[go: up one dir, main page]

DE69331194T2 - ADENO ASSOCIATED VIRUS WITH REVERSE TERMINAL REPEAT SEQUENCES AS A PROMOTOR FOR THE TRANSFER OF A FUNCTIONAL CFTR GENE IN VIVO - Google Patents

ADENO ASSOCIATED VIRUS WITH REVERSE TERMINAL REPEAT SEQUENCES AS A PROMOTOR FOR THE TRANSFER OF A FUNCTIONAL CFTR GENE IN VIVO

Info

Publication number
DE69331194T2
DE69331194T2 DE69331194T DE69331194T DE69331194T2 DE 69331194 T2 DE69331194 T2 DE 69331194T2 DE 69331194 T DE69331194 T DE 69331194T DE 69331194 T DE69331194 T DE 69331194T DE 69331194 T2 DE69331194 T2 DE 69331194T2
Authority
DE
Germany
Prior art keywords
aav
vector
cftr
cells
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69331194T
Other languages
German (de)
Other versions
DE69331194D1 (en
Inventor
Sandra Afione
J. Carter
Terrence Flotte
Rikki Solow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institutes of Health NIH
Original Assignee
National Institutes of Health NIH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institutes of Health NIH filed Critical National Institutes of Health NIH
Publication of DE69331194D1 publication Critical patent/DE69331194D1/en
Application granted granted Critical
Publication of DE69331194T2 publication Critical patent/DE69331194T2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4712Cystic fibrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Toxicology (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Pulmonology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Described herein are constructions of recombinant DNA comprising modified adeno-associated virus (AAV) DNA sequences capable of functioning as a eukaryotic expression vector for expressing foreign DNA sequences using a novel transcription promoter comprising the termini of AAV DNA. It is shown that expression of a test reporter gene can be obtained from this vector in mammalian cells. It is further shown that this combination of vector and promoter can be used to introduce and express a human gene and correct a genetic defect in human cells resulting from malfunction of the mutant endogenous gene. Further, the vector can be used to correct the genetic defect by expressing a modified version of the human gene consisting of a fusion of part of the said gene and a synthetic sequence contained in the vector. <IMAGE>

Description

Hintergrund der ErfindungBackground of the invention

Adeno-assoziiertes Virus (AAV) ist üblicherweise defekt hinsichtlich der Replikation und hängt von einer gleichzeitig vorliegenden Adenovirus- oder Herpesvirus-Infektion für eine wirksame Replikation und einen produktiven Lebenszyklus ab. In Abwesenheit eines Helfervirus kann AAV einer stabilen Integration seines Genoms in die Wirtszelle unterliegen; das integrierte AAV-Genom hat jedoch keine pathogene Wirkung. Diese Eigenschaften bilden die Basis für die Entwicklung von AAV-Vektoren für die Genexpression in Säugerzellen. AAV-Vektoren werden zur Expression sowohl von selektiven Markern (Hermonat und Muzyczka, 1984, Proc. Natl. Acad. Sci. (USA) 81: 6466-6470; Tratschin et al., 1985, Mol. Cell. Biol. 5: 3251-3260), wie Neomycinphosphotransferase (neo), als auch von nicht-selektierten Genen unter Einschluss von Chloramphenicolacetyltransferase (cat) (Tratschin et al., 1984, Mol. Cell. Biol. 4: 2072-2081) und Thyroid-stimulierendem Hormon in eukaryontischen Zellen verwendet (Mendelson et al., 1988, Virology 166: 154-165; Wondisford et al., 1988, Molec. Endocrinol. 2: 32-39).Adeno-associated virus (AAV) is typically defective in replication and depends on coexisting adenovirus or herpesvirus infection for effective replication and a productive life cycle. In the absence of a helper virus, AAV can undergo stable integration of its genome into the host cell; however, the integrated AAV genome has no pathogenic effect. These properties provide the basis for the development of AAV vectors for gene expression in mammalian cells. AAV vectors are used to express both selective markers (Hermonat and Muzyczka, 1984, Proc. Natl. Acad. Sci. (USA) 81: 6466-6470; Tratschin et al., 1985, Mol. Cell. Biol. 5: 3251-3260), such as neomycin phosphotransferase (neo), and non-selected genes including chloramphenicol acetyltransferase (cat) (Tratschin et al., 1984, Mol. Cell. Biol. 4: 2072-2081) and thyroid-stimulating hormone in eukaryotic cells (Mendelson et al., 1988, Virology 166: 154-165; Wondisford et al., 1988, Molec. Endocrinol. 2: 32-39).

Für die Verwendung als ein viraler transduzierender Vektor mag AAV einige Vorteile unter Einschluss einer hohen Frequenz von stabiler DNA-Integration und dem Fehlen von pathogener Beschaffenheit von Wildtyp-AAV aufweisen. Eine Begrenzung hinsichtlich AAV ist die der Größe, da die Packungsgrenze für Fremd-DNA in AAV- Partikel ungefähr 4,5 Kilobasen beträgt. Diese Begrenzung ist ein wichtiger Gesichtspunkt für die Entwicklung von AAV-Vektoren für die Expression von Genen oder cDNA-Konstrukten, bei denen die kodierende Gensequenz sich der AAV- Packungsgrenze, d. h. ungefähr 4,5 Kilobasen, annähert.For use as a viral transducing vector, AAV may have several advantages including a high frequency of stable DNA integration and the lack of pathogenicity of wild-type AAV. One limitation regarding AAV is that of size, since the packaging limit for foreign DNA into AAV particles is approximately 4.5 kilobases. This limitation is an important consideration for the development of AAV vectors for the expression of genes or cDNA constructs in which the coding gene sequence approaches the AAV packaging limit, i.e., approximately 4.5 kilobases.

Ein derartiges Gen ist z. B. das zystische Fibrose-Gen (CFTR). Das Atemwegsepithel ist eine kritische Stelle für die zelluläre Dysfunktion bei zystischer Fibrose (CF), der häufigsten tödlich verlaufenden genetischen Erkrankung in Nordamerika, und die Erkrankung ist durch einen Fehler in der Regulation der Cl&supmin;-Leitfähigkeit charakterisiert (Hwang et al., 1989, Science 244: 1351-1353; Li et al., 1988, Nature (London) 331: 358-360; Li et al., 1989, Science 244: 1353-1356; Schoumacher et al., 1987, Nature (London) 330: 752-754). Die cDNA für das CFTR-Gen (Riordan et al., 1989, Science 245: 1066-1073; Rommens et al., 1989, Science 245: 1059-1065) wurde in eukaryontischen Zellen exprimiert. Die Expression des CFTR-Proteins in nicht-epithelialen Zelllinien resultierte in der Ausbildung einer Cl&supmin;-Leitfähigkeit (Andersen et al., 1991, Science 251: 679-682; Kartner et al., 1991, Cell 64: 681-691). Der OF-Defekt wurde durch Expression von CFTR in einer CF-Pankreas-Adenokarzinom-Zelllinie durch stabile Transduktion mit einem Retrovirus-Vektor (Drumm et al., 1990, Cell 62: 1227-1233) und in einer CF-Atemwegs-Zelllinie durch Infektion mit einem Vaccinia-Virus (Rich et al., Nature (London) 347: 358-363) oder einem Adenovirus-Vektor (Rosenfeld et al., 1992, Cell 68: 143-155) komplementiert.One such gene is the cystic fibrosis gene (CFTR). The airway epithelium is a critical site of cellular dysfunction in cystic fibrosis (CF), the most common fatal genetic disease in North America, and the disease is characterized by a defect in the regulation of Cl- conductance (Hwang et al., 1989, Science 244: 1351-1353; Li et al., 1988, Nature (London) 331: 358-360; Li et al., 1989, Science 244: 1353-1356; Schoumacher et al., 1987, Nature (London) 330: 752-754). The cDNA for the CFTR gene (Riordan et al., 1989, Science 245: 1066-1073; Rommens et al., 1989, Science 245: 1059-1065) was expressed in eukaryotic cells. Expression of CFTR protein in non-epithelial cell lines resulted in the formation of Cl- conductance (Andersen et al., 1991, Science 251: 679-682; Kartner et al., 1991, Cell 64: 681-691). The OF defect was complemented by expression of CFTR in a CF pancreatic adenocarcinoma cell line by stable transduction with a retrovirus vector (Drumm et al., 1990, Cell 62: 1227-1233) and in a CF airway cell line by infection with a vaccinia virus (Rich et al., Nature (London) 347: 358-363) or an adenovirus vector (Rosenfeld et al., 1992, Cell 68: 143-155).

Die Gentherapie ist als ein Weg vorgeschlagen worden, um den zellulären Defekt umzukehren und ein Fortschreiten der Erkrankung in betroffenen Patienten zu verhindern. Bisherige Ansätze der Gentherapie haben die in vitro-Transduktion von Zellen (wie Lymphozyten), die leicht wieder in Patienten eingeführt werden können, beinhaltet. Dies mag bei einem intakten Atemwegsepithel schwierig sein. Ein alternativer Ansatz besteht darin, einen Virusvektor zu nutzen, um das CFTR-Gen direkt an die Atemwegsoberfläche zu liefern. Ein Kandidat ist Adeno-assoziiertes Virus (AAV), ein humanes Parvovirus. Die kodierende Sequenz (Riordan et al., 1989, Science 245: 1066-1073) von CFTR beträgt jedoch 4, 4 Kilobasen und nähert sich der Packungsgrenze für AAV-Partikel an. AAV weist also den möglichen Nachteil hinsichtlich einer Verwendung als ein Vektor für CFTR auf, dass es kaum die kodierende Sequenz von CFTR aufnehmen kann (Collins, 1992, Science 256: 774-779).Gene therapy has been proposed as a way to reverse the cellular defect and prevent disease progression in affected patients. Previous gene therapy approaches have involved in vitro transduction of cells (such as lymphocytes) that can be easily reintroduced into patients. This may be difficult in an intact airway epithelium. An alternative approach is to use a viral vector to deliver the CFTR gene directly to the airway surface. One candidate is adeno-associated virus (AAV), a human parvovirus. However, the coding sequence (Riordan et al., 1989, Science 245: 1066-1073) of CFTR is 4.4 kilobases, approaching the packing limit for AAV particles. AAV therefore has the potential disadvantage with regard to use as a vector for CFTR that it can hardly accommodate the coding sequence of CFTR (Collins, 1992, Science 256: 774-779).

Transduzierende AAV-Vektoren werden in dem Patent von Carter et al., (US-Patent 4 797 368, erteilt am 10. Januar 1989) beschrieben. Dieses Patent beschreibt AAV- Vektoren unter Verwendung von AAV-Transkriptionspromotoren p&sub4;&sub0;, p&sub1;&sub9; und p&sub5;.Transducing AAV vectors are described in the patent to Carter et al., (US Patent 4,797,368, issued January 10, 1989). This patent describes AAV vectors using AAV transcription promoters p40, p19 and p5.

AAV-Vektoren müssen eine Kopie der invertierten terminalen Wiederholungssequenzen (ITRs) von AAV an jedem Ende des Genoms aufweisen, um repliziert, in AAV-Partikel gepackt und in wirksamer Weise in Zellchromosomen integriert zu werden. Die ITR besteht aus den Nucleotiden 1 bis 145 am linken Ende des AAV-DNA- Genoms und den entsprechenden Nucleotiden 4681 bis 4536 (d. h. die gleiche Sequenz) am rechten Ende des AAV-DNA-Genoms. AAV-Vektoren müssen also insgesamt mindestens 300 Nucleotide der terminalen Sequenz aufweisen.AAV vectors must have a copy of the AAV inverted terminal repeat sequences (ITRs) at each end of the genome in order to be replicated, packaged into AAV particles, and efficiently integrated into cell chromosomes. The ITR consists of nucleotides 1 to 145 at the left end of the AAV DNA genome and the corresponding nucleotides 4681 to 4536 (i.e., the same sequence) at the right end of the AAV DNA genome. Thus, AAV vectors must have a total of at least 300 nucleotides of terminal sequence.

Zum Packen großer kodierender Regionen, wie des CFTR-Gens, in AAV-Vektorpartikel ist es wichtig, die kleinsten möglichen regulatorischen Sequenzen, wie Transkriptionspromotoren und Poly-A-Additionssignal, zu entwickeln. Auch in dieser letztgenannten Studie und einer weiteren Studie (Beaton et al., 1981, J. Virol. 63: 4450- 4454) wurde gezeigt, dass die AAV-ITR-Sequenz als ein Verstärker für den Transkriptionspromotor des frühen Gens des SV40-Virus dienen kann. Es wurde jedoch nicht gezeigt, dass die AAV-ITR-Region irgendeine intrinsische Transkriptionspromotoraktivität aufweist. In der Tat wird in der Literatur gelehrt, dass die AAV-ITR-Regionen keine transkriptionale Funktion haben (Walsh et al., 1992, PNAS (im Druck)). Daher wurde in den bisherigen AAV-Vektoren ein kleiner Transkriptionspromotor, nämlich der AAV-p&sub5;-Promotor, verwendet, der aus den Nucleotiden 145 bis 268 des AAV-Genoms, angeordnet unmittelbar benachbart zu einer ITR, besteht.To package large coding regions, such as the CFTR gene, into AAV vector particles, it is important to use the smallest possible regulatory sequences, such as transcription promoters and poly-A addition signal. Also in this latter study and another study (Beaton et al., 1981, J. Virol. 63: 4450-4454) it was shown that the AAV ITR sequence can serve as an enhancer for the transcriptional promoter of the SV40 virus early gene. However, the AAV ITR region was not shown to have any intrinsic transcriptional promoter activity. Indeed, the literature teaches that the AAV ITR regions have no transcriptional function (Walsh et al., 1992, PNAS (in press)). Therefore, previous AAV vectors have used a small transcription promoter, namely the AAV p5 promoter, which consists of nucleotides 145 to 268 of the AAV genome, located immediately adjacent to an ITR.

Zusammenfassende Darstellung der ErfindungSummary of the invention

Erfindungsgemäß weist ein neues funktionelles zystische Fibrose-Transmembran- Übertragungsregulatorprotein ("cystic fibrosis transmembrane conductance regulator", CFTR) eine Deletion beliebiger der oder aller aminoterminalen 118 Aminosäuren auf. Ferner umfasst ein neues Polynucleotid die invertierten terminalen Wiederholungssequenzen (ITR-Sequenzen) von Adeno-assoziiertem Virus und eine heterologe Nucleinsäure kodierend das CFTR-Protein, wobei die ITR-Sequenzen als Promotor für die Transkription der Nucleinsäure dienen. Ein Vektor, der das Polynucleotid umfasst, kann bei der Behandlung von zystischer Fibrose, insbesondere bei Menschen, verwendet werden.According to the invention, a novel functional cystic fibrosis transmembrane conductance regulator (CFTR) protein has a deletion of any or all of the amino-terminal 118 amino acids. Furthermore, a novel polynucleotide comprises the inverted terminal repeat (ITR) sequences of adeno-associated virus and a heterologous nucleic acid encoding the CFTR protein, wherein the ITR sequences serve as a promoter for transcription of the nucleic acid. A vector comprising the polynucleotide can be used in the treatment of cystic fibrosis, particularly in humans.

AAV-Vektoren, die die CFTR-cDNA voller Länge enthalten, sind größer als Wildtyp- AAV und schwierig in transduzierende AAV-Partikel zu packen. Eine ausgehend von einem AAV-ITR-Promotor gemäß der Erfindung exprimierte CFTR-cDNA kann jedoch den CF-Defekt komplementieren und wird in geeigneter Weise reguliert, wie durch funktionelle Assays gezeigt wird. Es ist gezeigt worden, dass diese verkürzte CFTR-cDNA in einen AAV-Vektor gepackt und zur Infektion von IB3-Zellen gebracht werden kann, so dass in der Kultur der CF-Defekt komplementiert werden konnte. Es ist auf diese Weise möglich, eine wirksame Komplementierung des CF-Defekts mit AAV-transfizierenden Vektoren zu erzielen.AAV vectors containing the full-length CFTR cDNA are larger than wild-type AAV and difficult to package into transducing AAV particles. However, a CFTR cDNA expressed from an AAV ITR promoter according to the invention can complement the CF defect and is appropriately regulated as shown by functional assays. It has been shown that this truncated CFTR cDNA can be packaged into an AAV vector and made to infect IB3 cells so that the CF defect could be complemented in culture. It is thus possible to achieve efficient complementation of the CF defect with AAV transfecting vectors.

Darstellung der ErfindungDescription of the invention

Vorzugsweise ist der in der Erfindung verwendete Vektor ein Adeno-assoziierter Virusvektor. Mit "Adeno-assoziierter Virusvektor" ist ein beliebiger Vektor gemeint, der die ITR-Sequenzen aufweist, die für die Packung des viralen Genoms, die Integration in ein Wirtschromosom und die Promotion der Transkription von zusätzlichen Sequenzen erforderlich sind. Es werden also beliebige Änderungen in der ITR, die diese essentiellen Funktionen aufrechterhalten, als innerhalb dieser Bedeutung liegend angesehen.Preferably, the vector used in the invention is an adeno-associated virus vector. By "adeno-associated virus vector" is meant any vector that has the ITR sequences required for packaging of the viral genome, integration into a host chromosome, and promotion of transcription of additional sequences. Thus, any changes in the ITR that maintain these essential functions are considered to be within this scope.

Das Polynucleotid kann auch eine Poly-A-Stelle umfassen, die imstande ist, translational in umgekehrter Richtung gelesen zu werden. Die Poly-A-Stelle weist SEQ ID NO 6 auf.The polynucleotide may also comprise a poly-A site capable of being read translationally in the reverse direction. The poly-A site comprises SEQ ID NO: 6.

Der virale Vektor kann in einem geeigneten Wirt enthalten sein. Beliebige Zellen können ein geeigneter Wirt sein, solange der Vektor zur Infektion des Zelltyps imstande ist. Ein Beispiel für eine geeignete Wirtszelle ist eine epitheliale Zelle, die eine nicht-funktionelle CFTR-Sequenz enthält.The viral vector can be contained within a suitable host. Any cell can be a suitable host as long as the vector is capable of infecting the cell type. An example of a suitable host cell is an epithelial cell that contains a non-functional CFTR sequence.

Der Vektor kann zusätzliche Sequenzen, wie von Adenovirus, enthalten, die dazu beitragen, eine gewünschte Funktion des Vektors zu bewirken. Zum Beispiel könnte die Addition von Adenovirus-DNA-Sequenzen, die den AAV-Vektor einschließen, einen Ansatz darstellen, um AAV-Vektoren in Adenovirus-Partikel zu packen.The vector may contain additional sequences, such as from adenovirus, that help to achieve a desired function of the vector. For example, the addition of adenovirus DNA sequences encapsulating the AAV vector could provide one approach to packaging AAV vectors into adenovirus particles.

Der Vektor kann auch in einem beliebigen pharmazeutisch annehmbaren Träger für die Verabreichung enthalten sein. Beispiele für geeignete Träger sind Kochsalzlösung und phosphatgepufferte Kochsalzlösung.The vector may also be contained in any pharmaceutically acceptable carrier for administration. Examples of suitable carriers include saline and phosphate buffered saline.

Wie hier verwendet, bedeutet AAV alle Serotypen von AAV. Es ist eine Routinemaßnahme auf diesem Gebiet, die ITR-Sequenzen von anderen Serotypen von AAV zu verwenden, da zu erwarten ist, dass die ITRs von allen AAV-Serotypen ähnliche Strukturen und Funktionen im Hinblick auf Replikation, Integration, Ausschneiden und transkriptionale Mechanismen haben.As used here, AAV means all serotypes of AAV. It is routine practice in the field to use the ITR sequences from other serotypes of AAV, since the ITRs of all AAV serotypes are expected to have similar structures and functions in terms of replication, integration, excision, and transcriptional mechanisms.

