方法 | |
JP2712924B2 (ja) | 耐食性、めっき密着性、化成処理性および塗膜密着性に優れた亜鉛−ニッケル−クロム系合金電気めっき鋼板 | |
JPH0153110B2 (fr) | ||
JPH07300683A (ja) | 低温焼付性に優れたクロメート処理方法 | |
JPS6240398A (ja) | 高耐食性二層めつき鋼板 | |
JPS5887280A (ja) | 亜鉛または亜鉛合金めつき鋼板に対するクロメ−ト処理方法 | |
JPH08309917A (ja) | 端面耐食性に優れた塗装鋼板 | |
JPH0472077A (ja) | めっき鋼板の耐低温チッピング性改善方法 | |
JPH045037A (ja) | 高耐食性自動車用防錆鋼板及びその製造方法 | |
JPH0399844A (ja) | 耐食性に優れた表面処理鋼板 | |
JPH06256971A (ja) | 塗装鮮映性に優れた高耐食性電気亜鉛めっき鋼板 | |
JPH036903B2 (fr) | ||
JPS6037880B2 (ja) | 塗膜の二次密着性に優れた表面処理鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19850205 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 19870121 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3563545 Country of ref document: DE Date of ref document: 19880804 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 85100123.0 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19960102 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19960109 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19960115 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19960119 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19970108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19970109 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19970108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19970930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19971001 |
|
EUG | Se: european patent has lapsed |
Ref document number: 85100123.0 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |