DE19525282A1 - Expressionskassetten zur heterologen Expression von Proteinen in der Hefe Yarrowia lipolytica unter Kontrolle des regulierbaren Promotors der Isocitratlyase - Google Patents
Expressionskassetten zur heterologen Expression von Proteinen in der Hefe Yarrowia lipolytica unter Kontrolle des regulierbaren Promotors der IsocitratlyaseInfo
- Publication number
- DE19525282A1 DE19525282A1 DE1995125282 DE19525282A DE19525282A1 DE 19525282 A1 DE19525282 A1 DE 19525282A1 DE 1995125282 DE1995125282 DE 1995125282 DE 19525282 A DE19525282 A DE 19525282A DE 19525282 A1 DE19525282 A1 DE 19525282A1
- Authority
- DE
- Germany
- Prior art keywords
- lipolytica
- icl1
- promoter
- gene
- expression cassette
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 241000235015 Yarrowia lipolytica Species 0.000 title claims abstract description 56
- 101710122479 Isocitrate lyase 1 Proteins 0.000 title claims abstract 4
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 59
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 28
- 101150067599 icl-1 gene Proteins 0.000 claims abstract description 27
- 239000013598 vector Substances 0.000 claims description 48
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 34
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 32
- 238000010367 cloning Methods 0.000 claims description 23
- 239000012634 fragment Substances 0.000 claims description 20
- 241000588724 Escherichia coli Species 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 241000235013 Yarrowia Species 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 150000004665 fatty acids Chemical class 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 4
- 230000004048 modification Effects 0.000 claims description 4
- 230000003362 replicative effect Effects 0.000 claims description 3
- 230000029087 digestion Effects 0.000 claims description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 2
- 239000011707 mineral Substances 0.000 claims description 2
- 239000002773 nucleotide Substances 0.000 claims description 2
- 125000003729 nucleotide group Chemical group 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 210000005253 yeast cell Anatomy 0.000 claims 1
- 108020003285 Isocitrate lyase Proteins 0.000 abstract description 28
- 101150066555 lacZ gene Proteins 0.000 description 19
- 101100215634 Yarrowia lipolytica (strain CLIB 122 / E 150) XPR2 gene Proteins 0.000 description 11
- 239000013612 plasmid Substances 0.000 description 11
- 102000005936 beta-Galactosidase Human genes 0.000 description 10
- 108010005774 beta-Galactosidase Proteins 0.000 description 10
- 239000013604 expression vector Substances 0.000 description 10
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 101100281510 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) met-6 gene Proteins 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- KUWPCJHYPSUOFW-YBXAARCKSA-N 2-nitrophenyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CC=CC=C1[N+]([O-])=O KUWPCJHYPSUOFW-YBXAARCKSA-N 0.000 description 2
- 101710162350 Alkaline extracellular protease Proteins 0.000 description 2
- 241000222178 Candida tropicalis Species 0.000 description 2
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 2
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 101150007280 LEU2 gene Proteins 0.000 description 2
- 101150053185 P450 gene Proteins 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000007269 microbial metabolism Effects 0.000 description 2
- 230000012666 negative regulation of transcription by glucose Effects 0.000 description 2
- 230000001323 posttranslational effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000013605 shuttle vector Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 240000000073 Achillea millefolium Species 0.000 description 1
- 235000007754 Achillea millefolium Nutrition 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 101100371504 Arabidopsis thaliana UBC24 gene Proteins 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101150085381 CDC19 gene Proteins 0.000 description 1
- 102100021198 Chemerin-like receptor 2 Human genes 0.000 description 1
- 102100034229 Citramalyl-CoA lyase, mitochondrial Human genes 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101100437498 Escherichia coli (strain K12) uidA gene Proteins 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108010058643 Fungal Proteins Proteins 0.000 description 1
- UTPGJEROJZHISI-DFGCRIRUSA-N Gaillardin Chemical compound C1=C(C)[C@H]2[C@@H](OC(=O)C)C[C@@](C)(O)[C@@H]2C[C@@H]2C(=C)C(=O)O[C@H]21 UTPGJEROJZHISI-DFGCRIRUSA-N 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000750094 Homo sapiens Chemerin-like receptor 2 Proteins 0.000 description 1
- 101000718476 Homo sapiens L-aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl transferase Proteins 0.000 description 1
- 101100533890 Hypocrea jecorina (strain QM6a) sor3 gene Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- 102100026384 L-aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl transferase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108020004687 Malate Synthase Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000237852 Mollusca Species 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 101100234604 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) ace-8 gene Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 101150093629 PYK1 gene Proteins 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 102000001938 Plasminogen Activators Human genes 0.000 description 1
- 108010001014 Plasminogen Activators Proteins 0.000 description 1
- UTPGJEROJZHISI-UHFFFAOYSA-N Pleniradin-acetat Natural products C1=C(C)C2C(OC(=O)C)CC(C)(O)C2CC2C(=C)C(=O)OC21 UTPGJEROJZHISI-UHFFFAOYSA-N 0.000 description 1
- 102000013009 Pyruvate Kinase Human genes 0.000 description 1
- 108020005115 Pyruvate Kinase Proteins 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 101150013347 SEC14 gene Proteins 0.000 description 1
- 101150014136 SUC2 gene Proteins 0.000 description 1
- 101100057317 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OLI1 gene Proteins 0.000 description 1
- 101100324965 Saccharomyces paradoxus ATP9 gene Proteins 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 101150023108 XPR2 gene Proteins 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 229940019700 blood coagulation factors Drugs 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000004034 genetic regulation Effects 0.000 description 1
- 230000004110 gluconeogenesis Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 101150063702 pho2 gene Proteins 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 229940127126 plasminogen activator Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
- C12N15/815—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Konstruktion von Expressionskassetten, die zur
heterologen Expression von Proteinen in der Hefe Yarrowia (Y.) lipolytica unter Kontrolle des
regulierbaren Promotors der Isocitratlyase (ICL1 Gen) dieser Hefe geeignet sind.
Sie betrifft ferner die Klonierung des vollständigen ICL1-Promotors, der notwendig ist für die
Realisierung des Verfahrens.
Anwendungsgebiet der Erfindung ist die Biotechnologie, vor allem die Nutzung zur Expression
von Oligopeptiden und Proteinen in Y. lipolytica und insbesondere die sich daraus ergebende
Möglichkeit, zielgerichtet mikrobielle Stoffwandlungen mit Hilfe der in der Hefe heterolog
exprimierten Enzyme durchzuführen.
