DE69331194T2 - ADENO ASSOCIATED VIRUS WITH REVERSE TERMINAL REPEAT SEQUENCES AS A PROMOTOR FOR THE TRANSFER OF A FUNCTIONAL CFTR GENE IN VIVO - Google Patents
ADENO ASSOCIATED VIRUS WITH REVERSE TERMINAL REPEAT SEQUENCES AS A PROMOTOR FOR THE TRANSFER OF A FUNCTIONAL CFTR GENE IN VIVOInfo
- Publication number
- DE69331194T2 DE69331194T2 DE69331194T DE69331194T DE69331194T2 DE 69331194 T2 DE69331194 T2 DE 69331194T2 DE 69331194 T DE69331194 T DE 69331194T DE 69331194 T DE69331194 T DE 69331194T DE 69331194 T2 DE69331194 T2 DE 69331194T2
- Authority
- DE
- Germany
- Prior art keywords
- aav
- vector
- cftr
- cells
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 241000702421 Dependoparvovirus Species 0.000 title claims abstract description 67
- 108091081062 Repeated sequence (DNA) Proteins 0.000 title claims description 3
- 101150029409 CFTR gene Proteins 0.000 title description 9
- 239000013598 vector Substances 0.000 claims abstract description 71
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 22
- 238000013518 transcription Methods 0.000 claims abstract description 10
- 230000035897 transcription Effects 0.000 claims abstract description 10
- 210000004027 cell Anatomy 0.000 claims description 75
- 201000003883 Cystic fibrosis Diseases 0.000 claims description 20
- 239000002773 nucleotide Substances 0.000 claims description 17
- 125000003729 nucleotide group Chemical group 0.000 claims description 17
- 108020004707 nucleic acids Proteins 0.000 claims description 10
- 102000039446 nucleic acids Human genes 0.000 claims description 10
- 150000007523 nucleic acids Chemical class 0.000 claims description 10
- 108091033319 polynucleotide Proteins 0.000 claims description 6
- 102000040430 polynucleotide Human genes 0.000 claims description 6
- 239000002157 polynucleotide Substances 0.000 claims description 6
- 238000012217 deletion Methods 0.000 claims description 4
- 230000037430 deletion Effects 0.000 claims description 4
- 210000002919 epithelial cell Anatomy 0.000 claims description 4
- 150000001413 amino acids Chemical class 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 102000004169 proteins and genes Human genes 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 2
- 102100021244 Integral membrane protein GPR180 Human genes 0.000 claims 2
- 239000003814 drug Substances 0.000 claims 1
- 102000034356 gene-regulatory proteins Human genes 0.000 claims 1
- 108091006104 gene-regulatory proteins Proteins 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000032258 transport Effects 0.000 claims 1
- 108020004414 DNA Proteins 0.000 abstract description 20
- 230000014509 gene expression Effects 0.000 abstract description 16
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract description 3
- 238000010276 construction Methods 0.000 abstract description 2
- 230000004927 fusion Effects 0.000 abstract description 2
- 210000004962 mammalian cell Anatomy 0.000 abstract description 2
- 230000009395 genetic defect Effects 0.000 abstract 2
- 108020004511 Recombinant DNA Proteins 0.000 abstract 1
- 108700008625 Reporter Genes Proteins 0.000 abstract 1
- 239000013604 expression vector Substances 0.000 abstract 1
- 210000005260 human cell Anatomy 0.000 abstract 1
- 230000007257 malfunction Effects 0.000 abstract 1
- 208000002267 Anti-neutrophil cytoplasmic antibody-associated vasculitis Diseases 0.000 description 74
- 102000012605 Cystic Fibrosis Transmembrane Conductance Regulator Human genes 0.000 description 42
- 108010079245 Cystic Fibrosis Transmembrane Conductance Regulator Proteins 0.000 description 42
- OHCQJHSOBUTRHG-KGGHGJDLSA-N FORSKOLIN Chemical compound O=C([C@@]12O)C[C@](C)(C=C)O[C@]1(C)[C@@H](OC(=O)C)[C@@H](O)[C@@H]1[C@]2(C)[C@@H](O)CCC1(C)C OHCQJHSOBUTRHG-KGGHGJDLSA-N 0.000 description 30
- 239000013607 AAV vector Substances 0.000 description 25
- 239000002245 particle Substances 0.000 description 22
- 239000013612 plasmid Substances 0.000 description 16
- SUZLHDUTVMZSEV-UHFFFAOYSA-N Deoxycoleonol Natural products C12C(=O)CC(C)(C=C)OC2(C)C(OC(=O)C)C(O)C2C1(C)C(O)CCC2(C)C SUZLHDUTVMZSEV-UHFFFAOYSA-N 0.000 description 15
- OHCQJHSOBUTRHG-UHFFFAOYSA-N colforsin Natural products OC12C(=O)CC(C)(C=C)OC1(C)C(OC(=O)C)C(O)C1C2(C)C(O)CCC1(C)C OHCQJHSOBUTRHG-UHFFFAOYSA-N 0.000 description 15
- 230000007547 defect Effects 0.000 description 15
- 238000001890 transfection Methods 0.000 description 13
- 238000004806 packaging method and process Methods 0.000 description 12
- 239000002299 complementary DNA Substances 0.000 description 11
- 238000003556 assay Methods 0.000 description 10
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 10
- 241000701161 unidentified adenovirus Species 0.000 description 9
- 239000002609 medium Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000002103 transcriptional effect Effects 0.000 description 8
- 230000002463 transducing effect Effects 0.000 description 8
- 241000700605 Viruses Species 0.000 description 6
- 238000001415 gene therapy Methods 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 238000010361 transduction Methods 0.000 description 6
- 230000026683 transduction Effects 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 108091026890 Coding region Proteins 0.000 description 4
- 241001135569 Human adenovirus 5 Species 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 4
- 101150055766 cat gene Proteins 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 241000702423 Adeno-associated virus - 2 Species 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 210000005058 airway cell Anatomy 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 210000000981 epithelium Anatomy 0.000 description 3
- 238000002825 functional assay Methods 0.000 description 3
- 238000001638 lipofection Methods 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 108020003215 DNA Probes Proteins 0.000 description 2
- 239000003298 DNA probe Substances 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 2
- 210000000424 bronchial epithelial cell Anatomy 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000037433 frameshift Effects 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000000464 low-speed centrifugation Methods 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- UHEPSJJJMTWUCP-DHDYTCSHSA-N (2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-[(1r)-1-hydroxyethyl]oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol;sulfuric acid Chemical compound OS(O)(=O)=O.OS(O)(=O)=O.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H]([C@@H](C)O)O2)N)[C@@H](N)C[C@H]1N UHEPSJJJMTWUCP-DHDYTCSHSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 206010052747 Adenocarcinoma pancreas Diseases 0.000 description 1
- 208000010370 Adenoviridae Infections Diseases 0.000 description 1
- 206010060931 Adenovirus infection Diseases 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 1
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 208000029433 Herpesviridae infectious disease Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000800646 Homo sapiens DNA nucleotidylexotransferase Proteins 0.000 description 1
- 241000484121 Human parvovirus Species 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 102000011923 Thyrotropin Human genes 0.000 description 1
- 108010061174 Thyrotropin Proteins 0.000 description 1
- 102100030246 Transcription factor Sp1 Human genes 0.000 description 1
- 101710085924 Transcription factor Sp1 Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 208000011589 adenoviridae infectious disease Diseases 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 210000001552 airway epithelial cell Anatomy 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 238000013276 bronchoscopy Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002298 density-gradient ultracentrifugation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 231100000221 frame shift mutation induction Toxicity 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000013383 initial experiment Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000005567 liquid scintillation counting Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 231100000668 minimum lethal dose Toxicity 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 201000002094 pancreatic adenocarcinoma Diseases 0.000 description 1
- 238000012402 patch clamp technique Methods 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 231100000255 pathogenic effect Toxicity 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000037432 silent mutation Effects 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4712—Cystic fibrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Virology (AREA)
- Toxicology (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Pulmonology (AREA)
- Gastroenterology & Hepatology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Adeno-assoziiertes Virus (AAV) ist üblicherweise defekt hinsichtlich der Replikation und hängt von einer gleichzeitig vorliegenden Adenovirus- oder Herpesvirus-Infektion für eine wirksame Replikation und einen produktiven Lebenszyklus ab. In Abwesenheit eines Helfervirus kann AAV einer stabilen Integration seines Genoms in die Wirtszelle unterliegen; das integrierte AAV-Genom hat jedoch keine pathogene Wirkung. Diese Eigenschaften bilden die Basis für die Entwicklung von AAV-Vektoren für die Genexpression in Säugerzellen. AAV-Vektoren werden zur Expression sowohl von selektiven Markern (Hermonat und Muzyczka, 1984, Proc. Natl. Acad. Sci. (USA) 81: 6466-6470; Tratschin et al., 1985, Mol. Cell. Biol. 5: 3251-3260), wie Neomycinphosphotransferase (neo), als auch von nicht-selektierten Genen unter Einschluss von Chloramphenicolacetyltransferase (cat) (Tratschin et al., 1984, Mol. Cell. Biol. 4: 2072-2081) und Thyroid-stimulierendem Hormon in eukaryontischen Zellen verwendet (Mendelson et al., 1988, Virology 166: 154-165; Wondisford et al., 1988, Molec. Endocrinol. 2: 32-39).Adeno-associated virus (AAV) is typically defective in replication and depends on coexisting adenovirus or herpesvirus infection for effective replication and a productive life cycle. In the absence of a helper virus, AAV can undergo stable integration of its genome into the host cell; however, the integrated AAV genome has no pathogenic effect. These properties provide the basis for the development of AAV vectors for gene expression in mammalian cells. AAV vectors are used to express both selective markers (Hermonat and Muzyczka, 1984, Proc. Natl. Acad. Sci. (USA) 81: 6466-6470; Tratschin et al., 1985, Mol. Cell. Biol. 5: 3251-3260), such as neomycin phosphotransferase (neo), and non-selected genes including chloramphenicol acetyltransferase (cat) (Tratschin et al., 1984, Mol. Cell. Biol. 4: 2072-2081) and thyroid-stimulating hormone in eukaryotic cells (Mendelson et al., 1988, Virology 166: 154-165; Wondisford et al., 1988, Molec. Endocrinol. 2: 32-39).
Für die Verwendung als ein viraler transduzierender Vektor mag AAV einige Vorteile unter Einschluss einer hohen Frequenz von stabiler DNA-Integration und dem Fehlen von pathogener Beschaffenheit von Wildtyp-AAV aufweisen. Eine Begrenzung hinsichtlich AAV ist die der Größe, da die Packungsgrenze für Fremd-DNA in AAV- Partikel ungefähr 4,5 Kilobasen beträgt. Diese Begrenzung ist ein wichtiger Gesichtspunkt für die Entwicklung von AAV-Vektoren für die Expression von Genen oder cDNA-Konstrukten, bei denen die kodierende Gensequenz sich der AAV- Packungsgrenze, d. h. ungefähr 4,5 Kilobasen, annähert.For use as a viral transducing vector, AAV may have several advantages including a high frequency of stable DNA integration and the lack of pathogenicity of wild-type AAV. One limitation regarding AAV is that of size, since the packaging limit for foreign DNA into AAV particles is approximately 4.5 kilobases. This limitation is an important consideration for the development of AAV vectors for the expression of genes or cDNA constructs in which the coding gene sequence approaches the AAV packaging limit, i.e., approximately 4.5 kilobases.
Ein derartiges Gen ist z. B. das zystische Fibrose-Gen (CFTR). Das Atemwegsepithel ist eine kritische Stelle für die zelluläre Dysfunktion bei zystischer Fibrose (CF), der häufigsten tödlich verlaufenden genetischen Erkrankung in Nordamerika, und die Erkrankung ist durch einen Fehler in der Regulation der Cl&supmin;-Leitfähigkeit charakterisiert (Hwang et al., 1989, Science 244: 1351-1353; Li et al., 1988, Nature (London) 331: 358-360; Li et al., 1989, Science 244: 1353-1356; Schoumacher et al., 1987, Nature (London) 330: 752-754). Die cDNA für das CFTR-Gen (Riordan et al., 1989, Science 245: 1066-1073; Rommens et al., 1989, Science 245: 1059-1065) wurde in eukaryontischen Zellen exprimiert. Die Expression des CFTR-Proteins in nicht-epithelialen Zelllinien resultierte in der Ausbildung einer Cl&supmin;-Leitfähigkeit (Andersen et al., 1991, Science 251: 679-682; Kartner et al., 1991, Cell 64: 681-691). Der OF-Defekt wurde durch Expression von CFTR in einer CF-Pankreas-Adenokarzinom-Zelllinie durch stabile Transduktion mit einem Retrovirus-Vektor (Drumm et al., 1990, Cell 62: 1227-1233) und in einer CF-Atemwegs-Zelllinie durch Infektion mit einem Vaccinia-Virus (Rich et al., Nature (London) 347: 358-363) oder einem Adenovirus-Vektor (Rosenfeld et al., 1992, Cell 68: 143-155) komplementiert.One such gene is the cystic fibrosis gene (CFTR). The airway epithelium is a critical site of cellular dysfunction in cystic fibrosis (CF), the most common fatal genetic disease in North America, and the disease is characterized by a defect in the regulation of Cl- conductance (Hwang et al., 1989, Science 244: 1351-1353; Li et al., 1988, Nature (London) 331: 358-360; Li et al., 1989, Science 244: 1353-1356; Schoumacher et al., 1987, Nature (London) 330: 752-754). The cDNA for the CFTR gene (Riordan et al., 1989, Science 245: 1066-1073; Rommens et al., 1989, Science 245: 1059-1065) was expressed in eukaryotic cells. Expression of CFTR protein in non-epithelial cell lines resulted in the formation of Cl- conductance (Andersen et al., 1991, Science 251: 679-682; Kartner et al., 1991, Cell 64: 681-691). The OF defect was complemented by expression of CFTR in a CF pancreatic adenocarcinoma cell line by stable transduction with a retrovirus vector (Drumm et al., 1990, Cell 62: 1227-1233) and in a CF airway cell line by infection with a vaccinia virus (Rich et al., Nature (London) 347: 358-363) or an adenovirus vector (Rosenfeld et al., 1992, Cell 68: 143-155).
Die Gentherapie ist als ein Weg vorgeschlagen worden, um den zellulären Defekt umzukehren und ein Fortschreiten der Erkrankung in betroffenen Patienten zu verhindern. Bisherige Ansätze der Gentherapie haben die in vitro-Transduktion von Zellen (wie Lymphozyten), die leicht wieder in Patienten eingeführt werden können, beinhaltet. Dies mag bei einem intakten Atemwegsepithel schwierig sein. Ein alternativer Ansatz besteht darin, einen Virusvektor zu nutzen, um das CFTR-Gen direkt an die Atemwegsoberfläche zu liefern. Ein Kandidat ist Adeno-assoziiertes Virus (AAV), ein humanes Parvovirus. Die kodierende Sequenz (Riordan et al., 1989, Science 245: 1066-1073) von CFTR beträgt jedoch 4, 4 Kilobasen und nähert sich der Packungsgrenze für AAV-Partikel an. AAV weist also den möglichen Nachteil hinsichtlich einer Verwendung als ein Vektor für CFTR auf, dass es kaum die kodierende Sequenz von CFTR aufnehmen kann (Collins, 1992, Science 256: 774-779).Gene therapy has been proposed as a way to reverse the cellular defect and prevent disease progression in affected patients. Previous gene therapy approaches have involved in vitro transduction of cells (such as lymphocytes) that can be easily reintroduced into patients. This may be difficult in an intact airway epithelium. An alternative approach is to use a viral vector to deliver the CFTR gene directly to the airway surface. One candidate is adeno-associated virus (AAV), a human parvovirus. However, the coding sequence (Riordan et al., 1989, Science 245: 1066-1073) of CFTR is 4.4 kilobases, approaching the packing limit for AAV particles. AAV therefore has the potential disadvantage with regard to use as a vector for CFTR that it can hardly accommodate the coding sequence of CFTR (Collins, 1992, Science 256: 774-779).
Transduzierende AAV-Vektoren werden in dem Patent von Carter et al., (US-Patent 4 797 368, erteilt am 10. Januar 1989) beschrieben. Dieses Patent beschreibt AAV- Vektoren unter Verwendung von AAV-Transkriptionspromotoren p&sub4;&sub0;, p&sub1;&sub9; und p&sub5;.Transducing AAV vectors are described in the patent to Carter et al., (US Patent 4,797,368, issued January 10, 1989). This patent describes AAV vectors using AAV transcription promoters p40, p19 and p5.
AAV-Vektoren müssen eine Kopie der invertierten terminalen Wiederholungssequenzen (ITRs) von AAV an jedem Ende des Genoms aufweisen, um repliziert, in AAV-Partikel gepackt und in wirksamer Weise in Zellchromosomen integriert zu werden. Die ITR besteht aus den Nucleotiden 1 bis 145 am linken Ende des AAV-DNA- Genoms und den entsprechenden Nucleotiden 4681 bis 4536 (d. h. die gleiche Sequenz) am rechten Ende des AAV-DNA-Genoms. AAV-Vektoren müssen also insgesamt mindestens 300 Nucleotide der terminalen Sequenz aufweisen.AAV vectors must have a copy of the AAV inverted terminal repeat sequences (ITRs) at each end of the genome in order to be replicated, packaged into AAV particles, and efficiently integrated into cell chromosomes. The ITR consists of nucleotides 1 to 145 at the left end of the AAV DNA genome and the corresponding nucleotides 4681 to 4536 (i.e., the same sequence) at the right end of the AAV DNA genome. Thus, AAV vectors must have a total of at least 300 nucleotides of terminal sequence.
Zum Packen großer kodierender Regionen, wie des CFTR-Gens, in AAV-Vektorpartikel ist es wichtig, die kleinsten möglichen regulatorischen Sequenzen, wie Transkriptionspromotoren und Poly-A-Additionssignal, zu entwickeln. Auch in dieser letztgenannten Studie und einer weiteren Studie (Beaton et al., 1981, J. Virol. 63: 4450- 4454) wurde gezeigt, dass die AAV-ITR-Sequenz als ein Verstärker für den Transkriptionspromotor des frühen Gens des SV40-Virus dienen kann. Es wurde jedoch nicht gezeigt, dass die AAV-ITR-Region irgendeine intrinsische Transkriptionspromotoraktivität aufweist. In der Tat wird in der Literatur gelehrt, dass die AAV-ITR-Regionen keine transkriptionale Funktion haben (Walsh et al., 1992, PNAS (im Druck)). Daher wurde in den bisherigen AAV-Vektoren ein kleiner Transkriptionspromotor, nämlich der AAV-p&sub5;-Promotor, verwendet, der aus den Nucleotiden 145 bis 268 des AAV-Genoms, angeordnet unmittelbar benachbart zu einer ITR, besteht.To package large coding regions, such as the CFTR gene, into AAV vector particles, it is important to use the smallest possible regulatory sequences, such as transcription promoters and poly-A addition signal. Also in this latter study and another study (Beaton et al., 1981, J. Virol. 63: 4450-4454) it was shown that the AAV ITR sequence can serve as an enhancer for the transcriptional promoter of the SV40 virus early gene. However, the AAV ITR region was not shown to have any intrinsic transcriptional promoter activity. Indeed, the literature teaches that the AAV ITR regions have no transcriptional function (Walsh et al., 1992, PNAS (in press)). Therefore, previous AAV vectors have used a small transcription promoter, namely the AAV p5 promoter, which consists of nucleotides 145 to 268 of the AAV genome, located immediately adjacent to an ITR.
Erfindungsgemäß weist ein neues funktionelles zystische Fibrose-Transmembran- Übertragungsregulatorprotein ("cystic fibrosis transmembrane conductance regulator", CFTR) eine Deletion beliebiger der oder aller aminoterminalen 118 Aminosäuren auf. Ferner umfasst ein neues Polynucleotid die invertierten terminalen Wiederholungssequenzen (ITR-Sequenzen) von Adeno-assoziiertem Virus und eine heterologe Nucleinsäure kodierend das CFTR-Protein, wobei die ITR-Sequenzen als Promotor für die Transkription der Nucleinsäure dienen. Ein Vektor, der das Polynucleotid umfasst, kann bei der Behandlung von zystischer Fibrose, insbesondere bei Menschen, verwendet werden.According to the invention, a novel functional cystic fibrosis transmembrane conductance regulator (CFTR) protein has a deletion of any or all of the amino-terminal 118 amino acids. Furthermore, a novel polynucleotide comprises the inverted terminal repeat (ITR) sequences of adeno-associated virus and a heterologous nucleic acid encoding the CFTR protein, wherein the ITR sequences serve as a promoter for transcription of the nucleic acid. A vector comprising the polynucleotide can be used in the treatment of cystic fibrosis, particularly in humans.