Experimentelle Verfahren und ErgebnisseExperimental procedures and results

Zellen: Die CFBE-IB3-1-Zelllinie (IB3-Zellen) ist eine humane bronchiale epitheliale Zelllinie, die von einem CF-Patienten stammt und mit einem Adeno/SV40-Hybridvirus unsterblich gemacht wurde (Luo et al., 1989, Pflugers Arch. 415: 198-203; Zeitlin et al., 1991, Am. J. Respir. Cell Mol. Biol. 4: 313-319). Diese Zellen behalten charakteristische Eigenschaften von epithelialen Zellen, und sie sind fehlerhaft hinsichtlich der Proteinkinase A-Aktivierung der Chlorid-Leitfähigkeit. IB3-Zellen wurden bei 37ºC in 5% CO&sub2; in LHC-8-Medium (Biofluids, Inc., Md) plus 10% fötalem Kälberserum mit zugegebener Endothelialzellwachstumsergänzung (15 ug/ml) in Kulturflaschen oder Schalen, beschichtet mit Kollagen (150 ug/ml), Fibronectin (10 ug/ml) und Rinderserumalbumin (10 ug/ml), gezüchtet. Die 293-31-Zelllinie (293-Zellen), die ursprünglich von humanen Embryonierenzellen, transformiert mit den Adenovirus Typ 5-E1A- und EIB-Genen, abgeleitet wurde, wurde bei 37ºC in 5% CO&sub2; in Eagle-minimal essentiellem Medium mit 10% fötalem Kälberserum gezüchtet und für die Packung von AAV-Vektoren in Viruspartikel verwendet (Tratschin et al., 1984, Mol. Cell. Biol. 4: 2072-2081).Cells: The CFBE-IB3-1 cell line (IB3 cells) is a human bronchial epithelial cell line derived from a CF patient and immortalized with an adeno/SV40 hybrid virus (Luo et al., 1989, Pflugers Arch. 415: 198-203; Zeitlin et al., 1991, Am. J. Respir. Cell Mol. Biol. 4: 313-319). These cells retain characteristic properties of epithelial cells and are defective in Protein kinase A activation of chloride conductance. IB3 cells were grown at 37°C in 5% CO2 in LHC-8 medium (Biofluids, Inc., Md) plus 10% fetal calf serum with added endothelial cell growth supplement (15 μg/ml) in culture flasks or dishes coated with collagen (150 μg/ml), fibronectin (10 μg/ml), and bovine serum albumin (10 μg/ml). The 293-31 cell line (293 cells), originally derived from human embryonic kidney cells transformed with the adenovirus type 5 E1A and EIB genes, was grown at 37°C in 5% CO2. in Eagle minimal essential medium with 10% fetal calf serum and used for packaging of AAV vectors into virus particles (Tratschin et al., 1984, Mol. Cell. Biol. 4: 2072-2081).

Plasmide: Plasmide wurden unter Anwendung von Standardverfahren (Sambrook et al., 1989, Molecular Cloning, Cold Spring Habor Laboratory, Cold Spring Harbor, New York) konstruiert und gezüchtet. Das Ausgangsplasmid pAV2 enthält die gesamte 4681 Nucleotide umfassende Sequenz von AAV2, inseriert in ein von pBR322 abgeleitetes Plasmid über einen Polylinker und BgIII-Linker (Laughlin et al., 1983, Gene 23: 681-691). Daraus wurde ein Plasmid pYT45 erhalten, das ein prokaryontisches cat-Gen unmittelbar stromabwärts der AAV-Nucleotide 1-263 enthielt (was das cat-Gen unter die Kontrolle des AAV-p&sub5;-Promotors brachte), gefolgt von den AAV- Nucleotiden 1882-1910 und 4162-4681 (enthaltend das Poly-A-Signal und die rechte ITR), stromabwärts vom cat-Gen.Plasmids: Plasmids were constructed and grown using standard procedures (Sambrook et al., 1989, Molecular Cloning, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York). The starting plasmid pAV2 contains the entire 4681 nucleotide sequence of AAV2 inserted into a pBR322-derived plasmid via a polylinker and BglII linker (Laughlin et al., 1983, Gene 23: 681-691). This resulted in a plasmid pYT45 containing a prokaryotic cat gene immediately downstream of AAV nucleotides 1-263 (placing the cat gene under the control of the AAV p5 promoter), followed by AAV nucleotides 1882-1910 and 4162-4681 (containing the poly-A signal and the right ITR) downstream of the cat gene.

pAAVp&sub5;neo ist analog zu pYT45, mit der Ausnahme, dass es eine neo-kodierende Sequenz anstelle des cat-Gens aufweist und die stromabwärtigen AAV-Nucleotide 1882-1910 und 41624492 (das KpnI/SnaB-Fragment) durch 60 bp SPA ersetzt wurden.pAAVp5neo is analogous to pYT45 except that it has a neo coding sequence in place of the cat gene and the downstream AAV nucleotides 1882-1910 and 41624492 (the KpnI/SnaB fragment) have been replaced by 60 bp SPA.

pSA313 ist analog zu pAAVp&sub5;neo, mit der Ausnahme, dass die neo-Sequenz durch die CFTR-kodierende Sequenz, die in einem 4502 bp umfassenden AvaI-SstI-Fragment, ausgeschnitten aus einem Plasmid pBA-CFTRBQ (Drumm et al., 1990, Cell 62: 1227-1233), enthalten war, ersetzt wurde. Diese CFTR-cDNA-Sequenz enthält drei stille Mutationspunkte in Exon 6a, die die prokaryontische Promotorsequenz eliminieren. In pSA313 befindet sich das CFTR-Gen unter der Kontrolle des AAV-p5- Promotors. Das Plasmid pSA315 ist analog zu pSA313, mit der Ausnahme, dass die CFTR-cDNA in der umgekehrten Richtung inseriert ist. Das Plasmid pSA306 ist analog zu pSA315, mit der Ausnahme, dass es eine Deletion der CFTR-Nucleotide 131 bis 486 aufweist. In sowohl pSA315 als auch pSA306 wird das CFTR-Gen ausgehend von den AAV-ITR exprimiert, wie nachstehend erörtert. Die Verknüpfungssequenzen zwischen dem CFTR-Insert und den AAV-Termini und SPA-Regionen von, pSA313, pSA315 und pSA306 wurden durch DNA-Sequenzierung verifiziert. pSA464 wurde von pSA306 durch Spaltung mit AfIII an einem Nucleotid der CFTR- Sequenz und Auffüllen und stumpfendige Ligation mit T4-DNA-Polymerase und T4- DNA-Ligase abgeleitet. Dies erzeugte eine Rahmenverschiebung in der CFTR-Sequenz. Das Vorhandensein dieser Mutation wurde durch DNA-Sequenzierung verifiziert.pSA313 is analogous to pAAVp5neo except that the neo sequence was replaced by the CFTR coding sequence contained in a 4502 bp AvaI-SstI fragment excised from a plasmid pBA-CFTRBQ (Drumm et al., 1990, Cell 62:1227-1233). This CFTR cDNA sequence contains three silent mutation sites in exon 6a that eliminate the prokaryotic promoter sequence. In pSA313, the CFTR gene is under the control of the AAV p5 promoter. Plasmid pSA315 is analogous to pSA313 except that the CFTR cDNA is inserted in the reverse direction. Plasmid pSA306 is analogous to pSA315, except that it has a deletion of CFTR nucleotides 131 to 486. In both pSA315 and pSA306, the CFTR gene is expressed from the AAV ITR, as discussed below. The junction sequences between the CFTR insert and the AAV termini and SPA regions of pSA313, pSA315 and pSA306 were verified by DNA sequencing. pSA464 was derived from pSA306 by digestion with AfIII at one nucleotide of the CFTR sequence and filling in and blunt-end ligation with T4 DNA polymerase and T4 DNA ligase. This created a frameshift in the CFTR sequence. The presence of this mutation was verified by DNA sequencing.

Transfektion: Die DNA-Transfektion in IB3 wurde in Schalen mit 6 oder 24 Vertiefungen unter Anwendung der Lipofection durchgeführt. 30 ug Lipofectionsreagenz (BRL, Gaithersburg, MD) wurden für jeweils 5 bis 6 ug transfizierter DNA verwendet. Lipofectin und DNA wurden in 1,0 ml serumfreiem LHC-8-Medium gemischt und zu den Zellen (5 · 10&sup5; bis 5 · 10&sup6; in 35 mm-Vertiefungen), die bereits mit 0,5 ml Medium bedeckt waren, gegeben. Die Zellen wurden der DNA für 4 Stunden ausgesetzt, mit PBS gespült und dann in 2 ml frischem Medium gezüchtet. Die DNA-Transfektion in 293-Zellen wurde nach dem Standard-DNA-Calciumphosphat-Präzipitationsverfahren durchgeführt.Transfection: DNA transfection into IB3 was performed in 6- or 24-well dishes using lipofection. 30 µg of lipofection reagent (BRL, Gaithersburg, MD) was used for every 5 to 6 µg of transfected DNA. Lipofectin and DNA were mixed in 1.0 ml of serum-free LHC-8 medium and added to cells (5 x 105 to 5 x 106 in 35 mm wells) already covered with 0.5 ml of medium. Cells were exposed to DNA for 4 hours, rinsed with PBS, and then grown in 2 ml of fresh medium. DNA transfection into 293 cells was performed using the standard DNA calcium phosphate precipitation procedure.

Geneticin-Selektion: IB3-Zellen, die für die stabile neo-Expression verwendet wurden, wurden im Verhältnis 1 : 3 auf 10 cm-Schalen 24 bis 48 Stunden nach der Transfektion aufgeteilt, und Geneticinsulfat wurde 72 bis 96 Stunden nach der Transfektion in einer Konzentration von 120 ul/ml zugegeben. Die verwendete Menge an Geneticin basierte auf einer Titration der minimalen letalen Dosis. Geneticin-resistente (genr) Kolonien wurden 14 bis 16 Tage nach Beginn der Selektion gezählt.Geneticin selection: IB3 cells used for stable neo expression were split 1:3 into 10 cm dishes 24 to 48 hours after transfection, and geneticin sulfate was added at 120 μl/ml 72 to 96 hours after transfection. The amount of geneticin used was based on a minimum lethal dose titration. Geneticin-resistant (genr) colonies were counted 14 to 16 days after the start of selection.

CFTR-Komplementierung: IB3-Zellen wurden bei ungefähr 5 · 10&sup5; Zellen pro 35 mm- Schale plattiert. 24 Stunden nach dem Plattieren wurden die Zellen unter Verwendung von 6 ug pAAVp&sub5;neo oder 1 ug pAAVp&sub5;neo zusammen mit 5 ug pSA313, pSA315, pSA306 oder pSA464 durch Lipofection transfiziert, und eine Geneticin- Selektion wurde wie vorstehend beschrieben durchgeführt. Genr-Kolonien wurden 14 Tage nach Beginn der Selektion von jedem der beiden anderen Sätze an Platten isoliert. Jede isolierte Kolonie wurde unter Verwendung eines Klonierungszylinders trpysinbehandelt und ausgehend von 10 mm-Vertiefungen expandiert. Nach Expansion der einzelnen Klone wurden Zellen für ³&sup6;Cl&supmin;-Efflux-Assays und Western-Blot- Analyse vorbereitet.CFTR complementation: IB3 cells were plated at approximately 5 x 105 cells per 35 mm dish. Twenty-four hours after plating, cells were transfected by lipofection using 6 µg pAAVp5neo or 1 µg pAAVp5neo together with 5 µg pSA313, pSA315, pSA306 or pSA464 and geneticin selection was performed as described above. Genr colonies were isolated from each of the other two sets of plates 14 days after selection began. Each isolated colony was trypsinized using a cloning cylinder and expanded from 10 mm wells. After expansion of individual clones, cells were prepared for ³⁶Cl⁻ efflux assays and Western blot analysis.

Chlorid-Efflux-Assays: Chlorid-Efflux-Assays wurden durchgeführt, wie beschrieben (Trapnell et al., 1991, J. Biol. Chem. 266: 10319-10323), und zwar für einzelne Klone bei Passage 4 bis 8. Kurz gesagt wurden Zellen in 35 mm-Schalen gezüchtet und mit 3 uCi ³&sup6;Cl&supmin; in bicarbonatfreier ausgewogener Ringer-Salzlösung für 2 bis 9 Stunden beladen. Erste Versuche, die wiederholte Assays mit dem gleichen Klon von Zellen beinhalteten, zeigten keine signifikanten Unterschiede im Efflux nach verschiedenen Beladungszeiten, und eine Beladungszeit von 2 Stunden wurde dann für anschließende Versuche gewählt. Nach Beladen wurden die Zellen 2- bis 3-mal mit eiskalter 0,15 M NaCl, 5 mM Hepes, pH-Wert 7,4, gewaschen. 1 ml Ringer-Lösung wurde zugegeben und unmittelbar anschließend wieder entfernt (Zeitpunkt Null) und durch 1 ml Ringer-Lösung ersetzt. Dieser Prozess wurde zu verschiedenen Zeitpunkten über eine Zeitspanne von 15 Minuten wiederholt. Die Menge an Radioaktivität in jeder Probe von 1 ml des Mediums wurde durch Flüssigszintillationszählung bestimmt. Nachdem die letzte Probe zum Zeitpunkt 15 Minuten entfernt war, wurde die restliche Radioaktivität, die in den Zellen verblieb, durch Lyse der Zellen in 0,2 N NaOH und Szintillationszählung bestimmt. Die Gesamtradioaktivität von allen Zeitpunkten und des Gesamtzelllysats wurde dann summiert, und der Efflux wurde als Prozentsatz der Gesamtradioaktivität, die in den Zellen zu jedem Zeitpunkt verblieb, ausgedrückt. Efflux-Untersuchungen wurden dann für jeden untersuchten Klon unter Verwendung von 10 um Forskolin, gelöst in Ringer-Efflux-Lösung, beginnend beim Zeitpunkt Null, wiederholt. Die relative Stimulierung durch Forskolin wurde dann durch Berechnung der Rate (ka) des Effluxes in Gegenwart von Forskolin berechnet und als ein Verhältnis relativ zur Rate des Effluxes in Abwesenheit von Forskolin ausgedrückt. Für IB3-Zellen, die den CF-Defekt zeigen, ist dieses Verhältnis 1,0 oder kleiner. Für Zellen, die mit CFTR-Vektoren komplementiert sind, ist dieses Verhältnis größer als 1,0.Chloride efflux assays: Chloride efflux assays were performed as described (Trapnell et al., 1991, J. Biol. Chem. 266: 10319-10323) for individual clones at passage 4 to 8. Briefly, cells were grown in 35 mm dishes and loaded with 3 uCi 36Cl- in bicarbonate-free balanced Ringer's salt solution for 2 to 9 hours. Initial experiments involving repeated assays with the same clone of cells showed no significant differences in efflux after different loading times, and a loading time of 2 hours was then chosen for subsequent experiments. After loading, cells were washed 2 to 3 times with ice-cold 0.15 M NaCl, 5 mM Hepes, pH 7.4. 1 ml of Ringer's solution was added and immediately removed (time zero) and replaced with 1 ml of Ringer's solution. This process was repeated at various time points over a 15-minute period. The amount of radioactivity in each 1 ml sample of medium was determined by liquid scintillation counting. After the last sample was removed at time 15 minutes, the residual radioactivity remaining in the cells was determined by lysing the cells in 0.2 N NaOH and scintillation counting. The total radioactivity from all time points and the total cell lysate was then summed and the efflux was expressed as a percentage of the total radioactivity remaining in the cells at each time point. Efflux assays were then repeated for each clone examined using 10 µm forskolin dissolved in Ringer's efflux solution starting at time zero. The relative stimulation by forskolin was then calculated by calculating the rate (ka) of efflux in the presence of forskolin and expressed as a ratio relative to the rate of efflux in the absence of forskolin. For IB3 cells displaying the CF defect, this ratio is 1.0 or less. For cells complemented with CFTR vectors, this ratio is greater than 1.0.

Packen von AAV2-CFTR-Vektoren: Das Packen von AAV2-Vektoren wurde bewirkt, indem zuerst 293-31-Zellen (gezüchtet bis zur Semikonfluenz in 100 mm-Schalen) mit Adenovirus Typ 5 (Ad5) (bei einer Multiziplität von 5 bis 10 infektiösen Einheiten/Zelle) infiziert und dann das Vektorplasmid pSA306 oder pSA464 (1 ug) und das Packungs-pAAV/Ad (5 ug) unter Anwendung des CaPO&sub4;-Transfektionsverfahrens cotransfiziert wurden (Tratschin et al., 1984, Mol. Cell. Biol. 4: 2072-2081). Medium wurde 2 Stunden vor der Transfektion ersetzt, und Ad5 wurde in das Medium 1 Stunde vor der Transfektion überimpft. Das Medium wurde 4 Stunden nach der Transfektion ausgetauscht. Zellen wurden für 3 bis 4 Tage gezüchtet und dann durch vorsichtiges Abkratzen ins Medium geerntet. Für die direkte Analyse der Packung wurden die Lysate 3-mal eingefroren und aufgetaut, Bruchstücke wurden durch Zentrifugation mit geringer Geschwindigkeit entfernt, und dann wurde auf 60ºC für 15 Minuten zur Inaktivierung von Adenovirus erwärmt. Für die Verwendung von Vektoren bei der Transduktion von IB3-Zellen wurden die abgekratzten Zellen durch Zentrifugation mit geringer Geschwindigkeit (4000 U/min) konzentriert und in 10 mM Tris-HCl-Puffer, pH-Wert: 8,0, resuspendiert. Zellen wurden durch 3-maliges Gefrieren und Auftauen lysiert, und das Virus wurde unter Anwendung der CsCl- Dichtegradienten-Ultrazentrifugation konzentriert und gereinigt (Carter et al., 1979, Virology 92: 449-462). Für Transduktionsassays herangezogene Fraktionen wurden dann gegen 1 · SSC 3-mal für 1 Stunde bei Raumtemperatur dialysiert und bei 60ºC für 15 Minuten wärmebehandelt, um mögliches restliches Adenovirus zu inaktivieren. Der Titer der Vektorzubereitung wurde durch DNA-Slot-Blot-Hybridisierung bestimmt (Samulski et al., 1989 J. Virol. 63: 3822-3828).Packaging of AAV2-CFTR vectors: Packaging of AAV2 vectors was accomplished by first infecting 293-31 cells (grown to semiconfluence in 100 mm dishes) with adenovirus type 5 (Ad5) (at a multiplicity of 5 to 10 infectious units/cell) and then cotransfecting the vector plasmid pSA306 or pSA464 (1 µg) and the packaging pAAV/Ad (5 µg) using the CaPO4 transfection procedure (Tratschin et al., 1984, Mol. Cell. Biol. 4: 2072-2081). Medium was replaced 2 hours before transfection and Ad5 was inoculated into the medium 1 hour before transfection. Medium was replaced 4 hours after transfection. Cells were cultured for 3 to 4 days and then harvested by gentle scraping into the medium. For direct analysis of the packet, lysates were frozen and thawed 3 times, debris was removed by low-speed centrifugation, and then warmed to 60ºC for 15 minutes to inactivate adenovirus. For use of vectors in transduction of IB3 cells, scraped cells were concentrated by low-speed centrifugation (4000 rpm) and resuspended in 10 mM Tris-HCl buffer, pH 8.0. Cells were lysed by freezing and thawing 3 times, and virus was concentrated and purified using CsCl density gradient ultracentrifugation (Carter et al., 1979, Virology 92: 449-462). Fractions used for transduction assays were then dialyzed against 1 x SSC three times for 1 hour at room temperature and heat treated at 60°C for 15 minutes to inactivate possible residual adenovirus. The titer of the vector preparation was determined by DNA slot blot hybridization (Samulski et al., 1989 J. Virol. 63: 3822-3828).

