[go: up one dir, main page]

EP0012055B1 - In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler - Google Patents

In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler Download PDF

Info

Publication number
EP0012055B1
EP0012055B1 EP79400867A EP79400867A EP0012055B1 EP 0012055 B1 EP0012055 B1 EP 0012055B1 EP 79400867 A EP79400867 A EP 79400867A EP 79400867 A EP79400867 A EP 79400867A EP 0012055 B1 EP0012055 B1 EP 0012055B1
Authority
EP
European Patent Office
Prior art keywords
radiating
zones
feed
accordance
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79400867A
Other languages
English (en)
French (fr)
Other versions
EP0012055A1 (de
Inventor
Robert Pierrot
François Gautier
Pierre Crochet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0012055A1 publication Critical patent/EP0012055A1/de
Application granted granted Critical
Publication of EP0012055B1 publication Critical patent/EP0012055B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns

Definitions

  • the present invention relates to a printed monopulse primary source, in particular for an airborne radar antenna, and to the antenna comprising such a source.
  • a primary monopulse source comprises radiating elements supplied with electromagnetic energy to develop a sum channel ⁇ and one or two different channels oriented, for example, in elevation and in bearing, channels ⁇ S, AG.
  • An object of the present invention is the implementation of a printed monopulse primary source which does not have the aforementioned drawbacks and limitations, which has independent sum and difference channels and which has a small footprint and, due to a large simplicity of production, low production cost.
  • Such a printed monopulse source can be used in any airborne radar, in particular in active missile or self-steering radars.
  • the printed monopulse source object of the invention comprises, on a first face of a substrate of dielectric material 1, a series of radiating zones 20, 21, 22, 23, 24 constituting the radiating element of the primary source.
  • the first face of the substrate of dielectric material comprises five radiating zones constituting channels: sum channel ⁇ , site difference channel ⁇ S, and deposit difference channel ⁇ G independent formed by distinct radiating zones. Any embodiment comprising a different number of radiating zones aiming to form at least one sum channel 2 and one difference channel outside of the scope of the present invention.
  • the primary source also comprises, disposed on a second face of the substrate opposite the first face, a reception supply circuit 2 of the radiating zones 20, 21, 22, 23, 24.
  • Connection means 3 provide the electrical connection of the radiating zones at the receiving supply circuit 2 in the thickness of the substrate of dielectric material.
  • the sum and difference channels comprise, on the first face of the substrate of dielectric material, a central radiating zone 20 forming the sum channel ⁇ and four lateral radiating zones 21, 22, 23, 24 arranged symmetrically with respect to the central radiating zone 20.
  • the four lateral radiating zones 21, 22, 23, 24 are arranged symmetrically with respect to the central radiating zone 20 and respectively form two by two, radiating zones 21, 22 and 23, 24, the site difference tracks ⁇ S and deposit difference ⁇ G.
  • the three channels 1, ⁇ S, ⁇ G are thus independent, the radiation patterns of these three channels being adjusted experimentally taking into account the couplings between the radiation zones.
  • the substrate of dielectric material 1 is constituted by a first and a second wafer of dielectric material 11, 12 each comprising on a first face a conductive sole 110, 120 or reference ground plane.
  • the two conductive soles are for example produced by metallization and the two plates 11, 12 are placed back to back by their conductive sole 110, 120.
  • the two conductive soles 110 and 120 are joined to one another by means of a metal frame 4 ensuring, on the one hand, the electrical contact between the two conductive soles 110 and 120, and on the other hand , good rigidity and good sealing of the assembly.
  • the reception supply circuit 2 is directly connected to output terminals 5, 6 fixed to the chassis 4 and the central radiating area 20 is directly connected to an electromagnetic energy supply terminal 7 by a coaxial cable for example.
  • the connection means 3 are advantageously constituted by coaxial lines for example.
  • the power supply circuit for receiving the radiating zones comprises for each difference channel ⁇ S, ⁇ G, a transmission line in T 13, 14.
  • the branches 131, 132 and 141, 142 of each T have respectively equal lengths L and their ends are respectively connected to a lateral radiating zone forming a difference path by the connection means 3.