AAV-Vektoren, die die CFTR-cDNA voller Länge enthalten, sind größer als Wildtyp- AAV und schwierig in transduzierende AAV-Partikel zu packen. Eine ausgehend von einem AAV-ITR-Promotor gemäß der Erfindung exprimierte CFTR-cDNA kann jedoch den CF-Defekt komplementieren und wird in geeigneter Weise reguliert, wie durch funktionelle Assays gezeigt wird. Es ist gezeigt worden, dass diese verkürzte CFTR-cDNA in einen AAV-Vektor gepackt und zur Infektion von IB3-Zellen gebracht werden kann, so dass in der Kultur der CF-Defekt komplementiert werden konnte. Es ist auf diese Weise möglich, eine wirksame Komplementierung des CF-Defekts mit AAV-transfizierenden Vektoren zu erzielen.AAV vectors containing the full-length CFTR cDNA are larger than wild-type AAV and difficult to package into transducing AAV particles. However, a CFTR cDNA expressed from an AAV ITR promoter according to the invention can complement the CF defect and is appropriately regulated as shown by functional assays. It has been shown that this truncated CFTR cDNA can be packaged into an AAV vector and made to infect IB3 cells so that the CF defect could be complemented in culture. It is thus possible to achieve efficient complementation of the CF defect with AAV transfecting vectors.
Vorzugsweise ist der in der Erfindung verwendete Vektor ein Adeno-assoziierter Virusvektor. Mit "Adeno-assoziierter Virusvektor" ist ein beliebiger Vektor gemeint, der die ITR-Sequenzen aufweist, die für die Packung des viralen Genoms, die Integration in ein Wirtschromosom und die Promotion der Transkription von zusätzlichen Sequenzen erforderlich sind. Es werden also beliebige Änderungen in der ITR, die diese essentiellen Funktionen aufrechterhalten, als innerhalb dieser Bedeutung liegend angesehen.Preferably, the vector used in the invention is an adeno-associated virus vector. By "adeno-associated virus vector" is meant any vector that has the ITR sequences required for packaging of the viral genome, integration into a host chromosome, and promotion of transcription of additional sequences. Thus, any changes in the ITR that maintain these essential functions are considered to be within this scope.
Das Polynucleotid kann auch eine Poly-A-Stelle umfassen, die imstande ist, translational in umgekehrter Richtung gelesen zu werden. Die Poly-A-Stelle weist SEQ ID NO 6 auf.The polynucleotide may also comprise a poly-A site capable of being read translationally in the reverse direction. The poly-A site comprises SEQ ID NO: 6.
Der virale Vektor kann in einem geeigneten Wirt enthalten sein. Beliebige Zellen können ein geeigneter Wirt sein, solange der Vektor zur Infektion des Zelltyps imstande ist. Ein Beispiel für eine geeignete Wirtszelle ist eine epitheliale Zelle, die eine nicht-funktionelle CFTR-Sequenz enthält.The viral vector can be contained within a suitable host. Any cell can be a suitable host as long as the vector is capable of infecting the cell type. An example of a suitable host cell is an epithelial cell that contains a non-functional CFTR sequence.
Der Vektor kann zusätzliche Sequenzen, wie von Adenovirus, enthalten, die dazu beitragen, eine gewünschte Funktion des Vektors zu bewirken. Zum Beispiel könnte die Addition von Adenovirus-DNA-Sequenzen, die den AAV-Vektor einschließen, einen Ansatz darstellen, um AAV-Vektoren in Adenovirus-Partikel zu packen.The vector may contain additional sequences, such as from adenovirus, that help to achieve a desired function of the vector. For example, the addition of adenovirus DNA sequences encapsulating the AAV vector could provide one approach to packaging AAV vectors into adenovirus particles.
Der Vektor kann auch in einem beliebigen pharmazeutisch annehmbaren Träger für die Verabreichung enthalten sein. Beispiele für geeignete Träger sind Kochsalzlösung und phosphatgepufferte Kochsalzlösung.The vector may also be contained in any pharmaceutically acceptable carrier for administration. Examples of suitable carriers include saline and phosphate buffered saline.
Wie hier verwendet, bedeutet AAV alle Serotypen von AAV. Es ist eine Routinemaßnahme auf diesem Gebiet, die ITR-Sequenzen von anderen Serotypen von AAV zu verwenden, da zu erwarten ist, dass die ITRs von allen AAV-Serotypen ähnliche Strukturen und Funktionen im Hinblick auf Replikation, Integration, Ausschneiden und transkriptionale Mechanismen haben.As used here, AAV means all serotypes of AAV. It is routine practice in the field to use the ITR sequences from other serotypes of AAV, since the ITRs of all AAV serotypes are expected to have similar structures and functions in terms of replication, integration, excision, and transcriptional mechanisms.
Zellen: Die CFBE-IB3-1-Zelllinie (IB3-Zellen) ist eine humane bronchiale epitheliale Zelllinie, die von einem CF-Patienten stammt und mit einem Adeno/SV40-Hybridvirus unsterblich gemacht wurde (Luo et al., 1989, Pflugers Arch. 415: 198-203; Zeitlin et al., 1991, Am. J. Respir. Cell Mol. Biol. 4: 313-319). Diese Zellen behalten charakteristische Eigenschaften von epithelialen Zellen, und sie sind fehlerhaft hinsichtlich der Proteinkinase A-Aktivierung der Chlorid-Leitfähigkeit. IB3-Zellen wurden bei 37ºC in 5% CO&sub2; in LHC-8-Medium (Biofluids, Inc., Md) plus 10% fötalem Kälberserum mit zugegebener Endothelialzellwachstumsergänzung (15 ug/ml) in Kulturflaschen oder Schalen, beschichtet mit Kollagen (150 ug/ml), Fibronectin (10 ug/ml) und Rinderserumalbumin (10 ug/ml), gezüchtet. Die 293-31-Zelllinie (293-Zellen), die ursprünglich von humanen Embryonierenzellen, transformiert mit den Adenovirus Typ 5-E1A- und EIB-Genen, abgeleitet wurde, wurde bei 37ºC in 5% CO&sub2; in Eagle-minimal essentiellem Medium mit 10% fötalem Kälberserum gezüchtet und für die Packung von AAV-Vektoren in Viruspartikel verwendet (Tratschin et al., 1984, Mol. Cell. Biol. 4: 2072-2081).Cells: The CFBE-IB3-1 cell line (IB3 cells) is a human bronchial epithelial cell line derived from a CF patient and immortalized with an adeno/SV40 hybrid virus (Luo et al., 1989, Pflugers Arch. 415: 198-203; Zeitlin et al., 1991, Am. J. Respir. Cell Mol. Biol. 4: 313-319). These cells retain characteristic properties of epithelial cells and are defective in Protein kinase A activation of chloride conductance. IB3 cells were grown at 37°C in 5% CO2 in LHC-8 medium (Biofluids, Inc., Md) plus 10% fetal calf serum with added endothelial cell growth supplement (15 μg/ml) in culture flasks or dishes coated with collagen (150 μg/ml), fibronectin (10 μg/ml), and bovine serum albumin (10 μg/ml). The 293-31 cell line (293 cells), originally derived from human embryonic kidney cells transformed with the adenovirus type 5 E1A and EIB genes, was grown at 37°C in 5% CO2. in Eagle minimal essential medium with 10% fetal calf serum and used for packaging of AAV vectors into virus particles (Tratschin et al., 1984, Mol. Cell. Biol. 4: 2072-2081).
Plasmide: Plasmide wurden unter Anwendung von Standardverfahren (Sambrook et al., 1989, Molecular Cloning, Cold Spring Habor Laboratory, Cold Spring Harbor, New York) konstruiert und gezüchtet. Das Ausgangsplasmid pAV2 enthält die gesamte 4681 Nucleotide umfassende Sequenz von AAV2, inseriert in ein von pBR322 abgeleitetes Plasmid über einen Polylinker und BgIII-Linker (Laughlin et al., 1983, Gene 23: 681-691). Daraus wurde ein Plasmid pYT45 erhalten, das ein prokaryontisches cat-Gen unmittelbar stromabwärts der AAV-Nucleotide 1-263 enthielt (was das cat-Gen unter die Kontrolle des AAV-p&sub5;-Promotors brachte), gefolgt von den AAV- Nucleotiden 1882-1910 und 4162-4681 (enthaltend das Poly-A-Signal und die rechte ITR), stromabwärts vom cat-Gen.Plasmids: Plasmids were constructed and grown using standard procedures (Sambrook et al., 1989, Molecular Cloning, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York). The starting plasmid pAV2 contains the entire 4681 nucleotide sequence of AAV2 inserted into a pBR322-derived plasmid via a polylinker and BglII linker (Laughlin et al., 1983, Gene 23: 681-691). This resulted in a plasmid pYT45 containing a prokaryotic cat gene immediately downstream of AAV nucleotides 1-263 (placing the cat gene under the control of the AAV p5 promoter), followed by AAV nucleotides 1882-1910 and 4162-4681 (containing the poly-A signal and the right ITR) downstream of the cat gene.
pAAVp&sub5;neo ist analog zu pYT45, mit der Ausnahme, dass es eine neo-kodierende Sequenz anstelle des cat-Gens aufweist und die stromabwärtigen AAV-Nucleotide 1882-1910 und 41624492 (das KpnI/SnaB-Fragment) durch 60 bp SPA ersetzt wurden.pAAVp5neo is analogous to pYT45 except that it has a neo coding sequence in place of the cat gene and the downstream AAV nucleotides 1882-1910 and 41624492 (the KpnI/SnaB fragment) have been replaced by 60 bp SPA.
pSA313 ist analog zu pAAVp&sub5;neo, mit der Ausnahme, dass die neo-Sequenz durch die CFTR-kodierende Sequenz, die in einem 4502 bp umfassenden AvaI-SstI-Fragment, ausgeschnitten aus einem Plasmid pBA-CFTRBQ (Drumm et al., 1990, Cell 62: 1227-1233), enthalten war, ersetzt wurde. Diese CFTR-cDNA-Sequenz enthält drei stille Mutationspunkte in Exon 6a, die die prokaryontische Promotorsequenz eliminieren. In pSA313 befindet sich das CFTR-Gen unter der Kontrolle des AAV-p5- Promotors. Das Plasmid pSA315 ist analog zu pSA313, mit der Ausnahme, dass die CFTR-cDNA in der umgekehrten Richtung inseriert ist. Das Plasmid pSA306 ist analog zu pSA315, mit der Ausnahme, dass es eine Deletion der CFTR-Nucleotide 131 bis 486 aufweist. In sowohl pSA315 als auch pSA306 wird das CFTR-Gen ausgehend von den AAV-ITR exprimiert, wie nachstehend erörtert. Die Verknüpfungssequenzen zwischen dem CFTR-Insert und den AAV-Termini und SPA-Regionen von, pSA313, pSA315 und pSA306 wurden durch DNA-Sequenzierung verifiziert. pSA464 wurde von pSA306 durch Spaltung mit AfIII an einem Nucleotid der CFTR- Sequenz und Auffüllen und stumpfendige Ligation mit T4-DNA-Polymerase und T4- DNA-Ligase abgeleitet. Dies erzeugte eine Rahmenverschiebung in der CFTR-Sequenz. Das Vorhandensein dieser Mutation wurde durch DNA-Sequenzierung verifiziert.pSA313 is analogous to pAAVp5neo except that the neo sequence was replaced by the CFTR coding sequence contained in a 4502 bp AvaI-SstI fragment excised from a plasmid pBA-CFTRBQ (Drumm et al., 1990, Cell 62:1227-1233). This CFTR cDNA sequence contains three silent mutation sites in exon 6a that eliminate the prokaryotic promoter sequence. In pSA313, the CFTR gene is under the control of the AAV p5 promoter. Plasmid pSA315 is analogous to pSA313 except that the CFTR cDNA is inserted in the reverse direction. Plasmid pSA306 is analogous to pSA315, except that it has a deletion of CFTR nucleotides 131 to 486. In both pSA315 and pSA306, the CFTR gene is expressed from the AAV ITR, as discussed below. The junction sequences between the CFTR insert and the AAV termini and SPA regions of pSA313, pSA315 and pSA306 were verified by DNA sequencing. pSA464 was derived from pSA306 by digestion with AfIII at one nucleotide of the CFTR sequence and filling in and blunt-end ligation with T4 DNA polymerase and T4 DNA ligase. This created a frameshift in the CFTR sequence. The presence of this mutation was verified by DNA sequencing.
Transfektion: Die DNA-Transfektion in IB3 wurde in Schalen mit 6 oder 24 Vertiefungen unter Anwendung der Lipofection durchgeführt. 30 ug Lipofectionsreagenz (BRL, Gaithersburg, MD) wurden für jeweils 5 bis 6 ug transfizierter DNA verwendet. Lipofectin und DNA wurden in 1,0 ml serumfreiem LHC-8-Medium gemischt und zu den Zellen (5 · 10&sup5; bis 5 · 10&sup6; in 35 mm-Vertiefungen), die bereits mit 0,5 ml Medium bedeckt waren, gegeben. Die Zellen wurden der DNA für 4 Stunden ausgesetzt, mit PBS gespült und dann in 2 ml frischem Medium gezüchtet. Die DNA-Transfektion in 293-Zellen wurde nach dem Standard-DNA-Calciumphosphat-Präzipitationsverfahren durchgeführt.Transfection: DNA transfection into IB3 was performed in 6- or 24-well dishes using lipofection. 30 µg of lipofection reagent (BRL, Gaithersburg, MD) was used for every 5 to 6 µg of transfected DNA. Lipofectin and DNA were mixed in 1.0 ml of serum-free LHC-8 medium and added to cells (5 x 105 to 5 x 106 in 35 mm wells) already covered with 0.5 ml of medium. Cells were exposed to DNA for 4 hours, rinsed with PBS, and then grown in 2 ml of fresh medium. DNA transfection into 293 cells was performed using the standard DNA calcium phosphate precipitation procedure.
Geneticin-Selektion: IB3-Zellen, die für die stabile neo-Expression verwendet wurden, wurden im Verhältnis 1 : 3 auf 10 cm-Schalen 24 bis 48 Stunden nach der Transfektion aufgeteilt, und Geneticinsulfat wurde 72 bis 96 Stunden nach der Transfektion in einer Konzentration von 120 ul/ml zugegeben. Die verwendete Menge an Geneticin basierte auf einer Titration der minimalen letalen Dosis. Geneticin-resistente (genr) Kolonien wurden 14 bis 16 Tage nach Beginn der Selektion gezählt.Geneticin selection: IB3 cells used for stable neo expression were split 1:3 into 10 cm dishes 24 to 48 hours after transfection, and geneticin sulfate was added at 120 μl/ml 72 to 96 hours after transfection. The amount of geneticin used was based on a minimum lethal dose titration. Geneticin-resistant (genr) colonies were counted 14 to 16 days after the start of selection.
CFTR-Komplementierung: IB3-Zellen wurden bei ungefähr 5 · 10&sup5; Zellen pro 35 mm- Schale plattiert. 24 Stunden nach dem Plattieren wurden die Zellen unter Verwendung von 6 ug pAAVp&sub5;neo oder 1 ug pAAVp&sub5;neo zusammen mit 5 ug pSA313, pSA315, pSA306 oder pSA464 durch Lipofection transfiziert, und eine Geneticin- Selektion wurde wie vorstehend beschrieben durchgeführt. Genr-Kolonien wurden 14 Tage nach Beginn der Selektion von jedem der beiden anderen Sätze an Platten isoliert. Jede isolierte Kolonie wurde unter Verwendung eines Klonierungszylinders trpysinbehandelt und ausgehend von 10 mm-Vertiefungen expandiert. Nach Expansion der einzelnen Klone wurden Zellen für ³&sup6;Cl&supmin;-Efflux-Assays und Western-Blot- Analyse vorbereitet.CFTR complementation: IB3 cells were plated at approximately 5 x 105 cells per 35 mm dish. Twenty-four hours after plating, cells were transfected by lipofection using 6 µg pAAVp5neo or 1 µg pAAVp5neo together with 5 µg pSA313, pSA315, pSA306 or pSA464 and geneticin selection was performed as described above. Genr colonies were isolated from each of the other two sets of plates 14 days after selection began. Each isolated colony was trypsinized using a cloning cylinder and expanded from 10 mm wells. After expansion of individual clones, cells were prepared for ³⁶Cl⁻ efflux assays and Western blot analysis.
Chlorid-Efflux-Assays: Chlorid-Efflux-Assays wurden durchgeführt, wie beschrieben (Trapnell et al., 1991, J. Biol. Chem. 266: 10319-10323), und zwar für einzelne Klone bei Passage 4 bis 8. Kurz gesagt wurden Zellen in 35 mm-Schalen gezüchtet und mit 3 uCi ³&sup6;Cl&supmin; in bicarbonatfreier ausgewogener Ringer-Salzlösung für 2 bis 9 Stunden beladen. Erste Versuche, die wiederholte Assays mit dem gleichen Klon von Zellen beinhalteten, zeigten keine signifikanten Unterschiede im Efflux nach verschiedenen Beladungszeiten, und eine Beladungszeit von 2 Stunden wurde dann für anschließende Versuche gewählt. Nach Beladen wurden die Zellen 2- bis 3-mal mit eiskalter 0,15 M NaCl, 5 mM Hepes, pH-Wert 7,4, gewaschen. 1 ml Ringer-Lösung wurde zugegeben und unmittelbar anschließend wieder entfernt (Zeitpunkt Null) und durch 1 ml Ringer-Lösung ersetzt. Dieser Prozess wurde zu verschiedenen Zeitpunkten über eine Zeitspanne von 15 Minuten wiederholt. Die Menge an Radioaktivität in jeder Probe von 1 ml des Mediums wurde durch Flüssigszintillationszählung bestimmt. Nachdem die letzte Probe zum Zeitpunkt 15 Minuten entfernt war, wurde die restliche Radioaktivität, die in den Zellen verblieb, durch Lyse der Zellen in 0,2 N NaOH und Szintillationszählung bestimmt. Die Gesamtradioaktivität von allen Zeitpunkten und des Gesamtzelllysats wurde dann summiert, und der Efflux wurde als Prozentsatz der Gesamtradioaktivität, die in den Zellen zu jedem Zeitpunkt verblieb, ausgedrückt. Efflux-Untersuchungen wurden dann für jeden untersuchten Klon unter Verwendung von 10 um Forskolin, gelöst in Ringer-Efflux-Lösung, beginnend beim Zeitpunkt Null, wiederholt. Die relative Stimulierung durch Forskolin wurde dann durch Berechnung der Rate (ka) des Effluxes in Gegenwart von Forskolin berechnet und als ein Verhältnis relativ zur Rate des Effluxes in Abwesenheit von Forskolin ausgedrückt. Für IB3-Zellen, die den CF-Defekt zeigen, ist dieses Verhältnis 1,0 oder kleiner. Für Zellen, die mit CFTR-Vektoren komplementiert sind, ist dieses Verhältnis größer als 1,0.Chloride efflux assays: Chloride efflux assays were performed as described (Trapnell et al., 1991, J. Biol. Chem. 266: 10319-10323) for individual clones at passage 4 to 8. Briefly, cells were grown in 35 mm dishes and loaded with 3 uCi 36Cl- in bicarbonate-free balanced Ringer's salt solution for 2 to 9 hours. Initial experiments involving repeated assays with the same clone of cells showed no significant differences in efflux after different loading times, and a loading time of 2 hours was then chosen for subsequent experiments. After loading, cells were washed 2 to 3 times with ice-cold 0.15 M NaCl, 5 mM Hepes, pH 7.4. 1 ml of Ringer's solution was added and immediately removed (time zero) and replaced with 1 ml of Ringer's solution. This process was repeated at various time points over a 15-minute period. The amount of radioactivity in each 1 ml sample of medium was determined by liquid scintillation counting. After the last sample was removed at time 15 minutes, the residual radioactivity remaining in the cells was determined by lysing the cells in 0.2 N NaOH and scintillation counting. The total radioactivity from all time points and the total cell lysate was then summed and the efflux was expressed as a percentage of the total radioactivity remaining in the cells at each time point. Efflux assays were then repeated for each clone examined using 10 µm forskolin dissolved in Ringer's efflux solution starting at time zero. The relative stimulation by forskolin was then calculated by calculating the rate (ka) of efflux in the presence of forskolin and expressed as a ratio relative to the rate of efflux in the absence of forskolin. For IB3 cells displaying the CF defect, this ratio is 1.0 or less. For cells complemented with CFTR vectors, this ratio is greater than 1.0.