AAV2-Partikel-vermittelte Transduktion: Eine Viruspartikel-vermittelte neo-Transfektion von IB3-1-CF-Bronchialepithelzellen wurde durch Infektion von 10³ bis 4 · 10&sup4; Zellen in individuellen Vertiefungen einer Schale mit 24 Vertiefungen mit einer bekannten Anzahl von AAV-CFTR-Vektorpartikeln pro Zelle bewirkt. Die Zellen wurden für mehrere Wochen gezüchtet und auf Komplementierung des CF-Defekts untersucht.AAV2 particle-mediated transduction: Virus particle-mediated neo-transfection of IB3-1 CF bronchial epithelial cells was accomplished by infecting 103 to 4 x 104 cells in individual wells of a 24-well dish with a known number of AAV-CFTR vector particles per cell. Cells were grown for several weeks and assayed for complementation of the CF defect.

Expression eines Gens ausgehend von einem Promotor, der nur AAV-ITR umfasst: Im Verlauf der Konstruktion von Vektoren, die zur Expression von CTFR ausgehend vom AAV-p&sub5;-Promotor entwickelt wurden, haben wir zufällig ein solches Plasmidkonstrukt erzeugt, bei dem das Gen in der umgekehrten Richtung inseriert war. Man hätte nicht erwartet, dass dieses Vektorplasmid funktioniert, da es keinen bekannten Promotor in der richtigen Orientierung aufwies. Aufgrund eines glücklichen Zufalls in einem Laborversuch haben wir jedoch dieses Plasmidkonstrukt untersucht und entdeckt, dass es die Funktion der Expression des Gens erfüllt. Dies hat uns veranlasst, das Konstrukt sorgfältig zu untersuchen, und wir haben geschlossen, dass die ITR als ein Transkriptionspromotor wirken mag. Als Folge haben wir spezielle Versuche, die im einzelnen in dieser Anmeldung dargelegt sind, durchgeführt, die zeigen, dass die ITR als ein Transkriptionspromotor wirken kann.Expression of a gene from a promoter comprising only AAV ITR: In the course of constructing vectors designed to express CTFR from the AAV p5 promoter, we accidentally generated such a plasmid construct in which the gene was inserted in the reverse direction. This vector plasmid would not have been expected to function since it did not have a known promoter in the correct orientation. However, due to a fortunate coincidence in a laboratory experiment, we examined this plasmid construct and discovered that it fulfilled the function of expressing the gene. This prompted us to carefully examine the construct and we concluded that the ITR may act as a transcription promoter. As a result, we have carried out specific experiments, detailed in this application, which demonstrate that the ITR can act as a transcription promoter.

AAV-Vektoren brauchen also nur die ITR-Sequenzen und eine Poly-A-Stelle aufzuweisen, um ein Fremdgen zu exprimieren. Dies ist ein neuer und neuartiger Befund und widerspricht in der Tat der Erwartung auf der Basis bisheriger Lehren, worin allgemein übereinstimmende Ansicht herrschte, dass die ITRs von AAV nicht transkriptional aktiv sind (Walsh et al., 1992, PNAS (im Druck)). Wir zeigen hier, dass die AAV-ITR transkriptional aktiv in Assays der stabilen Integration ist, so dass eine funktionelle CFTR-cDNA exprimiert wird.AAV vectors therefore only need to have the ITR sequences and a poly-A site to express a foreign gene. This is a new and novel finding and indeed contradicts the expectation based on previous teachings, where there was a general consensus that the AAV ITRs are not transcriptionally active (Walsh et al., 1992, PNAS (in press)). We show here that the AAV ITR is transcriptionally active in stable integration assays such that a functional CFTR cDNA is expressed.

Konstruktion von AAV-CFTR-Vektoren: Fig. 1 zeigt die Struktur mehrerer AAV- CFTR-Vektoren, die entwickelt wurden, um CFTR entweder ausgehend vom AAVp&sub5;-Promotor, wie in pSA313, oder ausgehend von der AAV-ITR, wie in pSA313 oder pSA306, zu exprimieren. In pSA313 ist die CFTR-cDNA (kreuzschraffierte Region und Pfeilkopf) von 4500 Nucleotiden stromabwärts vom AAV-p5-Promotor, d. h. AAV-Nucleotiden 1 bis 263, auf der linken Seite inseriert. Es enthält die synthetische Poly-A-Stelle. In pSA315 wurde die CFTR-cDNA in entgegengesetzter Orientierung inseriert, so dass sie sich stromabwärts von der rechten AAV-ITR-Sequenz und der synthetischen Poly-A-Stelle befindet. In dieser Konfiguration wird das CFTR ausgehend von der rechten ITR exprimiert, und die Poly-A-Stelle kann translational durchgehend in der umgekehrten Richtung gelesen werden, wie vorstehend angemerkt. In pSA306 ist das Konstrukt exakt analog zu pSA313, mit der Ausnahme, dass 350 Nucleotide der aminoterminalen Region von CFTR-cDNA (Nucleotide 131 bis 486) deletiert worden sind. Dies führt zur Expression, ausgehend von der rechten ITR, eines Fusionsproteins, das aus einem N-terminal deletierten CFTR-Protein mit einer Fusionsregion am N-Terminus, die aus dem durchgehenden Ablesen der synthetischen Poly-A-Stelle in der umgekehrten Richtung, d. h. von rechts nach links in der Orientierung der Fig. 1, stammt, besteht.Construction of AAV-CFTR vectors: Figure 1 shows the structure of several AAV-CFTR vectors designed to express CFTR either from the AAVp5 promoter, as in pSA313, or from the AAV ITR, as in pSA313 or pSA306. In pSA313, the CFTR cDNA (cross-hatched region and arrowhead) is inserted from 4500 nucleotides downstream of the AAV p5 promoter, i.e., AAV nucleotides 1 to 263, on the left. It contains the synthetic poly-A site. In pSA315, the CFTR cDNA was inserted in the opposite orientation so that it is downstream of the right AAV ITR sequence and the synthetic poly-A site. In this configuration, CFTR is expressed from the right ITR and the poly-A site can be read translationally throughout in the reverse direction, as noted above. In pSA306, the construct is exactly analogous to pSA313, except that 350 nucleotides of the amino-terminal region of CFTR cDNA (nucleotides 131 to 486) have been deleted. This results in expression from the right ITR of a fusion protein consisting of an N-terminally deleted CFTR protein with a fusion region at the N-terminus derived from reading the synthetic poly-A site throughout in the reverse direction, i.e., right to left in the orientation of Figure 1.

Das Plasmid pSA464 ist eine Kontrolle, die von pSA306 durch Einführung einer Rahmenverschiebungsmutation an einer AfIII-Stelle bei Nucleotid 993, so dass kein funktionelles CFTR-Protein gebildet werden kann, abgeleitet ist. Dies ist durch einen vertikalen ausgeführten Balken bezeichnet.Plasmid pSA464 is a control derived from pSA306 by introducing a frameshift mutation at an AfIII site at nucleotide 993 so that no functional CFTR protein can be produced. This is indicated by a vertical outline bar.

Expression von CFTR und Komplementierung des CF-Defekts in stabilen Transfektanten von CF-Atemwegszellen: Um die Effizienz der AAV-CFTR-Vektoren für die Expression des CFTR-Gens zu untersuchen, wurden die in Fig. 1 gezeigten Plasmide jeweils unter Verwendung von kationischen Liposomen (Lipofectin-Reagenz, BRL, Gaithersburg, Md) in IB3-Zellen zusammen mit pAAVp&sub5;neo transfiziert. Kontrollzellen wurden mit pAAVp&sub5;neo allein transfiziert. Genr-Kolonien wurden von den ursprünglichen Platten entnommen und in stabile Kulturen expandiert und hinsichtlich funktioneller Expression des CFTR-Proteins charakterisiert. Alle diese Klone waren während wiederholter Passagen über mehrere Monate in Kultur stabil hinsichtlich der neo-Expression.Expression of CFTR and complementation of the CF defect in stable transfectants of CF airway cells: To examine the efficiency of the AAV-CFTR vectors for expression of the CFTR gene, the plasmids shown in Figure 1 were each transfected into IB3 cells together with pAAVp5neo using cationic liposomes (Lipofectin reagent, BRL, Gaithersburg, Md). Control cells were transfected with pAAVp5neo alone. Genr colonies were taken from the original plates and expanded into stable cultures and assayed for functional expression of the CFTR protein. All of these clones were stable with respect to neo expression during repeated passages over several months in culture.

Eine Expression von CFTR kann in funktionellen Assays in IB3-Zellen, die den zystischen Defekt aufweisen, nachgewiesen werden: Ein funktionelles CFTR-Protein sollte bei diesen Zellen eine Cl&supmin;-Leitfähigkeit wieder herstellen, die durch cAMP reguliert und damit durch Forskolin stimuliert wird (Drumm et al., 1990, Cell 62: 1227- 1233; Hwang et al., 1989, Science 244: 1351-1353; Li et al., 1988, Nature (London) 331: 358-360; Li et al., 1989, Science 244: 1353-1356; Rich et al., 1990, Nature (London) 347: 358-363). Beispiele für den Cl&supmin;-Efflux sind in Fig. 2 gezeigt, und eine Zusammenfassung der Geschwindigkeitskonstanten, die aus diesen Daten berechnet wurden, ist in Fig. 3 gezeigt. Sowohl Ausgangs-IB3-Zellen als auch der Kontroll- N6-Klon (transfiziert allein mit pAAVp&sub5;neo) zeigten eine relativ geringe Cl&supmin;-Effluxrate, die nicht auf Forskolin ansprach (Fig. 2). Im Gegensatz dazu zeigten eine Anzahl von Klonen der AAV-CFTR-Transfektanten, wie in Fig. 2 für die Klone C35 und C38 (beide abgeleitet aus der Transfektion mit pSA306) gezeigt ist, signifikant erhöhte Basisraten des Effluxes; in noch signifikanterer Weise zeigten sie den charakteristischen zusätzlichen Anstieg des Effluxes als Reaktion auf Forskolin. Der Efflux wurde in Abwesenheit ( ) oder Gegenwart ( )von 20 uM Forskolin gemessen.Expression of CFTR can be demonstrated in functional assays in IB3 cells that display the cystic defect: a functional CFTR protein should restore Cl- conductance in these cells, which is regulated by cAMP and thus stimulated by forskolin (Drumm et al., 1990, Cell 62: 1227-1233; Hwang et al., 1989, Science 244: 1351-1353; Li et al., 1988, Nature (London) 331: 358-360; Li et al., 1989, Science 244: 1353-1356; Rich et al., 1990, Nature (London) 347: 358-363). Examples of Cl- efflux are shown in Figure 2 and a summary of the rate constants calculated from these data is shown in Figure 3. Both parental IB3 cells and the control N6 clone (transfected with pAAVp5neo alone) showed a relatively low rate of Cl- efflux that was unresponsive to forskolin (Figure 2). In contrast, a number of clones of the AAV-CFTR transfectants, as shown in Figure 2 for clones C35 and C38 (both derived from transfection with pSA306), showed significantly increased basal rates of efflux; more significantly, they showed the characteristic additional increase in efflux in response to forskolin. Efflux was measured in the absence ( ) or presence ( ) of 20 µM forskolin.

Fig. 3 zeigt Cl&supmin;-Efflux-Assays in IB3-1-Zellen, komplementiert mit dem CFTR-Gen durch stabile Transfektion von AAV-CFTR-Vektoren. IB3-Zellen wurden mit pAAVp&sub5;neo und pSA313, pSA315, pSA306 oder pSA464 transfiziert. Geneticin-resistente Kolonien wurden selektiert und auf Ansprechen auf eine Forskolin-Stimulation in einem Cl&supmin;-Efflux-Assay analysiert. Das Verhältnis der Rate des Effluxes in Gegenwart von Forskolin zur Rate in Abwesenheit von Forskolin (ka (Forskolin)/ka (Ringer-Lösung)) ist aufgetragen. Für jeden Vektor bezeichnet n die Anzahl der einzelnen Klone, die eine Forskolin-Reaktion zeigten (schraffierte Balken) oder nicht zeigten (leere Balken). Für jede Gruppe von Klonen wurde das mittlere Verhältnis berechnet. Für die Ausgangs-IB3-1-Zellen oder den Zellklon, der mit pAAVp&sub5;neo allein transfiziert war, bezeichnet n die Anzahl der Messungen am gleichen Klon.Figure 3 shows Cl- efflux assays in IB3-1 cells complemented with the CFTR gene by stable transfection of AAV-CFTR vectors. IB3 cells were transfected with pAAVp5neo and pSA313, pSA315, pSA306 or pSA464. Geneticin-resistant colonies were selected and analyzed for response to forskolin stimulation in a Cl- efflux assay. The ratio of the rate of efflux in the presence of forskolin to the rate in the absence of forskolin (ka (forskolin)/ka (Ringer's solution)) is plotted. For each vector, n denotes the number of individual clones that showed (hatched bars) or did not show (open bars) a forskolin response. For each group of clones, the mean ratio was calculated. For the parent IB3-1 cells or the cell clone transfected with pAAVp5neo alone, n denotes the number of measurements on the same clone.

Fig. 3 zeigt, dass 28% (4/14) der pSA313-Transfektanten und 50% (6/12) der Transfektanten mit pSA315 oder pSA306 hinsichtlich des Defekts komplementiert waren. Dies zeigt, dass alle drei Vektorkonstrukte funktionell waren. Die erhöhte Anzahl an funktionellen Klonen mit pSA313 oder pSA306 mag zeigen, dass der ITR- Promotor in den Vektoren wirksamer als der p&sub5;-Promotor in pSA313 war. Keiner der mit dem Kontrollvektor pSA464 transfizierten Klone war komplementiert. Diese Ergebnisse zeigen zwei neue Befunde. Erstens funktioniert die AAV-ITR-Sequenz in wirksamer Weise auch als ein Promotor bei stabiler Integration in Zellen, die durch die Funktion von sowohl pSA313 als auch pSA306 gezeigt wird. Zweitens ist das verkürzte CFTR-Protein, das ausgehend von pSA306 exprimiert wird, auch funktionell hinsichtlich der Komplementierung des CFTR-Fehlers. In dem pSA306-Vektor exprimiert der größte offene Leserahmen ein Fusionsprotein durch durchgehendes Lesen des größten Teils der synthetischen Poly-A-Sequenz in umgekehrter Richtung.Fig. 3 shows that 28% (4/14) of the pSA313 transfectants and 50% (6/12) of the transfectants with pSA315 or pSA306 were complemented for the defect. This indicates that all three vector constructs were functional. The increased number of functional clones with pSA313 or pSA306 may indicate that the ITR promoter in the vectors was more efficient than the p5 promoter in pSA313. None of the clones transfected with the control vector pSA464 were complemented. These results demonstrate two novel findings. First, the AAV ITR sequence also functions efficiently as a promoter upon stable integration into cells, as demonstrated by the function of both pSA313 and pSA306. Second, the truncated CFTR protein expressed from pSA306 is also functional in complementing the CFTR defect. In the pSA306 vector, the largest open reading frame expresses a fusion protein by reading most of the synthetic poly-A sequence through in reverse.

Die Beobachtungen mit pSA306 sind besonders wichtig, da zuvor gelehrt wurde, dass die Region von CFTR, die in pSA306 deletiert ist, in der Tat essentiell für die CFTR-Funktion ist, wenn CFTR ausgehend von verschiedenen anderen Vektoren, wie Vaccinia, exprimiert wird (Andersen et al., 1991, Science 251: 679-682). Außerdem ist die Gesamtgröße des AAV-CFTR-Vektors in pSA306 äquivalent zur Größe von Wildtyp-AAV-DNA, und damit sollte dieser Vektor in AAV-Partikel zur Verwendung als Transduktionsvektor packbar sein. Wir haben das Packen des pSA306- Vektors in AAV-Partikel untersucht. Um das Packen des AAV-CFTR-Vektors pSA306 in AAV-Partikel zu untersuchen, wurden Adenovirus-infizierte 293-Zellen mit dem AAV-CFTR-Vektor (pSA306) in Gegenwart (+) oder Abwesenheit (-) des AAV- Packungsplasmids (pAAV/Ad) transfiziert. Lysate der Kulturen wurden 72 Stunden nach Transfektion hergestellt und verwendet, um frische Kulturen von Adenovirus-infizierten 293-Zellen in Abwesenheit (- Wildtyp) oder Gegenwart (+ Wildtyp) von zugegebenen Wildtyp-AAV-Partikeln (Multiplizität der Infektion = 3) zu infizieren. 40 Stunden nach der Infektion wurden Hirt-Lysate der Zellen hergestellt, und virale DNA wurde einer Elektrophorese in einem Agarosegel unterzogen, auf Nitrocellulose übertragen und mit einer CFTR-³²P-DNA-Sonde, die spezifisch für den SA306- Vektor (306) war, oder mit einer AAV-³²P-DNA-Sonde, die spezifisch für Wildtyp- AAV (AAV) war, hybridisiert. Die Replikation des SA306-Vektors wurde nur nachgewiesen in Lysaten, die in Gegenwart von pAAV/Ad gepackt worden waren und die anschließend in Gegenwart von zugegebenen Wildtyp-AAV-Partikeln infiziert worden waren. Dies zeigt, dass der AAV-CFTR-Vektor in transduzierende AAV-Partikel gepackt werden konnte.The observations with pSA306 are particularly important because it has been previously taught that the region of CFTR deleted in pSA306 is in fact essential for CFTR function when CFTR is expressed from various other vectors, such as vaccinia (Andersen et al., 1991, Science 251: 679-682). Furthermore, the overall size of the AAV-CFTR vector in pSA306 is equivalent to the size of wild-type AAV DNA, and thus this vector should be packageable into AAV particles for use as a transduction vector. We have investigated the packaging of the pSA306 vector into AAV particles. To study packaging of the AAV-CFTR vector pSA306 into AAV particles, adenovirus-infected 293 cells were transfected with the AAV-CFTR vector (pSA306) in the presence (+) or absence (-) of the AAV packaging plasmid (pAAV/Ad). Lysates of the cultures were prepared 72 hours after transfection and used to infect fresh cultures of adenovirus-infected 293 cells in the absence (- wild type) or presence (+ wild type) of added wild-type AAV particles (multiplicity of infection = 3). 40 hours post-infection, Hirt lysates of cells were prepared and viral DNA was electrophoresed in an agarose gel, transferred to nitrocellulose and hybridized with a CFTR-32P DNA probe specific for the SA306 vector (306) or with an AAV-32P DNA probe specific for wild-type AAV (AAV). Replication of the SA306 vector was only detected in lysates that had been packaged in the presence of pAAV/Ad and subsequently infected in the presence of added wild-type AAV particles, demonstrating that the AAV-CFTR vector could be packaged into transducing AAV particles.

Um die Funktionalität des transduzierenden SA306-AAV-CFTR-Vektors zu zeigen, wurden IB3-Zellkulturen mit Vektorpräparaten, die gepackten SA306 oder einen SA464-Kontrollvektor enthielten, bei einer Multiplizität von ungefähr 300 bis 400 Vektorpartikeln pro Zelle infiziert. Die Kulturen wurden mehrere Wochen in Kultur gezüchtet und auf funktionelle Expression von CFTR untersucht. Wie in Fig. 4 gezeigt ist, war die Kultur, die mit dem SA306-Vektor (A0-Zellen) infiziert war, funktionell komplementiert hinsichtlich des CF-Fehlers, wie durch das Ansprechen auf Forskolin gezeigt wird. Im Gegensatz dazu war die Kontrollkultur, die mit dem SA464-Kontrollvektor infiziert war (2F2-Zellen), nicht komplementiert, wie durch das Fehlen einer Reaktion auf Forskolin gezeigt wird.To demonstrate the functionality of the transducing SA306-AAV-CFTR vector, IB3 cell cultures were transfected with vector preparations containing packaged SA306 or a SA464 control vector were infected at a multiplicity of approximately 300 to 400 vector particles per cell. Cultures were grown in culture for several weeks and examined for functional expression of CFTR. As shown in Figure 4, the culture infected with the SA306 vector (A0 cells) was functionally complemented for the CF defect as demonstrated by the response to forskolin. In contrast, the control culture infected with the SA464 control vector (2F2 cells) was not complemented as demonstrated by the lack of response to forskolin.