  • the lengths L of the Tees are determined experimentally in order to optimize the radiation patterns.
  • the Tee lines 13, 14 are, for example, ribbon lines each comprising an impedance transformer 133, 143.
  • connection means of the central radiating zone are directly connected to the supply terminal 7.
  • the terminals 5, 6, 7 are for example coaxial terminals fixed to the chassis.
  • a primary source prototype was produced for S-band operation, the operating wavelength being close to 10 cm.
  • the assembly taking into account the metal chassis 4 has the appearance of a reduced cylindrical volume of 13 cm in diameter and 6 cm in height.
  • the radiating zones are printed on a wafer of dielectric material 5 mm thick in laminated copper-coated epoxy glass with two dielectric constant faces 4, 5.
  • the receiving supply circuit is produced on a wafer of dielectric material known under the trade name “Metallized Rexolite two sides, 1.7 mm thick and dielectric constant 2.5.
  • FIG. 4 relates to an embodiment of the invention allowing operation of the source in the frequency bands such as the Ku band for wavelengths of the order of a centimeter, the implementation in microelectronics being facilitated by the simplification of the source structure.
  • the substrate of dielectric material 1 is constituted by a wafer of single dielectric material comprising, on the one hand, a first face constituting the first face of the substrate 1.
  • This first face comprises the distinct radiating zones constituting the channels sum 2 and difference ⁇ S, ⁇ G.
  • the second face of the wafer of dielectric material opposite to the first face, constitutes the second face of the substrate and comprises a conductive soleplate 150.
  • the second face of the wafer of dielectric material comprises two transmission lines in Tee 16, 17 constituting with the metal sole 150 of the coplanar transmission lines.
  • the branches of Tees of identical length are respectively connected to a lateral radiating zone forming a difference path ⁇ S or ⁇ G by the connection means 3.
  • the transmission lines 16 and 17 are connected to the coaxial terminals 5, 6 not shown in FIG. 4 and the metal chassis 4 can be reduced to a simple metal cylinder welded to the conductive sole 150 if this chassis is necessary for the mechanical maintenance of the primary source.
  • the coaxial supply terminal 7 can be welded directly to the metal soleplate 150.
  • the lateral radiating zones 21, 22, 23, 24 are excited two by two for each site difference path and deposit in phase opposition, the lateral radiating zones constituting the difference channels by the choice of their point of excitation.
  • the connection means 3 ensuring the electrical connection of the radiating zones to the reception supply circuit are connected to these radiating zones at a particular point determining the excitation point 204, 211, 221, 231, 241 of each zones.
  • the excitation point of each radiating zone has, with respect to the zero-field radio center of each zone, a determined eccentricity.
  • the radiating zones consist of circular metallized pellets of the same diameter printed on the substrate of dielectric material. The radio center in this case corresponds to the center of each patch.
  • the arithmetic value of the eccentricity is characteristic of the impedance of each radiating zone.
  • the excitation point of two lateral radiating zones forming a difference channel has an opposite eccentricity, the eccentricity being measured in magnitude and in sign with respect to the eccentricity of the central radiating zone defining the direction of polarization of the radioelectric signal .
  • the direction of polarization of the signals is represented, at the level of each radiating zone, by a vector P whose origin is located at the radioelectric center of the radiating zone and the end at the point of excitation of The area.
  • the lateral zones constituting a site or deposit difference channel deliver upon reception of signals in phase opposition due to the equality of the branches of each tee up to the level of their respective junction.
  • the phase opposition of the signals in each difference channel is thus carried out in principle and is independent of the frequency.
  • the operating band of the primary source is only limited by the radiating zones themselves and by the Tees whose standing wave rate is only suitable for a determined frequency band.
  • the choice of identical electrical lengths for the transmission lines 16, 17 up to the level of the terminals 5, 6 makes it possible to obtain phasing of the signals by construction.