Packen von AAV2-CFTR-Vektoren: Das Packen von AAV2-Vektoren wurde bewirkt, indem zuerst 293-31-Zellen (gezüchtet bis zur Semikonfluenz in 100 mm-Schalen) mit Adenovirus Typ 5 (Ad5) (bei einer Multiziplität von 5 bis 10 infektiösen Einheiten/Zelle) infiziert und dann das Vektorplasmid pSA306 oder pSA464 (1 ug) und das Packungs-pAAV/Ad (5 ug) unter Anwendung des CaPO&sub4;-Transfektionsverfahrens cotransfiziert wurden (Tratschin et al., 1984, Mol. Cell. Biol. 4: 2072-2081). Medium wurde 2 Stunden vor der Transfektion ersetzt, und Ad5 wurde in das Medium 1 Stunde vor der Transfektion überimpft. Das Medium wurde 4 Stunden nach der Transfektion ausgetauscht. Zellen wurden für 3 bis 4 Tage gezüchtet und dann durch vorsichtiges Abkratzen ins Medium geerntet. Für die direkte Analyse der Packung wurden die Lysate 3-mal eingefroren und aufgetaut, Bruchstücke wurden durch Zentrifugation mit geringer Geschwindigkeit entfernt, und dann wurde auf 60ºC für 15 Minuten zur Inaktivierung von Adenovirus erwärmt. Für die Verwendung von Vektoren bei der Transduktion von IB3-Zellen wurden die abgekratzten Zellen durch Zentrifugation mit geringer Geschwindigkeit (4000 U/min) konzentriert und in 10 mM Tris-HCl-Puffer, pH-Wert: 8,0, resuspendiert. Zellen wurden durch 3-maliges Gefrieren und Auftauen lysiert, und das Virus wurde unter Anwendung der CsCl- Dichtegradienten-Ultrazentrifugation konzentriert und gereinigt (Carter et al., 1979, Virology 92: 449-462). Für Transduktionsassays herangezogene Fraktionen wurden dann gegen 1 · SSC 3-mal für 1 Stunde bei Raumtemperatur dialysiert und bei 60ºC für 15 Minuten wärmebehandelt, um mögliches restliches Adenovirus zu inaktivieren. Der Titer der Vektorzubereitung wurde durch DNA-Slot-Blot-Hybridisierung bestimmt (Samulski et al., 1989 J. Virol. 63: 3822-3828).Packaging of AAV2-CFTR vectors: Packaging of AAV2 vectors was accomplished by first infecting 293-31 cells (grown to semiconfluence in 100 mm dishes) with adenovirus type 5 (Ad5) (at a multiplicity of 5 to 10 infectious units/cell) and then cotransfecting the vector plasmid pSA306 or pSA464 (1 µg) and the packaging pAAV/Ad (5 µg) using the CaPO4 transfection procedure (Tratschin et al., 1984, Mol. Cell. Biol. 4: 2072-2081). Medium was replaced 2 hours before transfection and Ad5 was inoculated into the medium 1 hour before transfection. Medium was replaced 4 hours after transfection. Cells were cultured for 3 to 4 days and then harvested by gentle scraping into the medium. For direct analysis of the packet, lysates were frozen and thawed 3 times, debris was removed by low-speed centrifugation, and then warmed to 60ºC for 15 minutes to inactivate adenovirus. For use of vectors in transduction of IB3 cells, scraped cells were concentrated by low-speed centrifugation (4000 rpm) and resuspended in 10 mM Tris-HCl buffer, pH 8.0. Cells were lysed by freezing and thawing 3 times, and virus was concentrated and purified using CsCl density gradient ultracentrifugation (Carter et al., 1979, Virology 92: 449-462). Fractions used for transduction assays were then dialyzed against 1 x SSC three times for 1 hour at room temperature and heat treated at 60°C for 15 minutes to inactivate possible residual adenovirus. The titer of the vector preparation was determined by DNA slot blot hybridization (Samulski et al., 1989 J. Virol. 63: 3822-3828).
AAV2-Partikel-vermittelte Transduktion: Eine Viruspartikel-vermittelte neo-Transfektion von IB3-1-CF-Bronchialepithelzellen wurde durch Infektion von 10³ bis 4 · 10&sup4; Zellen in individuellen Vertiefungen einer Schale mit 24 Vertiefungen mit einer bekannten Anzahl von AAV-CFTR-Vektorpartikeln pro Zelle bewirkt. Die Zellen wurden für mehrere Wochen gezüchtet und auf Komplementierung des CF-Defekts untersucht.AAV2 particle-mediated transduction: Virus particle-mediated neo-transfection of IB3-1 CF bronchial epithelial cells was accomplished by infecting 103 to 4 x 104 cells in individual wells of a 24-well dish with a known number of AAV-CFTR vector particles per cell. Cells were grown for several weeks and assayed for complementation of the CF defect.
Expression eines Gens ausgehend von einem Promotor, der nur AAV-ITR umfasst: Im Verlauf der Konstruktion von Vektoren, die zur Expression von CTFR ausgehend vom AAV-p&sub5;-Promotor entwickelt wurden, haben wir zufällig ein solches Plasmidkonstrukt erzeugt, bei dem das Gen in der umgekehrten Richtung inseriert war. Man hätte nicht erwartet, dass dieses Vektorplasmid funktioniert, da es keinen bekannten Promotor in der richtigen Orientierung aufwies. Aufgrund eines glücklichen Zufalls in einem Laborversuch haben wir jedoch dieses Plasmidkonstrukt untersucht und entdeckt, dass es die Funktion der Expression des Gens erfüllt. Dies hat uns veranlasst, das Konstrukt sorgfältig zu untersuchen, und wir haben geschlossen, dass die ITR als ein Transkriptionspromotor wirken mag. Als Folge haben wir spezielle Versuche, die im einzelnen in dieser Anmeldung dargelegt sind, durchgeführt, die zeigen, dass die ITR als ein Transkriptionspromotor wirken kann.Expression of a gene from a promoter comprising only AAV ITR: In the course of constructing vectors designed to express CTFR from the AAV p5 promoter, we accidentally generated such a plasmid construct in which the gene was inserted in the reverse direction. This vector plasmid would not have been expected to function since it did not have a known promoter in the correct orientation. However, due to a fortunate coincidence in a laboratory experiment, we examined this plasmid construct and discovered that it fulfilled the function of expressing the gene. This prompted us to carefully examine the construct and we concluded that the ITR may act as a transcription promoter. As a result, we have carried out specific experiments, detailed in this application, which demonstrate that the ITR can act as a transcription promoter.
AAV-Vektoren brauchen also nur die ITR-Sequenzen und eine Poly-A-Stelle aufzuweisen, um ein Fremdgen zu exprimieren. Dies ist ein neuer und neuartiger Befund und widerspricht in der Tat der Erwartung auf der Basis bisheriger Lehren, worin allgemein übereinstimmende Ansicht herrschte, dass die ITRs von AAV nicht transkriptional aktiv sind (Walsh et al., 1992, PNAS (im Druck)). Wir zeigen hier, dass die AAV-ITR transkriptional aktiv in Assays der stabilen Integration ist, so dass eine funktionelle CFTR-cDNA exprimiert wird.AAV vectors therefore only need to have the ITR sequences and a poly-A site to express a foreign gene. This is a new and novel finding and indeed contradicts the expectation based on previous teachings, where there was a general consensus that the AAV ITRs are not transcriptionally active (Walsh et al., 1992, PNAS (in press)). We show here that the AAV ITR is transcriptionally active in stable integration assays such that a functional CFTR cDNA is expressed.
Konstruktion von AAV-CFTR-Vektoren: Fig. 1 zeigt die Struktur mehrerer AAV- CFTR-Vektoren, die entwickelt wurden, um CFTR entweder ausgehend vom AAVp&sub5;-Promotor, wie in pSA313, oder ausgehend von der AAV-ITR, wie in pSA313 oder pSA306, zu exprimieren. In pSA313 ist die CFTR-cDNA (kreuzschraffierte Region und Pfeilkopf) von 4500 Nucleotiden stromabwärts vom AAV-p5-Promotor, d. h. AAV-Nucleotiden 1 bis 263, auf der linken Seite inseriert. Es enthält die synthetische Poly-A-Stelle. In pSA315 wurde die CFTR-cDNA in entgegengesetzter Orientierung inseriert, so dass sie sich stromabwärts von der rechten AAV-ITR-Sequenz und der synthetischen Poly-A-Stelle befindet. In dieser Konfiguration wird das CFTR ausgehend von der rechten ITR exprimiert, und die Poly-A-Stelle kann translational durchgehend in der umgekehrten Richtung gelesen werden, wie vorstehend angemerkt. In pSA306 ist das Konstrukt exakt analog zu pSA313, mit der Ausnahme, dass 350 Nucleotide der aminoterminalen Region von CFTR-cDNA (Nucleotide 131 bis 486) deletiert worden sind. Dies führt zur Expression, ausgehend von der rechten ITR, eines Fusionsproteins, das aus einem N-terminal deletierten CFTR-Protein mit einer Fusionsregion am N-Terminus, die aus dem durchgehenden Ablesen der synthetischen Poly-A-Stelle in der umgekehrten Richtung, d. h. von rechts nach links in der Orientierung der Fig. 1, stammt, besteht.Construction of AAV-CFTR vectors: Figure 1 shows the structure of several AAV-CFTR vectors designed to express CFTR either from the AAVp5 promoter, as in pSA313, or from the AAV ITR, as in pSA313 or pSA306. In pSA313, the CFTR cDNA (cross-hatched region and arrowhead) is inserted from 4500 nucleotides downstream of the AAV p5 promoter, i.e., AAV nucleotides 1 to 263, on the left. It contains the synthetic poly-A site. In pSA315, the CFTR cDNA was inserted in the opposite orientation so that it is downstream of the right AAV ITR sequence and the synthetic poly-A site. In this configuration, CFTR is expressed from the right ITR and the poly-A site can be read translationally throughout in the reverse direction, as noted above. In pSA306, the construct is exactly analogous to pSA313, except that 350 nucleotides of the amino-terminal region of CFTR cDNA (nucleotides 131 to 486) have been deleted. This results in expression from the right ITR of a fusion protein consisting of an N-terminally deleted CFTR protein with a fusion region at the N-terminus derived from reading the synthetic poly-A site throughout in the reverse direction, i.e., right to left in the orientation of Figure 1.
Das Plasmid pSA464 ist eine Kontrolle, die von pSA306 durch Einführung einer Rahmenverschiebungsmutation an einer AfIII-Stelle bei Nucleotid 993, so dass kein funktionelles CFTR-Protein gebildet werden kann, abgeleitet ist. Dies ist durch einen vertikalen ausgeführten Balken bezeichnet.Plasmid pSA464 is a control derived from pSA306 by introducing a frameshift mutation at an AfIII site at nucleotide 993 so that no functional CFTR protein can be produced. This is indicated by a vertical outline bar.
Expression von CFTR und Komplementierung des CF-Defekts in stabilen Transfektanten von CF-Atemwegszellen: Um die Effizienz der AAV-CFTR-Vektoren für die Expression des CFTR-Gens zu untersuchen, wurden die in Fig. 1 gezeigten Plasmide jeweils unter Verwendung von kationischen Liposomen (Lipofectin-Reagenz, BRL, Gaithersburg, Md) in IB3-Zellen zusammen mit pAAVp&sub5;neo transfiziert. Kontrollzellen wurden mit pAAVp&sub5;neo allein transfiziert. Genr-Kolonien wurden von den ursprünglichen Platten entnommen und in stabile Kulturen expandiert und hinsichtlich funktioneller Expression des CFTR-Proteins charakterisiert. Alle diese Klone waren während wiederholter Passagen über mehrere Monate in Kultur stabil hinsichtlich der neo-Expression.Expression of CFTR and complementation of the CF defect in stable transfectants of CF airway cells: To examine the efficiency of the AAV-CFTR vectors for expression of the CFTR gene, the plasmids shown in Figure 1 were each transfected into IB3 cells together with pAAVp5neo using cationic liposomes (Lipofectin reagent, BRL, Gaithersburg, Md). Control cells were transfected with pAAVp5neo alone. Genr colonies were taken from the original plates and expanded into stable cultures and assayed for functional expression of the CFTR protein. All of these clones were stable with respect to neo expression during repeated passages over several months in culture.
Eine Expression von CFTR kann in funktionellen Assays in IB3-Zellen, die den zystischen Defekt aufweisen, nachgewiesen werden: Ein funktionelles CFTR-Protein sollte bei diesen Zellen eine Cl&supmin;-Leitfähigkeit wieder herstellen, die durch cAMP reguliert und damit durch Forskolin stimuliert wird (Drumm et al., 1990, Cell 62: 1227- 1233; Hwang et al., 1989, Science 244: 1351-1353; Li et al., 1988, Nature (London) 331: 358-360; Li et al., 1989, Science 244: 1353-1356; Rich et al., 1990, Nature (London) 347: 358-363). Beispiele für den Cl&supmin;-Efflux sind in Fig. 2 gezeigt, und eine Zusammenfassung der Geschwindigkeitskonstanten, die aus diesen Daten berechnet wurden, ist in Fig. 3 gezeigt. Sowohl Ausgangs-IB3-Zellen als auch der Kontroll- N6-Klon (transfiziert allein mit pAAVp&sub5;neo) zeigten eine relativ geringe Cl&supmin;-Effluxrate, die nicht auf Forskolin ansprach (Fig. 2). Im Gegensatz dazu zeigten eine Anzahl von Klonen der AAV-CFTR-Transfektanten, wie in Fig. 2 für die Klone C35 und C38 (beide abgeleitet aus der Transfektion mit pSA306) gezeigt ist, signifikant erhöhte Basisraten des Effluxes; in noch signifikanterer Weise zeigten sie den charakteristischen zusätzlichen Anstieg des Effluxes als Reaktion auf Forskolin. Der Efflux wurde in Abwesenheit ( ) oder Gegenwart ( )von 20 uM Forskolin gemessen.Expression of CFTR can be demonstrated in functional assays in IB3 cells that display the cystic defect: a functional CFTR protein should restore Cl- conductance in these cells, which is regulated by cAMP and thus stimulated by forskolin (Drumm et al., 1990, Cell 62: 1227-1233; Hwang et al., 1989, Science 244: 1351-1353; Li et al., 1988, Nature (London) 331: 358-360; Li et al., 1989, Science 244: 1353-1356; Rich et al., 1990, Nature (London) 347: 358-363). Examples of Cl- efflux are shown in Figure 2 and a summary of the rate constants calculated from these data is shown in Figure 3. Both parental IB3 cells and the control N6 clone (transfected with pAAVp5neo alone) showed a relatively low rate of Cl- efflux that was unresponsive to forskolin (Figure 2). In contrast, a number of clones of the AAV-CFTR transfectants, as shown in Figure 2 for clones C35 and C38 (both derived from transfection with pSA306), showed significantly increased basal rates of efflux; more significantly, they showed the characteristic additional increase in efflux in response to forskolin. Efflux was measured in the absence ( ) or presence ( ) of 20 µM forskolin.
Fig. 3 zeigt Cl&supmin;-Efflux-Assays in IB3-1-Zellen, komplementiert mit dem CFTR-Gen durch stabile Transfektion von AAV-CFTR-Vektoren. IB3-Zellen wurden mit pAAVp&sub5;neo und pSA313, pSA315, pSA306 oder pSA464 transfiziert. Geneticin-resistente Kolonien wurden selektiert und auf Ansprechen auf eine Forskolin-Stimulation in einem Cl&supmin;-Efflux-Assay analysiert. Das Verhältnis der Rate des Effluxes in Gegenwart von Forskolin zur Rate in Abwesenheit von Forskolin (ka (Forskolin)/ka (Ringer-Lösung)) ist aufgetragen. Für jeden Vektor bezeichnet n die Anzahl der einzelnen Klone, die eine Forskolin-Reaktion zeigten (schraffierte Balken) oder nicht zeigten (leere Balken). Für jede Gruppe von Klonen wurde das mittlere Verhältnis berechnet. Für die Ausgangs-IB3-1-Zellen oder den Zellklon, der mit pAAVp&sub5;neo allein transfiziert war, bezeichnet n die Anzahl der Messungen am gleichen Klon.Figure 3 shows Cl- efflux assays in IB3-1 cells complemented with the CFTR gene by stable transfection of AAV-CFTR vectors. IB3 cells were transfected with pAAVp5neo and pSA313, pSA315, pSA306 or pSA464. Geneticin-resistant colonies were selected and analyzed for response to forskolin stimulation in a Cl- efflux assay. The ratio of the rate of efflux in the presence of forskolin to the rate in the absence of forskolin (ka (forskolin)/ka (Ringer's solution)) is plotted. For each vector, n denotes the number of individual clones that showed (hatched bars) or did not show (open bars) a forskolin response. For each group of clones, the mean ratio was calculated. For the parent IB3-1 cells or the cell clone transfected with pAAVp5neo alone, n denotes the number of measurements on the same clone.
Fig. 3 zeigt, dass 28% (4/14) der pSA313-Transfektanten und 50% (6/12) der Transfektanten mit pSA315 oder pSA306 hinsichtlich des Defekts komplementiert waren. Dies zeigt, dass alle drei Vektorkonstrukte funktionell waren. Die erhöhte Anzahl an funktionellen Klonen mit pSA313 oder pSA306 mag zeigen, dass der ITR- Promotor in den Vektoren wirksamer als der p&sub5;-Promotor in pSA313 war. Keiner der mit dem Kontrollvektor pSA464 transfizierten Klone war komplementiert. Diese Ergebnisse zeigen zwei neue Befunde. Erstens funktioniert die AAV-ITR-Sequenz in wirksamer Weise auch als ein Promotor bei stabiler Integration in Zellen, die durch die Funktion von sowohl pSA313 als auch pSA306 gezeigt wird. Zweitens ist das verkürzte CFTR-Protein, das ausgehend von pSA306 exprimiert wird, auch funktionell hinsichtlich der Komplementierung des CFTR-Fehlers. In dem pSA306-Vektor exprimiert der größte offene Leserahmen ein Fusionsprotein durch durchgehendes Lesen des größten Teils der synthetischen Poly-A-Sequenz in umgekehrter Richtung.Fig. 3 shows that 28% (4/14) of the pSA313 transfectants and 50% (6/12) of the transfectants with pSA315 or pSA306 were complemented for the defect. This indicates that all three vector constructs were functional. The increased number of functional clones with pSA313 or pSA306 may indicate that the ITR promoter in the vectors was more efficient than the p5 promoter in pSA313. None of the clones transfected with the control vector pSA464 were complemented. These results demonstrate two novel findings. First, the AAV ITR sequence also functions efficiently as a promoter upon stable integration into cells, as demonstrated by the function of both pSA313 and pSA306. Second, the truncated CFTR protein expressed from pSA306 is also functional in complementing the CFTR defect. In the pSA306 vector, the largest open reading frame expresses a fusion protein by reading most of the synthetic poly-A sequence through in reverse.
Die Beobachtungen mit pSA306 sind besonders wichtig, da zuvor gelehrt wurde, dass die Region von CFTR, die in pSA306 deletiert ist, in der Tat essentiell für die CFTR-Funktion ist, wenn CFTR ausgehend von verschiedenen anderen Vektoren, wie Vaccinia, exprimiert wird (Andersen et al., 1991, Science 251: 679-682). Außerdem ist die Gesamtgröße des AAV-CFTR-Vektors in pSA306 äquivalent zur Größe von Wildtyp-AAV-DNA, und damit sollte dieser Vektor in AAV-Partikel zur Verwendung als Transduktionsvektor packbar sein. Wir haben das Packen des pSA306- Vektors in AAV-Partikel untersucht. Um das Packen des AAV-CFTR-Vektors pSA306 in AAV-Partikel zu untersuchen, wurden Adenovirus-infizierte 293-Zellen mit dem AAV-CFTR-Vektor (pSA306) in Gegenwart (+) oder Abwesenheit (-) des AAV- Packungsplasmids (pAAV/Ad) transfiziert. Lysate der Kulturen wurden 72 Stunden nach Transfektion hergestellt und verwendet, um frische Kulturen von Adenovirus-infizierten 293-Zellen in Abwesenheit (- Wildtyp) oder Gegenwart (+ Wildtyp) von zugegebenen Wildtyp-AAV-Partikeln (Multiplizität der Infektion = 3) zu infizieren. 40 Stunden nach der Infektion wurden Hirt-Lysate der Zellen hergestellt, und virale DNA wurde einer Elektrophorese in einem Agarosegel unterzogen, auf Nitrocellulose übertragen und mit einer CFTR-³²P-DNA-Sonde, die spezifisch für den SA306- Vektor (306) war, oder mit einer AAV-³²P-DNA-Sonde, die spezifisch für Wildtyp- AAV (AAV) war, hybridisiert. Die Replikation des SA306-Vektors wurde nur nachgewiesen in Lysaten, die in Gegenwart von pAAV/Ad gepackt worden waren und die anschließend in Gegenwart von zugegebenen Wildtyp-AAV-Partikeln infiziert worden waren. Dies zeigt, dass der AAV-CFTR-Vektor in transduzierende AAV-Partikel gepackt werden konnte.The observations with pSA306 are particularly important because it has been previously taught that the region of CFTR deleted in pSA306 is in fact essential for CFTR function when CFTR is expressed from various other vectors, such as vaccinia (Andersen et al., 1991, Science 251: 679-682). Furthermore, the overall size of the AAV-CFTR vector in pSA306 is equivalent to the size of wild-type AAV DNA, and thus this vector should be packageable into AAV particles for use as a transduction vector. We have investigated the packaging of the pSA306 vector into AAV particles. To study packaging of the AAV-CFTR vector pSA306 into AAV particles, adenovirus-infected 293 cells were transfected with the AAV-CFTR vector (pSA306) in the presence (+) or absence (-) of the AAV packaging plasmid (pAAV/Ad). Lysates of the cultures were prepared 72 hours after transfection and used to infect fresh cultures of adenovirus-infected 293 cells in the absence (- wild type) or presence (+ wild type) of added wild-type AAV particles (multiplicity of infection = 3). 40 hours post-infection, Hirt lysates of cells were prepared and viral DNA was electrophoresed in an agarose gel, transferred to nitrocellulose and hybridized with a CFTR-32P DNA probe specific for the SA306 vector (306) or with an AAV-32P DNA probe specific for wild-type AAV (AAV). Replication of the SA306 vector was only detected in lysates that had been packaged in the presence of pAAV/Ad and subsequently infected in the presence of added wild-type AAV particles, demonstrating that the AAV-CFTR vector could be packaged into transducing AAV particles.