Die Isocitratlyase (ICL, EC 4.1.3.1) ist ein Enzym des Glyoxylat-Zyklus, welcher in pro- und
eukaryotischen Mikroorganismen, Protozoa, Mollusken, Insekten und Pflanzen nachgewiesen
werden konnte. In Säugern ist er dagegen nur in einigen Geweben und nur zu bestimmten
Entwicklungsabschnitten nachweisbar (Übersicht bei Vanni et al. 1990 Comp Biochem Physiol
95B: 431-458). Dieser anaplerotische Stoffwechselweg ist notwendig für die Verwertung von
Ethanol, Acetat, Fettsäuren und n-Alkanen als Kohlenstoff- und Energiequelle durch
Mikroorganismen, wie Bakterien, Hefen und Pilze. Intermediate des Tricarbonsäure-Zyklus
(Succinat, Oxalacetat) werden durch den Glyoxylat-Zyklus aus dem im Metabolismus vermehrt
entstehenden Acetyl-CoA wieder nachgebildet und in die anabolen Wege (Gluconeogenese,
Aminosäuresynthese) eingeschleust.
Heute liegen zur Biochemie und genetischen Regulation des Glyoxylatzyklus und besonders der
ICL in Mikroorganismen (E. coli, Hefen wie Y. lipolytica, C. tropicalis, S. cerevisiae, Pilze wie
Aspergillus nidulans, Neurospora crassa) zahlreiche Daten vor. Mutanten in den Strukturgenen
der ICL, MS und ACS sowie den regulatorischen Genen wurden isoliert und untersucht. Es
gelang unter anderem die Klonierung der ICL-Gene aus den oben angeführten Mikroorganismen
(siehe Barth and Scheuber 1993 Mol Gen Genet 241: 422-430).
Die Expression der Schlüsselenzyme des Glyoxylat-Zyklus ICL und Malatsynthase (MS, EC
4.1.3.2) wird in den bisher untersuchten Hefen S. cerevisiae, C. tropicalis und Y. lipolytica auf
der transkriptionellen (Induktion/Katabolitrepression) und der posttranslationalen Ebene
(Katabolitinaktivierung und metabolische Regulation durch Metaboliten bzw. durch
Phosphorylierung/Dephosphorylierung) stark reguliert (Barth 1985 Curr Genet 10: 119-124,
Kujau et al. 1992 Yeast 8: 193-203, Barth and Scheuber 1993 Mol Gen Genet 241: 422-430,
weitere Literatur siehe Vanni et al. 1990 Comp Biochem Physiol 95B: 431-458).
Es wurde gezeigt, daß Intermediate des Metabolismus (offensichtlich Acetyl-CoA) der
induzierend wirkenden C-Quellen notwendig sind für die Induktion der Isocitratlyase. Das
induzierend wirkende Acetyl-CoA wird bei Wachstum auf Ethanol, Acetat, Fettsäuren und n-
Alkanen verstärkt, dagegen beim Wachstum auf Glucose nur geringfügig gebildet, und die ICL-
Synthese wird reprimiert. Glycerol als C-Quelle wirkt dereprimierend auf die ICL. Die stark
exprimierte ICL kann bis zu 5% des zellulären Proteins betragen (Vanni et al. 1990 Comp
Biochem Physiol 95B: 431-458). Demnach steht im ICL1-Gen offensichtlich ein gut regulierbarer
Promotor aus Y. lipolytica zur Verfügung, der für die heterologe Expression von Proteinen in
diesem Wirt genutzt werden kann.
Seit Klonierung der ersten Gene aus Y lipolytica (LEU2, XPR2) wird diese nicht-konventionelle
Hefe auf ihrer Nutzbarkeit zur heterologen Proteinexpression untersucht.
- Y. lipolytica ist besonders durch ihre ausgeprägte Eigenschaft von praktischem Interesse, eine Reihe von hochmolekularen Proteinen zu sezernieren (Übersicht bei Ogrydziak 1993 Critical Rev , Biotechnol 13: 1-55), darunter eine alkalische extrazelluläre Protease (AEP), mindestens 3 saure Proteasen, Lipasen bzw. Esterasen, eine Ribonuklease, eine Phosphodiesterase, sowie alkalische und saure Phosphatasen. Das steht im Gegensatz zur Hefe S. cerevisiae, die natürlicherweise keine größeren Proteine in Medium ausscheidet.
Dadurch ist die Hefe Y lipolytica (neben weiteren nicht-konventionellen Hefen wie Pichia
pastoris und Kluyveromyces lactis) von potentiellem Interesse für ihre Anwendung zur
extrazellulären Produktion von heterologen Proteinen (Heslot 1990 Adv Biochem Eng/Biotechnol
43: 43-73; Buckholz and Gleeson 1991 Bio/Technology 9: 1067-1072; Romanos et al. 1992
Yeast 8: 423-488; Ogrydziak 1993 Critical Rev Biotechnol 13: 1-55; Sudbery 1994 Yeast 10:
1707-1726).
Bisher wurden in Y lipolytica eine Reihe heterologer Proteine extra- und intrazellulär exprimiert,
darunter bakterielle Proteine, wie die β-Galactosidase (lacZ Gen) und die β-Glucuronidase (gusA)
aus E. coli unter Kontrolle der LEU2-, LYS5-, XPR2- und PHO2-Promotoren, sowie das
Hefeprotein Invertase (SUC2 Gen) aus S. cerevisiae unter Kontrolle des XPR2-Promotors
(Literaturangaben in den aufgeführten Übersichtsartikeln).
