CN221150016U - Micro-LED array chip and display device - Google Patents
Micro-LED array chip and display device Download PDFInfo
- Publication number
- CN221150016U CN221150016U CN202322965151.8U CN202322965151U CN221150016U CN 221150016 U CN221150016 U CN 221150016U CN 202322965151 U CN202322965151 U CN 202322965151U CN 221150016 U CN221150016 U CN 221150016U
- Authority
- CN
- China
- Prior art keywords
- electrode
- light
- led array
- micro led
- array chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Led Devices (AREA)
Abstract
本实用新型涉及一种微LED阵列芯片和显示装置,其中微LED阵列芯片包括:衬底;依次堆叠在所述衬底上的良导体层和第一半导体层;发光阵列,所述发光阵列中的每个发光单元包括依次堆叠在所述第一半导体层上的有源层和第二半导体层,且每个所述第二半导体层上设置有一个独立的第一电极;第二电极,设置在所述良导体层上,且与所述发光阵列隔开。通过本申请方案,可以避免微LED阵列芯片中,不同区域的发光单元显示不均匀的现象。
The utility model relates to a micro LED array chip and a display device, wherein the micro LED array chip comprises: a substrate; a good conductor layer and a first semiconductor layer sequentially stacked on the substrate; a light emitting array, each light emitting unit in the light emitting array comprises an active layer and a second semiconductor layer sequentially stacked on the first semiconductor layer, and each second semiconductor layer is provided with an independent first electrode; a second electrode is provided on the good conductor layer and is separated from the light emitting array. Through the solution of the application, the phenomenon of uneven display of light emitting units in different areas of the micro LED array chip can be avoided.
Description
技术领域Technical Field
本实用新型涉及显示技术领域,尤其涉及一种微LED阵列芯片和显示装置。The utility model relates to the field of display technology, and in particular to a micro LED array chip and a display device.
背景技术Background technique
当前发光二极管作为新一代绿色光源,已经广泛用于交通指示信号、室内外照明、建筑装饰照明、显示屏背光模组等。LED相对于传统光源有许多优点,例如环保无污染、响应时间短、更长的使用寿命、更高的可靠性、更小的体积和更高的亮度等,更重要的是LED的节能和更高的效率。发光二极管取代传统光源成为未来照明和显示领域的新一代光源成为必然趋势,而垂直结构LED因为具有良好的散热性能和均匀的电流扩展,已成为了LED显示领域的研究热点。As a new generation of green light sources, light-emitting diodes have been widely used in traffic signs, indoor and outdoor lighting, architectural decorative lighting, display backlight modules, etc. Compared with traditional light sources, LEDs have many advantages, such as environmental protection and pollution-free, short response time, longer service life, higher reliability, smaller size and higher brightness, etc. More importantly, LEDs are energy-saving and have higher efficiency. It is an inevitable trend for light-emitting diodes to replace traditional light sources and become the new generation of light sources in the future lighting and display fields. Vertical structure LEDs have become a research hotspot in the field of LED displays because of their good heat dissipation performance and uniform current expansion.
将垂直结构LED应用于显示装置时,以往通过芯片制造工艺在各像素形成p极和n极的两个端子之后,沿信号线的纵横轴进行排列来驱动。在这种情况下,由于担当对微LED像素进行信号控制的元件应单独形成在周边区域,因此,微LED阵列显示器的尺寸增加,并且沿纵横轴阵列的数据线应通过引线键合与微LED像素相连接,因此使该工艺变得复杂且不便。When vertical structure LEDs are applied to display devices, the two terminals of the p-pole and the n-pole are formed in each pixel through the chip manufacturing process, and then arranged along the vertical and horizontal axes of the signal line for driving. In this case, since the elements responsible for signal control of the micro LED pixels should be formed separately in the peripheral area, the size of the micro LED array display increases, and the data lines along the vertical and horizontal axes of the array should be connected to the micro LED pixels through wire bonding, which makes the process complicated and inconvenient.
针对上述问题,目前提出一种共用N型半导体层的LED阵列芯片,然后将该芯片直接键合至CMOS背板上进行驱动,避免了上述问题,然而在这种结构中,由于阵列中心区域电流传导不均匀导致的中心区域和周边区域发光不均匀的现象。To address the above problems, a LED array chip with a shared N-type semiconductor layer is currently proposed, which is then directly bonded to a CMOS backplane for driving, thereby avoiding the above problems. However, in this structure, uneven current conduction in the central area of the array causes uneven light emission in the central and peripheral areas.
实用新型内容Utility Model Content
鉴于上述现有技术的不足,本申请的目的在于提供一种微LED阵列芯片和显示装置,旨在解决芯片阵列显示不均的问题。In view of the above-mentioned deficiencies in the prior art, the purpose of the present application is to provide a micro LED array chip and a display device, aiming to solve the problem of uneven display of the chip array.