Um die Funktionalität des transduzierenden SA306-AAV-CFTR-Vektors zu zeigen, wurden IB3-Zellkulturen mit Vektorpräparaten, die gepackten SA306 oder einen SA464-Kontrollvektor enthielten, bei einer Multiplizität von ungefähr 300 bis 400 Vektorpartikeln pro Zelle infiziert. Die Kulturen wurden mehrere Wochen in Kultur gezüchtet und auf funktionelle Expression von CFTR untersucht. Wie in Fig. 4 gezeigt ist, war die Kultur, die mit dem SA306-Vektor (A0-Zellen) infiziert war, funktionell komplementiert hinsichtlich des CF-Fehlers, wie durch das Ansprechen auf Forskolin gezeigt wird. Im Gegensatz dazu war die Kontrollkultur, die mit dem SA464-Kontrollvektor infiziert war (2F2-Zellen), nicht komplementiert, wie durch das Fehlen einer Reaktion auf Forskolin gezeigt wird.To demonstrate the functionality of the transducing SA306-AAV-CFTR vector, IB3 cell cultures were transfected with vector preparations containing packaged SA306 or a SA464 control vector were infected at a multiplicity of approximately 300 to 400 vector particles per cell. Cultures were grown in culture for several weeks and examined for functional expression of CFTR. As shown in Figure 4, the culture infected with the SA306 vector (A0 cells) was functionally complemented for the CF defect as demonstrated by the response to forskolin. In contrast, the control culture infected with the SA464 control vector (2F2 cells) was not complemented as demonstrated by the lack of response to forskolin.
Die in den Figg. 2, 3 und 4 gezeigten Ergebnisse wurden durch andere funktionelle Assays unter Einschluss des Immunfluoreszenznachweises des CFTR-Proteins und elektrophysiologischer Assays unter Anwendung von Patch-Clamp-Techniken bestätigt.The results shown in Figures 2, 3 and 4 were confirmed by other functional assays including immunofluorescence detection of CFTR protein and electrophysiological assays using patch clamp techniques.
Die vorstehend beschriebenen Ergebnisse zeigen die Komplementierung und die stabile Korrektur des CF-Defekts in Atemwegepithelzellen nach durch kationische Liposomen vermittelter Transfektion mit AAV-CFTR-Vektor oder nach Infektion der Zellen mit transduzierenden AAV-CFTR-Vektorpartikeln. Diese Ergebnisse zeigen die Brauchbarkeit der AAV-Vektoren und der Erfindung, wie sie mit AAV-Vektoren unter Verwendung einer ITR als Promotor und Einführen einer synthetischen Poly-A- Stelle mit besonderen Merkmalen verwirklicht wird.The results described above demonstrate complementation and stable correction of the CF defect in airway epithelial cells following cationic liposome-mediated transfection with AAV-CFTR vector or infection of the cells with AAV-CFTR vector transducing particles. These results demonstrate the utility of the AAV vectors and of the invention as implemented with AAV vectors using an ITR as a promoter and introducing a synthetic poly-A site with specific features.
Unsere Studien mit den AAV-CFTR-Vektoren wurden als eine anfängliche Stufe für die Bewertung der Möglichkeit der Verwendung eines AAV-Vektors für die Gentherapie durchgeführt. In dieser Hinsicht ist es wichtig, dass wir eine stabile Komplementierung des CF-Defekts in Zellen, die vom Bronchialepithel abgeleitet sind, gezeigt haben, da dies die Stelle der hauptsächlichen klinischen Manifestation der Erkrankung und mit größter Wahrscheinlichkeit die Stelle, auf die Gentherapievektoren gerichtet sein werde, ist. Die Komplementierungsversuche mit einem retroviralen Vektor (Drumm et al., 1990, Cell 62A: 1227-1233), über die berichtet wurde, wurden mit CFPAC-Zellen durchgeführt, wobei es sich um Pankreaszellen und nicht Atemwegszellen handelt.Our studies with the AAV-CFTR vectors were performed as an initial step in evaluating the feasibility of using an AAV vector for gene therapy. In this regard, it is important that we have demonstrated stable complementation of the CF defect in cells derived from the bronchial epithelium, since this is the site of the main clinical manifestation of the disease and most likely the site to which gene therapy vectors will be directed. The complementation experiments with a retroviral vector (Drumm et al., 1990, Cell 62A: 1227-1233) reported were performed with CFPAC cells, which are pancreatic cells and not airway cells.
AAV-Vektoren, insbesondere diejenigen, die ein Gen ausgehend von der ITR exprimieren, können zur Behandlung von menschlichen Patienten in folgender allgemeiner Weise verwendet werden. Wenn der Vektor als transduzierende Partikel abgegeben werden soll, kann er zuerst in AAV-Partikel in der allgemeinen Weise, wie sie hier für den AAV-CFTR-Vektor SA306 beschrieben wurde, oder unter Verwendung eines beliebigen anderen geeigneten Packungssystems gepackt werden. Der transduzierende AAV-Vektor kann gereinigt werden, um jegliche Nebenprodukte oder toxischen Verbindungen durch Bandenbildung in CsCl oder nach einem beliebigen anderen geeigneten Verfahren zu entfernen und/oder zu inaktivieren. Für AAV-Vektoren, die ein funktionelles CFTR-Gen oder ein beliebiges anderes Gen zur Behandlung einer Lungenkrankheit exprimieren, kann der Vektor direkt in vivo an die Lunge entweder durch Intubation und Bronchoskopie oder durch einen Zerstäuber oder durch ein Nasenspray oder durch Inhalation einer geeigneten Formulierung von Nasentropfen verabreicht werden. Für diese oder andere Erkrankungen können die AAV-Vektorpartikel in vivo durch intravenöse oder enterische Verabreichung oder vielleicht subkutan verabreicht werden.AAV vectors, particularly those expressing a gene from the ITR, can be used to treat human patients in the following general manner. If the vector is to be delivered as transducing particles, it can first be packaged into AAV particles in the general manner described herein for the AAV-CFTR vector SA306 or using any other suitable packaging system. The transducing AAV vector can be purified to remove and/or inactivate any byproducts or toxic compounds by banding in CsCl or by any other suitable method. For AAV vectors expressing a functional CFTR gene or any other gene for treating a lung disease, the vector can be administered directly in vivo to the lungs either by intubation and bronchoscopy or by nebulizer or by nasal spray or by inhalation of a suitable formulation of nasal drops. For these or other diseases, the AAV vector particles can be administered in vivo by intravenous or enteric administration or perhaps subcutaneously.
Der Vektor kann auch in ex vivo-Gentherapieverfahren durch Entfernung von Zellen aus einem Patienten, anschließende Infektion mit den AAV-Vektorpartikeln und Rückführung der Zellen in den Patienten nach einer Zeitspanne der Erhaltung und/oder des Wachstums ex vivo verwendet werden.The vector can also be used in ex vivo gene therapy procedures by removing cells from a patient, subsequently infecting them with the AAV vector particles, and reintroducing the cells into the patient after a period of maintenance and/or growth ex vivo.
Die AAV-Vektoren können auch bei in vivo- oder ex vivo-Gentherapieverfahren in verschiedenen anderen Formulierungen verabreicht werden, in denen das Vektorplasmid als freie DNA entweder durch direkte Injektion oder nach Einfügen in andere Abgabesysteme, wie Liposomen, oder Systeme, die entwickelt wurden, um ihr Ziel durch Rezeptor-vermittelte oder andere endozytotische Verfahren zu erreichen, verabreicht werden. Der AAV-Vektor kann auch in ein Adenovirus, Retrovirus oder anderes Virus eingeführt werden, das dann als das Abgabevehikel verwendet werden kann.The AAV vectors can also be administered in in vivo or ex vivo gene therapy procedures in various other formulations in which the vector plasmid is administered as free DNA either by direct injection or after incorporation into other delivery systems such as liposomes or systems designed to reach their target by receptor-mediated or other endocytic methods. The AAV vector can also be introduced into an adenovirus, retrovirus or other virus which can then be used as the delivery vehicle.
Eine zusätzliche Anwendung des vorliegenden Befundes besteht in der Verwendung der Sequenzen der ITR, die für die Promotion verantwortlich sind, in anderen Vektoren. Die IRT-Region von AAV weist kein normales TATA-Motiv auf, das vielen eukaryontischen Promotoren gemeinsam ist, und es wurde nicht zuvor erkannt, dass sie innerhalb des Kontextes eines AAV-Genoms als ein Transkriptionspromotor wirkt. Es ist wahrscheinlich, dass im Kontext des AAV-Genoms diese ITR nicht als ein Promotor wirkt, vielleicht aufgrund der Wirkungen der anderen bekannten AAV-Promotoren stromabwärts davon. Nicht alle eukaryontischen Transkriptionspromotoren erfordern oder besitzen jedoch das TATA-Motiv. Nachdem wir gezeigt haben, dass die AAV-ITR als ein Promotor wirkt, haben wir die ITR-Sequenz auf Elemente untersucht, von denen wahrscheinlich ist, dass sie diese Funktion erklären.An additional application of the present finding is the use of the ITR sequences responsible for promotion in other vectors. The IRT region of AAV does not have a normal TATA motif common to many eukaryotic promoters, and has not previously been recognized to act as a transcriptional promoter within the context of an AAV genome. It is likely that in the context of the AAV genome, this ITR does not act as a promoter, perhaps due to the actions of the other known AAV promoters downstream of it. However, not all eukaryotic transcriptional promoters require or possess the TATA motif. Having shown that the AAV ITR acts as a promoter, we examined the ITR sequence for elements likely to explain this function.
Die Untersuchung der ITR-Sequenz zeigt zwei Motive, die mit Wahrscheinlichkeit wichtig bei deren Funktion als ein Promotor sind. Erstens gibt es in der Region zwischen AAV-Nucleotid 125 und 145 (üblicherweise bekannt als die AAV-d-Sequenz) die Sequenz 5'-AACTCCATCACT-3' [SEQ ID NO 1]. Diese Sequenz unterscheidet sich nur um eine Base von ähnlichen Sequenzen an der 5'-Startstelle der Promotoren für humanes terminales Desoxynucleotidyltransferasegen und für den Adenoviruspromotor für das hauptsächliche späte Gen und stimmt gut mit der Konsensus- Sequenz für ein Element überein, das als ein Inr (Initiator)-Element beschrieben wurde (S.T. Smale und D. Baltimore, 1989, Cell 57: 103-113; Smale et al., 1990, Proc. Natl. Acad. Sci. (USA) 87: 4509-4513). Eine zweite Reihe von GC-reichen Elementen ist in der ITR-Region zwischen den Nucleotiden 1 und 125 vorhanden, unter Einschluss der Elemente GGCCGCCCGGGC [SEQ ID NO 2] von Nucleotid 41 bis 50, AAAGCCCGGGCGTCGGGCGACC [SEQ ID NO 3] von Nucleotid 51 bis 73, GGTCGCCCGGCCTCA [SEQ ID NO 4] von Nucleotid 76 bis 90 und GAGCGGCGAGAG [SEQ ID NO 5] von Nucleotid 101 bis 112, die eine starke Homologie mit der Reihe von Konsensus-Stellen haben, von denen gezeigt wurde, dass sie Stellen für den üblichen Transkriptionsfaktor Sp1 sind (Pitluck und Ward, 1991, J. Virol. 65: 6661-6670). Schließlich ist nun bekannt, dass eine Inr-Sequenz in Gegenwart von Stellen für andere Faktoren, wie Sp1, als ein Transkriptionspromotor funktionieren kann (Smale und Baltimore, 1989; Smale et al., 1990).Examination of the ITR sequence reveals two motifs that are likely to be important in its function as a promoter. First, in the region between AAV nucleotides 125 and 145 (commonly known as the AAV-d sequence) there is the sequence 5'-AACTCCATCACT-3' [SEQ ID NO 1]. This sequence differs by only one base from similar sequences at the 5' start site of the promoters for the human terminal deoxynucleotidyl transferase gene and for the adenovirus major late gene promoter and agrees well with the consensus sequence for an element described as an Inr (initiator) element (S.T. Smale and D. Baltimore, 1989, Cell 57: 103-113; Smale et al., 1990, Proc. Natl. Acad. Sci. (USA) 87: 4509-4513). A second set of GC-rich elements is present in the ITR region between nucleotides 1 and 125, including the elements GGCCGCCCGGGC [SEQ ID NO 2] from nucleotide 41 to 50, AAAGCCCGGGCGTCGGGCGACC [SEQ ID NO 3] from nucleotide 51 to 73, GGTCGCCCGGCCTCA [SEQ ID NO 4] from nucleotide 76 to 90, and GAGCGGCGAGAG [SEQ ID NO 5] from nucleotide 101 to 112, which have strong homology to the set of consensus sites shown to be sites for the common transcription factor Sp1 (Pitluck and Ward, 1991, J. Virol. 65: 6661-6670). Finally, it is now known that an Inr sequence can function as a transcription promoter in the presence of sites for other factors, such as Sp1 (Smale and Baltimore, 1989; Smale et al., 1990).
Es ist wahrscheinlich, dass diese oder andere Regionen der ITR wichtig sein können, indem sie es erlauben, dass sie als ein Transkriptionspromotor funktioniert. Es ist nun unkompliziert und offensichtlich für andere, die auf diesem Gebiet erfahren sind, Standardmutagenesetechniken durchzuführen, um die ITR-Sequenz zu verändern, um genau die Kontrollelemente zu bestimmen und die Transkriptionsaktivität der ITR nach oben oder unten zu modulieren.It is likely that these or other regions of the ITR may be important in allowing it to function as a transcriptional promoter. It is now straightforward and obvious to others skilled in the field to perform standard mutagenesis techniques to alter the ITR sequence to precisely determine the control elements and modulate the transcriptional activity of the ITR up or down.
(1) Allgemeine Angaben:(1. General information:
(i) Anmelder:(i) Applicant:
(A) Name: Vereinigte Staaten von Amerika, vertreten durch den Secretary, Department of Health(A) Name: United States of America, represented by the Secretary, Department of Health
(B) Straße: c/o National Institutes of Health(B) Street: c/o National Institutes of Health
(C) Stadt: Bethesda(C) City: Bethesda
(D) Staat: Maryland(D) State: Maryland
(E) Land: USA(E) Country: USA
(F) Postleitzahl: 20892(F) Postal code: 20892
(ii) Bezeichnung der Erfindung: Modifizierter Adenoassoziierter Virusvektor, imstande zur Expression ausgehend von einem neuen Promotor(ii) Title of the invention: Modified adeno-associated virus vector capable of expression from a new promoter
(iii) Anzahl der Sequenzen: 6(iii) Number of sequences: 6
(iv) Maschinenlesbare Form:(iv) Machine-readable form:
(A) Art des Mediums: Diskette(A) Type of media: diskette
(B) Computer: kompatibel zu IBM PC(B) Computer: compatible with IBM PC
(C) Betriebssystem: PC-DOS/MS-DOS(C) Operating system: PC-DOS/MS-DOS
(D) Software: PatentIn Release #1.0, Version #1.30 (EPO)(D) Software: PatentIn Release #1.0, Version #1.30 (EPO)
(v) Vorliegende Patentanmeldung:(v) The present patent application:
Anmeldungsnummer: EP 93916425.7Application number: EP 93916425.7
(2) Angaben zu SEQ ID NO: 1:(2) Information on SEQ ID NO: 1:
(i) Sequenzmerkmale:(i) Sequence features:
(A) Länge: 12 Basenpaare(A) Length: 12 base pairs
(B) Art: Nucleinsäure(B) Type: Nucleic acid
(C) Strangbeschaffenheit: einzeln(C) Strand texture: single
(D) Topologie: linear(D) Topology: linear
(ii) Molekülart: DNA (genomisch)(ii) Molecular type: DNA (genomic)
(xi) Sequenzbeschreibung: SEQ ID NO: 1:(xi) Sequence description: SEQ ID NO: 1:
AACTCCATCA CT 12AACTCCATCA CT 12
(2) Angaben zu SEQ ID NO: 2:(2) Information on SEQ ID NO: 2:
(i) Sequenzmerkmale:(i) Sequence features:
(A) Länge: 12 Basenpaare(A) Length: 12 base pairs
(B) Art: Nucleinsäure(B) Type: Nucleic acid
(C) Strangbeschaffenheit: einzeln(C) Strand texture: single
(D) Topologie: linear(D) Topology: linear
(ii) Molekülart: DNA (genomisch)(ii) Molecular type: DNA (genomic)
(xi) Sequenzbeschreibung: SEQ ID NO: 2:(xi) Sequence description: SEQ ID NO: 2:
GGCCGCCCGG GC 12GGCCGCCCGG GC 12
(2) Angaben zu SEQ ID NO: 3:(2) Information on SEQ ID NO: 3:
(i) Sequenzmerkmale:(i) Sequence features:
(A) Länge: 22 Basenpaare(A) Length: 22 base pairs
(B) Art: Nucleinsäure(B) Type: Nucleic acid
(C) Strangbeschaffenheit: einzeln(C) Strand texture: single
(D) Topologie: linear(D) Topology: linear
(ii) Molekülart: DNA (genomisch)(ii) Molecular type: DNA (genomic)
(xi) Sequenzbeschreibung: SEQ ID NO: 3:(xi) Sequence description: SEQ ID NO: 3:
AAAGCCCGGG CGTCGGGCGA CC 22AAAGCCCGGG CGTCGGGCGA CC 22
(2) Angaben zu SEQ ID NO: 4:(2) Information on SEQ ID NO: 4:
(i) Sequenzmerkmale:(i) Sequence features:
(A) Länge: 15 Basenpaare(A) Length: 15 base pairs
(B) Art: Nucleinsäure(B) Type: Nucleic acid
(C) Strangbeschaffenheit: einzeln(C) Strand texture: single
(D) Topologie: linear(D) Topology: linear
(ii) Molekülart: DNA (genomisch)(ii) Molecular type: DNA (genomic)
(xi) Sequenzbeschreibung: SEQ ID NO: 4:(xi) Sequence description: SEQ ID NO: 4:
GGTCGCCCGG CCTCA 15GGTCGCCCGG CCTCA 15
(2) Angaben zu SEQ ID NO: 5:(2) Information on SEQ ID NO: 5:
(i) Sequenzmerkmale:(i) Sequence features:
(A) Länge: 12 Basenpaare(A) Length: 12 base pairs
(B) Art: Nucleinsäure(B) Type: Nucleic acid
(C) Strangbeschaffenheit: einzeln(C) Strand texture: single
(D) Topologie: linear(D) Topology: linear
(ii) Molekülart: DNA (genomisch)(ii) Molecular type: DNA (genomic)
(xi) Sequenzbeschreibung: SEQ ID NO: 5:(xi) Sequence description: SEQ ID NO: 5:
GAGCGGCGAG AG 12GAGCGGCGAG AG 12
(2) Angaben zu SEQ ID NO: 6:(2) Information on SEQ ID NO: 6:
(i) Sequenzmerkmale:(i) Sequence features:
(A) Länge: 58 Basenpaare(A) Length: 58 base pairs
(B) Art: Nucleinsäure(B) Type: Nucleic acid
(C) Strangbeschaffenheit: doppelt(C) Strand texture: double
(D) Topologie: linear(D) Topology: linear
(ii) Molekülart: DNA (genomisch)(ii) Molecular type: DNA (genomic)
(xi) Sequenzbeschreibung: SEQ ID NO: 6: (xi) Sequence description: SEQ ID NO: 6:
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/891,962 US5587308A (en) | 1992-06-02 | 1992-06-02 | Modified adeno-associated virus vector capable of expression from a novel promoter |
PCT/US1993/005310 WO1993024641A2 (en) | 1992-06-02 | 1993-06-02 | Adeno-associated virus with inverted terminal repeat sequences as promoter |
Publications (2)
Publication Number | Publication Date |
---|---|
DE69331194D1 DE69331194D1 (en) | 2002-01-03 |
DE69331194T2 true DE69331194T2 (en) | 2002-07-25 |
Family
ID=25399130
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE69331194T Expired - Lifetime DE69331194T2 (en) | 1992-06-02 | 1993-06-02 | ADENO ASSOCIATED VIRUS WITH REVERSE TERMINAL REPEAT SEQUENCES AS A PROMOTOR FOR THE TRANSFER OF A FUNCTIONAL CFTR GENE IN VIVO |
DE69334343T Expired - Lifetime DE69334343D1 (en) | 1992-06-02 | 1993-06-02 | Adeno-associated virus with inverted terminals Repeats as promoter |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE69334343T Expired - Lifetime DE69334343D1 (en) | 1992-06-02 | 1993-06-02 | Adeno-associated virus with inverted terminals Repeats as promoter |