Die in den Figg. 2, 3 und 4 gezeigten Ergebnisse wurden durch andere funktionelle Assays unter Einschluss des Immunfluoreszenznachweises des CFTR-Proteins und elektrophysiologischer Assays unter Anwendung von Patch-Clamp-Techniken bestätigt.The results shown in Figures 2, 3 and 4 were confirmed by other functional assays including immunofluorescence detection of CFTR protein and electrophysiological assays using patch clamp techniques.

Die vorstehend beschriebenen Ergebnisse zeigen die Komplementierung und die stabile Korrektur des CF-Defekts in Atemwegepithelzellen nach durch kationische Liposomen vermittelter Transfektion mit AAV-CFTR-Vektor oder nach Infektion der Zellen mit transduzierenden AAV-CFTR-Vektorpartikeln. Diese Ergebnisse zeigen die Brauchbarkeit der AAV-Vektoren und der Erfindung, wie sie mit AAV-Vektoren unter Verwendung einer ITR als Promotor und Einführen einer synthetischen Poly-A- Stelle mit besonderen Merkmalen verwirklicht wird.The results described above demonstrate complementation and stable correction of the CF defect in airway epithelial cells following cationic liposome-mediated transfection with AAV-CFTR vector or infection of the cells with AAV-CFTR vector transducing particles. These results demonstrate the utility of the AAV vectors and of the invention as implemented with AAV vectors using an ITR as a promoter and introducing a synthetic poly-A site with specific features.

Unsere Studien mit den AAV-CFTR-Vektoren wurden als eine anfängliche Stufe für die Bewertung der Möglichkeit der Verwendung eines AAV-Vektors für die Gentherapie durchgeführt. In dieser Hinsicht ist es wichtig, dass wir eine stabile Komplementierung des CF-Defekts in Zellen, die vom Bronchialepithel abgeleitet sind, gezeigt haben, da dies die Stelle der hauptsächlichen klinischen Manifestation der Erkrankung und mit größter Wahrscheinlichkeit die Stelle, auf die Gentherapievektoren gerichtet sein werde, ist. Die Komplementierungsversuche mit einem retroviralen Vektor (Drumm et al., 1990, Cell 62A: 1227-1233), über die berichtet wurde, wurden mit CFPAC-Zellen durchgeführt, wobei es sich um Pankreaszellen und nicht Atemwegszellen handelt.Our studies with the AAV-CFTR vectors were performed as an initial step in evaluating the feasibility of using an AAV vector for gene therapy. In this regard, it is important that we have demonstrated stable complementation of the CF defect in cells derived from the bronchial epithelium, since this is the site of the main clinical manifestation of the disease and most likely the site to which gene therapy vectors will be directed. The complementation experiments with a retroviral vector (Drumm et al., 1990, Cell 62A: 1227-1233) reported were performed with CFPAC cells, which are pancreatic cells and not airway cells.

Expression von CFTR in vivoExpression of CFTR in vivo

AAV-Vektoren, insbesondere diejenigen, die ein Gen ausgehend von der ITR exprimieren, können zur Behandlung von menschlichen Patienten in folgender allgemeiner Weise verwendet werden. Wenn der Vektor als transduzierende Partikel abgegeben werden soll, kann er zuerst in AAV-Partikel in der allgemeinen Weise, wie sie hier für den AAV-CFTR-Vektor SA306 beschrieben wurde, oder unter Verwendung eines beliebigen anderen geeigneten Packungssystems gepackt werden. Der transduzierende AAV-Vektor kann gereinigt werden, um jegliche Nebenprodukte oder toxischen Verbindungen durch Bandenbildung in CsCl oder nach einem beliebigen anderen geeigneten Verfahren zu entfernen und/oder zu inaktivieren. Für AAV-Vektoren, die ein funktionelles CFTR-Gen oder ein beliebiges anderes Gen zur Behandlung einer Lungenkrankheit exprimieren, kann der Vektor direkt in vivo an die Lunge entweder durch Intubation und Bronchoskopie oder durch einen Zerstäuber oder durch ein Nasenspray oder durch Inhalation einer geeigneten Formulierung von Nasentropfen verabreicht werden. Für diese oder andere Erkrankungen können die AAV-Vektorpartikel in vivo durch intravenöse oder enterische Verabreichung oder vielleicht subkutan verabreicht werden.AAV vectors, particularly those expressing a gene from the ITR, can be used to treat human patients in the following general manner. If the vector is to be delivered as transducing particles, it can first be packaged into AAV particles in the general manner described herein for the AAV-CFTR vector SA306 or using any other suitable packaging system. The transducing AAV vector can be purified to remove and/or inactivate any byproducts or toxic compounds by banding in CsCl or by any other suitable method. For AAV vectors expressing a functional CFTR gene or any other gene for treating a lung disease, the vector can be administered directly in vivo to the lungs either by intubation and bronchoscopy or by nebulizer or by nasal spray or by inhalation of a suitable formulation of nasal drops. For these or other diseases, the AAV vector particles can be administered in vivo by intravenous or enteric administration or perhaps subcutaneously.

Der Vektor kann auch in ex vivo-Gentherapieverfahren durch Entfernung von Zellen aus einem Patienten, anschließende Infektion mit den AAV-Vektorpartikeln und Rückführung der Zellen in den Patienten nach einer Zeitspanne der Erhaltung und/oder des Wachstums ex vivo verwendet werden.The vector can also be used in ex vivo gene therapy procedures by removing cells from a patient, subsequently infecting them with the AAV vector particles, and reintroducing the cells into the patient after a period of maintenance and/or growth ex vivo.

Die AAV-Vektoren können auch bei in vivo- oder ex vivo-Gentherapieverfahren in verschiedenen anderen Formulierungen verabreicht werden, in denen das Vektorplasmid als freie DNA entweder durch direkte Injektion oder nach Einfügen in andere Abgabesysteme, wie Liposomen, oder Systeme, die entwickelt wurden, um ihr Ziel durch Rezeptor-vermittelte oder andere endozytotische Verfahren zu erreichen, verabreicht werden. Der AAV-Vektor kann auch in ein Adenovirus, Retrovirus oder anderes Virus eingeführt werden, das dann als das Abgabevehikel verwendet werden kann.The AAV vectors can also be administered in in vivo or ex vivo gene therapy procedures in various other formulations in which the vector plasmid is administered as free DNA either by direct injection or after incorporation into other delivery systems such as liposomes or systems designed to reach their target by receptor-mediated or other endocytic methods. The AAV vector can also be introduced into an adenovirus, retrovirus or other virus which can then be used as the delivery vehicle.

Andere Vektoren unter Verwendung der Promotorregionsequenzen aus ITROther vectors using the promoter region sequences from ITR

Eine zusätzliche Anwendung des vorliegenden Befundes besteht in der Verwendung der Sequenzen der ITR, die für die Promotion verantwortlich sind, in anderen Vektoren. Die IRT-Region von AAV weist kein normales TATA-Motiv auf, das vielen eukaryontischen Promotoren gemeinsam ist, und es wurde nicht zuvor erkannt, dass sie innerhalb des Kontextes eines AAV-Genoms als ein Transkriptionspromotor wirkt. Es ist wahrscheinlich, dass im Kontext des AAV-Genoms diese ITR nicht als ein Promotor wirkt, vielleicht aufgrund der Wirkungen der anderen bekannten AAV-Promotoren stromabwärts davon. Nicht alle eukaryontischen Transkriptionspromotoren erfordern oder besitzen jedoch das TATA-Motiv. Nachdem wir gezeigt haben, dass die AAV-ITR als ein Promotor wirkt, haben wir die ITR-Sequenz auf Elemente untersucht, von denen wahrscheinlich ist, dass sie diese Funktion erklären.An additional application of the present finding is the use of the ITR sequences responsible for promotion in other vectors. The IRT region of AAV does not have a normal TATA motif common to many eukaryotic promoters, and has not previously been recognized to act as a transcriptional promoter within the context of an AAV genome. It is likely that in the context of the AAV genome, this ITR does not act as a promoter, perhaps due to the actions of the other known AAV promoters downstream of it. However, not all eukaryotic transcriptional promoters require or possess the TATA motif. Having shown that the AAV ITR acts as a promoter, we examined the ITR sequence for elements likely to explain this function.

Die Untersuchung der ITR-Sequenz zeigt zwei Motive, die mit Wahrscheinlichkeit wichtig bei deren Funktion als ein Promotor sind. Erstens gibt es in der Region zwischen AAV-Nucleotid 125 und 145 (üblicherweise bekannt als die AAV-d-Sequenz) die Sequenz 5'-AACTCCATCACT-3' [SEQ ID NO 1]. Diese Sequenz unterscheidet sich nur um eine Base von ähnlichen Sequenzen an der 5'-Startstelle der Promotoren für humanes terminales Desoxynucleotidyltransferasegen und für den Adenoviruspromotor für das hauptsächliche späte Gen und stimmt gut mit der Konsensus- Sequenz für ein Element überein, das als ein Inr (Initiator)-Element beschrieben wurde (S.T. Smale und D. Baltimore, 1989, Cell 57: 103-113; Smale et al., 1990, Proc. Natl. Acad. Sci. (USA) 87: 4509-4513). Eine zweite Reihe von GC-reichen Elementen ist in der ITR-Region zwischen den Nucleotiden 1 und 125 vorhanden, unter Einschluss der Elemente GGCCGCCCGGGC [SEQ ID NO 2] von Nucleotid 41 bis 50, AAAGCCCGGGCGTCGGGCGACC [SEQ ID NO 3] von Nucleotid 51 bis 73, GGTCGCCCGGCCTCA [SEQ ID NO 4] von Nucleotid 76 bis 90 und GAGCGGCGAGAG [SEQ ID NO 5] von Nucleotid 101 bis 112, die eine starke Homologie mit der Reihe von Konsensus-Stellen haben, von denen gezeigt wurde, dass sie Stellen für den üblichen Transkriptionsfaktor Sp1 sind (Pitluck und Ward, 1991, J. Virol. 65: 6661-6670). Schließlich ist nun bekannt, dass eine Inr-Sequenz in Gegenwart von Stellen für andere Faktoren, wie Sp1, als ein Transkriptionspromotor funktionieren kann (Smale und Baltimore, 1989; Smale et al., 1990).Examination of the ITR sequence reveals two motifs that are likely to be important in its function as a promoter. First, in the region between AAV nucleotides 125 and 145 (commonly known as the AAV-d sequence) there is the sequence 5'-AACTCCATCACT-3' [SEQ ID NO 1]. This sequence differs by only one base from similar sequences at the 5' start site of the promoters for the human terminal deoxynucleotidyl transferase gene and for the adenovirus major late gene promoter and agrees well with the consensus sequence for an element described as an Inr (initiator) element (S.T. Smale and D. Baltimore, 1989, Cell 57: 103-113; Smale et al., 1990, Proc. Natl. Acad. Sci. (USA) 87: 4509-4513). A second set of GC-rich elements is present in the ITR region between nucleotides 1 and 125, including the elements GGCCGCCCGGGC [SEQ ID NO 2] from nucleotide 41 to 50, AAAGCCCGGGCGTCGGGCGACC [SEQ ID NO 3] from nucleotide 51 to 73, GGTCGCCCGGCCTCA [SEQ ID NO 4] from nucleotide 76 to 90, and GAGCGGCGAGAG [SEQ ID NO 5] from nucleotide 101 to 112, which have strong homology to the set of consensus sites shown to be sites for the common transcription factor Sp1 (Pitluck and Ward, 1991, J. Virol. 65: 6661-6670). Finally, it is now known that an Inr sequence can function as a transcription promoter in the presence of sites for other factors, such as Sp1 (Smale and Baltimore, 1989; Smale et al., 1990).

Es ist wahrscheinlich, dass diese oder andere Regionen der ITR wichtig sein können, indem sie es erlauben, dass sie als ein Transkriptionspromotor funktioniert. Es ist nun unkompliziert und offensichtlich für andere, die auf diesem Gebiet erfahren sind, Standardmutagenesetechniken durchzuführen, um die ITR-Sequenz zu verändern, um genau die Kontrollelemente zu bestimmen und die Transkriptionsaktivität der ITR nach oben oder unten zu modulieren.It is likely that these or other regions of the ITR may be important in allowing it to function as a transcriptional promoter. It is now straightforward and obvious to others skilled in the field to perform standard mutagenesis techniques to alter the ITR sequence to precisely determine the control elements and modulate the transcriptional activity of the ITR up or down.

SequenzprotokollSequence protocol

(1) Allgemeine Angaben:(1. General information:

(i) Anmelder:(i) Applicant:

(A) Name: Vereinigte Staaten von Amerika, vertreten durch den Secretary, Department of Health(A) Name: United States of America, represented by the Secretary, Department of Health

(B) Straße: c/o National Institutes of Health(B) Street: c/o National Institutes of Health

(C) Stadt: Bethesda(C) City: Bethesda

(D) Staat: Maryland(D) State: Maryland

(E) Land: USA(E) Country: USA

(F) Postleitzahl: 20892(F) Postal code: 20892

(ii) Bezeichnung der Erfindung: Modifizierter Adenoassoziierter Virusvektor, imstande zur Expression ausgehend von einem neuen Promotor(ii) Title of the invention: Modified adeno-associated virus vector capable of expression from a new promoter

(iii) Anzahl der Sequenzen: 6(iii) Number of sequences: 6

(iv) Maschinenlesbare Form:(iv) Machine-readable form:

(A) Art des Mediums: Diskette(A) Type of media: diskette

(B) Computer: kompatibel zu IBM PC(B) Computer: compatible with IBM PC

(C) Betriebssystem: PC-DOS/MS-DOS(C) Operating system: PC-DOS/MS-DOS

(D) Software: PatentIn Release #1.0, Version #1.30 (EPO)(D) Software: PatentIn Release #1.0, Version #1.30 (EPO)

(v) Vorliegende Patentanmeldung:(v) The present patent application:

Anmeldungsnummer: EP 93916425.7Application number: EP 93916425.7

(2) Angaben zu SEQ ID NO: 1:(2) Information on SEQ ID NO: 1:

(i) Sequenzmerkmale:(i) Sequence features:

(A) Länge: 12 Basenpaare(A) Length: 12 base pairs

(B) Art: Nucleinsäure(B) Type: Nucleic acid

(C) Strangbeschaffenheit: einzeln(C) Strand texture: single

(D) Topologie: linear(D) Topology: linear

(ii) Molekülart: DNA (genomisch)(ii) Molecular type: DNA (genomic)

(xi) Sequenzbeschreibung: SEQ ID NO: 1:(xi) Sequence description: SEQ ID NO: 1:

AACTCCATCA CT 12AACTCCATCA CT 12

(2) Angaben zu SEQ ID NO: 2:(2) Information on SEQ ID NO: 2:

(i) Sequenzmerkmale:(i) Sequence features:

(A) Länge: 12 Basenpaare(A) Length: 12 base pairs

(B) Art: Nucleinsäure(B) Type: Nucleic acid

(C) Strangbeschaffenheit: einzeln(C) Strand texture: single

(D) Topologie: linear(D) Topology: linear

(ii) Molekülart: DNA (genomisch)(ii) Molecular type: DNA (genomic)

(xi) Sequenzbeschreibung: SEQ ID NO: 2:(xi) Sequence description: SEQ ID NO: 2:

GGCCGCCCGG GC 12GGCCGCCCGG GC 12

(2) Angaben zu SEQ ID NO: 3:(2) Information on SEQ ID NO: 3:

(i) Sequenzmerkmale:(i) Sequence features:

(A) Länge: 22 Basenpaare(A) Length: 22 base pairs

(B) Art: Nucleinsäure(B) Type: Nucleic acid

(C) Strangbeschaffenheit: einzeln(C) Strand texture: single

(D) Topologie: linear(D) Topology: linear

(ii) Molekülart: DNA (genomisch)(ii) Molecular type: DNA (genomic)

(xi) Sequenzbeschreibung: SEQ ID NO: 3:(xi) Sequence description: SEQ ID NO: 3:

AAAGCCCGGG CGTCGGGCGA CC 22AAAGCCCGGG CGTCGGGCGA CC 22

(2) Angaben zu SEQ ID NO: 4:(2) Information on SEQ ID NO: 4:

(i) Sequenzmerkmale:(i) Sequence features:

(A) Länge: 15 Basenpaare(A) Length: 15 base pairs

(B) Art: Nucleinsäure(B) Type: Nucleic acid

(C) Strangbeschaffenheit: einzeln(C) Strand texture: single

(D) Topologie: linear(D) Topology: linear

(ii) Molekülart: DNA (genomisch)(ii) Molecular type: DNA (genomic)

(xi) Sequenzbeschreibung: SEQ ID NO: 4:(xi) Sequence description: SEQ ID NO: 4:

GGTCGCCCGG CCTCA 15GGTCGCCCGG CCTCA 15

(2) Angaben zu SEQ ID NO: 5:(2) Information on SEQ ID NO: 5:

(i) Sequenzmerkmale:(i) Sequence features:

(A) Länge: 12 Basenpaare(A) Length: 12 base pairs

(B) Art: Nucleinsäure(B) Type: Nucleic acid

(C) Strangbeschaffenheit: einzeln(C) Strand texture: single

(D) Topologie: linear(D) Topology: linear

(ii) Molekülart: DNA (genomisch)(ii) Molecular type: DNA (genomic)

(xi) Sequenzbeschreibung: SEQ ID NO: 5:(xi) Sequence description: SEQ ID NO: 5:

GAGCGGCGAG AG 12GAGCGGCGAG AG 12

(2) Angaben zu SEQ ID NO: 6:(2) Information on SEQ ID NO: 6:

(i) Sequenzmerkmale:(i) Sequence features:

(A) Länge: 58 Basenpaare(A) Length: 58 base pairs

(B) Art: Nucleinsäure(B) Type: Nucleic acid

(C) Strangbeschaffenheit: doppelt(C) Strand texture: double

(D) Topologie: linear(D) Topology: linear

(ii) Molekülart: DNA (genomisch)(ii) Molecular type: DNA (genomic)

(xi) Sequenzbeschreibung: SEQ ID NO: 6: (xi) Sequence description: SEQ ID NO: 6:

Claims (10)