  • All of the embodiments of the invention shown in FIGS. 2 to 5 include radiating zones of circular shape. Any embodiment comprising radiating zones of different shape does not depart from the scope of the present invention.
  • the radiating zones are square metallized pellets 30, 31, 32, 33, 34 of the same dimensions.
  • the direction of polarization of the electric field is also given by a polarization vector P whose origin corresponds to the radio-electric center of the radiating zone and the end with the excitation point 301, 311, 321, 331, 341.
  • the eccentricity e of the excitation points of the lateral radiating zones is preferably defined in a direction parallel to the eccentricity of the central radiating zone.
  • the power supply circuit for receiving the radiating zones can be arranged on a substrate of dielectric material independent of the dielectric substrate 11 comprising the radiating zones constituting the radiating element 1.
  • the dielectric substrate carrying the supply circuit 2 can be mounted on a metal frame ensuring the mechanical strength of the reception supply circuit, the connection means 3 supplying the lateral radiating zones of a pair having equal electrical lengths.
  • the central radiating zone 20 is directly connected to a supply terminal of the radar transmitter-receiver switching system.
  • the connection means 3 preferably each consist of a coaxial cable, the central core of which is connected on the one hand to the end of a secondary branch of the receiving supply tee line and on the other hand to the point excitation of the corresponding lateral radiating zone defining with the radio center of each radiating zone the direction of polarization P ⁇ ⁇ to the electric field of the emission signal.
  • the external conductor of the coaxial cables constituting the connection means 3 is connected to the conductive sole 110 of the substrate 11 and to the chassis of the substrate carrying the reception supply circuit 2 by means of coaxial terminals directly soldered to the chassis and to the sole conductor 110 of substrate 11 and not shown in FIG. 7.
  • Such embodiments allow, by the complete separation of the receiving supply circuit of the radiating element from the source, a complete decoupling of the transmission-supply-reception functions and an improvement in the performance of the system from the point of view of decoupling. roads.
  • an antenna comprising a primary source according to the invention shown in FIG. 7, this comprises a parabolic reflector 90.
  • the radiating element 1 of the primary source is disposed at the focal point of the reflector 90 and maintained in position by a frustoconical piece 91 secured to the reflector.
  • the frusto-conical part 91 covers the opening of the reflector and is, for example, fitted therein and fixed to the latter by any suitable means.
  • the frustoconical part 91 comprises at its top a housing 92 intended to receive the radiating element 1 from the primary source, the radiating zones forming the independent sum and difference channels being oriented towards the reflector.
  • the frustoconical part 91 is constituted by a dielectric material with a dielectric constant of less than 1.1, such as a polyurethane foam for example.
  • the reception supply circuit 2 constituting with the radiating element 1 the primary source is for example arranged on the back of the reflector.
  • the connection means 3 constituted by coaxial cables connect the reception supply circuit 2 to the radiating element 1, the semi-rigid coaxial cables allowing the mechanical maintenance of the radiating part 1 assembly, frustoconical part 91 and the reflector 90
  • the coaxial cables are preferably arranged along a generator of the frustoconical part orthogonally to the vector P representing the vector polarization of the electric field of the signal emitted by the primary source. Any embodiment in which the primary source or the radiating part of the primary source is offset in offset relative to the focus of the reflector of the radar antenna does not depart from the scope of the present invention.
  • the simplicity of the reception supply circuit makes it possible to obtain low radioelectric losses, the integration of the reception supply circuit and of the radiating zones on the opposite faces of the dielectric substrate or on wafers. separate dielectric and separation of sum and difference channels to minimize these losses.
  • the circuits of the monopulse primary source which is the subject of the invention can be produced by the photoengraving technique, this makes it possible to obtain radiating and supply circuits of high precision and of low cost for a minimum bulk compared to the sources. classics.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (14)