Country Status (11)
Country | Link |
---|---|
US (5) | US5587308A (en) |
EP (2) | EP1164195B1 (en) |
AT (2) | ATE483817T1 (en) |
AU (1) | AU673367B2 (en) |
CA (1) | CA2136441C (en) |
DE (2) | DE69331194T2 (en) |
DK (1) | DK0644944T3 (en) |
ES (1) | ES2168096T3 (en) |
HK (1) | HK1014549A1 (en) |
PT (1) | PT644944E (en) |
WO (1) | WO1993024641A2 (en) |
Families Citing this family (488)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5587308A (en) * | 1992-06-02 | 1996-12-24 | The United States Of America As Represented By The Department Of Health & Human Services | Modified adeno-associated virus vector capable of expression from a novel promoter |
US5869305A (en) * | 1992-12-04 | 1999-02-09 | The University Of Pittsburgh | Recombinant viral vector system |
US6686200B1 (en) * | 1993-08-31 | 2004-02-03 | Uab Research Foundation | Methods and compositions for the large scale production of recombinant adeno-associated virus |
US6652850B1 (en) * | 1993-09-13 | 2003-11-25 | Aventis Pharmaceuticals Inc. | Adeno-associated viral liposomes and their use in transfecting dendritic cells to stimulate specific immunity |
US5834441A (en) * | 1993-09-13 | 1998-11-10 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Adeno-associated viral (AAV) liposomes and methods related thereto |
FR2716459B1 (en) * | 1994-02-22 | 1996-05-10 | Univ Paris Curie | Host-vector system usable in gene therapy. |
FR2716893B1 (en) * | 1994-03-03 | 1996-04-12 | Rhone Poulenc Rorer Sa | Recombinant viruses, their preparation and their therapeutic use. |
DE69535703T2 (en) * | 1994-04-13 | 2009-02-19 | The Rockefeller University | AAV-mediated delivery of DNA to cells of the nervous system |
US5658785A (en) * | 1994-06-06 | 1997-08-19 | Children's Hospital, Inc. | Adeno-associated virus materials and methods |
US20020159979A1 (en) | 1994-06-06 | 2002-10-31 | Children's Hospital, Inc. | Adeno-associated virus materials and methods |
US5856152A (en) * | 1994-10-28 | 1999-01-05 | The Trustees Of The University Of Pennsylvania | Hybrid adenovirus-AAV vector and methods of use therefor |
US6342390B1 (en) * | 1994-11-23 | 2002-01-29 | The United States Of America As Represented By The Secretary Of Health And Human Services | Lipid vesicles containing adeno-associated virus rep protein for transgene integration and gene therapy |
US6924128B2 (en) * | 1994-12-06 | 2005-08-02 | Targeted Genetics Corporation | Packaging cell lines for generation of high titers of recombinant AAV vectors |
US6383814B1 (en) * | 1994-12-09 | 2002-05-07 | Genzyme Corporation | Cationic amphiphiles for intracellular delivery of therapeutic molecules |
US6281010B1 (en) | 1995-06-05 | 2001-08-28 | The Trustees Of The University Of Pennsylvania | Adenovirus gene therapy vehicle and cell line |
US5756283A (en) * | 1995-06-05 | 1998-05-26 | The Trustees Of The University Of Pennsylvania | Method for improved production of recombinant adeno-associated viruses for gene therapy |
US6110456A (en) * | 1995-06-07 | 2000-08-29 | Yale University | Oral delivery or adeno-associated viral vectors |
US6187757B1 (en) | 1995-06-07 | 2001-02-13 | Ariad Pharmaceuticals, Inc. | Regulation of biological events using novel compounds |
US5646034A (en) * | 1995-06-07 | 1997-07-08 | Mamounas; Michael | Increasing rAAV titer |
CA2227065A1 (en) * | 1995-07-21 | 1997-02-06 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Adeno-associated viral liposomes and their use in transfecting dendritic cells to stimulate specific immunity |
US6207457B1 (en) * | 1995-09-08 | 2001-03-27 | Avigen, Inc. | Targeted nucleotide sequence delivery and integration system |
US6086913A (en) * | 1995-11-01 | 2000-07-11 | University Of British Columbia | Liposomal delivery of AAV vectors |
CA2279675A1 (en) * | 1995-12-15 | 1997-06-16 | Enzo Therapeutics, Inc. | Property effecting and/or property exhibiting constructs for localizing a nucleic acid construct within a cell for therapeutic and diagnostic uses |
US5858351A (en) | 1996-01-18 | 1999-01-12 | Avigen, Inc. | Methods for delivering DNA to muscle cells using recombinant adeno-associated virus vectors |
DE19608753C1 (en) * | 1996-03-06 | 1997-06-26 | Medigene Gmbh | Transduction system based on rep-negative adeno-associated virus vector |
US6245735B1 (en) | 1996-07-29 | 2001-06-12 | The Brigham And Women's Hospital, Inc. | Methods and products for treating pseudomonas infection |
US5866552A (en) * | 1996-09-06 | 1999-02-02 | The Trustees Of The University Of Pennsylvania | Method for expressing a gene in the absence of an immune response |
WO1998011244A2 (en) | 1996-09-11 | 1998-03-19 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Aav4 vector and uses thereof |
DE69840439D1 (en) | 1997-04-24 | 2009-02-26 | Univ Washington | TARGETED GENERIC CHANGE WITH PARVOVIRAL VECTORS |
US6156303A (en) * | 1997-06-11 | 2000-12-05 | University Of Washington | Adeno-associated virus (AAV) isolates and AAV vectors derived therefrom |
US6251677B1 (en) | 1997-08-25 | 2001-06-26 | The Trustees Of The University Of Pennsylvania | Hybrid adenovirus-AAV virus and methods of use thereof |
US6995006B2 (en) | 1997-09-05 | 2006-02-07 | Targeted Genetics Corporation | Methods for generating high titer helper-free preparations of released recombinant AAV vectors |
WO1999020773A2 (en) * | 1997-10-21 | 1999-04-29 | Targeted Genetics Corporation | TRANSCRIPTIONALLY-ACTIVATED AAV INVERTED TERMINAL REPEATS (ITRs) FOR USE WITH RECOMBINANT AAV VECTORS |
US6642051B1 (en) * | 1997-10-21 | 2003-11-04 | Targeted Genetics Corporation | Amplifiable adeno-associated virus(AAV) packaging cassettes for the production of recombinant AAV vectors |
US6346415B1 (en) | 1997-10-21 | 2002-02-12 | Targeted Genetics Corporation | Transcriptionally-activated AAV inverted terminal repeats (ITRS) for use with recombinant AAV vectors |
CA2316414A1 (en) * | 1997-12-23 | 1999-07-01 | Introgene B.V. | Adeno-associated virus and adenovirus chimeric recombinant viruses useful for the integration of foreign genetic information into the chromosomal dna of target cells |
US6984635B1 (en) | 1998-02-13 | 2006-01-10 | Board Of Trustees Of The Leland Stanford Jr. University | Dimerizing agents, their production and use |
US6294379B1 (en) * | 1998-02-25 | 2001-09-25 | The Regents Of The University Of California | Efficient AAV vectors |
JP2002509716A (en) | 1998-03-31 | 2002-04-02 | ユニバーシティ テクノロジー コーポレイション | Methods and compositions for raising an immune response to a telomerase antigen |
DE69918090T2 (en) | 1998-04-24 | 2005-06-16 | University Of Florida, Gainesville | RECOMBINANT ADENO ASSOCIATED VIRAL VECTOR CODING ALPHA-1 ANTITRYPSIN FOR GENE THERAPY |
AU754434B2 (en) | 1998-05-06 | 2002-11-14 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Novel inhibitors of NF-kappaB activation |
WO1999061643A1 (en) * | 1998-05-27 | 1999-12-02 | University Of Florida | Method of preparing recombinant adeno-associated virus compositions by using an iodixananol gradient |
EP1082413B1 (en) * | 1998-05-28 | 2008-07-23 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES | Aav5 vector and uses thereof |
US6984517B1 (en) | 1998-05-28 | 2006-01-10 | The United States Of America As Represented By The Department Of Health And Human Services | AAV5 vector and uses thereof |
US6221349B1 (en) | 1998-10-20 | 2001-04-24 | Avigen, Inc. | Adeno-associated vectors for expression of factor VIII by target cells |
US6200560B1 (en) * | 1998-10-20 | 2001-03-13 | Avigen, Inc. | Adeno-associated virus vectors for expression of factor VIII by target cells |
US6395549B1 (en) | 1998-10-22 | 2002-05-28 | Medical College Of Georgia Research Institute, Inc. | Long terminal repeat, enhancer, and insulator sequences for use in recombinant vectors |
US7129043B1 (en) * | 1998-10-22 | 2006-10-31 | Duke University | Methods of screening for risk of proliferative disease and methods for the treatment of proliferative disease |
US6468793B1 (en) | 1998-10-23 | 2002-10-22 | Florida State University Research Foundation | CFTR genes and proteins for cystic fibrosis gene therapy |
US6759237B1 (en) | 1998-11-05 | 2004-07-06 | The Trustees Of The University Of Pennsylvania | Adeno-associated virus serotype 1 nucleic acid sequences, vectors and host cells containing same |
ES2340230T3 (en) | 1998-11-10 | 2010-05-31 | University Of North Carolina At Chapel Hill | VIRIC VECTORS AND THEIR PREPARATION AND ADMINISTRATION PROCEDURES. |
US6387368B1 (en) | 1999-02-08 | 2002-05-14 | The Trustees Of The University Of Pennsylvania | Hybrid adenovirus-AAV virus and methods of use thereof |
US6893865B1 (en) | 1999-04-28 | 2005-05-17 | Targeted Genetics Corporation | Methods, compositions, and cells for encapsidating recombinant vectors in AAV particles |
US6537540B1 (en) * | 1999-05-28 | 2003-03-25 | Targeted Genetics Corporation | Methods and composition for lowering the level of tumor necrosis factor (TNF) in TNF-associated disorders |
AU5771500A (en) | 1999-06-28 | 2001-01-31 | Oklahoma Medical Research Foundation | Catalytically active recombinant memapsin and methods of use thereof |
ATE403715T1 (en) * | 1999-08-09 | 2008-08-15 | Targeted Genetics Corp | INCREASE THE EXPRESSION OF A SINGLE STRANDED, HETEROLOGUE NUCLEOTIDE SEQUENCE FROM A RECOMBINANT VIRAL VECTOR BY DESIGNING THE SEQUENCE IN A WAY THAT CREATE BASE PAIRINGS WITHIN THE SEQUENCE |
CA2387484A1 (en) * | 1999-10-12 | 2001-04-19 | Haim Burstein | Adeno-associated virus vectors encoding factor viii and methods of using the same |
US7060497B2 (en) | 2000-03-03 | 2006-06-13 | The Board Of Trustees Of The Leland Stanford Junior University | Adeno-associated viral vector-based methods and compositions for introducing an expression cassette into a cell |
AU5077401A (en) | 2000-02-08 | 2001-08-20 | Sangamo Biosciences Inc | Cells for drug discovery |
WO2001071018A2 (en) * | 2000-03-22 | 2001-09-27 | Board Of Trustees Of The University Of Arkansas | Secreting products from skin by adeno-associated virus (aav) gene transfer |
US6855314B1 (en) | 2000-03-22 | 2005-02-15 | The United States Of America As Represented By The Department Of Health And Human Services | AAV5 vector for transducing brain cells and lung cells |
US7271150B2 (en) | 2001-05-14 | 2007-09-18 | United States Of America, Represented By The Secretary, Department Of Health And Human Services | Modified growth hormone |
AU2002303832A1 (en) | 2001-05-21 | 2002-12-03 | Beth Israel Deaconess Medical Center, Inc. | P.aeruginosa mucoid exopolysaccharide specific binding peptides |
US7119172B2 (en) | 2001-05-21 | 2006-10-10 | The Brigham And Women's Hospital, Inc. | P. aeruginosa mucoid exopolysaccharide specific binding peptides |
US8216585B2 (en) * | 2001-05-25 | 2012-07-10 | The Trustees Of The University Of Pennsylvania | Targeted particles and methods of using the same |
CA2447249A1 (en) | 2001-06-22 | 2003-01-03 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Abin-mediated hepatitis protection |
WO2003027247A2 (en) | 2001-09-24 | 2003-04-03 | Sangamo Biosciences, Inc. | Modulation of stem cells using zinc finger proteins |
AU2003205615B2 (en) | 2002-01-10 | 2008-09-25 | Universiteit Gent | A novel splice variant of MyD88 and uses thereof |
JP2006501169A (en) | 2002-03-15 | 2006-01-12 | デパートメント・オヴ・ヴェテランズ・アフェアズ,リハビリテイション・アール・アンド・ディー・サーヴィス | Methods and compositions for targeting cells to tissues and organs using cellular asialo determinants and glycoconjugates |
US6825263B2 (en) * | 2002-04-08 | 2004-11-30 | Dow Corning Corporation | Curable coating compositions from emulsions of elastomeric polymers and polyurethane dispersions |
AU2003222820A1 (en) | 2002-04-18 | 2003-10-27 | Acuity Pharmaceuticals, Inc. | Means and methods for the specific modulation of target genes in the cns and the eye and methods for their identification |
US7419817B2 (en) | 2002-05-17 | 2008-09-02 | The United States Of America As Represented By The Secretary Department Of Health And Human Services, Nih. | Scalable purification of AAV2, AAV4 or AAV5 using ion-exchange chromatography |
US7148342B2 (en) | 2002-07-24 | 2006-12-12 | The Trustees Of The University Of Pennyslvania | Compositions and methods for sirna inhibition of angiogenesis |
AU2003291678B2 (en) | 2002-11-01 | 2009-01-15 | The Trustees Of The University Of Pennsylvania | Compositions and methods for siRNA inhibition of HIF-1 alpha |
AU2003291433B2 (en) | 2002-11-13 | 2008-05-22 | Thomas Jefferson University | Compositions and methods for cancer diagnosis and therapy |
US20040225077A1 (en) | 2002-12-30 | 2004-11-11 | Angiotech International Ag | Drug delivery from rapid gelling polymer composition |
ATE477337T1 (en) | 2003-01-16 | 2010-08-15 | Univ Pennsylvania | COMPOSITIONS AND METHODS FOR SIRNA INHIBITION OF ICAM-1 |
WO2005017101A2 (en) | 2003-05-19 | 2005-02-24 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH & HUMAN SERVICES, NATIONAL INSTITUTES OF HEALTH | Avian adenoassociated virus (aaav) and uses thereof |
US7888121B2 (en) | 2003-08-08 | 2011-02-15 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
DK2927318T3 (en) | 2003-08-08 | 2020-08-03 | Sangamo Therapeutics Inc | Method and compositions for targeted cleavage and recombination |
US7407776B2 (en) | 2003-09-19 | 2008-08-05 | Sangamo Biosciences, Inc. | Engineered zinc finger proteins for regulation of gene expression |
US8137960B2 (en) | 2003-12-04 | 2012-03-20 | The United States Of America As Represented By The Department Of Health And Human Services | Bovine adeno-associated viral (BAAV) vector and uses thereof |
EP2295604B1 (en) | 2004-02-09 | 2015-04-08 | Thomas Jefferson University | Diagnosis and treatment of cancers with microRNA located in or near cancer-associated chromosomal features |
EP1735009A4 (en) | 2004-03-12 | 2011-03-30 | Alnylam Pharmaceuticals Inc | iRNA AGENTS TARGETING VEGF |
BRPI0508862A (en) * | 2004-03-15 | 2007-09-04 | Biogen Idec Inc | methods and constructs for expressing polypeptide multimers in eukaryotic cells using alternative splicing |
ES2527528T3 (en) | 2004-04-08 | 2015-01-26 | Sangamo Biosciences, Inc. | Methods and compositions to modulate cardiac contractility |
WO2006036465A2 (en) * | 2004-09-03 | 2006-04-06 | University Of Florida | Compositions and methods for treating cystic fibrosis |
AU2005287278B2 (en) | 2004-09-16 | 2011-08-04 | Sangamo Biosciences, Inc. | Compositions and methods for protein production |
NZ555830A (en) * | 2004-12-15 | 2009-01-31 | Univ North Carolina | Chimeric vectors |
JP4988606B2 (en) | 2005-02-28 | 2012-08-01 | サンガモ バイオサイエンシズ インコーポレイテッド | Anti-angiogenic methods and compositions |
EP1888132B1 (en) | 2005-04-22 | 2015-08-12 | Evonik Degussa GmbH | Superabsorber post-reticulated on the surface and treated with a water soluble aluminium salt and zinc oxide |
WO2006119432A2 (en) | 2005-04-29 | 2006-11-09 | The Government Of The U.S.A., As Rep. By The Sec., Dept. Of Health & Human Services | Isolation, cloning and characterization of new adeno-associated virus (aav) serotypes |
CN101273141B (en) | 2005-07-26 | 2013-03-27 | 桑格摩生物科学股份有限公司 | Targeted integration and expression of exogenous nucleic acid sequences |
EP1937280B1 (en) | 2005-09-12 | 2014-08-27 | The Ohio State University Research Foundation | Compositions for the therapy of bcl2-associated cancers |
CA2634286A1 (en) | 2005-12-22 | 2007-08-09 | Samuel Jotham Reich | Compositions and methods for regulating complement system |
US8669418B2 (en) | 2005-12-22 | 2014-03-11 | Vib Vzw | Means and methods for mediating protein interference |
PL1962883T3 (en) | 2005-12-22 | 2013-02-28 | Vib Vzw | Means and methods for mediating protein interference |
ES2545118T3 (en) | 2006-01-05 | 2015-09-08 | The Ohio State University Research Foundation | MicroRNA based methods and compositions for the diagnosis and treatment of solid cancers |
ES2524018T3 (en) | 2006-01-05 | 2014-12-03 | The Ohio State University Research Foundation | Abnormalities of microRNA expression in endocrine and acinar pancreatic tumors |
CN101400361B (en) | 2006-01-05 | 2012-10-17 | 俄亥俄州立大学研究基金会 | MicroRNA-based methods and compositions for diagnosis, prognosis and treatment of lung cancer |
EP2522749A1 (en) | 2006-03-02 | 2012-11-14 | The Ohio State University | MicroRNA expression profile associated with pancreatic cancer |
CN101448958A (en) | 2006-03-20 | 2009-06-03 | 俄亥俄州立大学研究基金会 | MicroRNA fingerprints during human megakaryocytopoiesis |
KR101462874B1 (en) | 2006-03-31 | 2014-11-18 | 알닐람 파마슈티칼스 인코포레이티드 | DsRNA for inhibiting expression of Eg5 gene |
JP4812874B2 (en) | 2006-04-28 | 2011-11-09 | アルナイラム ファーマシューティカルズ, インコーポレイテッド | Composition and method for suppressing expression of JC virus gene |
EP2584048B1 (en) | 2006-05-11 | 2014-07-23 | Alnylam Pharmaceuticals Inc. | Compositions and methods for inhibiting expression of the PCSK9 gene |
CA2652770A1 (en) | 2006-05-19 | 2007-11-29 | Alnylam Pharmaceuticals, Inc. | Rnai modulation of aha and therapeutic uses thereof |
EP2192200B1 (en) | 2006-05-22 | 2012-10-24 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of IKK-B gene |
DE602007005634D1 (en) | 2006-05-25 | 2010-05-12 | Sangamo Biosciences Inc | VARIANT FOKI CREVICE HOLLAND DOMAINS |
US8598333B2 (en) | 2006-05-26 | 2013-12-03 | Alnylam Pharmaceuticals, Inc. | SiRNA silencing of genes expressed in cancer |
JP2009540011A (en) | 2006-06-12 | 2009-11-19 | エクセジェニックス、インク.ディー/ビー/エー オプコ ヘルス、インク. | Compositions and methods for siRNA inhibition of angiogenesis |
EP2436783B1 (en) | 2006-07-13 | 2013-09-11 | The Ohio State University Research Foundation | MIR-103-2 for diagnosing poor survival prognosis colon adenocarcinoma. |
AU2007277392A1 (en) * | 2006-07-25 | 2008-01-31 | Celladon Corporation | Extended antegrade epicardial coronary infusion of adeno-associated viral vectors for gene therapy |
US7872118B2 (en) | 2006-09-08 | 2011-01-18 | Opko Ophthalmics, Llc | siRNA and methods of manufacture |
CA2663581C (en) | 2006-09-21 | 2016-03-01 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the hamp gene |
EP2126141A4 (en) | 2007-03-15 | 2010-08-11 | Univ Cleveland Hospitals | SCREENING, DIAGNOSIS, TREATMENT AND PROGNOSIS OF PATHOPHYSIOLOGICAL CONDITIONS BY RNA REGULATION |
CN101678082B (en) | 2007-03-26 | 2013-06-19 | 再生医药有限公司 | Methods of promoting bone marrow protection and regeneration using CXCL9 and anti-CXCL9 antibodies |
PE20090064A1 (en) | 2007-03-26 | 2009-03-02 | Novartis Ag | DOUBLE-CHAIN RIBONUCLEIC ACID TO INHIBIT THE EXPRESSION OF THE HUMAN E6AP GENE AND THE PHARMACEUTICAL COMPOSITION THAT INCLUDES IT |