1. Funktionelles cystische Fibrose-Transmembran-Übertragungsregulatorprotein mit einer Deletion beliebiger der oder aller aminoterminalen 118 Aminosäuren.1. Functional cystic fibrosis transmembrane trafficking regulator protein with a deletion of any or all of the amino-terminal 118 amino acids. 2. Protein nach Anspruch 1, wobei die Deletion die Aminosäuren 1 bis 118 betrifft.2. Protein according to claim 1, wherein the deletion affects amino acids 1 to 118. 3. Polynucleotid umfassend die invertierten terminalen Wiederholungssequenzen (ITR-Sequenzen) von Adeno-assoziiertem Virus und eine heterologe Nucleinsäure codierend das Protein nach Anspruch 1 oder Anspruch 2, wobei die ITR-Sequenzen die Transcription der Nucleinsäure fördern.3. A polynucleotide comprising the inverted terminal repeat sequences (ITR sequences) of adeno-associated virus and a heterologous nucleic acid encoding the protein of claim 1 or claim 2, wherein the ITR sequences promote transcription of the nucleic acid. 4. Polynucleotid nach Anspruch 3, auch umfassend eine polyA-Stelle mit der Nucleotidsequenz: 4. Polynucleotide according to claim 3, also comprising a polyA site having the nucleotide sequence: 5. Vektor umfassend das Polynucleotid nach Anspruch 3 oder Anspruch 4.5. A vector comprising the polynucleotide of claim 3 or claim 4. 6. Vektor nach Anspruch 5, wobei es sich um einen Adeno-assoziierten Virusvektor handelt.6. Vector according to claim 5, which is an adeno-associated virus vector. 7. Wirtszelle enthaltend den Vektor nach Anspruch 5 oder Anspruch 6.7. A host cell containing the vector according to claim 5 or claim 6. 8. Wirtszelle nach Anspruch 7, wobei es sich um eine epitheliale Zelle handelt.8. The host cell of claim 7, which is an epithelial cell. 9. Zusammensetzung enthaltend den Vektor nach Anspruch 5 oder Anspruch 6 und einen pharmazeutisch verträglichen Träger.9. A composition comprising the vector according to claim 5 or claim 6 and a pharmaceutically acceptable carrier. 10. Verwendung des Vektors nach Anspruch 5 oder Anspruch 6 für die Herstellung eines Arzneimittels für die Verwendung bei der Behandlung von cystischer Fibrose in einem Individuum.10. Use of the vector of claim 5 or claim 6 for the manufacture of a medicament for use in the treatment of cystic fibrosis in an individual.
DE69331194T 1992-06-02 1993-06-02 ADENO ASSOCIATED VIRUS WITH REVERSE TERMINAL REPEAT SEQUENCES AS A PROMOTOR FOR THE TRANSFER OF A FUNCTIONAL CFTR GENE IN VIVO Expired - Lifetime DE69331194T2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/891,962 US5587308A (en) 1992-06-02 1992-06-02 Modified adeno-associated virus vector capable of expression from a novel promoter
PCT/US1993/005310 WO1993024641A2 (en) 1992-06-02 1993-06-02 Adeno-associated virus with inverted terminal repeat sequences as promoter

Publications (2)

Publication Number Publication Date
DE69331194D1 DE69331194D1 (en) 2002-01-03
DE69331194T2 true DE69331194T2 (en) 2002-07-25

Family

ID=25399130

Family Applications (2)

Application Number Title Priority Date Filing Date
DE69331194T Expired - Lifetime DE69331194T2 (en) 1992-06-02 1993-06-02 ADENO ASSOCIATED VIRUS WITH REVERSE TERMINAL REPEAT SEQUENCES AS A PROMOTOR FOR THE TRANSFER OF A FUNCTIONAL CFTR GENE IN VIVO
DE69334343T Expired - Lifetime DE69334343D1 (en) 1992-06-02 1993-06-02 Adeno-associated virus with inverted terminals Repeats as promoter

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE69334343T Expired - Lifetime DE69334343D1 (en) 1992-06-02 1993-06-02 Adeno-associated virus with inverted terminals Repeats as promoter

Country Status (11)

Country Link
US (5) US5587308A (en)
EP (2) EP1164195B1 (en)
AT (2) ATE483817T1 (en)
AU (1) AU673367B2 (en)
CA (1) CA2136441C (en)
DE (2) DE69331194T2 (en)
DK (1) DK0644944T3 (en)
ES (1) ES2168096T3 (en)
HK (1) HK1014549A1 (en)
PT (1) PT644944E (en)
WO (1) WO1993024641A2 (en)