本申请实施例提供了一种微LED阵列芯片,包括衬底;依次堆叠在所述衬底上的良导体层和第一半导体层;发光阵列,所述发光阵列中的每个发光单元包括依次堆叠在所述第一半导体层上的有源层和第二半导体层,且每个所述第二半导体层上设置有一个独立的第一电极;第二电极,设置在所述良导体层上,且与所述发光阵列隔开。An embodiment of the present application provides a micro LED array chip, comprising a substrate; a good conductor layer and a first semiconductor layer stacked in sequence on the substrate; a light-emitting array, wherein each light-emitting unit in the light-emitting array comprises an active layer and a second semiconductor layer stacked in sequence on the first semiconductor layer, and each second semiconductor layer is provided with an independent first electrode; a second electrode is provided on the good conductor layer and separated from the light-emitting array.
在本申请实施例提供的微LED阵列芯片中,通过在第一半导体层与衬底之间上设置良导体层,并使得该良导体层与第二电极直接连接,从而可以使得微LED阵列芯片在驱动显示的情况下,LED阵列芯片中心区域(或者距离第二电极较远区域)的发光单元,可以直接通过第二电极和良导体层将电流传导至中心区域发光单元周围的第一半导体层,然后经过该发光单元的有源层和第二半导体层,进而驱动发光单元发光;避免了传统技术中微LED阵列芯片中心区域(或者距离第二电极较远区域)的发光单元,距离第二电极较远,导致第二电极至中心区域的发光单元之间通过第一半导层进行电流传导时,由于微LED阵列芯片中心区域的发光单元与第二电极之间的电阻过大,导致的显示不均匀的现象。In the micro LED array chip provided in the embodiment of the present application, a good conductor layer is provided between the first semiconductor layer and the substrate, and the good conductor layer is directly connected to the second electrode. Thus, when the micro LED array chip is driven for display, the light emitting units in the central area (or the area far from the second electrode) of the LED array chip can directly conduct current to the first semiconductor layer around the light emitting units in the central area through the second electrode and the good conductor layer, and then pass through the active layer and the second semiconductor layer of the light emitting units to drive the light emitting units to emit light. This avoids the problem that in the conventional technology, the light emitting units in the central area (or the area far from the second electrode) of the micro LED array chip are far from the second electrode, resulting in uneven display due to excessive resistance between the light emitting units in the central area of the micro LED array chip and the second electrode when current is conducted from the second electrode to the light emitting units in the central area through the first semiconductor layer.
作为一种可选的实施方式,上述良导体层的电导率大于上述第一半导体层的电导率。As an optional implementation manner, the electrical conductivity of the good conductor layer is greater than the electrical conductivity of the first semiconductor layer.
在本申请实施例提供的微LED阵列芯片中,由于电流传导时都会选择电阻最小路径来进行传导,因此当良导体层的电导率大于上述第一半导体层的电导率时,电流会优先经过良导体层进行传导,因此可以有效的减小第二电极至发光单元之间的第一半导体层的电阻,从而避免微LED阵列芯片中发光单元阵列发光不均匀的现象。In the micro LED array chip provided in the embodiment of the present application, since the path with the least resistance is selected for current conduction, when the conductivity of the good conductor layer is greater than the conductivity of the first semiconductor layer, the current will be preferentially conducted through the good conductor layer. Therefore, the resistance of the first semiconductor layer between the second electrode and the light-emitting unit can be effectively reduced, thereby avoiding the phenomenon of uneven light emission of the light-emitting unit array in the micro LED array chip.
作为一种可选的实施方式,所述良导体层包括Ti、Ni中的至少一种,其厚度为3-50nm。As an optional implementation, the good conductor layer includes at least one of Ti and Ni, and has a thickness of 3-50 nm.
作为一种可选的实施方式,所述良导体层包括ITO和Al;其中ITO的厚度为50~200nm,Al的厚度在1~5nm。As an optional implementation, the good conductor layer includes ITO and Al; wherein the thickness of ITO is 50-200 nm, and the thickness of Al is 1-5 nm.
在本申请实施例中,微LED阵列芯片是从衬底一侧出光,因此为了保证光提取效率,良导体层既要保证具有一定的透过率,也要保证其电阻率小于一定阈值,因此本申请实施例中,良导体层的材料采用Ti、Ni中的至少一种;或者采用ITO和Al的复合层结构。In the embodiment of the present application, the micro LED array chip emits light from the substrate side. Therefore, in order to ensure the light extraction efficiency, the good conductor layer must have a certain transmittance and a resistivity less than a certain threshold. Therefore, in the embodiment of the present application, the material of the good conductor layer is at least one of Ti and Ni; or a composite layer structure of ITO and Al is used.
作为一种可选的实施方式,上述第二电极沿着上述发光阵列的外围设置在上述第一半导体层上。As an optional implementation manner, the second electrode is arranged on the first semiconductor layer along the periphery of the light emitting array.
作为一种可选的实施方式,上述第一电极和上述第二电极远离上述第一半导体层的一端在同一水平面上。As an optional implementation manner, the first electrode and the second electrode are on the same horizontal plane at one end away from the first semiconductor layer.