EP2905336A1 (en) | 2007-03-29 | 2015-08-12 | Alnylam Pharmaceuticals Inc. | Compositions and methods for inhibiting expression of a gene from the ebola |
CA2692503C (en) | 2007-07-05 | 2013-09-24 | Novartis Ag | Dsrna for treating viral infection |
US7919313B2 (en) | 2007-07-12 | 2011-04-05 | Sangamo Biosciences, Inc. | Methods and compositions for inactivating alpha 1,6 fucosyltransferase (FUT8) gene expression |
WO2009012263A2 (en) | 2007-07-18 | 2009-01-22 | The Trustees Of Columbia University In The City Of New York | Tissue-specific micrornas and compositions and uses thereof |
CN101809169B (en) | 2007-07-31 | 2013-07-17 | 俄亥俄州立大学研究基金会 | Methods for reverting methylation by targeting DNMT3A and DNMT3B |
EP2657353B1 (en) | 2007-08-03 | 2017-04-12 | The Ohio State University Research Foundation | Ultraconserved regions encoding ncRNAs |
CA2696887C (en) | 2007-08-22 | 2016-06-28 | The Ohio State University Research Foundation | Methods and compositions for inducing deregulation of epha7 and erk phosphorylation in human acute leukemias |
CA2698771A1 (en) | 2007-09-06 | 2009-03-12 | The Ohio State University Research Foundation | Microrna signatures in human ovarian cancer |
US8563314B2 (en) | 2007-09-27 | 2013-10-22 | Sangamo Biosciences, Inc. | Methods and compositions for modulating PD1 |
AU2008310704B2 (en) | 2007-10-11 | 2014-03-20 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Methods and compositions for the diagnosis and treatment of esphageal adenocarcinomas |
EP2385065A1 (en) | 2007-11-01 | 2011-11-09 | Perseid Therapeutics LLC | Immunosuppressive polypeptides and nucleic acids |
WO2009076400A2 (en) | 2007-12-10 | 2009-06-18 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of factor vii gene |
WO2009105135A1 (en) | 2008-02-19 | 2009-08-27 | Celladon Corporation | Compositions for enhanced uptake of viral vectors in the myocardium |
EP2265276A2 (en) | 2008-03-05 | 2010-12-29 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of eg5 and vegf genes |
EP2294191B1 (en) | 2008-06-10 | 2016-09-28 | Sangamo BioSciences, Inc. | Methods and compositions for generation of bax- and bak-deficient cell lines |
CA2734235C (en) | 2008-08-22 | 2019-03-26 | Sangamo Biosciences, Inc. | Methods and compositions for targeted single-stranded cleavage and targeted integration |
EP3208337A1 (en) | 2008-09-02 | 2017-08-23 | Alnylam Pharmaceuticals, Inc. | Compositions for combined inhibition of mutant egfr and il-6 expression |
ES2740129T3 (en) | 2008-09-25 | 2020-02-05 | Alnylam Pharmaceuticals Inc | Compositions formulated in lipids and methods of inhibiting the expression of the amyloid serum A gene |
PT2344639E (en) | 2008-10-20 | 2015-09-07 | Alnylam Pharmaceuticals Inc | Compositions and methods for inhibiting expression of transthyretin |
BRPI0922122A2 (en) | 2008-11-30 | 2017-08-01 | Immusant Inc | compositions and methods for treating celiac disease. |
CA2745832A1 (en) | 2008-12-04 | 2010-06-10 | Opko Ophthalmics, Llc | Compositions and methods for selective inhibition of pro-angiogenic vegf isoforms |
US8324368B2 (en) | 2008-12-10 | 2012-12-04 | Alnylam Pharmaceuticals, Inc. | GNAQ targeted dsRNA compositions and methods for inhibiting expression |
CA2749965C (en) | 2009-02-04 | 2018-09-11 | Sangamo Biosciences, Inc. | Methods and compositions for treating neuropathies |
EP2396343B1 (en) | 2009-02-11 | 2017-05-17 | The University of North Carolina At Chapel Hill | Modified virus vectors and methods of making and using the same |
US20120041051A1 (en) | 2009-02-26 | 2012-02-16 | Kevin Fitzgerald | Compositions And Methods For Inhibiting Expression Of MIG-12 Gene |
JP6032724B2 (en) | 2009-03-12 | 2016-11-30 | アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. | Lipid preparation composition and method for inhibiting expression of Eg5 gene and VEGF gene |
KR101764437B1 (en) | 2009-03-20 | 2017-08-02 | 메소블라스트, 아이엔씨. | Production of reprogrammed pluripotent cells |
JP6215533B2 (en) | 2009-04-09 | 2017-10-18 | サンガモ セラピューティクス, インコーポレイテッド | Targeted integration into stem cells |
MX356669B (en) | 2009-05-02 | 2018-06-08 | Genzyme Corp | Gene therapy for neurodegenerative disorders. |
US20110300205A1 (en) | 2009-07-06 | 2011-12-08 | Novartis Ag | Self replicating rna molecules and uses thereof |
EP2453918B1 (en) | 2009-07-15 | 2015-12-16 | GlaxoSmithKline Biologicals S.A. | Rsv f protein compositions and methods for making same |
US9234016B2 (en) | 2009-07-28 | 2016-01-12 | Sangamo Biosciences, Inc. | Engineered zinc finger proteins for treating trinucleotide repeat disorders |
AP2015008874A0 (en) | 2009-08-14 | 2015-11-30 | Alnylam Pharmaceuticals Inc | Lipid formulated compositions and methods for inhibiting expression of a gene from the ebola virus |
WO2011053675A2 (en) | 2009-10-30 | 2011-05-05 | Cns Therapeutics, Inc. | Improved neurturin molecules |
CN105031618A (en) | 2009-11-02 | 2015-11-11 | 加利福尼亚大学董事会 | Vault complexes for cytokine delivery |
US8551781B2 (en) | 2009-11-19 | 2013-10-08 | The Regents Of The University Of California | Vault complexes for facilitating biomolecule delivery |
JP2013512677A (en) | 2009-12-04 | 2013-04-18 | オプコ オプサルミクス、エルエルシー | Compositions and methods for inhibition of VEGF |
EP2534173B1 (en) | 2010-02-08 | 2019-09-11 | Sangamo Therapeutics, Inc. | Engineered cleavage half-domains |
EP2660318A1 (en) | 2010-02-09 | 2013-11-06 | Sangamo BioSciences, Inc. | Targeted genomic modification with partially single-stranded donor molecules |
CA2792291A1 (en) | 2010-03-29 | 2011-10-06 | Kumamoto University | Sirna therapy for transthyretin (ttr) related ocular amyloidosis |
EP2555778A4 (en) | 2010-04-06 | 2014-05-21 | Alnylam Pharmaceuticals Inc | Compositions and methods for inhibiting expression of cd274/pd-l1 gene |
KR101953237B1 (en) | 2010-05-17 | 2019-02-28 | 상가모 테라퓨틱스, 인코포레이티드 | Novel dna-binding proteins and uses thereof |
CA3102008A1 (en) | 2010-06-02 | 2011-12-08 | Alnylam Pharmaceuticals, Inc. | Compositions and methods directed to treating liver fibrosis |
CA2803900A1 (en) | 2010-07-09 | 2012-01-12 | Exelixis, Inc. | Combinations of kinase inhibitors for the treatment of cancer |
WO2012015938A2 (en) | 2010-07-27 | 2012-02-02 | The Johns Hopkins University | Obligate heterodimer variants of foki cleavage domain |
US20120225034A1 (en) | 2010-09-02 | 2012-09-06 | Universite De Mons | Agents useful in treating facioscapulohumeral muscular dystrophy |
AU2011312562B2 (en) | 2010-09-27 | 2014-10-09 | Sangamo Therapeutics, Inc. | Methods and compositions for inhibiting viral entry into cells |
EP4098324A1 (en) | 2010-10-11 | 2022-12-07 | GlaxoSmithKline Biologicals S.A. | Antigen delivery platforms |
EP2649182A4 (en) | 2010-12-10 | 2015-05-06 | Alnylam Pharmaceuticals Inc | Compositions and methods for increasing erythropoietin (epo) production |
WO2012079046A2 (en) | 2010-12-10 | 2012-06-14 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of klf-1 and bcl11a genes |
AU2012211278B2 (en) | 2011-01-26 | 2016-11-10 | Glaxosmithkline Biologicals Sa | RSV immunization regimen |
WO2012109495A1 (en) | 2011-02-09 | 2012-08-16 | Metabolic Solutions Development Company, Llc | Cellular targets of thiazolidinediones |
CA2831284C (en) | 2011-03-29 | 2023-12-12 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of tmprss6 gene |
SI2707385T1 (en) | 2011-05-13 | 2018-01-31 | Glaxosmithkline Biologicals Sa | Pre-fusion rsv f antigens |
WO2012164058A1 (en) | 2011-06-01 | 2012-12-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for adjusting expression of mitochondrial genome by microrna |
CN112961855B (en) | 2011-06-21 | 2024-08-09 | 阿尔尼拉姆医药品有限公司 | Angiopoietin-like 3 (ANGPTL 3) iRNA compositions and methods of use thereof |
WO2012177949A2 (en) | 2011-06-21 | 2012-12-27 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibition of expression of protein c (proc) genes |
RU2631805C2 (en) | 2011-06-21 | 2017-09-26 | Элнилэм Фармасьютикалз, Инк. | Compositions and methods for apolipoprotein c-iii (apoc3) gene expression inhibition |
WO2012177906A1 (en) | 2011-06-21 | 2012-12-27 | Alnylam Pharmaceuticals, Inc. | Assays and methods for determining activity of a therapeutic agent in a subject |
EP3597750B1 (en) | 2011-06-23 | 2022-05-04 | Alnylam Pharmaceuticals, Inc. | Serpina1 sirnas: compositions of matter and methods of treatment |
WO2013012674A1 (en) | 2011-07-15 | 2013-01-24 | The General Hospital Corporation | Methods of transcription activator like effector assembly |
EP2734621B1 (en) | 2011-07-22 | 2019-09-04 | President and Fellows of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
JP2014526887A (en) | 2011-08-01 | 2014-10-09 | アルナイラム ファーマシューティカルズ, インコーポレイテッド | How to improve the success rate of hematopoietic stem cell transplantation |
CA2848417C (en) | 2011-09-21 | 2023-05-02 | Sangamo Biosciences, Inc. | Methods and compositions for regulation of transgene expression |
MX2014004214A (en) | 2011-10-11 | 2014-05-07 | Novartis Ag | Recombinant self-replicating polycistronic rna molecules. |
EP2766385A2 (en) | 2011-10-12 | 2014-08-20 | Novartis AG | Cmv antigens and uses thereof |
JP2014530612A (en) | 2011-10-14 | 2014-11-20 | ジ・オハイオ・ステート・ユニバーシティ | Methods and materials for ovarian cancer |
EP2771482A1 (en) | 2011-10-27 | 2014-09-03 | Institut National de la Sante et de la Recherche Medicale (INSERM) | Methods for the treatment and diagnosis of atherosclerosis |
AU2012327236B2 (en) | 2011-10-28 | 2016-11-10 | University Of Florida Research Foundation, Inc. | Chimeric promoter for cone photoreceptor targeted gene therapy |
RU2659423C2 (en) | 2012-02-16 | 2018-07-02 | ЭйТИР ФАРМА, ИНК. | Hystidil-trna-synthetase for treatment of autoimmune and inflammatory diseases |
RU2639277C2 (en) | 2012-02-29 | 2017-12-20 | Сангамо Байосайенсиз, Инк. | Methods and compositions for huntington disease treatment |
US20150190532A1 (en) | 2012-04-04 | 2015-07-09 | The Trustees Of Columbia University In The City Of New York | Smooth muscle specific inhibition for anti-restenotic therapy |
EP2836219A1 (en) | 2012-04-10 | 2015-02-18 | INSERM - Institut National de la Santé et de la Recherche Médicale | Methods for the treatment of nonalcoholic steatohepatitis |
US9133461B2 (en) | 2012-04-10 | 2015-09-15 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the ALAS1 gene |
WO2013153139A1 (en) | 2012-04-11 | 2013-10-17 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the treatment and diagnosis of acute leukemia |
US9127274B2 (en) | 2012-04-26 | 2015-09-08 | Alnylam Pharmaceuticals, Inc. | Serpinc1 iRNA compositions and methods of use thereof |
US9890364B2 (en) | 2012-05-29 | 2018-02-13 | The General Hospital Corporation | TAL-Tet1 fusion proteins and methods of use thereof |
WO2014011705A1 (en) | 2012-07-09 | 2014-01-16 | The Regents Of The University Of California | Vault immunotherapy |
EP3196301B1 (en) | 2012-07-11 | 2018-10-17 | Sangamo Therapeutics, Inc. | Methods and compositions for the treatment of monogenic diseases |
JP6329537B2 (en) | 2012-07-11 | 2018-05-23 | サンガモ セラピューティクス, インコーポレイテッド | Methods and compositions for delivery of biological agents |
PT2890780T (en) | 2012-08-29 | 2020-08-03 | Sangamo Therapeutics Inc | Methods and compositions for treatment of a genetic condition |
AU2013329186B2 (en) | 2012-10-10 | 2019-02-14 | Sangamo Therapeutics, Inc. | T cell modifying compounds and uses thereof |
EP3789405A1 (en) | 2012-10-12 | 2021-03-10 | The General Hospital Corporation | Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins |
PL2929031T4 (en) | 2012-12-05 | 2022-06-27 | Alnylam Pharmaceuticals, Inc. | Pcsk9 irna compositions and methods of use thereof |
US10272163B2 (en) | 2012-12-07 | 2019-04-30 | The Regents Of The University Of California | Factor VIII mutation repair and tolerance induction |
CA2894684A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of improved crispr-cas systems, methods and enzyme compositions for sequence manipulation in eukaryotes |
ES2658401T3 (en) | 2012-12-12 | 2018-03-09 | The Broad Institute, Inc. | Supply, modification and optimization of systems, methods and compositions for the manipulation of sequences and therapeutic applications |
US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
US20140310830A1 (en) | 2012-12-12 | 2014-10-16 | Feng Zhang | CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes |
EP2931899A1 (en) | 2012-12-12 | 2015-10-21 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
US20140189896A1 (en) | 2012-12-12 | 2014-07-03 | Feng Zhang | Crispr-cas component systems, methods and compositions for sequence manipulation |
US20140186843A1 (en) | 2012-12-12 | 2014-07-03 | Massachusetts Institute Of Technology | Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
WO2014093655A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
US20140242664A1 (en) | 2012-12-12 | 2014-08-28 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
US10676749B2 (en) | 2013-02-07 | 2020-06-09 | The General Hospital Corporation | Tale transcriptional activators |
RU2661101C2 (en) | 2013-03-13 | 2018-07-11 | Дженевив Биосайнсис, Инк. | Non-replicative transduction particles and transduction particle based reporter systems |
CN114015692B (en) | 2013-03-14 | 2024-12-31 | 阿尔尼拉姆医药品有限公司 | Complement component C5 iRNA compositions and methods of use thereof |
WO2014160871A2 (en) | 2013-03-27 | 2014-10-02 | The General Hospital Corporation | Methods and agents for treating alzheimer's disease |
EP3730615A3 (en) | 2013-05-15 | 2020-12-09 | Sangamo Therapeutics, Inc. | Methods and compositions for treatment of a genetic condition |
AU2014268509B2 (en) | 2013-05-22 | 2020-10-01 | Alnylam Pharmaceuticals, Inc. | Serpina1 iRNA compositions and methods of use thereof |
IL285780B (en) | 2013-05-22 | 2022-07-01 | Alnylam Pharmaceuticals Inc | Preparations of tmprss6 irna and methods of using them |
CN105531287B (en) | 2013-05-29 | 2020-01-21 | 维拜昂公司 | Single chain intracellular antibodies that alter huntingtin mutant degradation |
WO2014204727A1 (en) | 2013-06-17 | 2014-12-24 | The Broad Institute Inc. | Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof |
JP6702858B2 (en) | 2013-06-17 | 2020-06-03 | ザ・ブロード・インスティテュート・インコーポレイテッド | Delivery, use and therapeutic applications of CRISPR-Cas systems and compositions for targeting disorders and diseases using viral components |
KR20160044457A (en) | 2013-06-17 | 2016-04-25 | 더 브로드 인스티튜트, 인코퍼레이티드 | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
EP3011032B1 (en) | 2013-06-17 | 2019-10-16 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells |
JP6665088B2 (en) | 2013-06-17 | 2020-03-13 | ザ・ブロード・インスティテュート・インコーポレイテッド | Optimized CRISPR-Cas double nickase system, method and composition for sequence manipulation |
EP3825406A1 (en) | 2013-06-17 | 2021-05-26 | The Broad Institute Inc. | Delivery and use of the crispr-cas systems, vectors and compositions for hepatic targeting and therapy |
US20150044192A1 (en) | 2013-08-09 | 2015-02-12 | President And Fellows Of Harvard College | Methods for identifying a target site of a cas9 nuclease |
CA2920899C (en) | 2013-08-28 | 2023-02-28 | Sangamo Biosciences, Inc. | Compositions for linking dna-binding domains and cleavage domains |
US9228207B2 (en) | 2013-09-06 | 2016-01-05 | President And Fellows Of Harvard College | Switchable gRNAs comprising aptamers |
CN105793423A (en) | 2013-10-02 | 2016-07-20 | 阿尔尼拉姆医药品有限公司 | Compositions and methods for inhibiting LECT2 gene expression |
CR20160195A (en) | 2013-10-04 | 2016-09-05 | Alnylam Pharmaceuticals Inc | COMPOSITIONS AND METHODS TO INHIBIT THE EXPRESSION OF GEN ALAS 1 |
CN116836957A (en) | 2013-10-17 | 2023-10-03 | 桑格摩生物科学股份有限公司 | Delivery methods and compositions for nuclease-mediated genome engineering |
KR102431079B1 (en) | 2013-11-11 | 2022-08-11 | 상가모 테라퓨틱스, 인코포레이티드 | Methods and compositions for treating huntington's disease |
WO2015073683A2 (en) | 2013-11-13 | 2015-05-21 | Children's Medical Center Corporation | Nuclease-mediated regulation of gene expression |
ES2813367T3 (en) | 2013-12-09 | 2021-03-23 | Sangamo Therapeutics Inc | Methods and compositions for genomic engineering |
US9068179B1 (en) | 2013-12-12 | 2015-06-30 | President And Fellows Of Harvard College | Methods for correcting presenilin point mutations |
CA2931090A1 (en) | 2013-12-12 | 2015-06-18 | Alnylam Pharmaceuticals, Inc. | Complement component irna compositions and methods of use thereof |
BR112016013201B1 (en) | 2013-12-12 | 2023-01-31 | The Broad Institute, Inc. | USE OF A COMPOSITION COMPRISING A CRISPR-CAS SYSTEM IN THE TREATMENT OF A GENETIC OCULAR DISEASE |
WO2015089486A2 (en) | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems |
BR112016013213A2 (en) | 2013-12-12 | 2017-12-05 | Massachusetts Inst Technology | administration, use and therapeutic applications of crisper systems and compositions for targeting disorders and diseases using particle delivery components |
WO2015086828A1 (en) | 2013-12-12 | 2015-06-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the prevention and treatment of diabetic cardiomyopathy using mir-424/322 |
AU2014361784A1 (en) | 2013-12-12 | 2016-06-23 | Massachusetts Institute Of Technology | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for HBV and viral diseases and disorders |
PT3102673T (en) | 2014-02-03 | 2020-05-21 | Sangamo Biosciences Inc | Methods and compositions for treatment of a beta thalessemia |
EP3960860A3 (en) | 2014-02-11 | 2022-06-08 | Alnylam Pharmaceuticals, Inc. | Ketohexokinase (khk) irna compositions and methods of use thereof |
EP3119878B1 (en) | 2014-03-18 | 2021-05-26 | Sangamo Therapeutics, Inc. | Methods and compositions for regulation of zinc finger protein expression |
BR112016025849A2 (en) | 2014-05-08 | 2017-10-17 | Chdi Foundation Inc | methods and compositions for the treatment of huntington's disease |
TW201607559A (en) | 2014-05-12 | 2016-03-01 | 阿尼拉製藥公司 | Methods and compositions for treating a SERPINC1-associated disorder |
EA201692370A1 (en) | 2014-05-22 | 2017-03-31 | Элнилэм Фармасьютикалз, Инк. | COMPOSITIONS of mRNA ANGIOTENZINOGENA (AGT) AND METHODS OF THEIR USE |
US10577627B2 (en) | 2014-06-09 | 2020-03-03 | Voyager Therapeutics, Inc. | Chimeric capsids |
ES2788426T3 (en) | 2014-06-16 | 2020-10-21 | Univ Johns Hopkins | Compositions and Methods for the Expression of CRISPR Guide RNAs Using the H1 Promoter |
KR102330593B1 (en) | 2014-07-28 | 2021-11-26 | 에스케이이노베이션 주식회사 | Novel Isoprene Synthase and Method of Preparing Isoprene Using Thereof |