Families Citing this family (488)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587308A (en) * 1992-06-02 1996-12-24 The United States Of America As Represented By The Department Of Health & Human Services Modified adeno-associated virus vector capable of expression from a novel promoter
US5869305A (en) * 1992-12-04 1999-02-09 The University Of Pittsburgh Recombinant viral vector system
US6686200B1 (en) * 1993-08-31 2004-02-03 Uab Research Foundation Methods and compositions for the large scale production of recombinant adeno-associated virus
US6652850B1 (en) * 1993-09-13 2003-11-25 Aventis Pharmaceuticals Inc. Adeno-associated viral liposomes and their use in transfecting dendritic cells to stimulate specific immunity
US5834441A (en) * 1993-09-13 1998-11-10 Rhone-Poulenc Rorer Pharmaceuticals Inc. Adeno-associated viral (AAV) liposomes and methods related thereto
FR2716459B1 (en) * 1994-02-22 1996-05-10 Univ Paris Curie Host-vector system usable in gene therapy.
FR2716893B1 (en) * 1994-03-03 1996-04-12 Rhone Poulenc Rorer Sa Recombinant viruses, their preparation and their therapeutic use.
DE69535703T2 (en) * 1994-04-13 2009-02-19 The Rockefeller University AAV-mediated delivery of DNA to cells of the nervous system
US5658785A (en) * 1994-06-06 1997-08-19 Children's Hospital, Inc. Adeno-associated virus materials and methods
US20020159979A1 (en) 1994-06-06 2002-10-31 Children's Hospital, Inc. Adeno-associated virus materials and methods
US5856152A (en) * 1994-10-28 1999-01-05 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV vector and methods of use therefor
US6342390B1 (en) * 1994-11-23 2002-01-29 The United States Of America As Represented By The Secretary Of Health And Human Services Lipid vesicles containing adeno-associated virus rep protein for transgene integration and gene therapy
US6924128B2 (en) * 1994-12-06 2005-08-02 Targeted Genetics Corporation Packaging cell lines for generation of high titers of recombinant AAV vectors
US6383814B1 (en) * 1994-12-09 2002-05-07 Genzyme Corporation Cationic amphiphiles for intracellular delivery of therapeutic molecules
US6281010B1 (en) 1995-06-05 2001-08-28 The Trustees Of The University Of Pennsylvania Adenovirus gene therapy vehicle and cell line
US5756283A (en) * 1995-06-05 1998-05-26 The Trustees Of The University Of Pennsylvania Method for improved production of recombinant adeno-associated viruses for gene therapy
US6110456A (en) * 1995-06-07 2000-08-29 Yale University Oral delivery or adeno-associated viral vectors
US6187757B1 (en) 1995-06-07 2001-02-13 Ariad Pharmaceuticals, Inc. Regulation of biological events using novel compounds
US5646034A (en) * 1995-06-07 1997-07-08 Mamounas; Michael Increasing rAAV titer
CA2227065A1 (en) * 1995-07-21 1997-02-06 Rhone-Poulenc Rorer Pharmaceuticals Inc. Adeno-associated viral liposomes and their use in transfecting dendritic cells to stimulate specific immunity
US6207457B1 (en) * 1995-09-08 2001-03-27 Avigen, Inc. Targeted nucleotide sequence delivery and integration system
US6086913A (en) * 1995-11-01 2000-07-11 University Of British Columbia Liposomal delivery of AAV vectors
CA2279675A1 (en) * 1995-12-15 1997-06-16 Enzo Therapeutics, Inc. Property effecting and/or property exhibiting constructs for localizing a nucleic acid construct within a cell for therapeutic and diagnostic uses
US5858351A (en) 1996-01-18 1999-01-12 Avigen, Inc. Methods for delivering DNA to muscle cells using recombinant adeno-associated virus vectors
DE19608753C1 (en) * 1996-03-06 1997-06-26 Medigene Gmbh Transduction system based on rep-negative adeno-associated virus vector
US6245735B1 (en) 1996-07-29 2001-06-12 The Brigham And Women's Hospital, Inc. Methods and products for treating pseudomonas infection
US5866552A (en) * 1996-09-06 1999-02-02 The Trustees Of The University Of Pennsylvania Method for expressing a gene in the absence of an immune response
WO1998011244A2 (en) 1996-09-11 1998-03-19 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Aav4 vector and uses thereof
DE69840439D1 (en) 1997-04-24 2009-02-26 Univ Washington TARGETED GENERIC CHANGE WITH PARVOVIRAL VECTORS
US6156303A (en) * 1997-06-11 2000-12-05 University Of Washington Adeno-associated virus (AAV) isolates and AAV vectors derived therefrom
US6251677B1 (en) 1997-08-25 2001-06-26 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
US6995006B2 (en) 1997-09-05 2006-02-07 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
WO1999020773A2 (en) * 1997-10-21 1999-04-29 Targeted Genetics Corporation TRANSCRIPTIONALLY-ACTIVATED AAV INVERTED TERMINAL REPEATS (ITRs) FOR USE WITH RECOMBINANT AAV VECTORS
US6642051B1 (en) * 1997-10-21 2003-11-04 Targeted Genetics Corporation Amplifiable adeno-associated virus(AAV) packaging cassettes for the production of recombinant AAV vectors
US6346415B1 (en) 1997-10-21 2002-02-12 Targeted Genetics Corporation Transcriptionally-activated AAV inverted terminal repeats (ITRS) for use with recombinant AAV vectors
CA2316414A1 (en) * 1997-12-23 1999-07-01 Introgene B.V. Adeno-associated virus and adenovirus chimeric recombinant viruses useful for the integration of foreign genetic information into the chromosomal dna of target cells
US6984635B1 (en) 1998-02-13 2006-01-10 Board Of Trustees Of The Leland Stanford Jr. University Dimerizing agents, their production and use
US6294379B1 (en) * 1998-02-25 2001-09-25 The Regents Of The University Of California Efficient AAV vectors
JP2002509716A (en) 1998-03-31 2002-04-02 ユニバーシティ テクノロジー コーポレイション Methods and compositions for raising an immune response to a telomerase antigen
DE69918090T2 (en) 1998-04-24 2005-06-16 University Of Florida, Gainesville RECOMBINANT ADENO ASSOCIATED VIRAL VECTOR CODING ALPHA-1 ANTITRYPSIN FOR GENE THERAPY
AU754434B2 (en) 1998-05-06 2002-11-14 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Novel inhibitors of NF-kappaB activation
WO1999061643A1 (en) * 1998-05-27 1999-12-02 University Of Florida Method of preparing recombinant adeno-associated virus compositions by using an iodixananol gradient
EP1082413B1 (en) * 1998-05-28 2008-07-23 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Aav5 vector and uses thereof
US6984517B1 (en) 1998-05-28 2006-01-10 The United States Of America As Represented By The Department Of Health And Human Services AAV5 vector and uses thereof
US6221349B1 (en) 1998-10-20 2001-04-24 Avigen, Inc. Adeno-associated vectors for expression of factor VIII by target cells
US6200560B1 (en) * 1998-10-20 2001-03-13 Avigen, Inc. Adeno-associated virus vectors for expression of factor VIII by target cells
US6395549B1 (en) 1998-10-22 2002-05-28 Medical College Of Georgia Research Institute, Inc. Long terminal repeat, enhancer, and insulator sequences for use in recombinant vectors
US7129043B1 (en) * 1998-10-22 2006-10-31 Duke University Methods of screening for risk of proliferative disease and methods for the treatment of proliferative disease
US6468793B1 (en) 1998-10-23 2002-10-22 Florida State University Research Foundation CFTR genes and proteins for cystic fibrosis gene therapy
US6759237B1 (en) 1998-11-05 2004-07-06 The Trustees Of The University Of Pennsylvania Adeno-associated virus serotype 1 nucleic acid sequences, vectors and host cells containing same
ES2340230T3 (en) 1998-11-10 2010-05-31 University Of North Carolina At Chapel Hill VIRIC VECTORS AND THEIR PREPARATION AND ADMINISTRATION PROCEDURES.
US6387368B1 (en) 1999-02-08 2002-05-14 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
US6893865B1 (en) 1999-04-28 2005-05-17 Targeted Genetics Corporation Methods, compositions, and cells for encapsidating recombinant vectors in AAV particles
US6537540B1 (en) * 1999-05-28 2003-03-25 Targeted Genetics Corporation Methods and composition for lowering the level of tumor necrosis factor (TNF) in TNF-associated disorders
AU5771500A (en) 1999-06-28 2001-01-31 Oklahoma Medical Research Foundation Catalytically active recombinant memapsin and methods of use thereof
ATE403715T1 (en) * 1999-08-09 2008-08-15 Targeted Genetics Corp INCREASE THE EXPRESSION OF A SINGLE STRANDED, HETEROLOGUE NUCLEOTIDE SEQUENCE FROM A RECOMBINANT VIRAL VECTOR BY DESIGNING THE SEQUENCE IN A WAY THAT CREATE BASE PAIRINGS WITHIN THE SEQUENCE
CA2387484A1 (en) * 1999-10-12 2001-04-19 Haim Burstein Adeno-associated virus vectors encoding factor viii and methods of using the same
US7060497B2 (en) 2000-03-03 2006-06-13 The Board Of Trustees Of The Leland Stanford Junior University Adeno-associated viral vector-based methods and compositions for introducing an expression cassette into a cell
AU5077401A (en) 2000-02-08 2001-08-20 Sangamo Biosciences Inc Cells for drug discovery
WO2001071018A2 (en) * 2000-03-22 2001-09-27 Board Of Trustees Of The University Of Arkansas Secreting products from skin by adeno-associated virus (aav) gene transfer
US6855314B1 (en) 2000-03-22 2005-02-15 The United States Of America As Represented By The Department Of Health And Human Services AAV5 vector for transducing brain cells and lung cells
US7271150B2 (en) 2001-05-14 2007-09-18 United States Of America, Represented By The Secretary, Department Of Health And Human Services Modified growth hormone
AU2002303832A1 (en) 2001-05-21 2002-12-03 Beth Israel Deaconess Medical Center, Inc. P.aeruginosa mucoid exopolysaccharide specific binding peptides
US7119172B2 (en) 2001-05-21 2006-10-10 The Brigham And Women's Hospital, Inc. P. aeruginosa mucoid exopolysaccharide specific binding peptides
US8216585B2 (en) * 2001-05-25 2012-07-10 The Trustees Of The University Of Pennsylvania Targeted particles and methods of using the same
CA2447249A1 (en) 2001-06-22 2003-01-03 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Abin-mediated hepatitis protection
WO2003027247A2 (en) 2001-09-24 2003-04-03 Sangamo Biosciences, Inc. Modulation of stem cells using zinc finger proteins
AU2003205615B2 (en) 2002-01-10 2008-09-25 Universiteit Gent A novel splice variant of MyD88 and uses thereof
JP2006501169A (en) 2002-03-15 2006-01-12 デパートメント・オヴ・ヴェテランズ・アフェアズ,リハビリテイション・アール・アンド・ディー・サーヴィス Methods and compositions for targeting cells to tissues and organs using cellular asialo determinants and glycoconjugates
US6825263B2 (en) * 2002-04-08 2004-11-30 Dow Corning Corporation Curable coating compositions from emulsions of elastomeric polymers and polyurethane dispersions
AU2003222820A1 (en) 2002-04-18 2003-10-27 Acuity Pharmaceuticals, Inc. Means and methods for the specific modulation of target genes in the cns and the eye and methods for their identification
US7419817B2 (en) 2002-05-17 2008-09-02 The United States Of America As Represented By The Secretary Department Of Health And Human Services, Nih. Scalable purification of AAV2, AAV4 or AAV5 using ion-exchange chromatography
US7148342B2 (en) 2002-07-24 2006-12-12 The Trustees Of The University Of Pennyslvania Compositions and methods for sirna inhibition of angiogenesis
AU2003291678B2 (en) 2002-11-01 2009-01-15 The Trustees Of The University Of Pennsylvania Compositions and methods for siRNA inhibition of HIF-1 alpha
AU2003291433B2 (en) 2002-11-13 2008-05-22 Thomas Jefferson University Compositions and methods for cancer diagnosis and therapy
US20040225077A1 (en) 2002-12-30 2004-11-11 Angiotech International Ag Drug delivery from rapid gelling polymer composition
ATE477337T1 (en) 2003-01-16 2010-08-15 Univ Pennsylvania COMPOSITIONS AND METHODS FOR SIRNA INHIBITION OF ICAM-1
WO2005017101A2 (en) 2003-05-19 2005-02-24 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH & HUMAN SERVICES, NATIONAL INSTITUTES OF HEALTH Avian adenoassociated virus (aaav) and uses thereof
US7888121B2 (en) 2003-08-08 2011-02-15 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
DK2927318T3 (en) 2003-08-08 2020-08-03 Sangamo Therapeutics Inc Method and compositions for targeted cleavage and recombination
US7407776B2 (en) 2003-09-19 2008-08-05 Sangamo Biosciences, Inc. Engineered zinc finger proteins for regulation of gene expression
US8137960B2 (en) 2003-12-04 2012-03-20 The United States Of America As Represented By The Department Of Health And Human Services Bovine adeno-associated viral (BAAV) vector and uses thereof
EP2295604B1 (en) 2004-02-09 2015-04-08 Thomas Jefferson University Diagnosis and treatment of cancers with microRNA located in or near cancer-associated chromosomal features
EP1735009A4 (en) 2004-03-12 2011-03-30 Alnylam Pharmaceuticals Inc iRNA AGENTS TARGETING VEGF
BRPI0508862A (en) * 2004-03-15 2007-09-04 Biogen Idec Inc methods and constructs for expressing polypeptide multimers in eukaryotic cells using alternative splicing
ES2527528T3 (en) 2004-04-08 2015-01-26 Sangamo Biosciences, Inc. Methods and compositions to modulate cardiac contractility
WO2006036465A2 (en) * 2004-09-03 2006-04-06 University Of Florida Compositions and methods for treating cystic fibrosis
AU2005287278B2 (en) 2004-09-16 2011-08-04 Sangamo Biosciences, Inc. Compositions and methods for protein production
NZ555830A (en) * 2004-12-15 2009-01-31 Univ North Carolina Chimeric vectors
JP4988606B2 (en) 2005-02-28 2012-08-01 サンガモ バイオサイエンシズ インコーポレイテッド Anti-angiogenic methods and compositions
EP1888132B1 (en) 2005-04-22 2015-08-12 Evonik Degussa GmbH Superabsorber post-reticulated on the surface and treated with a water soluble aluminium salt and zinc oxide
WO2006119432A2 (en) 2005-04-29 2006-11-09 The Government Of The U.S.A., As Rep. By The Sec., Dept. Of Health & Human Services Isolation, cloning and characterization of new adeno-associated virus (aav) serotypes
CN101273141B (en) 2005-07-26 2013-03-27 桑格摩生物科学股份有限公司 Targeted integration and expression of exogenous nucleic acid sequences
EP1937280B1 (en) 2005-09-12 2014-08-27 The Ohio State University Research Foundation Compositions for the therapy of bcl2-associated cancers
CA2634286A1 (en) 2005-12-22 2007-08-09 Samuel Jotham Reich Compositions and methods for regulating complement system
US8669418B2 (en) 2005-12-22 2014-03-11 Vib Vzw Means and methods for mediating protein interference
PL1962883T3 (en) 2005-12-22 2013-02-28 Vib Vzw Means and methods for mediating protein interference
ES2545118T3 (en) 2006-01-05 2015-09-08 The Ohio State University Research Foundation MicroRNA based methods and compositions for the diagnosis and treatment of solid cancers
ES2524018T3 (en) 2006-01-05 2014-12-03 The Ohio State University Research Foundation Abnormalities of microRNA expression in endocrine and acinar pancreatic tumors
CN101400361B (en) 2006-01-05 2012-10-17 俄亥俄州立大学研究基金会 MicroRNA-based methods and compositions for diagnosis, prognosis and treatment of lung cancer
EP2522749A1 (en) 2006-03-02 2012-11-14 The Ohio State University MicroRNA expression profile associated with pancreatic cancer
CN101448958A (en) 2006-03-20 2009-06-03 俄亥俄州立大学研究基金会 MicroRNA fingerprints during human megakaryocytopoiesis
KR101462874B1 (en) 2006-03-31 2014-11-18 알닐람 파마슈티칼스 인코포레이티드 DsRNA for inhibiting expression of Eg5 gene
JP4812874B2 (en) 2006-04-28 2011-11-09 アルナイラム ファーマシューティカルズ, インコーポレイテッド Composition and method for suppressing expression of JC virus gene
EP2584048B1 (en) 2006-05-11 2014-07-23 Alnylam Pharmaceuticals Inc. Compositions and methods for inhibiting expression of the PCSK9 gene
CA2652770A1 (en) 2006-05-19 2007-11-29 Alnylam Pharmaceuticals, Inc. Rnai modulation of aha and therapeutic uses thereof
EP2192200B1 (en) 2006-05-22 2012-10-24 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of IKK-B gene
DE602007005634D1 (en) 2006-05-25 2010-05-12 Sangamo Biosciences Inc VARIANT FOKI CREVICE HOLLAND DOMAINS
US8598333B2 (en) 2006-05-26 2013-12-03 Alnylam Pharmaceuticals, Inc. SiRNA silencing of genes expressed in cancer
JP2009540011A (en) 2006-06-12 2009-11-19 エクセジェニックス、インク.ディー/ビー/エー オプコ ヘルス、インク. Compositions and methods for siRNA inhibition of angiogenesis
EP2436783B1 (en) 2006-07-13 2013-09-11 The Ohio State University Research Foundation MIR-103-2 for diagnosing poor survival prognosis colon adenocarcinoma.
AU2007277392A1 (en) * 2006-07-25 2008-01-31 Celladon Corporation Extended antegrade epicardial coronary infusion of adeno-associated viral vectors for gene therapy
US7872118B2 (en) 2006-09-08 2011-01-18 Opko Ophthalmics, Llc siRNA and methods of manufacture
CA2663581C (en) 2006-09-21 2016-03-01 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the hamp gene
EP2126141A4 (en) 2007-03-15 2010-08-11 Univ Cleveland Hospitals SCREENING, DIAGNOSIS, TREATMENT AND PROGNOSIS OF PATHOPHYSIOLOGICAL CONDITIONS BY RNA REGULATION
CN101678082B (en) 2007-03-26 2013-06-19 再生医药有限公司 Methods of promoting bone marrow protection and regeneration using CXCL9 and anti-CXCL9 antibodies
PE20090064A1 (en) 2007-03-26 2009-03-02 Novartis Ag DOUBLE-CHAIN RIBONUCLEIC ACID TO INHIBIT THE EXPRESSION OF THE HUMAN E6AP GENE AND THE PHARMACEUTICAL COMPOSITION THAT INCLUDES IT
EP2905336A1 (en) 2007-03-29 2015-08-12 Alnylam Pharmaceuticals Inc. Compositions and methods for inhibiting expression of a gene from the ebola
CA2692503C (en) 2007-07-05 2013-09-24 Novartis Ag Dsrna for treating viral infection
US7919313B2 (en) 2007-07-12 2011-04-05 Sangamo Biosciences, Inc. Methods and compositions for inactivating alpha 1,6 fucosyltransferase (FUT8) gene expression
WO2009012263A2 (en) 2007-07-18 2009-01-22 The Trustees Of Columbia University In The City Of New York Tissue-specific micrornas and compositions and uses thereof
CN101809169B (en) 2007-07-31 2013-07-17 俄亥俄州立大学研究基金会 Methods for reverting methylation by targeting DNMT3A and DNMT3B
EP2657353B1 (en) 2007-08-03 2017-04-12 The Ohio State University Research Foundation Ultraconserved regions encoding ncRNAs
CA2696887C (en) 2007-08-22 2016-06-28 The Ohio State University Research Foundation Methods and compositions for inducing deregulation of epha7 and erk phosphorylation in human acute leukemias
CA2698771A1 (en) 2007-09-06 2009-03-12 The Ohio State University Research Foundation Microrna signatures in human ovarian cancer
US8563314B2 (en) 2007-09-27 2013-10-22 Sangamo Biosciences, Inc. Methods and compositions for modulating PD1
AU2008310704B2 (en) 2007-10-11 2014-03-20 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Methods and compositions for the diagnosis and treatment of esphageal adenocarcinomas
EP2385065A1 (en) 2007-11-01 2011-11-09 Perseid Therapeutics LLC Immunosuppressive polypeptides and nucleic acids
WO2009076400A2 (en) 2007-12-10 2009-06-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of factor vii gene
WO2009105135A1 (en) 2008-02-19 2009-08-27 Celladon Corporation Compositions for enhanced uptake of viral vectors in the myocardium
EP2265276A2 (en) 2008-03-05 2010-12-29 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of eg5 and vegf genes
EP2294191B1 (en) 2008-06-10 2016-09-28 Sangamo BioSciences, Inc. Methods and compositions for generation of bax- and bak-deficient cell lines
CA2734235C (en) 2008-08-22 2019-03-26 Sangamo Biosciences, Inc. Methods and compositions for targeted single-stranded cleavage and targeted integration
EP3208337A1 (en) 2008-09-02 2017-08-23 Alnylam Pharmaceuticals, Inc. Compositions for combined inhibition of mutant egfr and il-6 expression
ES2740129T3 (en) 2008-09-25 2020-02-05 Alnylam Pharmaceuticals Inc Compositions formulated in lipids and methods of inhibiting the expression of the amyloid serum A gene
PT2344639E (en) 2008-10-20 2015-09-07 Alnylam Pharmaceuticals Inc Compositions and methods for inhibiting expression of transthyretin
BRPI0922122A2 (en) 2008-11-30 2017-08-01 Immusant Inc compositions and methods for treating celiac disease.
CA2745832A1 (en) 2008-12-04 2010-06-10 Opko Ophthalmics, Llc Compositions and methods for selective inhibition of pro-angiogenic vegf isoforms
US8324368B2 (en) 2008-12-10 2012-12-04 Alnylam Pharmaceuticals, Inc. GNAQ targeted dsRNA compositions and methods for inhibiting expression
CA2749965C (en) 2009-02-04 2018-09-11 Sangamo Biosciences, Inc. Methods and compositions for treating neuropathies
EP2396343B1 (en) 2009-02-11 2017-05-17 The University of North Carolina At Chapel Hill Modified virus vectors and methods of making and using the same
US20120041051A1 (en) 2009-02-26 2012-02-16 Kevin Fitzgerald Compositions And Methods For Inhibiting Expression Of MIG-12 Gene
JP6032724B2 (en) 2009-03-12 2016-11-30 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Lipid preparation composition and method for inhibiting expression of Eg5 gene and VEGF gene
KR101764437B1 (en) 2009-03-20 2017-08-02 메소블라스트, 아이엔씨. Production of reprogrammed pluripotent cells
JP6215533B2 (en) 2009-04-09 2017-10-18 サンガモ セラピューティクス, インコーポレイテッド Targeted integration into stem cells
MX356669B (en) 2009-05-02 2018-06-08 Genzyme Corp Gene therapy for neurodegenerative disorders.
US20110300205A1 (en) 2009-07-06 2011-12-08 Novartis Ag Self replicating rna molecules and uses thereof
EP2453918B1 (en) 2009-07-15 2015-12-16 GlaxoSmithKline Biologicals S.A. Rsv f protein compositions and methods for making same
US9234016B2 (en) 2009-07-28 2016-01-12 Sangamo Biosciences, Inc. Engineered zinc finger proteins for treating trinucleotide repeat disorders
AP2015008874A0 (en) 2009-08-14 2015-11-30 Alnylam Pharmaceuticals Inc Lipid formulated compositions and methods for inhibiting expression of a gene from the ebola virus
WO2011053675A2 (en) 2009-10-30 2011-05-05 Cns Therapeutics, Inc. Improved neurturin molecules
CN105031618A (en) 2009-11-02 2015-11-11 加利福尼亚大学董事会 Vault complexes for cytokine delivery
US8551781B2 (en) 2009-11-19 2013-10-08 The Regents Of The University Of California Vault complexes for facilitating biomolecule delivery
JP2013512677A (en) 2009-12-04 2013-04-18 オプコ オプサルミクス、エルエルシー Compositions and methods for inhibition of VEGF
EP2534173B1 (en) 2010-02-08 2019-09-11 Sangamo Therapeutics, Inc. Engineered cleavage half-domains
EP2660318A1 (en) 2010-02-09 2013-11-06 Sangamo BioSciences, Inc. Targeted genomic modification with partially single-stranded donor molecules
CA2792291A1 (en) 2010-03-29 2011-10-06 Kumamoto University Sirna therapy for transthyretin (ttr) related ocular amyloidosis
EP2555778A4 (en) 2010-04-06 2014-05-21 Alnylam Pharmaceuticals Inc Compositions and methods for inhibiting expression of cd274/pd-l1 gene
KR101953237B1 (en) 2010-05-17 2019-02-28 상가모 테라퓨틱스, 인코포레이티드 Novel dna-binding proteins and uses thereof
CA3102008A1 (en) 2010-06-02 2011-12-08 Alnylam Pharmaceuticals, Inc. Compositions and methods directed to treating liver fibrosis
CA2803900A1 (en) 2010-07-09 2012-01-12 Exelixis, Inc. Combinations of kinase inhibitors for the treatment of cancer
WO2012015938A2 (en) 2010-07-27 2012-02-02 The Johns Hopkins University Obligate heterodimer variants of foki cleavage domain
US20120225034A1 (en) 2010-09-02 2012-09-06 Universite De Mons Agents useful in treating facioscapulohumeral muscular dystrophy
AU2011312562B2 (en) 2010-09-27 2014-10-09 Sangamo Therapeutics, Inc. Methods and compositions for inhibiting viral entry into cells
EP4098324A1 (en) 2010-10-11 2022-12-07 GlaxoSmithKline Biologicals S.A. Antigen delivery platforms
EP2649182A4 (en) 2010-12-10 2015-05-06 Alnylam Pharmaceuticals Inc Compositions and methods for increasing erythropoietin (epo) production
WO2012079046A2 (en) 2010-12-10 2012-06-14 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of klf-1 and bcl11a genes
AU2012211278B2 (en) 2011-01-26 2016-11-10 Glaxosmithkline Biologicals Sa RSV immunization regimen
WO2012109495A1 (en) 2011-02-09 2012-08-16 Metabolic Solutions Development Company, Llc Cellular targets of thiazolidinediones
CA2831284C (en) 2011-03-29 2023-12-12 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of tmprss6 gene
SI2707385T1 (en) 2011-05-13 2018-01-31 Glaxosmithkline Biologicals Sa Pre-fusion rsv f antigens
WO2012164058A1 (en) 2011-06-01 2012-12-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for adjusting expression of mitochondrial genome by microrna
CN112961855B (en) 2011-06-21 2024-08-09 阿尔尼拉姆医药品有限公司 Angiopoietin-like 3 (ANGPTL 3) iRNA compositions and methods of use thereof
WO2012177949A2 (en) 2011-06-21 2012-12-27 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibition of expression of protein c (proc) genes
RU2631805C2 (en) 2011-06-21 2017-09-26 Элнилэм Фармасьютикалз, Инк. Compositions and methods for apolipoprotein c-iii (apoc3) gene expression inhibition
WO2012177906A1 (en) 2011-06-21 2012-12-27 Alnylam Pharmaceuticals, Inc. Assays and methods for determining activity of a therapeutic agent in a subject
EP3597750B1 (en) 2011-06-23 2022-05-04 Alnylam Pharmaceuticals, Inc. Serpina1 sirnas: compositions of matter and methods of treatment
WO2013012674A1 (en) 2011-07-15 2013-01-24 The General Hospital Corporation Methods of transcription activator like effector assembly
EP2734621B1 (en) 2011-07-22 2019-09-04 President and Fellows of Harvard College Evaluation and improvement of nuclease cleavage specificity
JP2014526887A (en) 2011-08-01 2014-10-09 アルナイラム ファーマシューティカルズ, インコーポレイテッド How to improve the success rate of hematopoietic stem cell transplantation
CA2848417C (en) 2011-09-21 2023-05-02 Sangamo Biosciences, Inc. Methods and compositions for regulation of transgene expression
MX2014004214A (en) 2011-10-11 2014-05-07 Novartis Ag Recombinant self-replicating polycistronic rna molecules.
EP2766385A2 (en) 2011-10-12 2014-08-20 Novartis AG Cmv antigens and uses thereof
JP2014530612A (en) 2011-10-14 2014-11-20 ジ・オハイオ・ステート・ユニバーシティ Methods and materials for ovarian cancer
EP2771482A1 (en) 2011-10-27 2014-09-03 Institut National de la Sante et de la Recherche Medicale (INSERM) Methods for the treatment and diagnosis of atherosclerosis
AU2012327236B2 (en) 2011-10-28 2016-11-10 University Of Florida Research Foundation, Inc. Chimeric promoter for cone photoreceptor targeted gene therapy
RU2659423C2 (en) 2012-02-16 2018-07-02 ЭйТИР ФАРМА, ИНК. Hystidil-trna-synthetase for treatment of autoimmune and inflammatory diseases
RU2639277C2 (en) 2012-02-29 2017-12-20 Сангамо Байосайенсиз, Инк. Methods and compositions for huntington disease treatment
US20150190532A1 (en) 2012-04-04 2015-07-09 The Trustees Of Columbia University In The City Of New York Smooth muscle specific inhibition for anti-restenotic therapy
EP2836219A1 (en) 2012-04-10 2015-02-18 INSERM - Institut National de la Santé et de la Recherche Médicale Methods for the treatment of nonalcoholic steatohepatitis
US9133461B2 (en) 2012-04-10 2015-09-15 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the ALAS1 gene
WO2013153139A1 (en) 2012-04-11 2013-10-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment and diagnosis of acute leukemia
US9127274B2 (en) 2012-04-26 2015-09-08 Alnylam Pharmaceuticals, Inc. Serpinc1 iRNA compositions and methods of use thereof
US9890364B2 (en) 2012-05-29 2018-02-13 The General Hospital Corporation TAL-Tet1 fusion proteins and methods of use thereof
WO2014011705A1 (en) 2012-07-09 2014-01-16 The Regents Of The University Of California Vault immunotherapy
EP3196301B1 (en) 2012-07-11 2018-10-17 Sangamo Therapeutics, Inc. Methods and compositions for the treatment of monogenic diseases
JP6329537B2 (en) 2012-07-11 2018-05-23 サンガモ セラピューティクス, インコーポレイテッド Methods and compositions for delivery of biological agents
PT2890780T (en) 2012-08-29 2020-08-03 Sangamo Therapeutics Inc Methods and compositions for treatment of a genetic condition
AU2013329186B2 (en) 2012-10-10 2019-02-14 Sangamo Therapeutics, Inc. T cell modifying compounds and uses thereof
EP3789405A1 (en) 2012-10-12 2021-03-10 The General Hospital Corporation Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins
PL2929031T4 (en) 2012-12-05 2022-06-27 Alnylam Pharmaceuticals, Inc. Pcsk9 irna compositions and methods of use thereof
US10272163B2 (en) 2012-12-07 2019-04-30 The Regents Of The University Of California Factor VIII mutation repair and tolerance induction
CA2894684A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Engineering and optimization of improved crispr-cas systems, methods and enzyme compositions for sequence manipulation in eukaryotes
ES2658401T3 (en) 2012-12-12 2018-03-09 The Broad Institute, Inc. Supply, modification and optimization of systems, methods and compositions for the manipulation of sequences and therapeutic applications
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
US20140310830A1 (en) 2012-12-12 2014-10-16 Feng Zhang CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes
EP2931899A1 (en) 2012-12-12 2015-10-21 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
US20140189896A1 (en) 2012-12-12 2014-07-03 Feng Zhang Crispr-cas component systems, methods and compositions for sequence manipulation
US20140186843A1 (en) 2012-12-12 2014-07-03 Massachusetts Institute Of Technology Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
WO2014093655A2 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains
US20140242664A1 (en) 2012-12-12 2014-08-28 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
US10676749B2 (en) 2013-02-07 2020-06-09 The General Hospital Corporation Tale transcriptional activators
RU2661101C2 (en) 2013-03-13 2018-07-11 Дженевив Биосайнсис, Инк. Non-replicative transduction particles and transduction particle based reporter systems
CN114015692B (en) 2013-03-14 2024-12-31 阿尔尼拉姆医药品有限公司 Complement component C5 iRNA compositions and methods of use thereof
WO2014160871A2 (en) 2013-03-27 2014-10-02 The General Hospital Corporation Methods and agents for treating alzheimer's disease
EP3730615A3 (en) 2013-05-15 2020-12-09 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a genetic condition
AU2014268509B2 (en) 2013-05-22 2020-10-01 Alnylam Pharmaceuticals, Inc. Serpina1 iRNA compositions and methods of use thereof
IL285780B (en) 2013-05-22 2022-07-01 Alnylam Pharmaceuticals Inc Preparations of tmprss6 irna and methods of using them
CN105531287B (en) 2013-05-29 2020-01-21 维拜昂公司 Single chain intracellular antibodies that alter huntingtin mutant degradation
WO2014204727A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
JP6702858B2 (en) 2013-06-17 2020-06-03 ザ・ブロード・インスティテュート・インコーポレイテッド Delivery, use and therapeutic applications of CRISPR-Cas systems and compositions for targeting disorders and diseases using viral components
KR20160044457A (en) 2013-06-17 2016-04-25 더 브로드 인스티튜트, 인코퍼레이티드 Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation
EP3011032B1 (en) 2013-06-17 2019-10-16 The Broad Institute, Inc. Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells
JP6665088B2 (en) 2013-06-17 2020-03-13 ザ・ブロード・インスティテュート・インコーポレイテッド Optimized CRISPR-Cas double nickase system, method and composition for sequence manipulation
EP3825406A1 (en) 2013-06-17 2021-05-26 The Broad Institute Inc. Delivery and use of the crispr-cas systems, vectors and compositions for hepatic targeting and therapy
US20150044192A1 (en) 2013-08-09 2015-02-12 President And Fellows Of Harvard College Methods for identifying a target site of a cas9 nuclease
CA2920899C (en) 2013-08-28 2023-02-28 Sangamo Biosciences, Inc. Compositions for linking dna-binding domains and cleavage domains
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
CN105793423A (en) 2013-10-02 2016-07-20 阿尔尼拉姆医药品有限公司 Compositions and methods for inhibiting LECT2 gene expression
CR20160195A (en) 2013-10-04 2016-09-05 Alnylam Pharmaceuticals Inc COMPOSITIONS AND METHODS TO INHIBIT THE EXPRESSION OF GEN ALAS 1
CN116836957A (en) 2013-10-17 2023-10-03 桑格摩生物科学股份有限公司 Delivery methods and compositions for nuclease-mediated genome engineering
KR102431079B1 (en) 2013-11-11 2022-08-11 상가모 테라퓨틱스, 인코포레이티드 Methods and compositions for treating huntington's disease
WO2015073683A2 (en) 2013-11-13 2015-05-21 Children's Medical Center Corporation Nuclease-mediated regulation of gene expression
ES2813367T3 (en) 2013-12-09 2021-03-23 Sangamo Therapeutics Inc Methods and compositions for genomic engineering
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
CA2931090A1 (en) 2013-12-12 2015-06-18 Alnylam Pharmaceuticals, Inc. Complement component irna compositions and methods of use thereof