在本申请实施例提供的微LED阵列芯片中,上述第一电极和上述第二电极远离上述第一半导体层的一端在同一水平面上,有利于微LED阵列芯片键合至显示背板上。In the micro LED array chip provided in the embodiment of the present application, the first electrode and the second electrode are on the same horizontal plane at one end away from the first semiconductor layer, which is beneficial for bonding the micro LED array chip to the display backplane.
作为一种可选的实施方式,所述良导体层的透过率为65%-95%。As an optional implementation manner, the transmittance of the good conductor layer is 65%-95%.
作为一种可选的实施方式,上述发光阵列的发光单元之间还设置有光隔离件,上述光隔离件用于隔离相邻两个发光单元之间的光。As an optional implementation, a light isolator is further provided between the light emitting units of the light emitting array, and the light isolator is used to isolate the light between two adjacent light emitting units.
在本申请实施例提供的微LED阵列芯片中,为了防止发光单元之间的光相互串扰,在发光阵列的发光单元之间设置有光隔离件。In the micro LED array chip provided in the embodiment of the present application, in order to prevent light from crosstalk between the light emitting units, a light isolator is provided between the light emitting units of the light emitting array.
作为一种可选的实施方式,上述有源层和上述第二半导体层的侧壁上设置有钝化层和/或反射层。As an optional implementation manner, a passivation layer and/or a reflective layer is disposed on the side walls of the active layer and the second semiconductor layer.
在本申请实施例提供的微LED阵列芯片中,为了保护发光单元并防止发光单元的侧壁漏电,在有源层和上述第二半导体层的侧壁上设置了钝化层,进一步的为了防止发光单元的光从侧壁发射出来干扰其他发光单元,还在钝化层上设置了反射层。In the micro LED array chip provided in the embodiment of the present application, in order to protect the light-emitting unit and prevent the side wall leakage of the light-emitting unit, a passivation layer is arranged on the side wall of the active layer and the above-mentioned second semiconductor layer. In order to further prevent the light of the light-emitting unit from being emitted from the side wall to interfere with other light-emitting units, a reflective layer is also arranged on the passivation layer.
基于同样的发明构思,本申请还提供一种显示装置,包括:如上一些实施例中上述的微LED阵列芯片;CMOS背板,其上设置有与上述第一电极对应的第三电极,以及与上述第二电极对应的第四电极;上述微LED阵列芯片与上述CMOS背板面对面设置,且上述第一电极和上述第三电极键合形成电性连接,且上述第二电极和上述第四电极键合形成电性连接。Based on the same inventive concept, the present application also provides a display device, comprising: the micro LED array chip as described above in some of the above embodiments; a CMOS backplane, on which a third electrode corresponding to the first electrode and a fourth electrode corresponding to the second electrode are arranged; the micro LED array chip and the CMOS backplane are arranged face to face, and the first electrode and the third electrode are bonded to form an electrical connection, and the second electrode and the fourth electrode are bonded to form an electrical connection.
在本申请实施例提供的显示装置中,将与CMOS背板键合的微LED阵列芯片的发光单元之间的第一半导体层上设置良导体层,并使得该良导体层与第二电极直接连接,从而可以使得微LED阵列芯片在驱动显示的情况下,LED阵列芯片中心区域(或者距离第二电极较远区域)的发光单元,可以直接通过第二电极和良导体层将电流传导至中心区域发光单元周围的第一半导体层,然后经过该发光单元的有源层和第二半导体层,进而驱动发光单元发光;避免了传统技术中微LED阵列芯片中心区域(或者距离第二电极较远区域)的发光单元,距离第二电极较远,导致第二电极至中心区域的发光单元之间通过第一半导层进行电流传导时,由于微LED阵列芯片中心区域的发光单元与第二电极之间的电阻过大,导致的显示不均匀的现象。In the display device provided in the embodiment of the present application, a good conductor layer is arranged on the first semiconductor layer between the light-emitting units of the micro LED array chip bonded to the CMOS backplane, and the good conductor layer is directly connected to the second electrode, so that when the micro LED array chip is driven for display, the light-emitting units in the central area of the LED array chip (or the area far from the second electrode) can directly conduct current to the first semiconductor layer around the light-emitting units in the central area through the second electrode and the good conductor layer, and then pass through the active layer and the second semiconductor layer of the light-emitting units to drive the light-emitting units to emit light; this avoids the problem that in the conventional technology, the light-emitting units in the central area of the micro LED array chip (or the area far from the second electrode) are far from the second electrode, resulting in uneven display due to excessive resistance between the light-emitting units in the central area of the micro LED array chip and the second electrode when current is conducted between the second electrode and the light-emitting units in the central area through the first semiconductor layer.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本申请实施例提供的传统微LED阵列芯片中电流传导示意图;FIG1 is a schematic diagram of current conduction in a conventional micro LED array chip provided in an embodiment of the present application;
图2为本申请实施例提供的一种微LED阵列芯片俯视图结构示意图;FIG2 is a schematic diagram of a top view structure of a micro LED array chip provided in an embodiment of the present application;
图3为本申请实施例提供的微LED阵列芯片中电流传导示意图;FIG3 is a schematic diagram of current conduction in a micro LED array chip provided in an embodiment of the present application;
图4为本申请实施例提供的另一种微LED阵列芯片俯视图结构示意图;FIG4 is a schematic diagram of a top view structure of another micro LED array chip provided in an embodiment of the present application;
图5为本申请实施例提供的又一种微LED阵列芯片俯视图结构示意图;FIG5 is a schematic diagram of a top view structure of another micro LED array chip provided in an embodiment of the present application;
图6为本申请实施例提供的一种显示装置结构示意图。FIG. 6 is a schematic diagram of the structure of a display device provided in an embodiment of the present application.