Von besonderem Interesse war die Expression und Sekretion einer Reihe Proteine höherer
Eukaryonten, die auch von kommerziellem Interesse sein können, wie der Blut-Gerinnungsfaktor
XIIIa des Menschen (XPR2-Promotor, Tharaud et al. 1992 Gene 121: 111-119), das
Prochyrnosin des Rindes (YPR2 und LEU2-Promotor, Davidow et al. 1987, European Patent
Applications EP 220864 B1, and EP 86307839; Franke et al. 1988 Develop Indust Mircobiol
29: 43-57; Nicaud et al. 1991 J Biotechnol 19: 259-270), das α1-Interferon des Schweines (Heslot
et al. 1990 In: Nga BH and Lee YK /Eds/, Microbiology Applications in Food Biotechnology,
Elsevier Science, Amsterdam, pp 27-45; Nicaud et al. 1991 J Biotechnol 19: 259-270), das
Anaphylatoxin C5a des Menschen (XPR2-Promotor, Davidow et al. 1987 European Patent
Application EP 86307839), der gewebespezifische Plasminogen Aktivator (tPA) des Menschen
(XPR2-Promotor, Franke et al. 1988 4th ASM Conf Genet Mol Biol Industrial Microoganisms,
Bloomington, Indiana, Abtstracts p37, sowie das Hepatitis B Virus Oberflächenantigen (preS2-
HBsAg) unter Kontrolle des XPR2-Promotors (Hamsa und Chattoo 1994 Gene 143: 165-170).
Neben den aufgeführten Berichten zur Expression und Sekretion von Proteinen sollte die
alkanverwertende Hefe Y. lipolytica ein interessanter Wirt für die Expression von
membranständigen (ER) Proteinen, insbesondere von Cytochrom P450 Enzymen sein, da sie eine
Reihe von spezifischen Eigenschaften einer alkanverwertenden Hefe (Aufnahme, Transport
hydrophober Substrate und günstige Bedingungen für den Elektronentransfer zum P450)
aufweist, die für die biotechnologische Nutzung zur Biotransformation kommerziell interessanter
Verbindungen von Vorteil sein können.
Wie aus der oben angeführten Aufzählung hervorgeht, wurden für die heterologe Expression von
Proteinen in Y. hpolytica bisher hauptsächlich der XPR2- und der LEU2-Promotor genutzt. Der
XPR2-Promotor ist am besten charakterisiert und zeigt die bisher für Y. lipolytica höchste
Promotorstärke, insbesondere nach gezielter Modifikation (Blanchin-Roland et al. 1994 Mol Cell
Biol 14: 327-338). Der XPR2-Promotor ist jedoch relativ komplex durch pH und die N- und C-
Quellen reguliert, und erfordert die Kultivierung in einem Medium mit viel Pepton. Die Natur des
eigentlichen Induktors ist jedoch nicht bekannt (Blanchin-Roland et al. 1994 Mol Cell Biol 14:
327-338). Die Sekretionssignale (in der Pre-Pro-Sequenz) für die extrazelluläre alkalische
Protease wurden, wie oben aufgeführt, vor allem zur Produktion und Sekretion einer Reihe von
kommerziell interessanten heterologen Proteinen (Übersichten bei Heslot 1990 Adv Biochem
Eng/Biotechnol 43: 43-73; Buckholz and Gleeson 1991 Bio/Technology 9: 1067-1072; Romanos
et al. 1992 Yeast 8: 423-488; Ogrydziak 1993 Critical Rev Biotechnol 13: 1-55; Sudbery 1994
Yeast 10: 1707-1726) mit Y. lipolytica genutzt. Der LEU2-Promotor ist dagegen nicht als stark
einzuschätzen (Gaillardin and Ribet 1987 Curr Genet 11: 369-375).
Es gibt deshalb immer noch einen Bedarf an starken, regulierbaren Promotoren für die Hefe Y.
lipolytica, wofür offensichtlich die stark exprimierten Gene PYK1 oder ICL1 (Strick et al. 1992
Gene 118: 65-72, sowie 1994 Gene 140: 141-143, Barth and Scheuber 1993 Mol Gen Genet 241:
422-430) in Frage kommen.
Das Anliegen der Erfindung ist es, mit der Anwendung des ICL1-Promotors einen Beitrag zur
Erschließung weiterer regulierbarer Promotoren für Y. lipolytica zu leisten, die Stärke dieses
Promotors für eine heterologe Expression mit Hilfe des lacZ Genes aus E. coli einzuschätzen, und
dessen Eignung für die heterologe Expression von Cytochrom P450 in Y. lipolytica zu testen.
Die Erfindung hat das Ziel, ein neues, gut regulierbares Expressionssystem für heterologe Gene in
der Hefe Yarrowia (Y.) lipolytica zur Verfügung zu stellen. Es soll auf der Basis des
regulierbaren Promotors des ICL1 Genes (kodierend für die Isocitralyase) der Hefe Yarrowia
lipolytica durch eine einfache Kulturführung zur Expression von heterologen Proteinen führen,
die unter anderem auf Grund ihrer Eigenschaften zu mikrobiellen Stoffwandlungsprozessen
eingesetzt werden können. Der Erfindung liegt die Aufgabe zugrunde, die Hefe Y. lipolytica
durch die Konstruktion geeigneter Expressionskassetten und deren Transformation in die Hefe
gentechnisch so zu verändern, daß sie bei Kultivierung auf Medien mit geeigneter
Kohlenstoffquelle heterologe Proteine exprimiert.
Diese Aufgabe wird durch die Klonierung des ICL1-Genes, insbesondere seines vollständigen
Promotors, aus Y. lipolytica und die dadurch ermöglichte Konstruktion von neuen
Expressionskassetten mit dem regulierbaren Promotor dieses Genes gelöst.
Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß Expressionskassetten zur
heterologen Expression von Proteinen in Y. lipolytica, bestehend aus dem vollständigen Promotor
(2196 bp) und Terminator (275 bp) des Isocitratlyase Genes (ICL1) und dem zu exprimierenden
heterologen Gen (beispielsweise das lacZ Gen aus E. coli, P450 Gene oder cDNA
unterschiedlicher Herkunft), konstruiert werden.
Das geschieht durch Modifikation des 3′-Endes des Promotors des ICL1-Genes aus Y. lipolytica
mittels PCR (vor oder hinter dem Intron im ICL1 Gen) zur Einführung eines entsprechenden
Restriktonsortes und die dadurch durch einfache Klonierung ermöglichte Fusion mit dem zu
exprimierenden heterologen Gen und dem daran angeschlossenen ICL1-Terninator, bzw. durch
den direkten Anschluß des zu exprimierenden heterologen Genes hinter dem T₃₆₀G₃₆₁ des ICL1-
Genes mittels rekombinanter PCR.
Diese neu konstruierten Expressionskassetten werden dann in das Grundgerüst eines in Y.
lipolytica autonom replizierenden Vektors, beispielsweise pINA237, pYLI131, oder pYLI131D,
umkloniert.