1. Gedruckter Monopuls-Primärstrahler, mit :
- einem abstrahlenden Kreis, der auf der ersten Fläche eines Substrats (11) angeordnet ist, dessen zweite Fläche eine leitfähige Platte (110, 150) aufweist, welche die Masseebene bildet, wobei der abstrahlende Kreis aus einer zentralen Strahlerzone (20), die den Summenkanal bildet, und für jeden Differenzkanal aus einem Paar von seitlichen Strahlerzonen (21, 22, 23, 24) gebildet ist, die symmetrisch in bezug auf die zentrale Strahlerzone sind ;
- für jedes Paar von seitlichen Strahlerzonen eine von dem abstrahlenden Kreis losgelöste Empfangs-Speiseschaltung (2) ; und
- Verbindungsmittel (3) für jedes Paar von seitlichen Strahlerzonen zur Verbindung der Empfangs-Speiseschaltung (2) mit den seitlichen Strahlerzonen des betreffenden Paares, wobei der Erregungspunkt der zentralen Strahlerzone (20) direkt an einen Speiseanschluß (7) des Summenkanals angeschlossen ist ;

wobei der Strahler dadurch gekennzeichnet ist, daß für jedes Paar von seitlichen, einen Differenzkanal bildenden Strahlerzonen die Empfangs-Speiseschaltung gebildet ist aus einer T-förmigen Übertragungsleitung (13, 14), deren Hauptschenkel an einen Speiseanschluß des Differenzkanals angeschlossen ist und deren beide Seitenschenkel (131, 132 ; 141, 142) jeweils an ihrem Ende an den Erregerpunkt der Strahlerzonen (21, 22 ; 23, 24) des betreffenden Paares über die Verbindungsmittel (3) angeschlossen sind, die eine gleiche elektrische Länge aufweisen, wobei die seitlichen Strahlerzonen des Paares mit entgegengesetzter Phase angeregt sind und die Länge der Nebenschenkel der T-förmigen Speiseleitung so eingestellt ist, daß eine Optimierung des Strahlungsdiagramms des Summenkanals erreicht ist.
2. Primärstrahler nach Anspruch 1, dadurch gekennzeichnet, daß jede T-förmige Übertragungsleitung (13, 14), die ein Paar von seitlichen Strahlerzonen speist, eine Streifenleitung ist, deren Hauptzweig einen Impedanztransformator (133, 143) enthält.
3. Primärstrahler nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Empfangs-Speiseschaltung (2) auf einem zweiten Substrat (12) verwirklicht ist dessen eine Fläche eine die Masseebene bildende leitfähige Platte (120) aufweist.
4. Primärstrahler nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Empfangs-Speiseschaltung auf der zweiten Fläche des ersten Substrats (1) gebildet ist und mit der Masseebene (150) eine Gruppe von koplanaren Leitungen (16, 17) bildet.
5. Primärstrahler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Verbindungsmittel (3) an die Strahlerzonen jeweils an ihrem Erregerpunkt senkrecht angeschlossen sind.
6. Primärstrahler nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Verbindungsmittel (3), welche die Strahlerzonen mit ihrer Empfangs-Speiseschaltung verbinden, durch Koaxialkabel gebildet sind, wobei die Speiseanschlüsse Koaxialanschlüsse sind.
7. Primärstrahler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Strahlerzonen kreisförmige metallisierte Plättchen sind.
8. Primärstrahler nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Strahlerzonen quadratische metallisierte Plättchen (30 bis 34) sind.
9. Radarantenne mit einem gedruckten Monopuls-Primärstrahler nach Anspruch 1.
10. Radarantenne nach Anspruch 9, mit einem Parabolreflektor (90), dadurch gekennzeichnet, daß das den abstrahlenden Kreis des Primärstrahlers tragende Substrat (1) im Fokus des Reflektors angeordnet ist, diesem zugewendet ist und durch ein kegelstumpfförmiges Teil (91) in Stellung gehalten ist, welches mit dem Reflektor fest verbunden und auf die Öffnung desselben aufgesetzt ist.
11. Antenne nach Anspruch 10, dadurch ge-kennzeichnet, daß die Empfangs-Speiseschaltung (2) von einem zweiten Substrat getragen wird und dieses zweite Substrat auf der Rückseite des Reflektors befestigt ist.
12. Antenne nach Anspruch 11, dadurch gekennzeichnet, daß die Verbindungsmittel (3) zwischen der Speiseschaltung (2) und den Strahlerzonen halbsteife Koaxialkabel entlang den Mantellinien des kegelstumpfförmigen Teils (91) sind, welche zu der Polarisationsachse des elektrischen Feldes des durch den Primärstrahler abgestrahlten Signals senkrecht sind.
13. Antenne nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß die Verbindungsmittel (3) durch das erste Substrat senkrecht hindurch zu den Strahlerzonen führen und an deren Erregerpunkt angeschlossen sind.
14. Antenne nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß das kegelstumpfförmige Teil (91) aus einem dielektrischen Material gebildet ist, dessen Dielektrizitätskonstante kleiner als 1,1 ist.
EP79400867A 1978-11-24 1979-11-14 In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler Expired EP0012055B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7833292 1978-11-24
FR7833292A FR2442519A1 (fr) 1978-11-24 1978-11-24 Source primaire monopulse imprimee pour antenne de radar aeroporte et antenne comportant une telle source