附图标记说明:Description of reference numerals:
100-微LED阵列芯片;10-第一半导体层;20-第二电极;30-发光单元;31-有源层;32-第二半导体层;33-第一电极;34-电流扩展层;35-钝化层和/或反射层;40-良导体层;50-光隔离件;200-CMOS背板;60-第三电极;70-第四电极;80-衬底。100-micro LED array chip; 10-first semiconductor layer; 20-second electrode; 30-light-emitting unit; 31-active layer; 32-second semiconductor layer; 33-first electrode; 34-current spreading layer; 35-passivation layer and/or reflection layer; 40-good conductor layer; 50-optical isolation element; 200-CMOS backplane; 60-third electrode; 70-fourth electrode; 80-substrate.
具体实施方式Detailed ways
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。In order to facilitate the understanding of the present application, the present application will be described more fully below with reference to the relevant drawings. The preferred embodiments of the present application are given in the drawings. However, the present application can be implemented in many different forms and is not limited to the embodiments described herein. On the contrary, the purpose of providing these embodiments is to make the disclosure of the present application more thoroughly and comprehensively understood.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those commonly understood by those skilled in the art to which this application belongs. The terms used herein in the specification of this application are only for the purpose of describing specific embodiments and are not intended to limit this application.
在本申请实施例中,发光单元是指芯片阵列中独立发光的组成部分,发光阵列是指由发光单元形成的阵列。In the embodiments of the present application, a light-emitting unit refers to an independently emitting component in a chip array, and a light-emitting array refers to an array formed by light-emitting units.
在一般的LED阵列芯片中,LED阵列芯片中的发光单元共用N型半导体层,然后通过与N型半导体层连接的共用电极,以及与每个发光单元的P型半导体层连接的驱动电极,来对每个发光单元进行单独控制发光。参考图1,在这种结构中,当共接通电源对发光单元进行驱动时,每个发光单元与共用电极之间通过共用的N型半导体来进行电流传导;在这种情况下,距离共用电极较近的发光单元和距离共用电极较远的发光单元,在同样的驱动条件下,会出现发光不均匀的现象,即距离共用电极较近的发光单元发光亮度强,距离共用电极较远的发光单元发光亮度弱。这是由于距离共用电极较远的发光单元和共用电极之间的N型半导体层电阻较大,从而导致发光单元与共用电极之间的整体电阻增大,所以在同样的电压驱动下,电流会减小,进一步导致距离共用电极较远的发光单元的发光强度减小。In a general LED array chip, the light-emitting units in the LED array chip share an N-type semiconductor layer, and then each light-emitting unit is individually controlled to emit light through a common electrode connected to the N-type semiconductor layer and a driving electrode connected to the P-type semiconductor layer of each light-emitting unit. Referring to FIG1 , in this structure, when the light-emitting units are driven by a common power supply, each light-emitting unit and the common electrode conduct current through a common N-type semiconductor; in this case, the light-emitting units closer to the common electrode and the light-emitting units farther from the common electrode will emit uneven light under the same driving conditions, that is, the light-emitting units closer to the common electrode emit strong light, and the light-emitting units farther from the common electrode emit weak light. This is because the resistance of the N-type semiconductor layer between the light-emitting units farther from the common electrode and the common electrode is larger, which leads to an increase in the overall resistance between the light-emitting units and the common electrode. Therefore, under the same voltage drive, the current will decrease, further resulting in a decrease in the light intensity of the light-emitting units farther from the common electrode.
基于此,本申请希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。Based on this, the present application hopes to provide a solution that can solve the above-mentioned technical problems, the details of which will be described in the subsequent embodiments.
参考图2,为本申请实施例提供的一种微LED阵列芯片100结构示意图。Refer to FIG. 2 , which is a schematic structural diagram of a micro LED array chip 100 provided in an embodiment of the present application.