Mit Hilfe dieser neu konstruierten Vektoren werden die Expressionskassetten in einer geeigneten
Form in entsprechende Rezipientenstämme der Hefe Y. lipolytica transformiert, was sowohl durch
integrative Transformation in das Genom als auch durch Transformation mit diesen autonon
replizierenden Vektoren möglich ist.
Durch Kultivierung der entsprechenden Transformanden der Hefe Y. hpolytica in
Mineralsalzmedien mit induzierend wirkenden Kohlenstoffquellen werden die Proteine durch die
Hefe synthetisiert und intrazellulär angereichert. Induzierend wirkende Kohlenstoffquellen können
sein Ethanol, Acetat, Fettsäuren oder n-Alkane.
Kernpunkt der Erfindung ist die Sequenz des neu klonierten vollständigen Promotors der
Isocitratlyase der Hefe Y. lipolytica. Davon abgeleitet werden Vektoren zur gentechnischen
Veränderung von Y. lipolytica konstruiert, die, aufbauend auf dem Grundgerüst des Vektors
pINA237, Expressionskassetten, bestehend aus dem vollständigen ICL1-Promotor (2196 bp),
dem zu exprimierenden heterologen Gen und dem ICL1-Terminator (275 bp) kloniert in den
pBR322 Teil des Vektors, enthaften.
Eine für die Durchführung der Erfindung wichtige Besonderheit besteht darin, daß mit dem
vollständigen ICL1-Promotor ein durch einfachen Wechsel der C-Quellen gut regulierbarer
Promotor genutzt wird, der die heterologe Expression von Proteien in Y. lipolytica durch eine
einfache Kulturführung und unter Einsatz von kostengünstigen C-Quellen wie Ethanol oder
Acetat gestattet.
Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß die konstruierten
Expressionskassetten mit dem vollständigen ICL1-Promotor die Expression heterologer Proteine
in Y. lipolytica gewährleisten, deren Anteil am Gesamtprotein mindestens 3% (wie für die β-
Galactosidase aus E. coli gezeigt) betragen kann. Der ICL1-Promotor gehört demnach zu den
durch die C-Quelle einfach regulierbaren Promotoren für Y lipolytica, seine Promotorstärke liegt
im Bereich des bisher beschriebenen stärksten Promotors für das XPR2 Gen aus dieser Hefe.
Die Erfindung soll nachfolgend durch Ausführungsbeispiele erläutert werden
B204-12C (MATA met6 spol),
B204-12C-112 (MATA met6 spol GPR1),
Rezipientenstämme zur Transformation von Y. lipolytica:
B204-12A-213 (M4TB leu2 ura3) und
B512-3 (MATA iclic leu2 met6).
B204-12C-112 (MATA met6 spol GPR1),
Rezipientenstämme zur Transformation von Y. lipolytica:
B204-12A-213 (M4TB leu2 ura3) und
B512-3 (MATA iclic leu2 met6).
Alle Stämme entstammen der Stammsammlung von Dr. G. Barth (Biozentrum der Universität
Basel/Technische Universität Dresden).
E. coli/Y. lipolytica-Shuttle-Vektoren:
pINA237 - Der E. coli/Y. hpolyllca-Shuttle-Vektor pINA237 trägt neben dem CEN-ARS18 Gen zur autonomen Replikation in Y. lipolytica das homologe LEU2-Gensowie einen Anteil von pBR322 zur Amplifikation in E. coli. Die Kopiezahl dieses Vektors in Y. lipolytica liegt bei 1-3 pro Zelle (Fournier et al. 1993, Proc Natl Acad Sci USA 90: 4912-4916).
pINA237 - Der E. coli/Y. hpolyllca-Shuttle-Vektor pINA237 trägt neben dem CEN-ARS18 Gen zur autonomen Replikation in Y. lipolytica das homologe LEU2-Gensowie einen Anteil von pBR322 zur Amplifikation in E. coli. Die Kopiezahl dieses Vektors in Y. lipolytica liegt bei 1-3 pro Zelle (Fournier et al. 1993, Proc Natl Acad Sci USA 90: 4912-4916).
pYLI131 - Der Vektor pYLI131 wurde aus einer einer Genbank (konstruiert aus 2-8 kb
großen Sau3A-Fragmenten der chromosomalen DNA des Stammes B204-12C-211 ligiert in
den BamHI-Restriktionsort des Vektors pINA237) durch Komplementation in der icl1-
Mutante B512-3 (MATA icl1c leu2 met6) direkt kloniert (Abb. 1).
pUCEK2L - lacZ am ATG₃₁₉ des ICL1 angeschlossen und in pUC118 kloniert (Abb. 4).
Oligonukleotide zur PCR:
Sa2 : 5-′ ATG GTG TCG ACA AGG AGA TGG CGC CCA ACA G 3′
3SS: 5′ GCT GTT GCA TGC CTG GGT TAG TAC GGG ACA GAT G 3′
5SS: 5′ GGA TAC TGC ATG CTT TGT ATG CTT GGT CA 3′
Oligonukleotid 1: 5′ GCGGCCGCGTCGACGCGG 3′
Oligonukleotid 2: 5′ GATCCCGCGTCGACGCGGCCGCCAT 3′
Sa2 : 5-′ ATG GTG TCG ACA AGG AGA TGG CGC CCA ACA G 3′
3SS: 5′ GCT GTT GCA TGC CTG GGT TAG TAC GGG ACA GAT G 3′
5SS: 5′ GGA TAC TGC ATG CTT TGT ATG CTT GGT CA 3′
Oligonukleotid 1: 5′ GCGGCCGCGTCGACGCGG 3′
Oligonukleotid 2: 5′ GATCCCGCGTCGACGCGGCCGCCAT 3′
Das ICL1-Gen mit einem nicht vollständigen Promotor (Promotorvariante A-225 bp) liegt in dem
15,75 kb großen Expressionsvektor pYLI131 vor (Abb. 1). Dieser Vektor wurde durch
Direktklonierung in Hefe gewonnen, wobei eine icl1-Mutation des Stammes B5 12-3 mit einer im
BamHI-Ort des Expressionsvektors pINA237 angelegten Genbank (durch Ligation partiell
Sau3A-verdauter DNA-Fragmente des Stammes B204-12C-112 in den BamHI Ort des Vektors)
transformiert wurde. Die Selektion der Transformanden auf den Phänotyp Ace⁺ (Acetat
verwertend) bzw. Eth⁺ Ethanol verwertend) führte schließlich zur direkten Klonierung des
Vektors pYLI131 in Y. lipolytica, der ein funktionell aktives ICL1-Gen trägt.