Publications (2)

Publication Number Publication Date
EP0012055A1 EP0012055A1 (de) 1980-06-11
EP0012055B1 true EP0012055B1 (de) 1983-11-16

Family

ID=9215328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79400867A Expired EP0012055B1 (de) 1978-11-24 1979-11-14 In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler

Country Status (5)

Country Link
US (1) US4318107A (de)
EP (1) EP0012055B1 (de)
JP (1) JPS5577208A (de)
DE (1) DE2966414D1 (de)
FR (1) FR2442519A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134804A (en) * 1980-03-25 1981-10-21 Mitsubishi Electric Corp Tracking antenna
US4414550A (en) * 1981-08-04 1983-11-08 The Bendix Corporation Low profile circular array antenna and microstrip elements therefor
SE453702B (sv) * 1981-09-07 1988-02-22 Nippon Telegraph & Telephone Mikrostripantenn for ett riktningsdiversitetskommunikationssystem
JPS59178002A (ja) * 1983-03-29 1984-10-09 Radio Res Lab 円偏波アンテナ
JPS59157312U (ja) * 1983-04-06 1984-10-22 三菱電機株式会社 電子走査アンテナ
JPS59157311U (ja) * 1983-04-06 1984-10-22 三菱電機株式会社 電子走査アンテナ
DE3514880A1 (de) * 1984-05-22 1985-11-28 Robert Bosch Gmbh, 7000 Stuttgart Array-antenne
US6195035B1 (en) * 1984-10-12 2001-02-27 Textron Systems Corporation Cylindrical monopulse
US4962383A (en) * 1984-11-08 1990-10-09 Allied-Signal Inc. Low profile array antenna system with independent multibeam control
EP0200819A3 (de) * 1985-04-25 1987-12-09 Robert Bosch Gmbh Array-Antenne
US4835540A (en) * 1985-09-18 1989-05-30 Mitsubishi Denki Kabushiki Kaisha Microstrip antenna
EP0237110A1 (de) * 1986-03-05 1987-09-16 THORN EMI Electronics Limited Peilantennensystem
JPH01166597A (ja) * 1987-12-23 1989-06-30 Fujitsu Ltd リフロー半田接合方法
CA2001013C (en) * 1988-10-19 1995-04-18 Toshikiyo Hirata Array antenna system
US5165109A (en) * 1989-01-19 1992-11-17 Trimble Navigation Microwave communication antenna
JPH02126413U (de) * 1989-03-28 1990-10-18
US5400041A (en) * 1991-07-26 1995-03-21 Strickland; Peter C. Radiating element incorporating impedance transformation capabilities
JPH0738332A (ja) * 1993-07-23 1995-02-07 Nec Corp 簡易モノパルス追尾アンテナ
US5512911A (en) * 1994-05-09 1996-04-30 Disys Corporation Microwave integrated tuned detector
US5493303A (en) * 1994-07-12 1996-02-20 M/A-Com, Inc. Monopulse transceiver
DE19615497A1 (de) 1996-03-16 1997-09-18 Pates Tech Patentverwertung Planarer Strahler
US6052889A (en) * 1996-11-21 2000-04-25 Raytheon Company Radio frequency antenna and its fabrication
US6362790B1 (en) * 1998-09-18 2002-03-26 Tantivy Communications, Inc. Antenna array structure stacked over printed wiring board with beamforming components
FR2818017B1 (fr) * 2000-12-13 2003-01-24 Sagem Reseau d'elements d'antenne patch
US9350086B2 (en) 2012-11-09 2016-05-24 Src, Inc. Shaped lens antenna for direction finding at the Ka-band
FR3007215B1 (fr) * 2013-06-17 2015-06-05 Zodiac Data Systems Source pour antenne parabolique