微LED阵列芯片100包括衬底80,以及依次堆叠在所述衬底80上的良导体层40和第一半导体层10;发光阵列,所述发光阵列中的每个发光单元30包括依次堆叠在所述第一半导体层10上的有源层31和第二半导体层32,且每个所述第二半导体层32上设置有一个独立的第一电极33;第二电极20,设置在所述良导体层40上,且与所述发光阵列隔开。The micro LED array chip 100 includes a substrate 80, and a good conductor layer 40 and a first semiconductor layer 10 stacked in sequence on the substrate 80; a light-emitting array, each light-emitting unit 30 in the light-emitting array includes an active layer 31 and a second semiconductor layer 32 stacked in sequence on the first semiconductor layer 10, and each second semiconductor layer 32 is provided with an independent first electrode 33; a second electrode 20, which is arranged on the good conductor layer 40 and separated from the light-emitting array.
在本申请实施例中,发光单元30是指芯片阵列中独立发光的组成部分,发光阵列是指由发光单元30形成的阵列。发光单元30的水平横向截面形状可以是圆形、正方形、长方形或这其他多边形;发光单元30的水平横向截面最大尺寸小于100um,例如,可以是5um、8um、10um、15um、18um、30um、45um、60um、85um等。In the embodiment of the present application, the light-emitting unit 30 refers to an independent light-emitting component in the chip array, and the light-emitting array refers to an array formed by the light-emitting units 30. The horizontal transverse cross-section of the light-emitting unit 30 may be circular, square, rectangular or other polygonal; the maximum dimension of the horizontal transverse cross-section of the light-emitting unit 30 is less than 100um, for example, it may be 5um, 8um, 10um, 15um, 18um, 30um, 45um, 60um, 85um, etc.
在本申请实施例中,上述第一半导体层10可以为N掺杂半导体层,第二半导体层32可以为P掺杂半导体层,上述有源层31可以是多重量子阱结构(Multiple Quantum Well,MQW)。具体的,上述半导体层可以是GaN、AlGaN、InGaN、AlInP、GaInP、AlGaInP等III-Ⅴ族化合物半导体材料;量子阱或量子层可以是InGaN、AlGaN、InN、InAlN、AlInGaN等,而与量子阱层交替层叠的量子势垒可以是GaN、AlN、AlGaN、AlInGaN、InAlN等;多重量子阱结构可以包括一个或两个或三个或四个或五个或六个或七个或八个量子井(或至少一个量子孔);上述有源层31发射的波长可以是蓝光波段的波长、绿光波段的波长或这红光波段的波长本申请实施例不做具体限定。In the embodiment of the present application, the first semiconductor layer 10 may be an N-doped semiconductor layer, the second semiconductor layer 32 may be a P-doped semiconductor layer, and the active layer 31 may be a multiple quantum well structure (Multiple Quantum Well, MQW). Specifically, the semiconductor layer may be a III-V compound semiconductor material such as GaN, AlGaN, InGaN, AlInP, GaInP, AlGaInP, etc.; the quantum well or quantum layer may be InGaN, AlGaN, InN, InAlN, AlInGaN, etc., and the quantum barrier alternately stacked with the quantum well layer may be GaN, AlN, AlGaN, AlInGaN, InAlN, etc.; the multiple quantum well structure may include one or two or three or four or five or six or seven or eight quantum wells (or at least one quantum hole); the wavelength emitted by the active layer 31 may be a wavelength in the blue light band, a wavelength in the green light band, or a wavelength in the red light band, which is not specifically limited in the embodiment of the present application.
可选的,上述第一半导体层10可以为N掺杂半导体层,第二半导体层32可以为P掺杂半导体层。Optionally, the first semiconductor layer 10 may be an N-doped semiconductor layer, and the second semiconductor layer 32 may be a P-doped semiconductor layer.
在本申请实施例中,上述第一电极33为可以与上述第二半导体层32形成欧姆接触进行电流传导的一种或多种金属物,例如上述第一电极33可以为Cr、Pt、Ti、Ni、Au、Sn中的一种或多种的组合物形成。上述第二电极20为可以与上述第一半导体层10形成欧姆接触进行电流传导的一种或多种金属物,例如上述第二电极20可以为Cr、Pt、Ti、Ni、Au、Sn、Ag、Cu、Cu、Al中的一种或多种的组合物形成。In the embodiment of the present application, the first electrode 33 is one or more metals that can form an ohmic contact with the second semiconductor layer 32 for current conduction. For example, the first electrode 33 can be formed of a combination of one or more of Cr, Pt, Ti, Ni, Au, and Sn. The second electrode 20 is one or more metals that can form an ohmic contact with the first semiconductor layer 10 for current conduction. For example, the second electrode 20 can be formed of a combination of one or more of Cr, Pt, Ti, Ni, Au, Sn, Ag, Cu, Cu, and Al.
作为一种可选的实施方式,上述良导体层40的电导率大于上述第一半导体层10的电导率。As an optional implementation, the electrical conductivity of the good conductor layer 40 is greater than the electrical conductivity of the first semiconductor layer 10 .