Der Vektor pYLI131 enthält das ICL1-Gen (Abb. 2) innerhalb eines vollständig sequenzierten
Bereiches von 2.5 kb am Anfang eines 7.8 kb Y. hpolytica DNA Fragmentes. Ursprünglich war
ein Promotorbereich von 544 bp bis zum ATG₃₁₉ als funktionell ausreichend angenommen worden
(Abb. 2). Das ICL1-Gen besteht weiter aus einem für das ICL-Protein kodierenden offenen
Leserahmen (ORF) von 1625 bp, einem angenommenen Terminatorbereich von 275 bp vom
Stopcodon TAA (1982 bp) bis zumBarnHI-Ort (2254 bp, entspricht 5696 bp in Abb. 1).
Um den funktionellen Terminatorbereich einzugrenzen, wurde aus dem Vektor pYLI131 (vgl.
Abb. 1) zum einen das SalI₈₄₄/BamHI₇₉₇₉-Fragment (469 bp) und zum anderen das BamHI7979-5696
Fragment (2283 bp) isoliert. Der Vektor pINA237 wurde SalI/BamHI geöffnet und mit den
isolierten Fragmenten aus dem pYLI131 der Vektor pYIL131A (10,44 kp) konstruiert, der wie
pYLI131 die Promotorvariante A enthält. Die Fähigkeit dieser Vektoren zur funktionellen
Expression der ICL und der β-Galactosidase (Abb. 6) unterscheidet sich jedoch nicht.
Damit konnte experimentell gezeigt werden, daß der 5.3 kb große, nichtsequenzierte Bereich Y.
lipolylica-DNA, der sich im Vektor pYLI131 vor dem BamHI-Ort bei 5696 bp (zerstörter
BamHI Ort bei 374 bp bis BamHI Ort bei 5696 bp) befindet (siehe Abb. 1), keinen Einfluß auf die
Termination der Transkription und damit auf die Expression des ICL1- und des lacZ-Genes hat
(siehe Abb. 5 und 6).
In der Nucleotidsequenz des ICL1-Genes im Vektor pYLI131 konnten im Bereich des ICL1-
Promotors und -Strukturgens konservierte Intronsequenzen von Y. lipolytica gefunden werden,
wie sie aus zwei Y. lipolytica Genen (PYK - Pyruvatkinase, SEC14 - Phosphatidylinositol/
Phosphatidylcholin-Transferprotein) bekannt waren (Abb. 2 und 3).
Für die Klonierung des ICL1-Promotors wurde die chromosomale DNA aus dem Hefestamm
Yarrowia lipolylica B204-12C (MATA met6 spol) nach Kultivierung auf YPD-Vollmedium
präpariert und nach Inkubation mit verschiedenen Restriktionsendonukleasen (SalI, XhoI und
NcoI und in Kombinationen) im Southernblot analysiert. Die zur Detektion der ICL1-Sequenz
verwendete Sonde (987 bp) wurde aus dem Vektor pYLI131 als BaMHI-31-KpnI₉₅₆-Fragment
gewonnen, welches den Intronbereich und für den N-terminalen Teil des ICL Protein kodierenden
Bereich enthielt (vgl. Abb. 2).
Mit XhoI/NcoI-Fragmenten genomischer DNA der Größe 2,7-3,3 kb wurde durch Klonierung in
den durch SalI/NcoI-Verdau vorbereiteten Vektor pUCBM21 (Boehringer Mannheim) eine
angereicherte Genbank hergestellt. Das Screening dieser angereicherten Genbank durch
Koloniehybridisierung erneut mit der BarnHI/KpnI-Sonde lieferte mehre stark hybridisierende
Einzelklone. Von diesen wurden die Plasmide isoliert, durch Restriktionsanalyse ihre Identität
festgestellt, und das klonierte Fragment wurde vollständig sequenziert. Das Plasmid pUCIPD
enthält in einem 2,9 kb Insert den Promotorbereich bis -2176 bp und einen Teil des ICL-
Strukturgens bis zum NcoI Ort bei 702 bp (Abb. 2 und 3). Die Sequenz des vollstandigen ICL1
Promotors wurde bestimmt und ist in Abb. 3 dargestellt. Die bisher im pYLI131 vorliegende
Sequenz der Promotorvariante A beginnend vom Sau3A-Ort bei -225 bp bis zum NcoI-Ort bei
702 bp im Strukturgen stimmt mit der Sequenz des neu klonierten vollständigen ICL1-Promotors
vollständig überein.
Zur Nutzung des vollständigen ICL1-Promotors zur homologen und heterologen Expression von
Proteinen wurde dieser in den Vektor pINA237 nach geeigneter Modifizierung umkloniert.
Zur Umklonierung der unter Punkt 2 beschriebenen Sequenz in den für die Expression von
Proteinen in Y. lipolytica geeigneten Vektor pINA237 wurde dieser modifiziert, um den sonst
nicht vorhandenen Spaltort NotI einzufügen. Dazu wurde nach partieller Spaltung mit der
Restriktase SphI und vollständiger Spaltung mit der Restriktase BamHI eine
Oligonukleotidsequenz (Oligonukleotide 1 und 2, siehe 1.) durch Ligation eingefügt, wodurch
gleichzeitig der SphI-Spaltort zerstört wurde. In den so gewonnenen Vektor pINA237Not wurde
die ICL1-Promotorsequenz BamHI/NotI und die ICL1-Strukturgensequenz als BamHI-Fragment
ligiert. Das dabei entstehende Plasmid pYLI131D enthält das vollständige ICL1-Gen (vgl. Abb. 5
und 6), das eine mit dem chromosomal codierten ICL1-Gen vergleichbare Expressionhöhe und
Reprimierbarkeit durch Glucose zeigte.
Eine vergleichbare Klonierung der ICL1-Promotorsequenz BamHI/SalI und der ICL1-
Strukturgensequenz als BamIHI-Fragment ergab den Vektor pYLI131C (vgl. Abb. 5).