EP3177718B1 (en) | 2014-07-30 | 2022-03-16 | President and Fellows of Harvard College | Cas9 proteins including ligand-dependent inteins |
DK3180426T3 (en) | 2014-08-17 | 2020-03-30 | Broad Inst Inc | RETURNING BY USING CAS9 NICKASES |
ES2778727T3 (en) | 2014-08-25 | 2020-08-11 | Geneweave Biosciences Inc | Non-replicative transduction particles and reporter systems based on transduction particles |
CA2957793A1 (en) | 2014-09-07 | 2016-03-10 | Selecta Biosciences, Inc. | Methods and compositions for attenuating gene editing anti-viral transfer vector immune responses |
EP3194570B1 (en) | 2014-09-16 | 2021-06-30 | Sangamo Therapeutics, Inc. | Methods and compositions for nuclease-mediated genome engineering and correction in hematopoietic stem cells |
WO2016049251A1 (en) | 2014-09-24 | 2016-03-31 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling mutations in leukocytes |
WO2016049024A2 (en) | 2014-09-24 | 2016-03-31 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling competition of multiple cancer mutations in vivo |
WO2016049163A2 (en) | 2014-09-24 | 2016-03-31 | The Broad Institute Inc. | Use and production of chd8+/- transgenic animals with behavioral phenotypes characteristic of autism spectrum disorder |
JOP20200115A1 (en) | 2014-10-10 | 2017-06-16 | Alnylam Pharmaceuticals Inc | Compositions And Methods For Inhibition Of HAO1 (Hydroxyacid Oxidase 1 (Glycolate Oxidase)) Gene Expression |
BR112017009497A2 (en) | 2014-11-05 | 2018-02-06 | Voyager Therapeutics, Inc. | aadc polynucleotides for the treatment of parkinson's disease |
JOP20200092A1 (en) | 2014-11-10 | 2017-06-16 | Alnylam Pharmaceuticals Inc | HEPATITIS B VIRUS (HBV) iRNA COMPOSITIONS AND METHODS OF USE THEREOF |
RU2020108189A (en) | 2014-11-14 | 2020-03-11 | Вояджер Терапьютикс, Инк. | COMPOSITIONS AND METHODS OF TREATMENT OF LATERAL AMYOTROPHIC SCLEROSIS (ALS) |
SG10202001102XA (en) | 2014-11-14 | 2020-03-30 | Voyager Therapeutics Inc | Modulatory polynucleotides |
WO2016081444A1 (en) | 2014-11-17 | 2016-05-26 | Alnylam Pharmaceuticals, Inc. | Apolipoprotein c3 (apoc3) irna compositions and methods of use thereof |
EP3230452A1 (en) | 2014-12-12 | 2017-10-18 | The Broad Institute Inc. | Dead guides for crispr transcription factors |
EP3230451B1 (en) | 2014-12-12 | 2021-04-07 | The Broad Institute, Inc. | Protected guide rnas (pgrnas) |
US11697825B2 (en) | 2014-12-12 | 2023-07-11 | Voyager Therapeutics, Inc. | Compositions and methods for the production of scAAV |
WO2016094874A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Escorted and functionalized guides for crispr-cas systems |
WO2016106236A1 (en) | 2014-12-23 | 2016-06-30 | The Broad Institute Inc. | Rna-targeting system |
EP3702456A1 (en) | 2014-12-24 | 2020-09-02 | The Broad Institute, Inc. | Crispr having or associated with destabilization domains |
WO2016108926A1 (en) | 2014-12-30 | 2016-07-07 | The Broad Institute Inc. | Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis |
JP2018510621A (en) | 2015-02-13 | 2018-04-19 | アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. | Patatin-like phospholipase domain-containing 3 (PNPLA3) iRNA compositions and methods of use thereof |
CA2981077A1 (en) | 2015-04-03 | 2016-10-06 | Dana-Farber Cancer Institute, Inc. | Composition and methods of genome editing of b-cells |
SMT202000454T1 (en) * | 2015-04-03 | 2020-11-10 | Univ Massachusetts | Oligonucleotide compounds for targeting huntingtin mrna |
EP3277811B1 (en) | 2015-04-03 | 2020-12-23 | University of Massachusetts | Fully stabilized asymmetric sirna |
WO2016201301A1 (en) | 2015-06-12 | 2016-12-15 | Alnylam Pharmaceuticals, Inc. | Complement component c5 irna compositions and methods of use thereof |
WO2016205728A1 (en) | 2015-06-17 | 2016-12-22 | Massachusetts Institute Of Technology | Crispr mediated recording of cellular events |
CA3012607A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Crispr enzymes and systems |
US9790490B2 (en) | 2015-06-18 | 2017-10-17 | The Broad Institute Inc. | CRISPR enzymes and systems |
CA3012631A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
EP3322297B1 (en) | 2015-07-13 | 2024-12-04 | Sangamo Therapeutics, Inc. | Delivery methods and compositions for nuclease-mediated genome engineering |
WO2017024317A2 (en) | 2015-08-06 | 2017-02-09 | Dana-Farber Cancer Institute, Inc. | Methods to induce targeted protein degradation through bifunctional molecules |
US10633653B2 (en) | 2015-08-14 | 2020-04-28 | University Of Massachusetts | Bioactive conjugates for oligonucleotide delivery |
CN116814590A (en) | 2015-10-22 | 2023-09-29 | 布罗德研究所有限公司 | VI-B type CRISPR enzyme and system |
WO2017070632A2 (en) | 2015-10-23 | 2017-04-27 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
EP3384035A4 (en) | 2015-12-02 | 2019-08-07 | Voyager Therapeutics, Inc. | Assays for the detection of aav neutralizing antibodies |
CA3007014A1 (en) | 2015-12-07 | 2017-06-15 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for treating a serpinc1-associated disorder |
IL259935B2 (en) | 2015-12-18 | 2023-03-01 | Sangamo Therapeutics Inc | Targeted disruption of the mhc cell receptor |
US12110490B2 (en) | 2015-12-18 | 2024-10-08 | The Broad Institute, Inc. | CRISPR enzymes and systems |
CA3008413A1 (en) | 2015-12-18 | 2017-06-22 | Sangamo Therapeutics, Inc. | Targeted disruption of the t cell receptor |
KR20180088919A (en) | 2015-12-24 | 2018-08-07 | 옥시레인 유케이 리미티드 | Human alpha-N-acetylgalactosaminidase polypeptide |
AU2017207818B2 (en) | 2016-01-15 | 2024-03-28 | Regents Of The University Of Minnesota | Methods and compositions for the treatment of neurologic disease |
AU2017210726B2 (en) | 2016-01-31 | 2023-08-03 | University Of Massachusetts | Branched oligonucleotides |
CN109069568B (en) | 2016-02-02 | 2023-07-07 | 桑格摩生物治疗股份有限公司 | Compositions for linking DNA binding domains and cleavage domains |
EP3416726A4 (en) | 2016-02-17 | 2019-08-28 | Children's Medical Center Corporation | FFA1 (GPR40) as a therapeutic target for neural diseases or disorders related to angiogenesis |
KR20240091006A (en) | 2016-04-19 | 2024-06-21 | 더 브로드 인스티튜트, 인코퍼레이티드 | The novel CRISPR enzyme and system |
EP3445853A1 (en) | 2016-04-19 | 2019-02-27 | The Broad Institute, Inc. | Cpf1 complexes with reduced indel activity |
WO2017189308A1 (en) | 2016-04-19 | 2017-11-02 | The Broad Institute Inc. | Novel crispr enzymes and systems |
EP3448874A4 (en) | 2016-04-29 | 2020-04-22 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
EP3448987A4 (en) | 2016-04-29 | 2020-05-27 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
US11951121B2 (en) | 2016-05-18 | 2024-04-09 | Voyager Therapeutics, Inc. | Compositions and methods for treating Huntington's disease |
IL302748A (en) | 2016-05-18 | 2023-07-01 | Voyager Therapeutics Inc | modulatory polynucleotides |
US20190256845A1 (en) | 2016-06-10 | 2019-08-22 | Alnylam Pharmaceuticals, Inc. | COMPLEMENT COMPONENT C5 iRNA COMPOSITIONS AND METHODS OF USE THEREOF FOR TREATING PAROXYSMAL NOCTURNAL HEMOGLOBINURIA (PNH) |
EP3472329A1 (en) | 2016-06-16 | 2019-04-24 | Oslo Universitetssykehus HF | Improved gene editing |
AU2017283713B2 (en) | 2016-06-17 | 2021-04-08 | Massachusetts Institute Of Technology | Type VI CRISPR orthologs and systems |
WO2018005873A1 (en) | 2016-06-29 | 2018-01-04 | The Broad Institute Inc. | Crispr-cas systems having destabilization domain |
CN109844116A (en) | 2016-07-05 | 2019-06-04 | 约翰霍普金斯大学 | Including using H1 promoter to the improved composition and method of CRISPR guide RNA |
CA3030783A1 (en) | 2016-07-13 | 2018-01-18 | Vertex Pharmaceuticals Incorporated | Methods, compositions and kits for increasing genome editing efficiency |
US11674158B2 (en) | 2016-07-15 | 2023-06-13 | Salk Institute For Biological Studies | Methods and compositions for genome editing in non-dividing cells |
GB2568182A (en) | 2016-08-03 | 2019-05-08 | Harvard College | Adenosine nucleobase editors and uses thereof |
WO2018031683A1 (en) | 2016-08-09 | 2018-02-15 | President And Fellows Of Harvard College | Programmable cas9-recombinase fusion proteins and uses thereof |
EP3500671B1 (en) | 2016-08-17 | 2024-07-10 | The Broad Institute, Inc. | Method of selecting target sequences for the design of guide rnas |
EP3500670B1 (en) | 2016-08-17 | 2024-07-10 | The Broad Institute, Inc. | Method for selecting target sequences for guide rna of crispr systems |
IL300783A (en) | 2016-08-24 | 2023-04-01 | Sangamo Therapeutics Inc | Engineered target-specific zinc finger nucleases |
RS62758B1 (en) | 2016-08-24 | 2022-01-31 | Sangamo Therapeutics Inc | Regulation of gene expression using engineered nucleases |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
EP3831281A1 (en) | 2016-08-30 | 2021-06-09 | The Regents of The University of California | Methods for biomedical targeting and delivery and devices and systems for practicing the same |
SG11201903089RA (en) | 2016-10-14 | 2019-05-30 | Harvard College | Aav delivery of nucleobase editors |
CA3039673A1 (en) | 2016-10-20 | 2018-04-26 | Sangamo Therapeutics, Inc. | Methods and compositions for the treatment of fabry disease |
JP7108608B2 (en) | 2016-10-31 | 2022-07-28 | サンガモ セラピューティクス, インコーポレイテッド | Genetic modification of SCID-associated genes in hematopoietic stem and progenitor cells |
MA49610A (en) | 2016-12-08 | 2020-05-27 | Univ Case Western Reserve | METHODS AND COMPOSITIONS FOR IMPROVING FUNCTIONAL MYELIN PRODUCTION |
JP7058656B2 (en) | 2016-12-16 | 2022-04-22 | アルナイラム ファーマシューティカルズ, インコーポレイテッド | Methods for Treating or Preventing TTR-Related Diseases with Transthyretin (TTR) iRNA Compositions |
WO2018119359A1 (en) | 2016-12-23 | 2018-06-28 | President And Fellows Of Harvard College | Editing of ccr5 receptor gene to protect against hiv infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
CN110914310A (en) | 2017-03-10 | 2020-03-24 | 哈佛大学的校长及成员们 | Cytosine to guanine base editor |
CN110914426A (en) | 2017-03-23 | 2020-03-24 | 哈佛大学的校长及成员们 | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
WO2018195338A1 (en) | 2017-04-20 | 2018-10-25 | Atyr Pharma, Inc. | Compositions and methods for treating lung inflammation |
ES2981611T3 (en) | 2017-04-28 | 2024-10-09 | Univ Colorado Regents | Methods for treating rheumatoid arthritis using RNA-guided genome editing of the HLA gene |
CN119491003A (en) | 2017-05-05 | 2025-02-21 | 沃雅戈治疗公司 | Compositions and methods for treating huntington's disease |
WO2018204786A1 (en) | 2017-05-05 | 2018-11-08 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (als) |
CA3058848A1 (en) | 2017-05-09 | 2018-11-15 | Vib Vzw | Means and methods for treating bacterial infections |
US20210278416A1 (en) | 2017-05-09 | 2021-09-09 | The Broad Institute, Inc. | Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases |
WO2018209320A1 (en) | 2017-05-12 | 2018-11-15 | President And Fellows Of Harvard College | Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation |
JOP20190269A1 (en) | 2017-06-15 | 2019-11-20 | Voyager Therapeutics Inc | Aadc polynucleotides for the treatment of parkinson's disease |
US10011849B1 (en) | 2017-06-23 | 2018-07-03 | Inscripta, Inc. | Nucleic acid-guided nucleases |
US9982279B1 (en) | 2017-06-23 | 2018-05-29 | Inscripta, Inc. | Nucleic acid-guided nucleases |
WO2018237245A1 (en) | 2017-06-23 | 2018-12-27 | University Of Massachusetts | Two-tailed self-delivering sirna and related methods |
RU2769475C2 (en) | 2017-06-23 | 2022-04-01 | Инскрипта, Инк. | Nucleic acid-directed nucleases |
EP3645054A4 (en) | 2017-06-26 | 2021-03-31 | The Broad Institute, Inc. | COMPOSITIONS BASED ON CRISPR / CAS-ADENIN-DEAMINASE, SYSTEMS AND METHODS FOR TARGETED NUCLEIC ACID EDITING |
US11168322B2 (en) | 2017-06-30 | 2021-11-09 | Arbor Biotechnologies, Inc. | CRISPR RNA targeting enzymes and systems and uses thereof |
EP3654860A1 (en) | 2017-07-17 | 2020-05-27 | Voyager Therapeutics, Inc. | Trajectory array guide system |
EP3658573A1 (en) | 2017-07-28 | 2020-06-03 | President and Fellows of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (pace) |
KR20200044793A (en) | 2017-08-03 | 2020-04-29 | 보이저 테라퓨틱스, 인크. | Compositions and methods for delivery of AAV |
EP3676376B1 (en) | 2017-08-30 | 2025-01-15 | President and Fellows of Harvard College | High efficiency base editors comprising gam |
US11618896B2 (en) | 2017-09-21 | 2023-04-04 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
MX2020003042A (en) | 2017-09-29 | 2020-11-18 | Voyager Therapeutics Inc | Rescue of central and peripheral neurological phenotype of friedreich's ataxia by intravenous delivery. |
TW202413649A (en) | 2017-10-16 | 2024-04-01 | 美商航海家醫療公司 | Treatment of amyotrophic lateral sclerosis (als) |
WO2019079347A1 (en) | 2017-10-16 | 2019-04-25 | The Broad Institute, Inc. | Uses of adenosine base editors |
EP3697908A1 (en) | 2017-10-16 | 2020-08-26 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (als) |
CA3078971A1 (en) | 2017-11-01 | 2019-05-09 | Alnylam Pharmaceuticals, Inc. | Complement component c3 irna compositions and methods of use thereof |
EP3714054A1 (en) | 2017-11-20 | 2020-09-30 | Alnylam Pharmaceuticals, Inc. | Serum amyloid p component (apcs) irna compositions and methods of use thereof |
US11008602B2 (en) | 2017-12-20 | 2021-05-18 | Roche Molecular Systems, Inc. | Non-replicative transduction particles and transduction particle-based reporter systems |
CA3088791A1 (en) | 2018-01-17 | 2019-07-25 | Vertex Pharmaceuticals Incorporated | Quinoxalinone compounds, compositions, methods, and kits for increasing genome editing efficiency |
WO2019143678A1 (en) | 2018-01-17 | 2019-07-25 | Vertex Pharmaceuticals Incorporated | Dna-pk inhibitors |
MA51616A (en) | 2018-01-17 | 2020-11-25 | Vertex Pharma | DNA-PK INHIBITORS |
WO2019160383A1 (en) | 2018-02-19 | 2019-08-22 | 고려대학교 산학협력단 | Vaccine comprising epitope of heat shock protein, and use thereof |
WO2019178428A1 (en) | 2018-03-14 | 2019-09-19 | Arbor Biotechnologies, Inc. | Novel crispr dna and rna targeting enzymes and systems |
HUE063005T2 (en) | 2018-03-14 | 2023-12-28 | Arbor Biotechnologies Inc | Novel crispr dna targeting enzymes and systems |
KR20210023832A (en) | 2018-05-11 | 2021-03-04 | 빔 테라퓨틱스, 인크. | How to edit single base polymorphisms using a programmable base editor system |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
KR20210089629A (en) | 2018-06-05 | 2021-07-16 | 라이프에디트 테라퓨틱스, 인크. | RNA-guided nucleases and active fragments and variants thereof and methods of use |
WO2020018142A1 (en) | 2018-07-16 | 2020-01-23 | Arbor Biotechnologies, Inc. | Novel crispr dna targeting enzymes and systems |
KR20210056329A (en) | 2018-08-07 | 2021-05-18 | 더 브로드 인스티튜트, 인코퍼레이티드 | New CAS12B enzyme and system |
US11987792B2 (en) | 2018-08-16 | 2024-05-21 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the LECT2 gene |
WO2020041380A1 (en) | 2018-08-20 | 2020-02-27 | The Broad Institute, Inc. | Methods and compositions for optochemical control of crispr-cas9 |
JP2022500052A (en) | 2018-09-18 | 2022-01-04 | サンガモ セラピューティクス, インコーポレイテッド | Programmed cell death 1 (PD1) specific nuclease |
US20220001030A1 (en) | 2018-10-15 | 2022-01-06 | Fondazione Telethon | Genome editing methods and constructs |
SG11202103732RA (en) | 2018-10-18 | 2021-05-28 | Intellia Therapeutics Inc | Nucleic acid constructs and methods of use |
TW202027799A (en) | 2018-10-18 | 2020-08-01 | 美商英特利亞醫療公司 | Compositions and methods for expressing factor ix |
WO2020092453A1 (en) | 2018-10-29 | 2020-05-07 | The Broad Institute, Inc. | Nucleobase editors comprising geocas9 and uses thereof |
US20220282275A1 (en) | 2018-11-15 | 2022-09-08 | The Broad Institute, Inc. | G-to-t base editors and uses thereof |
US20220025367A1 (en) | 2018-11-23 | 2022-01-27 | Sanofi | Novel rna compositions and methods for inhibiting angptl8 |
CA3124110A1 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Crispr-associated transposase systems and methods of use thereof |
CN113631704A (en) | 2018-12-27 | 2021-11-09 | 生命编辑制药股份有限公司 | Polypeptides useful for gene editing and methods of use |
EP3902930A1 (en) | 2018-12-27 | 2021-11-03 | F. Hoffmann-La Roche AG | Non-replicative transduction particles and transduction particle-based reporter systems for detection of acinetobacter baumannii |
US11572595B2 (en) | 2018-12-31 | 2023-02-07 | Roche Molecular Systems, Inc. | Non-replicative transduction particles with one or more non-native tail fibers and transduction particle-based reporter systems |
EP3911747A4 (en) | 2019-01-18 | 2023-05-24 | University Of Massachusetts | Dynamic pharmacokinetic-modifying anchors |
US12215382B2 (en) | 2019-03-01 | 2025-02-04 | The General Hospital Corporation | Liver protective MARC variants and uses thereof |
WO2020181193A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | T:a to a:t base editing through adenosine methylation |
WO2020181178A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | T:a to a:t base editing through thymine alkylation |
WO2020181180A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | A:t to c:g base editors and uses thereof |
WO2020181195A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | T:a to a:t base editing through adenine excision |
WO2020181202A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | A:t to t:a base editing through adenine deamination and oxidation |
US20220177863A1 (en) | 2019-03-18 | 2022-06-09 | The Broad Institute, Inc. | Type vii crispr proteins and systems |
KR20210143230A (en) | 2019-03-19 | 2021-11-26 | 더 브로드 인스티튜트, 인코퍼레이티드 | Methods and compositions for editing nucleotide sequences |
EP4335925A3 (en) | 2019-04-09 | 2024-08-28 | The Regents of the University of California | Long-lasting analgesia via targeted in vivo epigenetic repression |
WO2020210751A1 (en) | 2019-04-12 | 2020-10-15 | The Broad Institute, Inc. | System for genome editing |
US20220307003A1 (en) | 2019-04-17 | 2022-09-29 | The Broad Institute, Inc. | Adenine base editors with reduced off-target effects |
JP2022529917A (en) | 2019-04-18 | 2022-06-27 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Methods for cancer treatment and prognosis |
US20220220469A1 (en) | 2019-05-20 | 2022-07-14 | The Broad Institute, Inc. | Non-class i multi-component nucleic acid targeting systems |
US20210317192A9 (en) | 2019-05-29 | 2021-10-14 | Massachusetts Institute Of Technology | Hiv-1 specific immunogen compositions and methods of use |
JP2022542839A (en) | 2019-07-19 | 2022-10-07 | フラッグシップ パイオニアリング イノベーションズ シックス,エルエルシー | Recombinase compositions and methods of use |
US20220315906A1 (en) | 2019-08-08 | 2022-10-06 | The Broad Institute, Inc. | Base editors with diversified targeting scope |