BR112016013201B1 (en) 2013-12-12 2023-01-31 The Broad Institute, Inc. USE OF A COMPOSITION COMPRISING A CRISPR-CAS SYSTEM IN THE TREATMENT OF A GENETIC OCULAR DISEASE
WO2015089486A2 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems
BR112016013213A2 (en) 2013-12-12 2017-12-05 Massachusetts Inst Technology administration, use and therapeutic applications of crisper systems and compositions for targeting disorders and diseases using particle delivery components
WO2015086828A1 (en) 2013-12-12 2015-06-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the prevention and treatment of diabetic cardiomyopathy using mir-424/322
AU2014361784A1 (en) 2013-12-12 2016-06-23 Massachusetts Institute Of Technology Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for HBV and viral diseases and disorders
PT3102673T (en) 2014-02-03 2020-05-21 Sangamo Biosciences Inc Methods and compositions for treatment of a beta thalessemia
EP3960860A3 (en) 2014-02-11 2022-06-08 Alnylam Pharmaceuticals, Inc. Ketohexokinase (khk) irna compositions and methods of use thereof
EP3119878B1 (en) 2014-03-18 2021-05-26 Sangamo Therapeutics, Inc. Methods and compositions for regulation of zinc finger protein expression
BR112016025849A2 (en) 2014-05-08 2017-10-17 Chdi Foundation Inc methods and compositions for the treatment of huntington's disease
TW201607559A (en) 2014-05-12 2016-03-01 阿尼拉製藥公司 Methods and compositions for treating a SERPINC1-associated disorder
EA201692370A1 (en) 2014-05-22 2017-03-31 Элнилэм Фармасьютикалз, Инк. COMPOSITIONS of mRNA ANGIOTENZINOGENA (AGT) AND METHODS OF THEIR USE
US10577627B2 (en) 2014-06-09 2020-03-03 Voyager Therapeutics, Inc. Chimeric capsids
ES2788426T3 (en) 2014-06-16 2020-10-21 Univ Johns Hopkins Compositions and Methods for the Expression of CRISPR Guide RNAs Using the H1 Promoter
KR102330593B1 (en) 2014-07-28 2021-11-26 에스케이이노베이션 주식회사 Novel Isoprene Synthase and Method of Preparing Isoprene Using Thereof
EP3177718B1 (en) 2014-07-30 2022-03-16 President and Fellows of Harvard College Cas9 proteins including ligand-dependent inteins
DK3180426T3 (en) 2014-08-17 2020-03-30 Broad Inst Inc RETURNING BY USING CAS9 NICKASES
ES2778727T3 (en) 2014-08-25 2020-08-11 Geneweave Biosciences Inc Non-replicative transduction particles and reporter systems based on transduction particles
CA2957793A1 (en) 2014-09-07 2016-03-10 Selecta Biosciences, Inc. Methods and compositions for attenuating gene editing anti-viral transfer vector immune responses
EP3194570B1 (en) 2014-09-16 2021-06-30 Sangamo Therapeutics, Inc. Methods and compositions for nuclease-mediated genome engineering and correction in hematopoietic stem cells
WO2016049251A1 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling mutations in leukocytes
WO2016049024A2 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling competition of multiple cancer mutations in vivo
WO2016049163A2 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Use and production of chd8+/- transgenic animals with behavioral phenotypes characteristic of autism spectrum disorder
JOP20200115A1 (en) 2014-10-10 2017-06-16 Alnylam Pharmaceuticals Inc Compositions And Methods For Inhibition Of HAO1 (Hydroxyacid Oxidase 1 (Glycolate Oxidase)) Gene Expression
BR112017009497A2 (en) 2014-11-05 2018-02-06 Voyager Therapeutics, Inc. aadc polynucleotides for the treatment of parkinson's disease
JOP20200092A1 (en) 2014-11-10 2017-06-16 Alnylam Pharmaceuticals Inc HEPATITIS B VIRUS (HBV) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
RU2020108189A (en) 2014-11-14 2020-03-11 Вояджер Терапьютикс, Инк. COMPOSITIONS AND METHODS OF TREATMENT OF LATERAL AMYOTROPHIC SCLEROSIS (ALS)
SG10202001102XA (en) 2014-11-14 2020-03-30 Voyager Therapeutics Inc Modulatory polynucleotides
WO2016081444A1 (en) 2014-11-17 2016-05-26 Alnylam Pharmaceuticals, Inc. Apolipoprotein c3 (apoc3) irna compositions and methods of use thereof
EP3230452A1 (en) 2014-12-12 2017-10-18 The Broad Institute Inc. Dead guides for crispr transcription factors
EP3230451B1 (en) 2014-12-12 2021-04-07 The Broad Institute, Inc. Protected guide rnas (pgrnas)
US11697825B2 (en) 2014-12-12 2023-07-11 Voyager Therapeutics, Inc. Compositions and methods for the production of scAAV
WO2016094874A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Escorted and functionalized guides for crispr-cas systems
WO2016106236A1 (en) 2014-12-23 2016-06-30 The Broad Institute Inc. Rna-targeting system
EP3702456A1 (en) 2014-12-24 2020-09-02 The Broad Institute, Inc. Crispr having or associated with destabilization domains
WO2016108926A1 (en) 2014-12-30 2016-07-07 The Broad Institute Inc. Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis
JP2018510621A (en) 2015-02-13 2018-04-19 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Patatin-like phospholipase domain-containing 3 (PNPLA3) iRNA compositions and methods of use thereof
CA2981077A1 (en) 2015-04-03 2016-10-06 Dana-Farber Cancer Institute, Inc. Composition and methods of genome editing of b-cells
SMT202000454T1 (en) * 2015-04-03 2020-11-10 Univ Massachusetts Oligonucleotide compounds for targeting huntingtin mrna
EP3277811B1 (en) 2015-04-03 2020-12-23 University of Massachusetts Fully stabilized asymmetric sirna
WO2016201301A1 (en) 2015-06-12 2016-12-15 Alnylam Pharmaceuticals, Inc. Complement component c5 irna compositions and methods of use thereof
WO2016205728A1 (en) 2015-06-17 2016-12-22 Massachusetts Institute Of Technology Crispr mediated recording of cellular events
CA3012607A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Crispr enzymes and systems
US9790490B2 (en) 2015-06-18 2017-10-17 The Broad Institute Inc. CRISPR enzymes and systems
CA3012631A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Novel crispr enzymes and systems
EP3322297B1 (en) 2015-07-13 2024-12-04 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
WO2017024317A2 (en) 2015-08-06 2017-02-09 Dana-Farber Cancer Institute, Inc. Methods to induce targeted protein degradation through bifunctional molecules
US10633653B2 (en) 2015-08-14 2020-04-28 University Of Massachusetts Bioactive conjugates for oligonucleotide delivery
CN116814590A (en) 2015-10-22 2023-09-29 布罗德研究所有限公司 VI-B type CRISPR enzyme and system
WO2017070632A2 (en) 2015-10-23 2017-04-27 President And Fellows Of Harvard College Nucleobase editors and uses thereof
EP3384035A4 (en) 2015-12-02 2019-08-07 Voyager Therapeutics, Inc. Assays for the detection of aav neutralizing antibodies
CA3007014A1 (en) 2015-12-07 2017-06-15 Alnylam Pharmaceuticals, Inc. Methods and compositions for treating a serpinc1-associated disorder
IL259935B2 (en) 2015-12-18 2023-03-01 Sangamo Therapeutics Inc Targeted disruption of the mhc cell receptor
US12110490B2 (en) 2015-12-18 2024-10-08 The Broad Institute, Inc. CRISPR enzymes and systems
CA3008413A1 (en) 2015-12-18 2017-06-22 Sangamo Therapeutics, Inc. Targeted disruption of the t cell receptor
KR20180088919A (en) 2015-12-24 2018-08-07 옥시레인 유케이 리미티드 Human alpha-N-acetylgalactosaminidase polypeptide
AU2017207818B2 (en) 2016-01-15 2024-03-28 Regents Of The University Of Minnesota Methods and compositions for the treatment of neurologic disease
AU2017210726B2 (en) 2016-01-31 2023-08-03 University Of Massachusetts Branched oligonucleotides
CN109069568B (en) 2016-02-02 2023-07-07 桑格摩生物治疗股份有限公司 Compositions for linking DNA binding domains and cleavage domains
EP3416726A4 (en) 2016-02-17 2019-08-28 Children's Medical Center Corporation FFA1 (GPR40) as a therapeutic target for neural diseases or disorders related to angiogenesis
KR20240091006A (en) 2016-04-19 2024-06-21 더 브로드 인스티튜트, 인코퍼레이티드 The novel CRISPR enzyme and system
EP3445853A1 (en) 2016-04-19 2019-02-27 The Broad Institute, Inc. Cpf1 complexes with reduced indel activity
WO2017189308A1 (en) 2016-04-19 2017-11-02 The Broad Institute Inc. Novel crispr enzymes and systems
EP3448874A4 (en) 2016-04-29 2020-04-22 Voyager Therapeutics, Inc. Compositions for the treatment of disease
EP3448987A4 (en) 2016-04-29 2020-05-27 Voyager Therapeutics, Inc. Compositions for the treatment of disease
US11951121B2 (en) 2016-05-18 2024-04-09 Voyager Therapeutics, Inc. Compositions and methods for treating Huntington's disease
IL302748A (en) 2016-05-18 2023-07-01 Voyager Therapeutics Inc modulatory polynucleotides
US20190256845A1 (en) 2016-06-10 2019-08-22 Alnylam Pharmaceuticals, Inc. COMPLEMENT COMPONENT C5 iRNA COMPOSITIONS AND METHODS OF USE THEREOF FOR TREATING PAROXYSMAL NOCTURNAL HEMOGLOBINURIA (PNH)
EP3472329A1 (en) 2016-06-16 2019-04-24 Oslo Universitetssykehus HF Improved gene editing
AU2017283713B2 (en) 2016-06-17 2021-04-08 Massachusetts Institute Of Technology Type VI CRISPR orthologs and systems
WO2018005873A1 (en) 2016-06-29 2018-01-04 The Broad Institute Inc. Crispr-cas systems having destabilization domain
CN109844116A (en) 2016-07-05 2019-06-04 约翰霍普金斯大学 Including using H1 promoter to the improved composition and method of CRISPR guide RNA
CA3030783A1 (en) 2016-07-13 2018-01-18 Vertex Pharmaceuticals Incorporated Methods, compositions and kits for increasing genome editing efficiency
US11674158B2 (en) 2016-07-15 2023-06-13 Salk Institute For Biological Studies Methods and compositions for genome editing in non-dividing cells
GB2568182A (en) 2016-08-03 2019-05-08 Harvard College Adenosine nucleobase editors and uses thereof
WO2018031683A1 (en) 2016-08-09 2018-02-15 President And Fellows Of Harvard College Programmable cas9-recombinase fusion proteins and uses thereof
EP3500671B1 (en) 2016-08-17 2024-07-10 The Broad Institute, Inc. Method of selecting target sequences for the design of guide rnas
EP3500670B1 (en) 2016-08-17 2024-07-10 The Broad Institute, Inc. Method for selecting target sequences for guide rna of crispr systems
IL300783A (en) 2016-08-24 2023-04-01 Sangamo Therapeutics Inc Engineered target-specific zinc finger nucleases
RS62758B1 (en) 2016-08-24 2022-01-31 Sangamo Therapeutics Inc Regulation of gene expression using engineered nucleases
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
EP3831281A1 (en) 2016-08-30 2021-06-09 The Regents of The University of California Methods for biomedical targeting and delivery and devices and systems for practicing the same
SG11201903089RA (en) 2016-10-14 2019-05-30 Harvard College Aav delivery of nucleobase editors
CA3039673A1 (en) 2016-10-20 2018-04-26 Sangamo Therapeutics, Inc. Methods and compositions for the treatment of fabry disease
JP7108608B2 (en) 2016-10-31 2022-07-28 サンガモ セラピューティクス, インコーポレイテッド Genetic modification of SCID-associated genes in hematopoietic stem and progenitor cells
MA49610A (en) 2016-12-08 2020-05-27 Univ Case Western Reserve METHODS AND COMPOSITIONS FOR IMPROVING FUNCTIONAL MYELIN PRODUCTION
JP7058656B2 (en) 2016-12-16 2022-04-22 アルナイラム ファーマシューティカルズ, インコーポレイテッド Methods for Treating or Preventing TTR-Related Diseases with Transthyretin (TTR) iRNA Compositions
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
CN110914310A (en) 2017-03-10 2020-03-24 哈佛大学的校长及成员们 Cytosine to guanine base editor
CN110914426A (en) 2017-03-23 2020-03-24 哈佛大学的校长及成员们 Nucleobase editors comprising nucleic acid programmable DNA binding proteins
WO2018195338A1 (en) 2017-04-20 2018-10-25 Atyr Pharma, Inc. Compositions and methods for treating lung inflammation
ES2981611T3 (en) 2017-04-28 2024-10-09 Univ Colorado Regents Methods for treating rheumatoid arthritis using RNA-guided genome editing of the HLA gene
CN119491003A (en) 2017-05-05 2025-02-21 沃雅戈治疗公司 Compositions and methods for treating huntington's disease
WO2018204786A1 (en) 2017-05-05 2018-11-08 Voyager Therapeutics, Inc. Compositions and methods of treating amyotrophic lateral sclerosis (als)
CA3058848A1 (en) 2017-05-09 2018-11-15 Vib Vzw Means and methods for treating bacterial infections
US20210278416A1 (en) 2017-05-09 2021-09-09 The Broad Institute, Inc. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
JOP20190269A1 (en) 2017-06-15 2019-11-20 Voyager Therapeutics Inc Aadc polynucleotides for the treatment of parkinson's disease
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
WO2018237245A1 (en) 2017-06-23 2018-12-27 University Of Massachusetts Two-tailed self-delivering sirna and related methods
RU2769475C2 (en) 2017-06-23 2022-04-01 Инскрипта, Инк. Nucleic acid-directed nucleases
EP3645054A4 (en) 2017-06-26 2021-03-31 The Broad Institute, Inc. COMPOSITIONS BASED ON CRISPR / CAS-ADENIN-DEAMINASE, SYSTEMS AND METHODS FOR TARGETED NUCLEIC ACID EDITING
US11168322B2 (en) 2017-06-30 2021-11-09 Arbor Biotechnologies, Inc. CRISPR RNA targeting enzymes and systems and uses thereof
EP3654860A1 (en) 2017-07-17 2020-05-27 Voyager Therapeutics, Inc. Trajectory array guide system
EP3658573A1 (en) 2017-07-28 2020-06-03 President and Fellows of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (pace)
KR20200044793A (en) 2017-08-03 2020-04-29 보이저 테라퓨틱스, 인크. Compositions and methods for delivery of AAV
EP3676376B1 (en) 2017-08-30 2025-01-15 President and Fellows of Harvard College High efficiency base editors comprising gam
US11618896B2 (en) 2017-09-21 2023-04-04 The Broad Institute, Inc. Systems, methods, and compositions for targeted nucleic acid editing
MX2020003042A (en) 2017-09-29 2020-11-18 Voyager Therapeutics Inc Rescue of central and peripheral neurological phenotype of friedreich's ataxia by intravenous delivery.
TW202413649A (en) 2017-10-16 2024-04-01 美商航海家醫療公司 Treatment of amyotrophic lateral sclerosis (als)
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. Uses of adenosine base editors
EP3697908A1 (en) 2017-10-16 2020-08-26 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis (als)
CA3078971A1 (en) 2017-11-01 2019-05-09 Alnylam Pharmaceuticals, Inc. Complement component c3 irna compositions and methods of use thereof
EP3714054A1 (en) 2017-11-20 2020-09-30 Alnylam Pharmaceuticals, Inc. Serum amyloid p component (apcs) irna compositions and methods of use thereof
US11008602B2 (en) 2017-12-20 2021-05-18 Roche Molecular Systems, Inc. Non-replicative transduction particles and transduction particle-based reporter systems
CA3088791A1 (en) 2018-01-17 2019-07-25 Vertex Pharmaceuticals Incorporated Quinoxalinone compounds, compositions, methods, and kits for increasing genome editing efficiency
WO2019143678A1 (en) 2018-01-17 2019-07-25 Vertex Pharmaceuticals Incorporated Dna-pk inhibitors
MA51616A (en) 2018-01-17 2020-11-25 Vertex Pharma DNA-PK INHIBITORS
WO2019160383A1 (en) 2018-02-19 2019-08-22 고려대학교 산학협력단 Vaccine comprising epitope of heat shock protein, and use thereof
WO2019178428A1 (en) 2018-03-14 2019-09-19 Arbor Biotechnologies, Inc. Novel crispr dna and rna targeting enzymes and systems
HUE063005T2 (en) 2018-03-14 2023-12-28 Arbor Biotechnologies Inc Novel crispr dna targeting enzymes and systems
KR20210023832A (en) 2018-05-11 2021-03-04 빔 테라퓨틱스, 인크. How to edit single base polymorphisms using a programmable base editor system
US12157760B2 (en) 2018-05-23 2024-12-03 The Broad Institute, Inc. Base editors and uses thereof
KR20210089629A (en) 2018-06-05 2021-07-16 라이프에디트 테라퓨틱스, 인크. RNA-guided nucleases and active fragments and variants thereof and methods of use
WO2020018142A1 (en) 2018-07-16 2020-01-23 Arbor Biotechnologies, Inc. Novel crispr dna targeting enzymes and systems
KR20210056329A (en) 2018-08-07 2021-05-18 더 브로드 인스티튜트, 인코퍼레이티드 New CAS12B enzyme and system
US11987792B2 (en) 2018-08-16 2024-05-21 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the LECT2 gene
WO2020041380A1 (en) 2018-08-20 2020-02-27 The Broad Institute, Inc. Methods and compositions for optochemical control of crispr-cas9
JP2022500052A (en) 2018-09-18 2022-01-04 サンガモ セラピューティクス, インコーポレイテッド Programmed cell death 1 (PD1) specific nuclease
US20220001030A1 (en) 2018-10-15 2022-01-06 Fondazione Telethon Genome editing methods and constructs
SG11202103732RA (en) 2018-10-18 2021-05-28 Intellia Therapeutics Inc Nucleic acid constructs and methods of use
TW202027799A (en) 2018-10-18 2020-08-01 美商英特利亞醫療公司 Compositions and methods for expressing factor ix
WO2020092453A1 (en) 2018-10-29 2020-05-07 The Broad Institute, Inc. Nucleobase editors comprising geocas9 and uses thereof
US20220282275A1 (en) 2018-11-15 2022-09-08 The Broad Institute, Inc. G-to-t base editors and uses thereof
US20220025367A1 (en) 2018-11-23 2022-01-27 Sanofi Novel rna compositions and methods for inhibiting angptl8
CA3124110A1 (en) 2018-12-17 2020-06-25 The Broad Institute, Inc. Crispr-associated transposase systems and methods of use thereof
CN113631704A (en) 2018-12-27 2021-11-09 生命编辑制药股份有限公司 Polypeptides useful for gene editing and methods of use
EP3902930A1 (en) 2018-12-27 2021-11-03 F. Hoffmann-La Roche AG Non-replicative transduction particles and transduction particle-based reporter systems for detection of acinetobacter baumannii
US11572595B2 (en) 2018-12-31 2023-02-07 Roche Molecular Systems, Inc. Non-replicative transduction particles with one or more non-native tail fibers and transduction particle-based reporter systems
EP3911747A4 (en) 2019-01-18 2023-05-24 University Of Massachusetts Dynamic pharmacokinetic-modifying anchors
US12215382B2 (en) 2019-03-01 2025-02-04 The General Hospital Corporation Liver protective MARC variants and uses thereof
WO2020181193A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. T:a to a:t base editing through adenosine methylation
WO2020181178A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. T:a to a:t base editing through thymine alkylation
WO2020181180A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. A:t to c:g base editors and uses thereof
WO2020181195A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. T:a to a:t base editing through adenine excision
WO2020181202A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. A:t to t:a base editing through adenine deamination and oxidation
US20220177863A1 (en) 2019-03-18 2022-06-09 The Broad Institute, Inc. Type vii crispr proteins and systems
KR20210143230A (en) 2019-03-19 2021-11-26 더 브로드 인스티튜트, 인코퍼레이티드 Methods and compositions for editing nucleotide sequences
EP4335925A3 (en) 2019-04-09 2024-08-28 The Regents of the University of California Long-lasting analgesia via targeted in vivo epigenetic repression
WO2020210751A1 (en) 2019-04-12 2020-10-15 The Broad Institute, Inc. System for genome editing
US20220307003A1 (en) 2019-04-17 2022-09-29 The Broad Institute, Inc. Adenine base editors with reduced off-target effects
JP2022529917A (en) 2019-04-18 2022-06-27 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Methods for cancer treatment and prognosis
US20220220469A1 (en) 2019-05-20 2022-07-14 The Broad Institute, Inc. Non-class i multi-component nucleic acid targeting systems
US20210317192A9 (en) 2019-05-29 2021-10-14 Massachusetts Institute Of Technology Hiv-1 specific immunogen compositions and methods of use
JP2022542839A (en) 2019-07-19 2022-10-07 フラッグシップ パイオニアリング イノベーションズ シックス,エルエルシー Recombinase compositions and methods of use
US20220315906A1 (en) 2019-08-08 2022-10-06 The Broad Institute, Inc. Base editors with diversified targeting scope
JP2022547790A (en) 2019-08-09 2022-11-16 ユニバーシティー オブ マサチューセッツ Chemically modified oligonucleotides targeting SNPs
US20220364074A1 (en) 2019-08-12 2022-11-17 LifeEDIT Therapeutics, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use
WO2021030666A1 (en) 2019-08-15 2021-02-18 The Broad Institute, Inc. Base editing by transglycosylation
CN115176011A (en) 2019-08-27 2022-10-11 赛诺菲 Compositions and methods for inhibiting PCSK9
CN114616331B (en) 2019-09-03 2024-10-22 阿尔尼拉姆医药品有限公司 Compositions and methods for inhibiting expression of the LECT2 gene
CA3153563A1 (en) 2019-09-09 2021-03-18 Beam Therapeutics Inc. Novel crispr enzymes, methods, systems and uses thereof
JP2022547570A (en) 2019-09-12 2022-11-14 ザ・ブロード・インスティテュート・インコーポレイテッド Engineered adeno-associated virus capsid
WO2021067747A1 (en) 2019-10-04 2021-04-08 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing ugt1a1 gene expression
WO2021072328A1 (en) 2019-10-10 2021-04-15 The Broad Institute, Inc. Methods and compositions for prime editing rna
WO2021087325A1 (en) 2019-11-01 2021-05-06 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing dnajb1-prkaca fusion gene expression
EP4058577A1 (en) 2019-11-13 2022-09-21 Alnylam Pharmaceuticals, Inc. Methods and compositions for treating an angiotensinogen- (agt-) associated disorder
US20230086199A1 (en) 2019-11-26 2023-03-23 The Broad Institute, Inc. Systems and methods for evaluating cas9-independent off-target editing of nucleic acids
EP4085133A1 (en) 2019-12-30 2022-11-09 Lifeedit Therapeutics, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use
US20220356537A1 (en) 2019-12-31 2022-11-10 Roche Molecular Systems, Inc. Quantitative pcr screening of inducible prophage from bacterial isolates
EP4097124A1 (en) 2020-01-28 2022-12-07 The Broad Institute Inc. Base editors, compositions, and methods for modifying the mitochondrial genome
WO2021154941A1 (en) 2020-01-31 2021-08-05 Alnylam Pharmaceuticals, Inc. Complement component c5 irna compositions for use in the treatment of amyotrophic lateral sclerosis (als)
WO2021158999A1 (en) 2020-02-05 2021-08-12 The Broad Institute, Inc. Gene editing methods for treating spinal muscular atrophy
EP4100519A2 (en) 2020-02-05 2022-12-14 The Broad Institute, Inc. Adenine base editors and uses thereof
US20230136787A1 (en) 2020-02-10 2023-05-04 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing vegf-a expression
AU2021230546A1 (en) 2020-03-04 2022-10-13 Flagship Pioneering Innovations Vi, Llc Methods and compositions for modulating a genome
WO2021202443A2 (en) 2020-03-30 2021-10-07 Alnylam Pharmaceucticals, Inc. Compositions and methods for silencing dnajc15 gene expression
AU2021252545A1 (en) 2020-04-06 2022-11-03 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing myoc expression
CA3179678A1 (en) 2020-04-07 2021-10-14 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing scn9a expression
TW202208626A (en) 2020-04-24 2022-03-01 美商生命編輯公司 Rna-guided nucleases and active fragments and variants thereof and methods of use
US20230159913A1 (en) 2020-04-28 2023-05-25 The Broad Institute, Inc. Targeted base editing of the ush2a gene
AU2021268253A1 (en) 2020-05-06 2022-12-08 Cellectis S.A. Methods for targeted insertion of exogenous sequences in cellular genomes
US20230279440A1 (en) 2020-05-06 2023-09-07 Cellectis S.A. Methods to genetically modify cells for delivery of therapeutic proteins
WO2021226558A1 (en) 2020-05-08 2021-11-11 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CA3173882A1 (en) 2020-05-11 2021-11-18 Alexandra Briner CRAWLEY Rna-guided nucleic acid binding proteins and active fragments and variants thereof and methods of use
EP4153746A1 (en) 2020-05-21 2023-03-29 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting marc1 gene expression
CA3173949A1 (en) 2020-07-15 2022-01-20 LifeEDIT Therapeutics, Inc. Uracil stabilizing proteins and active fragments and variants thereof and methods of use
WO2022034374A2 (en) 2020-08-11 2022-02-17 University Of Oslo Improved gene editing
EP4204545A2 (en) 2020-08-25 2023-07-05 Kite Pharma, Inc. T cells with improved functionality
IL301139A (en) 2020-09-11 2023-05-01 Lifeedit Therapeutics Inc Enzymes from secondary DNA and active fragments and their variants and methods of use
MX2023004178A (en) 2020-10-15 2023-05-03 Hoffmann La Roche Nucleic acid constructs for simultaneous gene activation.
KR20230085929A (en) 2020-10-15 2023-06-14 에프. 호프만-라 로슈 아게 Nucleic acid constructs for VA RNA transcription
WO2022079221A1 (en) 2020-10-16 2022-04-21 Sanofi Rna compositions and methods for inhibiting lipoprotein(a)
EP4229200A1 (en) 2020-10-16 2023-08-23 Sanofi Novel rna compositions and methods for inhibiting angptl3
EP4232581A1 (en) 2020-10-21 2023-08-30 Alnylam Pharmaceuticals, Inc. Methods and compositions for treating primary hyperoxaluria
TW202237150A (en) 2020-12-01 2022-10-01 美商艾拉倫製藥股份有限公司 Methods and compositions for inhibition of hao1 (hydroxyacid oxidase 1 (glycolate oxidase)) gene expression
TW202300649A (en) 2021-03-22 2023-01-01 美商生命編輯治療學公司 Dna modifying enzymes and active fragments and variants thereof and methods of use
AU2022245243A1 (en) 2021-03-23 2023-09-28 Beam Therapeutics Inc. Novel crispr enzymes, methods, systems and uses thereof
KR20240007651A (en) 2021-04-16 2024-01-16 빔 테라퓨틱스, 인크. Genetic modification of liver cells
JP2024519041A (en) 2021-05-21 2024-05-08 セレクティス ソシエテ アノニム Enhancing the efficacy of T cell-mediated immunotherapy by modulating cancer-associated fibroblasts in solid tumors
CN117337326A (en) 2021-05-27 2024-01-02 中国科学院动物研究所 Engineered Cas12i nucleases, effector proteins and their uses
AU2022290278A1 (en) 2021-06-11 2024-01-04 LifeEDIT Therapeutics, Inc. Rna polymerase iii promoters and methods of use
WO2022261509A1 (en) 2021-06-11 2022-12-15 The Broad Institute, Inc. Improved cytosine to guanine base editors
WO2023278576A1 (en) 2021-06-30 2023-01-05 Alnylam Pharmaceuticals, Inc. Methods and compositions for treating an angiotensinogen- (agt-) associated disorder
US20240325568A1 (en) 2021-07-20 2024-10-03 The Broad Institute, Inc. Engineered targeting compositions for endothelial cells of the central nervous system vasculature and methods of use thereof
MX2024002927A (en) 2021-09-08 2024-05-29 Flagship Pioneering Innovations Vi Llc Methods and compositions for modulating a genome.
WO2023077148A1 (en) 2021-11-01 2023-05-04 Tome Biosciences, Inc. Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo
CN114015674B (en) 2021-11-02 2024-08-30 辉大(上海)生物科技有限公司 CRISPR-Cas12i system
EP4448772A2 (en) 2021-12-17 2024-10-23 Beam Therapeutics Inc. Crispr enzymes, methzods, systems and uses thereof
IL313765A (en) 2021-12-22 2024-08-01 Tome Biosciences Inc Co-delivery of a gene editor construct and a donor template
IL314488A (en) 2022-01-24 2024-09-01 Lifeedit Therapeutics Inc Rna-guided nucleases and active fragments and variants thereof and methods of use
AU2023248451A1 (en) 2022-04-04 2024-10-17 President And Fellows Of Harvard College Cas9 variants having non-canonical pam specificities and uses thereof
EP4503923A1 (en) 2022-04-04 2025-02-12 The Regents of the University of California Genetic complementation compositions and methods
WO2023196772A1 (en) 2022-04-04 2023-10-12 Beam Therapeutics Inc. Novel rna base editing compositions, systems, methods and uses thereof
CN118974274A (en) 2022-04-13 2024-11-15 豪夫迈·罗氏有限公司 Methods for determining the AAV genome
WO2023205744A1 (en) 2022-04-20 2023-10-26 Tome Biosciences, Inc. Programmable gene insertion compositions
WO2023215831A1 (en) 2022-05-04 2023-11-09 Tome Biosciences, Inc. Guide rna compositions for programmable gene insertion
CN119563028A (en) 2022-05-12 2025-03-04 尚威天成信使核糖核酸治疗公司 Synthetic self-amplifying mRNA molecules with secreted antigens and immunomodulators
WO2023225564A1 (en) 2022-05-18 2023-11-23 The Broad Institute, Inc. Engineered viral capsids with increased stability and methods of use thereof
WO2023225670A2 (en) 2022-05-20 2023-11-23 Tome Biosciences, Inc. Ex vivo programmable gene insertion
CN119256220A (en) 2022-05-23 2025-01-03 豪夫迈·罗氏有限公司 Raman-based method for distinguishing AAV particle serotypes and AAV particle loading states
EP4532527A1 (en) 2022-05-27 2025-04-09 The Broad Institute, Inc. Improved mitochondrial base editors and methods for editing mitochondrial dna
AR129500A1 (en) 2022-06-03 2024-09-04 Hoffmann La Roche METHOD FOR PRODUCING RECOMBINANT AAV PARTICLES
WO2023240137A1 (en) 2022-06-08 2023-12-14 The Board Institute, Inc. Evolved cas14a1 variants, compositions, and methods of making and using same in genome editing
WO2024003334A1 (en) 2022-06-30 2024-01-04 Cellectis S.A. Enhancing safety of t-cell-mediated immunotherapy
TW202428311A (en) 2022-07-14 2024-07-16 美商博得學院股份有限公司 Aav capsids that enable cns-wide gene delivery through interactions with the transferrin receptor
IL317254A (en) 2022-07-14 2025-01-01 Hoffmann La Roche Method for producing recombinant aav particles
IL318914A (en) 2022-08-12 2025-04-01 Life Edit Therapeutics Inc Rna-guided nucleases and active fragments and variants thereof and methods of use
WO2024040083A1 (en) 2022-08-16 2024-02-22 The Broad Institute, Inc. Evolved cytosine deaminases and methods of editing dna using same
AU2023331255A1 (en) 2022-08-25 2025-03-27 Life Edit Therapeutics, Inc. Chemical modification of guide rnas with locked nucleic acid for rna guided nuclease-mediated gene editing
WO2024056561A1 (en) 2022-09-12 2024-03-21 F. Hoffmann-La Roche Ag Method for separating full and empty aav particles
WO2024059791A1 (en) 2022-09-16 2024-03-21 Beam Therapeutics Inc. Large serine recombinases, systems and uses thereof
WO2024094775A1 (en) 2022-11-03 2024-05-10 Cellectis S.A. Enhancing efficacy and safety of t-cell-mediated immunotherapy
WO2024098061A2 (en) 2022-11-04 2024-05-10 Genkardia Inc. Oligonucleotide-based therapeutics targeting cyclin d2 for the treatment of heart failure
WO2024095245A2 (en) 2022-11-04 2024-05-10 LifeEDIT Therapeutics, Inc. Evolved adenine deaminases and rna-guided nuclease fusion proteins with internal insertion sites and methods of use
WO2024108217A1 (en) 2022-11-18 2024-05-23 Genkardia Inc. Methods and compositions for preventing, treating, or reversing cardiac diastolic dysfunction
WO2024127369A1 (en) 2022-12-16 2024-06-20 LifeEDIT Therapeutics, Inc. Guide rnas that target foxp3 gene and methods of use
WO2024127370A1 (en) 2022-12-16 2024-06-20 LifeEDIT Therapeutics, Inc. Guide rnas that target trac gene and methods of use
WO2024138194A1 (en) 2022-12-22 2024-06-27 Tome Biosciences, Inc. Platforms, compositions, and methods for in vivo programmable gene insertion
WO2024163842A2 (en) 2023-02-03 2024-08-08 The Broad Institute, Inc. Delivering genes to the brain endothelium to treat lysosomal storage disorder-derived neuropathology
WO2024163862A2 (en) 2023-02-03 2024-08-08 The Broad Institute, Inc. Gene editing methods, systems, and compositions for treating spinal muscular atrophy
WO2024165456A1 (en) 2023-02-07 2024-08-15 F. Hoffmann-La Roche Ag Method for the detection of anti-aav particle antibodies
WO2024194280A1 (en) 2023-03-21 2024-09-26 F. Hoffmann-La Roche Ag Method for the production of recombinant aav particle preparations
AU2024220143A1 (en) 2023-04-12 2024-10-31 LifeEDIT Therapeutics, Inc. Compositions and methods for the treatment of huntington's disease by editing the mutant huntingtin gene
WO2024218394A1 (en) 2023-04-21 2024-10-24 Fondazione Telethon Ets Genome editing methods and constructs
WO2024234006A1 (en) 2023-05-11 2024-11-14 Tome Biosciences, Inc. Systems, compositions, and methods for targeting liver sinusodial endothelial cells (lsecs)
WO2025004001A1 (en) 2023-06-30 2025-01-02 Takeda Pharmaceutical Company Limited Htt repressors and uses thereof
WO2025008774A1 (en) 2023-07-05 2025-01-09 Takeda Pharmaceutical Company Limited Viral vectors encoding recombinant fviii variants with increased expression for gene therapy of hemophilia a
WO2025022367A2 (en) 2023-07-27 2025-01-30 Life Edit Therapeutics, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use
WO2025050069A1 (en) 2023-09-01 2025-03-06 Tome Biosciences, Inc. Programmable gene insertion using engineered integration enzymes
WO2025072383A1 (en) 2023-09-25 2025-04-03 The Broad Institute, Inc. Viral open reading frames, uses thereof, and methods of detecting the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797368A (en) * 1985-03-15 1989-01-10 The United States Of America As Represented By The Department Of Health And Human Services Adeno-associated virus as eukaryotic expression vector
US5252479A (en) * 1991-11-08 1993-10-12 Research Corporation Technologies, Inc. Safe vector for gene therapy
US5587308A (en) * 1992-06-02 1996-12-24 The United States Of America As Represented By The Department Of Health & Human Services Modified adeno-associated virus vector capable of expression from a novel promoter