Zur funktionellen heterologen Expression in Y. lipolytica wurde das lacZ Gen aus E. coli mit dem
des ICL1-Promotor (Promotorvarianten A, C und D) fusioniert (Abb. 5 und 6).
Dazu wurden der ICL1-Promotor des Vektor pYLI131 durch PCR am 3′S (Primer Sa2 und 3SS)
und am 5′S (Primer Sa2 und 5SS) mit einem SphI-Ort modifiziert, um einen Anschluß des lacZ
Genes durch Klonierung zu ermöglichen. Diese modifizierten Promotorfragmente wurden kloniert
und in die entsprechend vorbereiteten Plasmide pUCEK2L bzw. pUCEK21L umkloniert (Abb.
4A).
Nach Gewinnung der modifizierten Promotoren, wurden zunächst verschiedene
Expressionskassetten im pUC118 vorbereitet, die aus den entsprechenden ICL1-
Promotorvarianten, dem Reportergen lacZ und dem ICL-Terminator (275 bp) bestanden.
Die Expressionskassettten wurden als BamHI-Fragmente in die entsprechenden
Expressionsvektoren pYLI131, bzw. pYLI131A, 131C, und 131D kloniert. Der Klonierungweg
für diese Expressionsvektoren ist am Beispiel pIL25 in der Abb. 4 dargestellt, da der im Verlauf
dieser Klonierung hergestellte Vektor pUCEK4L als Ausgangspunkt für weitere Klonierungen
benutzt wurde. Für die Klonierung stand der Vektor pUCEK2L zur Verfügung, in dem das lacZ
Gen zwischen dem ICL1-Promotor mit Anschluß am ATG₃₁₉ und dem ICL Terminator im
pUC118 als Expressionskassette (EK2L) vorlag.
Die Vektoren pIL22, pIL24 und pIL25 sind auf der Basis des Plasmids pYLI131
(Promotorvariante A) kloniert worden.
Die Klonierung der Expressionsvektoren pIL31, pIL32 und pIL33 erfolgte auf Grundlage des
Plasmids pUCEK4L (lacZ am 3′S angeschlossen) und der Expressionsvektoren pYLI131A, C und
D. Bei diesen Vektoren ist der nichtsequenzierte Teil Y. lipolytica DNA nach dem BamHI-Ort bei
5696 bp im pYLI131 (siehe Abb. 1 und Abb. 2) eliminiert. Die in diesen Vektoren enthaltenen
Expressionskassetten sind in Abb. 5 dargestellt.
Mit den Plasmiden pIL24 bis pIL33 konnte die heterologe Expression der β-Galactosidase (lacZ)
bei Anschluß an verschiedenen Stellen des ICL-Promotors in Transformanden des Y. lipolytica
Stammes B204-12A-213 gezeigt werden (Abb. 6).
Die Expression durch die verwendeten Promotorvarianten A, C und D ist durch die C-Quellen
Glucose und Ethanol unterschiedlich regulierbar und zeigt deutliche Unterschiede in der
Expressionshöhe. Die ursprünglich vorhandene Promotorvariante A (225bp) zeigte dabei eine
durch Wachstum auf Ethanol induzierbare Expression des lacZ-Genes, angeschlossen sowohl am
5′-splicing site als auch am 3′-splicing site, wobei der Anschluß am 3′S eine etwa verdoppelte
Expressionshöhe zeigte (Abb. 6). Ein Anschluß am ATG319 im Intron führte jedoch zu keiner
lacZ-Expression. Die für die Promotorvariante A gefündene relativ geringe Expressionshöhe für
lacZ geht einher mit dem Ausbleiben der Repression durch Glucose. Durch die Klonierung des
vollständigen ICL1-Promotors und den daraus abgeleiteten Promotorvarianten D (2176bp) und C
(880bp) wurden um den Faktor 7,8 bzw. 4,9 höhere Expressionsraten der β-Galactosidase mit
einem Maximalwert nach 10-12 h Wachstum auf Ethanol erreicht. Gleichzeitig ist die
Glucoserepression wieder nachweisbar. Demnach sind die längeren Promotorvarianten C und D
für eine heterologe Expression von Proteinen in Y. lipolytica besser geeignet.
Das Auftreten der Glucoserepression in Abhängigkeit von der Länge des eingesetzten Promotors
(in C oder D, nicht jedoch in A) wurde auch bei der plasmidcodierten Expression des homologen
ICL1 Strukturgenes in der icl1-Defektmutante B512-3 von Y. lipolytica gefunden. Die
Expressionshöhe der ICL ist jedoch bei diesen Promotorvarianten etwa vergleichbar und
durchläuft ein Optimum bei etwa 8-12 h, was auf die komplexes Regulation der ICL-Aktivität
auch aufposttranslationaler Ebene zurückzuführen ist.
Ein Vergleich der Daten zur Expression der β-Galactosidase mit dem stärksten vorhandenen und
bisher am häufigsten zur heterologen Expression in Y. lipolytica verwendeten XPR2-Promotor
(Blanchin-Roland et al. 1994 Mol Cell Biol 14: 327-338) ergab, daß vergleichbare Werte mit dem
ICL1-Promotor erreichbar sind.
Das Plasmid trägt innerhalb von 7,8 kb Y. lipolytica-DNA den 1625 bp großen ORF für das
ICL1-Struturgen (ICL1), ein 584 bp Fragment des ICL-Promotors (ICLp), inklusive 358 bp
Intronbereich (vgl. Abb. 2), und den ICL-Terminator (ICLT 275bp). Die restlichen 5,3 kb
(zerstörter BamHI Ort bei 374 bp bis Bamin Ort bei 5696 bp) dieses DNA Fragmentes
(YLDNA) sind nicht sequenziert. Das Plasmid basiert auf dem in Y. lipolytica durch die CENARS18
Region autonom replizierenden und für das LEU2-Gen kodierenden Vektor pINA237. Die
Y Lipolytica DNA mit dem ICL1-Gen wurde als Sau3A Fragment in den BamHI-Ort (bei 374 bp)
des pINA237 ligiert.
Dargestellt ist der 2,5 kb große sequenzierte Ausschnitt aus dem Vektor pYLI131 am Anfang des
7,8 kb Sau3A Fragmentes, das in den BamHI-Ort des Vektor pINA237 kloniert ist (vgl. Abb. 1).