在本申请实施例提供的微LED阵列芯片中,由于电流传导时都会选择电阻最小路径来进行传导,因此当良导体层40的电导率大于上述第一半导体层10的电导率时,电流会优先经过良导体层40进行传导,因此可以有效的减小第二电极20至发光单元30之间的第一半导体层10的电阻,从而避免微LED阵列芯片中发光单元30阵列发光不均匀的现象。In the micro LED array chip provided in the embodiment of the present application, since the path with the least resistance is selected for current conduction, when the conductivity of the good conductor layer 40 is greater than the conductivity of the first semiconductor layer 10, the current will be preferentially conducted through the good conductor layer 40. Therefore, the resistance of the first semiconductor layer 10 between the second electrode 20 and the light-emitting unit 30 can be effectively reduced, thereby avoiding the phenomenon of uneven light emission of the light-emitting unit 30 array in the micro LED array chip.
作为一种可选的实施方式,所述良导体层40包括Ti、Ni中的至少一种,其厚度为3-50nm。As an optional implementation, the good conductor layer 40 includes at least one of Ti and Ni, and has a thickness of 3-50 nm.
作为一种可选的实施方式,所述良导体层40包括ITO和Al;其中ITO的厚度为50~200nm,Al的厚度在1~5nm。As an optional implementation, the good conductor layer 40 includes ITO and Al; wherein the thickness of ITO is 50-200 nm, and the thickness of Al is 1-5 nm.
在本申请实施例中,微LED阵列芯片是从衬底80一侧出光,因此为了保证光提取效率,良导体层40既要保证具有一定的透过率,也要保证其电阻率小于一定阈值,因此本申请实施例中,良导体层40的材料采用Ti、Ni中的至少一种;或者采用ITO和Al的复合层结构。In the embodiment of the present application, the micro LED array chip emits light from the substrate 80 side. Therefore, in order to ensure the light extraction efficiency, the good conductor layer 40 must have a certain transmittance and a resistivity less than a certain threshold. Therefore, in the embodiment of the present application, the material of the good conductor layer 40 is at least one of Ti and Ni; or a composite layer structure of ITO and Al is used.
参考图3,在本申请实施例提供的微LED阵列芯片100中,通过在发第一半导体层10和衬底80之间设置良导体层40,并使得该良导体层40与第二电极20直接连接(电性连接),从而可以使得微LED阵列芯片100在驱动显示的情况下,LED阵列芯片中的每个发光单元30可以直接通过第二电极20和良导体层40将电流传导至中心区域发光单元30周围的第一半导体层10,然后经过该发光单元30的有源层31和第二半导体层32,进而驱动发光单元30发光;当良导体层40的电导率足够好的情况下,可以忽略因良导体层40的电阻差异而影响LED阵列芯片中的每个发光单元30发光的强弱。从而可以避免如图3中微LED阵列芯片100中心区域(或者距离第二电极20较远区域)的发光单元30,距离第二电极20较远,导致第二电极20至中心区域的发光单元30之间通过第一半导层进行电流传导时,由于微LED阵列芯片100中心区域的发光单元30与第二电极20之间的电阻过大,导致的显示不均匀的现象。Referring to Figure 3, in the micro LED array chip 100 provided in the embodiment of the present application, by setting a good conductor layer 40 between the first semiconductor layer 10 and the substrate 80, and making the good conductor layer 40 directly connected (electrically connected) to the second electrode 20, when the micro LED array chip 100 is driven for display, each light emitting unit 30 in the LED array chip can directly conduct current to the first semiconductor layer 10 around the light emitting unit 30 in the central area through the second electrode 20 and the good conductor layer 40, and then pass through the active layer 31 and the second semiconductor layer 32 of the light emitting unit 30, thereby driving the light emitting unit 30 to emit light; when the conductivity of the good conductor layer 40 is good enough, the influence of the resistance difference of the good conductor layer 40 on the light emitting intensity of each light emitting unit 30 in the LED array chip can be ignored. This can avoid the phenomenon that the light-emitting units 30 in the central area of the micro LED array chip 100 (or the area far away from the second electrode 20) as shown in Figure 3 are far away from the second electrode 20, resulting in uneven display due to excessive resistance between the light-emitting units 30 in the central area of the micro LED array chip 100 and the second electrode 20 when current conduction between the second electrode 20 and the light-emitting units 30 in the central area through the first semiconductor layer.
可以理解的是,图3中展示的电流只是示意图,在实际应用中,由于良导体层40具有很好的电导率,因此微LED阵列芯片100中的每个发光单元30都可以从距离该发光单元30直线距离最近的良导体层40的点获取电流传导,且可以忽略该发光单元30与第二电极20之间的距离带来的影响。It is understandable that the current shown in FIG. 3 is only a schematic diagram. In actual applications, since the good conductor layer 40 has good electrical conductivity, each light-emitting unit 30 in the micro LED array chip 100 can obtain current conduction from the point of the good conductor layer 40 that is closest to the light-emitting unit 30 in a straight line, and the influence of the distance between the light-emitting unit 30 and the second electrode 20 can be ignored.