Also Published As

Publication number Publication date
WO1993024641A2 (en) 1993-12-09
AU673367B2 (en) 1996-11-07
EP1164195A3 (en) 2005-11-23
AU4598193A (en) 1993-12-30
DK0644944T3 (en) 2002-05-13
ATE209254T1 (en) 2001-12-15
US6165781A (en) 2000-12-26
EP0644944B1 (en) 2001-11-21
PT644944E (en) 2002-05-31
DE69334343D1 (en) 2010-11-18
US5866696A (en) 1999-02-02
DE69331194D1 (en) 2002-01-03
ES2168096T3 (en) 2002-06-01
CA2136441A1 (en) 1993-12-09
CA2136441C (en) 2007-04-24
EP1164195A2 (en) 2001-12-19
US5989540A (en) 1999-11-23
US5587308A (en) 1996-12-24
EP0644944A1 (en) 1995-03-29
EP1164195B1 (en) 2010-10-06
US5990279A (en) 1999-11-23
ATE483817T1 (en) 2010-10-15
HK1014549A1 (en) 1999-09-30
WO1993024641A3 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
DE69331194T2 (en) ADENO ASSOCIATED VIRUS WITH REVERSE TERMINAL REPEAT SEQUENCES AS A PROMOTOR FOR THE TRANSFER OF A FUNCTIONAL CFTR GENE IN VIVO
DE69231739T2 (en) DNA SYNTHESIS INHIBITORS DERIVED FROM AGING CELLS
DE69534902T2 (en) Recombinant viral DNA vector for transfecting animal cells
DE69114997T2 (en) Recombinant vectors from adeno-associated viruses.
DE69518910T2 (en) METHOD FOR PRODUCING VIRAL VECTORS OF AT LEAST 20KB BY INTERMOLECULAR HOMOLOGOUS RECOMBINATION IN A PROKARYOTIC CELL
DE69615650T2 (en) VIRAL VECTORS FOR GENE THERAPY
DE69611753T2 (en) METHOD AND COMPOSITIONS FOR GENE THERAPY FOR TREATING ERRORS IN LIPOPROTEIN METAL BOLISM
DE69534791T2 (en) VECTORS FOR TISSUE-SPECIFIC REPLICATION
DE69433922T2 (en) STABLE CELL LINE THAT IS ABLE TO EXPRESS THE REPLICATION GENE OF THE ADENOASSOCATED VIRUS
DE60034478T2 (en) VECTORS AND TRANSGENES WITH REGULATORY ELEMENTS FOR GENETIC ADMINISTRATION IN LIVER
DE69534166T2 (en) RECOMBINANT ADENOVIRUS AND METHODS OF USE THEREOF
DE69834936T2 (en) VECTOR FOR TISSUE-SPECIFIC REPLICATION AND EXPRESSION
DE69824859T2 (en) METHODS OF INCREASING THE EFFICIENCY OF RECOMBINANT AAV PRODUCTS
DE69616559T2 (en) AUXILIARY VIRUS FOR THE PRODUCTION OF RECOMBINANT VIRUS VECTORS
DE69828167T2 (en) RECOMBINANT ADENOVIRAL VECTORS CONTAINING A SPLICE SEQUENCE
JPH08503855A (en) Gene therapy for cystic fibrosis
DE10066104A1 (en) Host cells for packaging recombinant adeno-associated virus (rAAV), process for their preparation and their use
DE69432500T2 (en) Recombinant foamy virus vectors for medical and diagnostic use and method for producing recombinant foamy virus vectors
EP0904394A1 (en) Chicken embryo lethal orphan (celo) virus
DE69725882T2 (en) ADENOVIRUS E4 PROTEINS FOR INDUCTION OF CELL DEATH
EP0746624B1 (en) Vector for liver-specific gene expression
DE69731310T2 (en) PROCESS FOR THE IMMORTAL MACHINING OF CELLS
DE60130465T2 (en) MUTED MUSCLE SPECIFIC ENHANCER
DE69224360T2 (en) DNA clones with &#39;enhancer&#39; activity, recombinant vector containing them and method of producing gene products using the same
DE19807265C2 (en) Adenoviral transfer vector for the gene transport of a DNA sequence

Legal Events

Date Code Title Description
8364 No opposition during term of opposition