Konservierte Intron Sequenzen: 5′S = 5′-splicing site (GTGAGT2-7), 3′S = 3′-splicing site (CAG357-
359); Die zwischen den unterstrichenen Splicing-Orten liegende nur kursiv geschriebene Sequenz
TACTAAC349-356 wird als branchlng point Sequenz bezeichnet.
Das nach Splicen neu entstehende A₁T₃₃₆₀G₃₆₁ als AUG codierend für den angenommenen
Translationsstart des ICL-Proteins ist hervorgehoben.
Der Promotor besitzt eine Größe von 2176 bp vom A₁ aus gerechnet und liegt in einem 2882 bp
Fragment im Plasmid pUCIPD kloniert vor. Die Sequenz des Promotors ist ab dem Sau3A-Ort
bei -225 bp (Promotorvariante A) stromabwärts bis zum NcoI-Ort bei 702 bp vollkommen
identisch mit der Sequenz des ICL1-Genes im Vektor pYLI131 bzw. mit der von Barth und
Scheuber (1993 Mol Gen Genet 241: 422-430) publizierten Sequenz des ICL1-Strukturgenes.
Die klein geschriebene Sequenz bis -2201 bp stammt aus dem Klonierungsvektor pUCBM21 und
enthält die Orte NotI (-2197 bp), Kpn1 und ApaI. Die für nachfolgende Klonierungen der
Promotorvarianten C und D (siehe Abb. 4 und 5) verwendeten Restriktionsorte SalI (-880 bp)
und NotI (-2197 bp) sind wie die Orte Sau3A (-225 bp) und BamHI (-32 bp) fett dargestellt. Das
postulierte Intron ist eingerahmt, die Splicingsignale sind fett und kursiv dargestellt. Nach
erfolgtem Splicen wurde als neuer Translationsstart das A₁T₃₆₀G361 (fett und größer dargestellt)
entstehen (vgl. Abb. 2).
A: Klonierung der Expressionskassette im pUCEK4L ausgehend von Vektor pUCEK2L.
Insertion des Oligonukleotids siehe Oligonukleotide 1 und 2 unter 1. TF - Transformation. PCR
mit den Primern Sa2 und 3SS, vgl. 1.
B: Gewinnung des Expressionsvektors pIL25 durch Umklonierung der EK4L in den Hefevektor
pYLI131.
Die Expressionskassetten EK2L, EK3L, EK4L wurden in das Plasmid pYLI131 (resultierend in
den entsprechenden Vektoren pIL22, pIL24, pIL25), bzw. die Expressionskassette EK4L wurde
in die Vektoren pIYL131A, 131C und 131D (resultierend in pIL31-pIL33) umk1oniert, wie in
Abb. 4 prinzipiell dargestellt. PA = Promotorvarante A bis -225 bp, PC = Promotorvariante C bis
-880 bp, PD = Promotorvariante D bis -2176 bp (2176 bp), I = Intron, lacZ= lacZ-Strukturgen, T
= Terminator, N = nichtsequenzierter Bereich Y. lipolytica DNA, SA = Sau3A′ B = BamHI, S =
SalI (vgl. Abb. 2).
Die β-Galactosidase Aktivität wurde im zellfreien Extrakt mit o-Nitrophenyl-β-D-galactosid
(ONPG) als Substrat bestimmt (1.0 entspricht 130 nmol/min × mg Protein) nach KultMerung der
Transformanden des Stammes B204-12A-213 (M4TB leu2 ura3) im Miniinalmedium YNB
(supplementiert mit Uracil) mit den C-Quellen 1% Ethanol (induzierend) bzw. 1% Ethanol in
Anwesenheit von 2% Glucose zur Bestimmung der Katabolitrepression durch Glucose. Die Werte
wurde nach 8-12 Stunden Kultivierung im Maximum der Expression bestimmt.
Claims (10)
1. Expressionskassetten zur heterologen Expression von Proteinen in der Hefe Yarrowia
(Y.) lipolytica, dadurch gekennzeichnet, daß sie aus dem vollständigen Promotor
des ICL1-Genes von Y. lipolytica, dem zu exprimierenden heterologen Gen und dem
Terminator des ICL1 Genes bestehen.
2. Expressionskassette nach Anspruch 1,
dadurch gekennzeichnet, daß sie in das Grundgerüst eines in Y. lipolytica autonom
replizierenden Vektors, vorzugsweise pINA237, eingebaut wird.
3. Expressionskassette nach Anspruch 1,
dadurch gekennzeichnet, daß sie durch integrative Transformation in das Genom von
Y. lipolytica eingebaut wird.
4. Expressionskassette nach Anspruch 1 und 3,
dadurch gekennzeichnet, daß sie vorzugsweise in den LEU2 Ort des Genoms von
Y. lipolytica eingebaut wird.
5. Expressionskassette nach Anspruch 1,
dadurch gekennzeichnet, daß sie die vollständige Promotorsequenz des ICL1 Genes aus
Y lipolytica enthält, wie sie in der Abb. 3 in ihrer Nucleotidsequenz aufgeführt ist.
6. Verfahren zum Aufbau der Expressionskassette nach Anspruch 1,
dadurch gekennzeichnet, daß der Promotor des ICL1 Genes aus Y. lipolytica durch
Klonierung in einem Vektor für E. coli isoliert wird, dieser Promotor nach Modifikation
seines 3′-Endes mittels PCR (vor oder hinter dem Intron im ICL1 Gen) mit dem zu
exprimierenden heterologen Gen und dem ICL1-Teminator fusioniert wird, bzw. durch
rekombinante PCR das zu exprimierende heterologe Gen direkt hinter dem T₃₆₀G₃₆₁ des
ICL1-Genes fusioniert wird.
7. Verfahren zum Aufbau der Expressionskassette nach Anspruch 6,
dadurch gekennzeichnet, daß der vollständige ICL1-Promotor aus einer angereicherten
Genbank im Vektor pUCBM21 kloniert wird, die in Form von 2,7-3,3 kb Fragmenten
nach einem NcoI/XhoI-Verdau von genomischer DNA aus Y. lipolytica im entsprechend
vorbereiteten Vektor pUCBM21 (NcoI/SalI) erhalten wurde.
8. Verfahren zum Aufbau der Expressionskassette nach Anspruch 6,
dadurch gekennzeichnet, daß die Expressionskassette in einen Vektor, welcher für die
Transformation von Y. lipolytica geeignet ist, umkloniert wird.