作为一种可选的实施方式,所述良导体层40包括Ti、Ni中的至少一种,其厚度为3-50nm。As an optional implementation, the good conductor layer 40 includes at least one of Ti and Ni, and has a thickness of 3-50 nm.
作为一种可选的实施方式,所述良导体层40包括ITO和Al;其中ITO的厚度为50~200nm,Al的厚度在1~5nm。As an optional implementation, the good conductor layer 40 includes ITO and Al; wherein the thickness of ITO is 50-200 nm, and the thickness of Al is 1-5 nm.
在本申请实施例中,微LED阵列芯片是从衬底80一侧出光,因此为了保证光提取效率,良导体层40既要保证具有一定的透过率,也要保证其电阻率小于一定阈值,因此本申请实施例中,良导体层40的材料采用Ti、Ni中的至少一种;或者采用ITO和Al的复合层结构。In the embodiment of the present application, the micro LED array chip emits light from the substrate 80 side. Therefore, in order to ensure the light extraction efficiency, the good conductor layer 40 must have a certain transmittance and a resistivity less than a certain threshold. Therefore, in the embodiment of the present application, the material of the good conductor layer 40 is at least one of Ti and Ni; or a composite layer structure of ITO and Al is used.
作为一种可选的实施方式,上述第一电极33和上述第二电极20远离上述第一半导体层10的一端在同一水平面上。As an optional implementation manner, the first electrode 33 and the end of the second electrode 20 away from the first semiconductor layer 10 are on the same horizontal plane.
在本申请实施例提供的微LED阵列芯片100中,上述第一电极33和上述第二电极20远离上述第一半导体层10的一端在同一水平面上,有利于微LED阵列芯片100键合至显示背板上。In the micro LED array chip 100 provided in the embodiment of the present application, the first electrode 33 and the end of the second electrode 20 away from the first semiconductor layer 10 are on the same horizontal plane, which is conducive to bonding the micro LED array chip 100 to the display backplane.
参考图4,为本申请实施例提供的另一种微LED阵列芯片100结构示意图。Referring to FIG. 4 , it is a schematic structural diagram of another micro LED array chip 100 provided in an embodiment of the present application.
在本申请实施例中,微LED阵列芯片100包括衬底80以及依次堆叠在所述衬底80上的良导体层40和第一半导体层10;发光阵列,所述发光阵列中的每个发光单元30包括依次堆叠在所述第一半导体层10上的有源层31和第二半导体层32以及电流扩展层34,且每个所述第二半导体层32上设置有一个独立的第一电极33;第二电极20,设置在所述良导体层40上,且与所述发光阵列隔开;所述有源层31和所述第二半导体层32的侧壁上设置有钝化层和/或反射层。In the embodiment of the present application, the micro LED array chip 100 includes a substrate 80 and a good conductor layer 40 and a first semiconductor layer 10 stacked in sequence on the substrate 80; a light-emitting array, each light-emitting unit 30 in the light-emitting array includes an active layer 31 and a second semiconductor layer 32 and a current spreading layer 34 stacked in sequence on the first semiconductor layer 10, and each second semiconductor layer 32 is provided with an independent first electrode 33; a second electrode 20 is provided on the good conductor layer 40 and separated from the light-emitting array; a passivation layer and/or a reflective layer are provided on the side walls of the active layer 31 and the second semiconductor layer 32.
在本申请实施例中,上述电流扩展层34可以是ITO;上述钝化层和/或反射层35可以是指包括钝化层或反射层;也可以是包括钝化层和反射层层叠的组合。其中,钝化层可以是由SiO2、Al2O3等绝缘材料组成;反射层可以是分布式布拉格反射层(distributed Braggreflector,DBR)。In the embodiment of the present application, the current spreading layer 34 may be ITO; the passivation layer and/or the reflective layer 35 may include a passivation layer or a reflective layer; or may be a combination of a passivation layer and a reflective layer. The passivation layer may be composed of insulating materials such as SiO 2 and Al 2 O 3 ; and the reflective layer may be a distributed Bragg reflector (DBR).
在本申请实施例中,微LED阵列芯片100的其他结构与前述实施例类似,此处不再赘述。In the embodiment of the present application, other structures of the micro LED array chip 100 are similar to those in the above-mentioned embodiment and will not be described in detail here.
在本申请实施例提供的微LED阵列芯片100中,为了保护发光单元30并防止发光单元30的侧壁漏电,在有源层31和上述第二半导体层32的侧壁上设置了钝化层,进一步的为了防止发光单元30的光从侧壁发射出来干扰其他发光单元30,还在钝化层上设置了反射层。In the micro LED array chip 100 provided in the embodiment of the present application, in order to protect the light-emitting unit 30 and prevent the side wall leakage of the light-emitting unit 30, a passivation layer is arranged on the side wall of the active layer 31 and the above-mentioned second semiconductor layer 32. In order to further prevent the light of the light-emitting unit 30 from being emitted from the side wall to interfere with other light-emitting units 30, a reflective layer is also arranged on the passivation layer.