JP2022547790A (en) | 2019-08-09 | 2022-11-16 | ユニバーシティー オブ マサチューセッツ | Chemically modified oligonucleotides targeting SNPs |
US20220364074A1 (en) | 2019-08-12 | 2022-11-17 | LifeEDIT Therapeutics, Inc. | Rna-guided nucleases and active fragments and variants thereof and methods of use |
WO2021030666A1 (en) | 2019-08-15 | 2021-02-18 | The Broad Institute, Inc. | Base editing by transglycosylation |
CN115176011A (en) | 2019-08-27 | 2022-10-11 | 赛诺菲 | Compositions and methods for inhibiting PCSK9 |
CN114616331B (en) | 2019-09-03 | 2024-10-22 | 阿尔尼拉姆医药品有限公司 | Compositions and methods for inhibiting expression of the LECT2 gene |
CA3153563A1 (en) | 2019-09-09 | 2021-03-18 | Beam Therapeutics Inc. | Novel crispr enzymes, methods, systems and uses thereof |
JP2022547570A (en) | 2019-09-12 | 2022-11-14 | ザ・ブロード・インスティテュート・インコーポレイテッド | Engineered adeno-associated virus capsid |
WO2021067747A1 (en) | 2019-10-04 | 2021-04-08 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing ugt1a1 gene expression |
WO2021072328A1 (en) | 2019-10-10 | 2021-04-15 | The Broad Institute, Inc. | Methods and compositions for prime editing rna |
WO2021087325A1 (en) | 2019-11-01 | 2021-05-06 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing dnajb1-prkaca fusion gene expression |
EP4058577A1 (en) | 2019-11-13 | 2022-09-21 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for treating an angiotensinogen- (agt-) associated disorder |
US20230086199A1 (en) | 2019-11-26 | 2023-03-23 | The Broad Institute, Inc. | Systems and methods for evaluating cas9-independent off-target editing of nucleic acids |
EP4085133A1 (en) | 2019-12-30 | 2022-11-09 | Lifeedit Therapeutics, Inc. | Rna-guided nucleases and active fragments and variants thereof and methods of use |
US20220356537A1 (en) | 2019-12-31 | 2022-11-10 | Roche Molecular Systems, Inc. | Quantitative pcr screening of inducible prophage from bacterial isolates |
EP4097124A1 (en) | 2020-01-28 | 2022-12-07 | The Broad Institute Inc. | Base editors, compositions, and methods for modifying the mitochondrial genome |
WO2021154941A1 (en) | 2020-01-31 | 2021-08-05 | Alnylam Pharmaceuticals, Inc. | Complement component c5 irna compositions for use in the treatment of amyotrophic lateral sclerosis (als) |
WO2021158999A1 (en) | 2020-02-05 | 2021-08-12 | The Broad Institute, Inc. | Gene editing methods for treating spinal muscular atrophy |
EP4100519A2 (en) | 2020-02-05 | 2022-12-14 | The Broad Institute, Inc. | Adenine base editors and uses thereof |
US20230136787A1 (en) | 2020-02-10 | 2023-05-04 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing vegf-a expression |
AU2021230546A1 (en) | 2020-03-04 | 2022-10-13 | Flagship Pioneering Innovations Vi, Llc | Methods and compositions for modulating a genome |
WO2021202443A2 (en) | 2020-03-30 | 2021-10-07 | Alnylam Pharmaceucticals, Inc. | Compositions and methods for silencing dnajc15 gene expression |
AU2021252545A1 (en) | 2020-04-06 | 2022-11-03 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing myoc expression |
CA3179678A1 (en) | 2020-04-07 | 2021-10-14 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing scn9a expression |
TW202208626A (en) | 2020-04-24 | 2022-03-01 | 美商生命編輯公司 | Rna-guided nucleases and active fragments and variants thereof and methods of use |
US20230159913A1 (en) | 2020-04-28 | 2023-05-25 | The Broad Institute, Inc. | Targeted base editing of the ush2a gene |
AU2021268253A1 (en) | 2020-05-06 | 2022-12-08 | Cellectis S.A. | Methods for targeted insertion of exogenous sequences in cellular genomes |
US20230279440A1 (en) | 2020-05-06 | 2023-09-07 | Cellectis S.A. | Methods to genetically modify cells for delivery of therapeutic proteins |
WO2021226558A1 (en) | 2020-05-08 | 2021-11-11 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
CA3173882A1 (en) | 2020-05-11 | 2021-11-18 | Alexandra Briner CRAWLEY | Rna-guided nucleic acid binding proteins and active fragments and variants thereof and methods of use |
EP4153746A1 (en) | 2020-05-21 | 2023-03-29 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting marc1 gene expression |
CA3173949A1 (en) | 2020-07-15 | 2022-01-20 | LifeEDIT Therapeutics, Inc. | Uracil stabilizing proteins and active fragments and variants thereof and methods of use |
WO2022034374A2 (en) | 2020-08-11 | 2022-02-17 | University Of Oslo | Improved gene editing |
EP4204545A2 (en) | 2020-08-25 | 2023-07-05 | Kite Pharma, Inc. | T cells with improved functionality |
IL301139A (en) | 2020-09-11 | 2023-05-01 | Lifeedit Therapeutics Inc | Enzymes from secondary DNA and active fragments and their variants and methods of use |
MX2023004178A (en) | 2020-10-15 | 2023-05-03 | Hoffmann La Roche | Nucleic acid constructs for simultaneous gene activation. |
KR20230085929A (en) | 2020-10-15 | 2023-06-14 | 에프. 호프만-라 로슈 아게 | Nucleic acid constructs for VA RNA transcription |
WO2022079221A1 (en) | 2020-10-16 | 2022-04-21 | Sanofi | Rna compositions and methods for inhibiting lipoprotein(a) |
EP4229200A1 (en) | 2020-10-16 | 2023-08-23 | Sanofi | Novel rna compositions and methods for inhibiting angptl3 |
EP4232581A1 (en) | 2020-10-21 | 2023-08-30 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for treating primary hyperoxaluria |
TW202237150A (en) | 2020-12-01 | 2022-10-01 | 美商艾拉倫製藥股份有限公司 | Methods and compositions for inhibition of hao1 (hydroxyacid oxidase 1 (glycolate oxidase)) gene expression |
TW202300649A (en) | 2021-03-22 | 2023-01-01 | 美商生命編輯治療學公司 | Dna modifying enzymes and active fragments and variants thereof and methods of use |
AU2022245243A1 (en) | 2021-03-23 | 2023-09-28 | Beam Therapeutics Inc. | Novel crispr enzymes, methods, systems and uses thereof |
KR20240007651A (en) | 2021-04-16 | 2024-01-16 | 빔 테라퓨틱스, 인크. | Genetic modification of liver cells |
JP2024519041A (en) | 2021-05-21 | 2024-05-08 | セレクティス ソシエテ アノニム | Enhancing the efficacy of T cell-mediated immunotherapy by modulating cancer-associated fibroblasts in solid tumors |
CN117337326A (en) | 2021-05-27 | 2024-01-02 | 中国科学院动物研究所 | Engineered Cas12i nucleases, effector proteins and their uses |
AU2022290278A1 (en) | 2021-06-11 | 2024-01-04 | LifeEDIT Therapeutics, Inc. | Rna polymerase iii promoters and methods of use |
WO2022261509A1 (en) | 2021-06-11 | 2022-12-15 | The Broad Institute, Inc. | Improved cytosine to guanine base editors |
WO2023278576A1 (en) | 2021-06-30 | 2023-01-05 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for treating an angiotensinogen- (agt-) associated disorder |
US20240325568A1 (en) | 2021-07-20 | 2024-10-03 | The Broad Institute, Inc. | Engineered targeting compositions for endothelial cells of the central nervous system vasculature and methods of use thereof |
MX2024002927A (en) | 2021-09-08 | 2024-05-29 | Flagship Pioneering Innovations Vi Llc | Methods and compositions for modulating a genome. |
WO2023077148A1 (en) | 2021-11-01 | 2023-05-04 | Tome Biosciences, Inc. | Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo |
CN114015674B (en) | 2021-11-02 | 2024-08-30 | 辉大(上海)生物科技有限公司 | CRISPR-Cas12i system |
EP4448772A2 (en) | 2021-12-17 | 2024-10-23 | Beam Therapeutics Inc. | Crispr enzymes, methzods, systems and uses thereof |
IL313765A (en) | 2021-12-22 | 2024-08-01 | Tome Biosciences Inc | Co-delivery of a gene editor construct and a donor template |
IL314488A (en) | 2022-01-24 | 2024-09-01 | Lifeedit Therapeutics Inc | Rna-guided nucleases and active fragments and variants thereof and methods of use |
AU2023248451A1 (en) | 2022-04-04 | 2024-10-17 | President And Fellows Of Harvard College | Cas9 variants having non-canonical pam specificities and uses thereof |
EP4503923A1 (en) | 2022-04-04 | 2025-02-12 | The Regents of the University of California | Genetic complementation compositions and methods |
WO2023196772A1 (en) | 2022-04-04 | 2023-10-12 | Beam Therapeutics Inc. | Novel rna base editing compositions, systems, methods and uses thereof |
CN118974274A (en) | 2022-04-13 | 2024-11-15 | 豪夫迈·罗氏有限公司 | Methods for determining the AAV genome |
WO2023205744A1 (en) | 2022-04-20 | 2023-10-26 | Tome Biosciences, Inc. | Programmable gene insertion compositions |
WO2023215831A1 (en) | 2022-05-04 | 2023-11-09 | Tome Biosciences, Inc. | Guide rna compositions for programmable gene insertion |
CN119563028A (en) | 2022-05-12 | 2025-03-04 | 尚威天成信使核糖核酸治疗公司 | Synthetic self-amplifying mRNA molecules with secreted antigens and immunomodulators |
WO2023225564A1 (en) | 2022-05-18 | 2023-11-23 | The Broad Institute, Inc. | Engineered viral capsids with increased stability and methods of use thereof |
WO2023225670A2 (en) | 2022-05-20 | 2023-11-23 | Tome Biosciences, Inc. | Ex vivo programmable gene insertion |
CN119256220A (en) | 2022-05-23 | 2025-01-03 | 豪夫迈·罗氏有限公司 | Raman-based method for distinguishing AAV particle serotypes and AAV particle loading states |
EP4532527A1 (en) | 2022-05-27 | 2025-04-09 | The Broad Institute, Inc. | Improved mitochondrial base editors and methods for editing mitochondrial dna |
AR129500A1 (en) | 2022-06-03 | 2024-09-04 | Hoffmann La Roche | METHOD FOR PRODUCING RECOMBINANT AAV PARTICLES |
WO2023240137A1 (en) | 2022-06-08 | 2023-12-14 | The Board Institute, Inc. | Evolved cas14a1 variants, compositions, and methods of making and using same in genome editing |
WO2024003334A1 (en) | 2022-06-30 | 2024-01-04 | Cellectis S.A. | Enhancing safety of t-cell-mediated immunotherapy |
TW202428311A (en) | 2022-07-14 | 2024-07-16 | 美商博得學院股份有限公司 | Aav capsids that enable cns-wide gene delivery through interactions with the transferrin receptor |
IL317254A (en) | 2022-07-14 | 2025-01-01 | Hoffmann La Roche | Method for producing recombinant aav particles |
IL318914A (en) | 2022-08-12 | 2025-04-01 | Life Edit Therapeutics Inc | Rna-guided nucleases and active fragments and variants thereof and methods of use |
WO2024040083A1 (en) | 2022-08-16 | 2024-02-22 | The Broad Institute, Inc. | Evolved cytosine deaminases and methods of editing dna using same |
AU2023331255A1 (en) | 2022-08-25 | 2025-03-27 | Life Edit Therapeutics, Inc. | Chemical modification of guide rnas with locked nucleic acid for rna guided nuclease-mediated gene editing |
WO2024056561A1 (en) | 2022-09-12 | 2024-03-21 | F. Hoffmann-La Roche Ag | Method for separating full and empty aav particles |
WO2024059791A1 (en) | 2022-09-16 | 2024-03-21 | Beam Therapeutics Inc. | Large serine recombinases, systems and uses thereof |
WO2024094775A1 (en) | 2022-11-03 | 2024-05-10 | Cellectis S.A. | Enhancing efficacy and safety of t-cell-mediated immunotherapy |
WO2024098061A2 (en) | 2022-11-04 | 2024-05-10 | Genkardia Inc. | Oligonucleotide-based therapeutics targeting cyclin d2 for the treatment of heart failure |
WO2024095245A2 (en) | 2022-11-04 | 2024-05-10 | LifeEDIT Therapeutics, Inc. | Evolved adenine deaminases and rna-guided nuclease fusion proteins with internal insertion sites and methods of use |
WO2024108217A1 (en) | 2022-11-18 | 2024-05-23 | Genkardia Inc. | Methods and compositions for preventing, treating, or reversing cardiac diastolic dysfunction |
WO2024127369A1 (en) | 2022-12-16 | 2024-06-20 | LifeEDIT Therapeutics, Inc. | Guide rnas that target foxp3 gene and methods of use |
WO2024127370A1 (en) | 2022-12-16 | 2024-06-20 | LifeEDIT Therapeutics, Inc. | Guide rnas that target trac gene and methods of use |
WO2024138194A1 (en) | 2022-12-22 | 2024-06-27 | Tome Biosciences, Inc. | Platforms, compositions, and methods for in vivo programmable gene insertion |
WO2024163842A2 (en) | 2023-02-03 | 2024-08-08 | The Broad Institute, Inc. | Delivering genes to the brain endothelium to treat lysosomal storage disorder-derived neuropathology |
WO2024163862A2 (en) | 2023-02-03 | 2024-08-08 | The Broad Institute, Inc. | Gene editing methods, systems, and compositions for treating spinal muscular atrophy |
WO2024165456A1 (en) | 2023-02-07 | 2024-08-15 | F. Hoffmann-La Roche Ag | Method for the detection of anti-aav particle antibodies |
WO2024194280A1 (en) | 2023-03-21 | 2024-09-26 | F. Hoffmann-La Roche Ag | Method for the production of recombinant aav particle preparations |
AU2024220143A1 (en) | 2023-04-12 | 2024-10-31 | LifeEDIT Therapeutics, Inc. | Compositions and methods for the treatment of huntington's disease by editing the mutant huntingtin gene |
WO2024218394A1 (en) | 2023-04-21 | 2024-10-24 | Fondazione Telethon Ets | Genome editing methods and constructs |
WO2024234006A1 (en) | 2023-05-11 | 2024-11-14 | Tome Biosciences, Inc. | Systems, compositions, and methods for targeting liver sinusodial endothelial cells (lsecs) |
WO2025004001A1 (en) | 2023-06-30 | 2025-01-02 | Takeda Pharmaceutical Company Limited | Htt repressors and uses thereof |
WO2025008774A1 (en) | 2023-07-05 | 2025-01-09 | Takeda Pharmaceutical Company Limited | Viral vectors encoding recombinant fviii variants with increased expression for gene therapy of hemophilia a |
WO2025022367A2 (en) | 2023-07-27 | 2025-01-30 | Life Edit Therapeutics, Inc. | Rna-guided nucleases and active fragments and variants thereof and methods of use |
WO2025050069A1 (en) | 2023-09-01 | 2025-03-06 | Tome Biosciences, Inc. | Programmable gene insertion using engineered integration enzymes |
WO2025072383A1 (en) | 2023-09-25 | 2025-04-03 | The Broad Institute, Inc. | Viral open reading frames, uses thereof, and methods of detecting the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4797368A (en) * | 1985-03-15 | 1989-01-10 | The United States Of America As Represented By The Department Of Health And Human Services | Adeno-associated virus as eukaryotic expression vector |
US5252479A (en) * | 1991-11-08 | 1993-10-12 | Research Corporation Technologies, Inc. | Safe vector for gene therapy |
US5587308A (en) * | 1992-06-02 | 1996-12-24 | The United States Of America As Represented By The Department Of Health & Human Services | Modified adeno-associated virus vector capable of expression from a novel promoter |
-
1992
- 1992-06-02 US US07/891,962 patent/US5587308A/en not_active Expired - Lifetime
-
1993
- 1993-06-02 AT AT01107900T patent/ATE483817T1/en not_active IP Right Cessation
- 1993-06-02 EP EP01107900A patent/EP1164195B1/en not_active Expired - Lifetime
- 1993-06-02 WO PCT/US1993/005310 patent/WO1993024641A2/en active IP Right Grant
- 1993-06-02 CA CA002136441A patent/CA2136441C/en not_active Expired - Fee Related
- 1993-06-02 ES ES93916425T patent/ES2168096T3/en not_active Expired - Lifetime
- 1993-06-02 DK DK93916425T patent/DK0644944T3/en active
- 1993-06-02 PT PT93916425T patent/PT644944E/en unknown
- 1993-06-02 DE DE69331194T patent/DE69331194T2/en not_active Expired - Lifetime
- 1993-06-02 AU AU45981/93A patent/AU673367B2/en not_active Ceased
- 1993-06-02 EP EP93916425A patent/EP0644944B1/en not_active Expired - Lifetime
- 1993-06-02 DE DE69334343T patent/DE69334343D1/en not_active Expired - Lifetime
- 1993-06-02 AT AT93916425T patent/ATE209254T1/en not_active IP Right Cessation
-
1995
- 1995-05-31 US US08/455,231 patent/US5989540A/en not_active Expired - Fee Related
- 1995-05-31 US US08/455,552 patent/US5990279A/en not_active Expired - Fee Related
-
1996
- 1996-04-03 US US08/626,953 patent/US5866696A/en not_active Expired - Lifetime
-
1998
- 1998-12-28 HK HK98115814A patent/HK1014549A1/en not_active IP Right Cessation
-
1999
- 1999-01-21 US US09/235,375 patent/US6165781A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO1993024641A2 (en) | 1993-12-09 |
AU673367B2 (en) | 1996-11-07 |
EP1164195A3 (en) | 2005-11-23 |
AU4598193A (en) | 1993-12-30 |
DK0644944T3 (en) | 2002-05-13 |
ATE209254T1 (en) | 2001-12-15 |
US6165781A (en) | 2000-12-26 |
EP0644944B1 (en) | 2001-11-21 |
PT644944E (en) | 2002-05-31 |
DE69334343D1 (en) | 2010-11-18 |
US5866696A (en) | 1999-02-02 |
DE69331194D1 (en) | 2002-01-03 |
ES2168096T3 (en) | 2002-06-01 |
CA2136441A1 (en) | 1993-12-09 |
CA2136441C (en) | 2007-04-24 |
EP1164195A2 (en) | 2001-12-19 |
US5989540A (en) | 1999-11-23 |
US5587308A (en) | 1996-12-24 |
EP0644944A1 (en) | 1995-03-29 |
EP1164195B1 (en) | 2010-10-06 |
US5990279A (en) | 1999-11-23 |
ATE483817T1 (en) | 2010-10-15 |
HK1014549A1 (en) | 1999-09-30 |
WO1993024641A3 (en) | 1994-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69331194T2 (en) | ADENO ASSOCIATED VIRUS WITH REVERSE TERMINAL REPEAT SEQUENCES AS A PROMOTOR FOR THE TRANSFER OF A FUNCTIONAL CFTR GENE IN VIVO | |
DE69231739T2 (en) | DNA SYNTHESIS INHIBITORS DERIVED FROM AGING CELLS | |
DE69534902T2 (en) | Recombinant viral DNA vector for transfecting animal cells | |
DE69114997T2 (en) | Recombinant vectors from adeno-associated viruses. | |
DE69518910T2 (en) | METHOD FOR PRODUCING VIRAL VECTORS OF AT LEAST 20KB BY INTERMOLECULAR HOMOLOGOUS RECOMBINATION IN A PROKARYOTIC CELL | |
DE69615650T2 (en) | VIRAL VECTORS FOR GENE THERAPY | |
DE69611753T2 (en) | METHOD AND COMPOSITIONS FOR GENE THERAPY FOR TREATING ERRORS IN LIPOPROTEIN METAL BOLISM | |
DE69534791T2 (en) | VECTORS FOR TISSUE-SPECIFIC REPLICATION | |
DE69433922T2 (en) | STABLE CELL LINE THAT IS ABLE TO EXPRESS THE REPLICATION GENE OF THE ADENOASSOCATED VIRUS | |
DE60034478T2 (en) | VECTORS AND TRANSGENES WITH REGULATORY ELEMENTS FOR GENETIC ADMINISTRATION IN LIVER | |
DE69534166T2 (en) | RECOMBINANT ADENOVIRUS AND METHODS OF USE THEREOF | |
DE69834936T2 (en) | VECTOR FOR TISSUE-SPECIFIC REPLICATION AND EXPRESSION | |
DE69824859T2 (en) | METHODS OF INCREASING THE EFFICIENCY OF RECOMBINANT AAV PRODUCTS | |
DE69616559T2 (en) | AUXILIARY VIRUS FOR THE PRODUCTION OF RECOMBINANT VIRUS VECTORS | |
DE69828167T2 (en) | RECOMBINANT ADENOVIRAL VECTORS CONTAINING A SPLICE SEQUENCE | |
JPH08503855A (en) | Gene therapy for cystic fibrosis | |
DE10066104A1 (en) | Host cells for packaging recombinant adeno-associated virus (rAAV), process for their preparation and their use | |
DE69432500T2 (en) | Recombinant foamy virus vectors for medical and diagnostic use and method for producing recombinant foamy virus vectors | |
EP0904394A1 (en) | Chicken embryo lethal orphan (celo) virus | |
DE69725882T2 (en) | ADENOVIRUS E4 PROTEINS FOR INDUCTION OF CELL DEATH | |
EP0746624B1 (en) | Vector for liver-specific gene expression | |
DE69731310T2 (en) | PROCESS FOR THE IMMORTAL MACHINING OF CELLS | |
DE60130465T2 (en) | MUTED MUSCLE SPECIFIC ENHANCER | |
DE69224360T2 (en) | DNA clones with 'enhancer' activity, recombinant vector containing them and method of producing gene products using the same | |
DE19807265C2 (en) | Adenoviral transfer vector for the gene transport of a DNA sequence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8364 | No opposition during term of opposition |