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943523A (en) * 1972-03-07 1976-03-09 Raytheon Company Airborne multi-mode radiating and receiving system
US3953857A (en) * 1972-03-07 1976-04-27 Jenks Frederic A Airborne multi-mode radiating and receiving system
US3803617A (en) * 1972-04-14 1974-04-09 Nasa High efficiency multifrequency feed
FR2219533B1 (de) * 1973-02-23 1977-09-02 Thomson Csf
US4042935A (en) * 1974-08-01 1977-08-16 Hughes Aircraft Company Wideband multiplexing antenna feed employing cavity backed wing dipoles
US3965475A (en) * 1975-05-30 1976-06-22 The United States Of America As Represented By The United States Administrator Of The National Aeronautics And Space Administration Switchable beamwidth monopulse method and system
US4083046A (en) * 1976-11-10 1978-04-04 The United States Of America As Represented By The Secretary Of The Navy Electric monomicrostrip dipole antennas
US4089003A (en) * 1977-02-07 1978-05-09 Motorola, Inc. Multifrequency microstrip antenna
US4142190A (en) * 1977-09-29 1979-02-27 The United States Of America As Represented By The Secretary Of The Army Microstrip feed with reduced aperture blockage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RADAR HANDBOOK. McGraw-Hill. US. 1970, Merrill I. Skolnik. p. 21-16 *

Also Published As

Publication number Publication date
EP0012055A1 (de) 1980-06-11
US4318107A (en) 1982-03-02
FR2442519A1 (fr) 1980-06-20
FR2442519B1 (de) 1982-04-16
DE2966414D1 (en) 1983-12-22
JPS5577208A (en) 1980-06-10

Similar Documents

Publication Publication Date Title
EP0012055B1 (de) In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler
EP0481417B1 (de) Vorrichtung zur Speisung eines Strahlungselementes für zwei orthogonale Polarisationen
EP0899814B1 (de) Strahlende Struktur
EP3011639B1 (de) Speiseanordnung für eine parabolantenne
EP3602689B1 (de) Elektromagnetische antenne
EP0462864B1 (de) Vorrichtung zur Speisung von Strahlungselementen einer Gruppenantenne und ihre Verwendung für eine Antenne eines Landungshilfssystems vom Typ MLS
FR2930079A1 (fr) Capteur de rayonnement, notamment pour radar
EP0315141A1 (de) Anregungsvorrichtung einer zirkularpolarisierten Welle mit einer Flachantenne in einem Hohlleiter
FR2491686A1 (fr) Antenne directive de radar multimode a alimentation double
EP0707357A1 (de) Antennensystem mit mehreren Speisesystemen, integriert in einem rauscharmen Umsetzer (LNC)
EP0377155B1 (de) Doppelfrequenz strahlende Vorrichtung
EP0020196B1 (de) Scheibenförmige Mikrowellenmehrelementenantenne mit Speiseanordnung und deren Verwendung bei Radar
EP0520908B1 (de) Lineare Gruppenantenne
EP0072316B1 (de) Antenne mit elektronischer Schwenkung und mehreren Eingängen und Radar mit einer solchen Antenne
EP3175509B1 (de) Logarithmisch-periodische antenne mit breitem frequenzband
FR2644937A1 (fr) Antenne omnidirective en polarisation circulaire transversale a maximum de gain sous l'horizon
EP3900113B1 (de) Elementare mikrostreifenantenne und gruppenantenne
EP0477102B1 (de) Richtnetzwerk mit benachbarten Strahlerelementen für Funkübertragungssystem und Einheit mit einem derartigen Richtnetzwerk
FR2490025A1 (fr) Antenne du type cornet monomode ou multimode comprenant au moins deux voies radar et fonctionnant dans le domaine des hyperfrequences
EP3155689B1 (de) Flachantenne zur satellitenkommunikation
EP0613019B1 (de) Abweichungsantenne für Monopulsradar
FR2930844A1 (fr) Antenne rf d'emission et/ou de reception comportant des elements rayonnants excites par couplage electromagnetique sans contact
FR2755796A1 (fr) Alimentation pour une antenne de radar dans la bande des gigahertz
EP3365943B1 (de) Antennenvorrichtung für erfassungshilfe und entsprechendes antennensystem zur überwachung eines sich bewegenden ziels
FR2943466A1 (fr) Element rayonnant a bipolarisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB

17P Request for examination filed
RBV Designated contracting states (corrected)

Designated state(s): DE GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 2966414

Country of ref document: DE

Date of ref document: 19831222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901019

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901022

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911114

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920801