9. Verfahren zum Aufbau der Expressionskassette nach Anspruch 6,
dadurch gekennzeichnet, daß die Expressionskassette in einen der Vektoren pINA237,
pYLI131, pYLI131A, pYLI131C, oder pYLI131D, welche für die Transformation von
Y. lipolytica geeignet sind, umkloniert wird.
10. Verfahren zur Verwendung von mit einer Expressionskassette gemäß Anspruch 1-5
transformierten Hefezellen, dadurch gekennzeichnet, daß die entsprechenden
Transformanden der Hefe Y. lipolytica in Mineralsalzmedien mit induzierend
wirkenden Kohlenstoffquellen (Ethanol, Acetat, Fettsäuren oder n-Alkane)
kultiviert und dadurch die heterolog zu exprimierenden Proteine durch die Hefe
synthetisiert werden.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1995125282 DE19525282A1 (de) | 1995-06-29 | 1995-06-29 | Expressionskassetten zur heterologen Expression von Proteinen in der Hefe Yarrowia lipolytica unter Kontrolle des regulierbaren Promotors der Isocitratlyase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1995125282 DE19525282A1 (de) | 1995-06-29 | 1995-06-29 | Expressionskassetten zur heterologen Expression von Proteinen in der Hefe Yarrowia lipolytica unter Kontrolle des regulierbaren Promotors der Isocitratlyase |
Publications (1)
Publication Number | Publication Date |
---|---|
DE19525282A1 true DE19525282A1 (de) | 1997-01-02 |
Family
ID=7766569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE1995125282 Withdrawn DE19525282A1 (de) | 1995-06-29 | 1995-06-29 | Expressionskassetten zur heterologen Expression von Proteinen in der Hefe Yarrowia lipolytica unter Kontrolle des regulierbaren Promotors der Isocitratlyase |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE19525282A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000003008A3 (de) * | 1998-07-10 | 2000-04-27 | Univ Dresden Tech | Rekombinante haploide oder diploide yarrowia lipolytica zellen zur funktionellen heterologen expression von cytochrom p450 systemen |
WO2002044388A1 (en) * | 2000-11-30 | 2002-06-06 | Novo Nordisk A/S | Production of heterologous polypeptides in yeast |
US6861237B2 (en) | 2000-11-30 | 2005-03-01 | Novo Nordisk A/S | Production of heterologous polypeptides in yeast |
DE10333144B4 (de) * | 2002-07-16 | 2006-06-29 | Technische Universität Dresden | Verfahren zur biotechnologischen Herstellung von Citronensäure mit einer genetisch veränderten Hefe Yarrowia lipolytica |
-
1995
- 1995-06-29 DE DE1995125282 patent/DE19525282A1/de not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000003008A3 (de) * | 1998-07-10 | 2000-04-27 | Univ Dresden Tech | Rekombinante haploide oder diploide yarrowia lipolytica zellen zur funktionellen heterologen expression von cytochrom p450 systemen |
WO2002044388A1 (en) * | 2000-11-30 | 2002-06-06 | Novo Nordisk A/S | Production of heterologous polypeptides in yeast |
US6861237B2 (en) | 2000-11-30 | 2005-03-01 | Novo Nordisk A/S | Production of heterologous polypeptides in yeast |
DE10333144B4 (de) * | 2002-07-16 | 2006-06-29 | Technische Universität Dresden | Verfahren zur biotechnologischen Herstellung von Citronensäure mit einer genetisch veränderten Hefe Yarrowia lipolytica |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69532603T2 (de) | Hefestämme und modifizierte albumine | |
DE3650664T2 (de) | Verwendung von promotoren von filamentösen pilzen | |
US7745200B2 (en) | Formaldehyde dehydrogenase genes from methylotrophic yeasts | |
DE69232666T2 (de) | Gene, die die proteolytische aktivitaet von pichia beeinflussen und deren verwendung | |
DE69224768T2 (de) | Expression von menschlichen Serum-Albuminen in Pichia pastoris | |
CN101679992A (zh) | 酵母菌表达系统 | |
DE60036647T2 (de) | Klonierung und expression einer extrazellulären säurebeständigen lipase aus yarrowia lipolytica | |
DE69533420T2 (de) | Für carboxypeptidase kodierendes gen aus aspergillus niger | |
DE3854256T2 (de) | Expressionsvektor für hefe. | |
DE69231995T2 (de) | Verfahren zur Herstellung/Sekretion eines Proteins durch einen transformiertenSchimmelpilz unter Verwendung von Expressions-/Sekretions- Regulationsregionenaus Aspergillus | |
DE10036491A1 (de) | Expression von Alkalischer Phosphatase in Hefe | |
DE69805627T2 (de) | Verbesserte stämme für die protein-expression | |
DE69432988T2 (de) | Für ammonium-transporter kodierende dna-sequenzen und dieser enthaltende, plasmide, bakterien, hefen und pflanzenzellen | |
WO1999033993A1 (de) | Promotor aus ashbya gossypii | |
DE69626494T2 (de) | Promotor/terminator des formatdehydrogenase-gens von candida boidinii | |
DE69027970T2 (de) | Hefe-Promoter | |
DE19525282A1 (de) | Expressionskassetten zur heterologen Expression von Proteinen in der Hefe Yarrowia lipolytica unter Kontrolle des regulierbaren Promotors der Isocitratlyase | |
DE69228665T2 (de) | Eukaryotisches Expressionssystem | |
EP1177305B1 (de) | Verfahren zum herstellen eines rekombinanten proteins | |
DE69333304T2 (de) | Erhöhte produktion von sekretierten proteinen durch rekombinante eukaryotische zellen | |
EP1504103B1 (de) | Promotoren mit veränderter transkriptionseffizienz aus der methylotrophen hefe hansenula polymorpha | |
DE69823188T2 (de) | Klonierung der upd-galaktose-epimerase | |
EP1918379B1 (de) | Expressionsvektoren zur multiplen Gen-Integration und Überexpression von homologen und heterologen Proteinen in Hefen der Gattung Arxula | |
DE69929885T2 (de) | Formaldehydedehydrogenase gene aus methylotrophen hefen | |
DE60032162T2 (de) | Regulatorische sequenzen von funktioneller bedeutung in filamentösen pilzen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8110 | Request for examination paragraph 44 | ||
8139 | Disposal/non-payment of the annual fee |