参考图5为本申请实施例提供的又一种微LED阵列芯片100结构示意图。5 is a schematic structural diagram of another micro LED array chip 100 provided in an embodiment of the present application.
在本申请实施例中,微LED阵列芯片100包括衬底80以及依次堆叠在所述衬底80上的良导体层40和第一半导体层10;发光阵列,所述发光阵列中的每个发光单元包括依次堆叠在所述第一半导体层10上的有源层31和第二半导体层32以及电流扩展层34,且每个所述第二半导体层32上设置有一个独立的第一电极33;第二电极20,设置在所述良导体层40上,且与所述发光阵列隔开;所述有源层31和所述第二半导体层32的侧壁上设置有钝化层和/或反射层35;上述发光阵列的发光单元30之间还设置有光隔离件50,上述光隔离件50用于隔离相邻两个发光单元30之间的光。In an embodiment of the present application, a micro LED array chip 100 includes a substrate 80 and a good conductor layer 40 and a first semiconductor layer 10 stacked in sequence on the substrate 80; a light-emitting array, each light-emitting unit in the light-emitting array includes an active layer 31 and a second semiconductor layer 32 and a current spreading layer 34 stacked in sequence on the first semiconductor layer 10, and each second semiconductor layer 32 is provided with an independent first electrode 33; a second electrode 20 is provided on the good conductor layer 40 and separated from the light-emitting array; a passivation layer and/or a reflective layer 35 are provided on the side walls of the active layer 31 and the second semiconductor layer 32; and an optical isolation member 50 is also provided between the light-emitting units 30 of the above-mentioned light-emitting array, and the above-mentioned optical isolation member 50 is used to isolate the light between two adjacent light-emitting units 30.
在本申请实施例中,上述光隔离件50可以是吸光的黑胶矩阵。In the embodiment of the present application, the light isolation element 50 may be a light-absorbing black plastic matrix.
在本申请实施例中,微LED阵列芯片100的其他结构与前述实施例类似,此处不再赘述。In the embodiment of the present application, other structures of the micro LED array chip 100 are similar to those in the above-mentioned embodiment and will not be described in detail here.
在本申请实施例提供的微LED阵列芯片100中,上述发光阵列的发光单元30之间设置有光隔离件50可以有效防止发光单元30之间的光相互串扰。In the micro LED array chip 100 provided in the embodiment of the present application, light isolators 50 are provided between the light emitting units 30 of the light emitting array to effectively prevent light from crosstalking between the light emitting units 30 .
参考图6,为本申请提供的一种显示装置,包括:如上一些实施例中上述的微LED阵列芯片100;CMOS背板200,其上设置有与上述第一电极33对应的第三电极60,以及与上述第二电极20对应的第四电极70;上述微LED阵列芯片100与上述CMOS背板200面对面设置,且上述第一电极33和上述第三电极60键合形成电性连接,且上述第二电极20和上述第四电极70键合形成电性连接。Referring to Figure 6, a display device provided by the present application includes: the micro LED array chip 100 as described above in some of the above embodiments; a CMOS backplane 200, on which a third electrode 60 corresponding to the first electrode 33 and a fourth electrode 70 corresponding to the second electrode 20 are arranged; the micro LED array chip 100 and the CMOS backplane 200 are arranged face to face, and the first electrode 33 and the third electrode 60 are bonded to form an electrical connection, and the second electrode 20 and the fourth electrode 70 are bonded to form an electrical connection.
在本申请实施例提供的显示装置中,将与CMOS背板键合的微LED阵列芯片的发光单元之间的第一半导体层10上设置良导体层40,并使得该良导体层40与第二电极20直接连接,从而可以使得微LED阵列芯片在驱动显示的情况下,LED阵列芯片中心区域(或者距离第二电极20较远区域)的发光单元30,可以直接通过第二电极20和良导体层40将电流传导至中心区域发光单元30周围的第一半导体层10,然后经过该发光单元30的有源层31和第二半导体层32,进而驱动发光单元30发光;避免了传统技术中微LED阵列芯片中心区域(或者距离第二电极20较远区域)的发光单元,距离第二电极较远,导致第二电极至中心区域的发光单元之间通过第一半导层进行电流传导时,由于微LED阵列芯片中心区域的发光单元与第二电极之间的电阻过大,导致的显示不均匀的现象。In the display device provided in the embodiment of the present application, a good conductor layer 40 is provided on the first semiconductor layer 10 between the light-emitting units of the micro LED array chip bonded to the CMOS backplane, and the good conductor layer 40 is directly connected to the second electrode 20, so that when the micro LED array chip is driven for display, the light-emitting units 30 in the central area of the LED array chip (or the area far from the second electrode 20) can directly conduct current to the first semiconductor layer 10 around the light-emitting units 30 in the central area through the second electrode 20 and the good conductor layer 40, and then pass through the active layer 31 and the second semiconductor layer 32 of the light-emitting units 30, thereby driving the light-emitting units 30 to emit light; this avoids the problem that in the conventional technology, the light-emitting units in the central area of the micro LED array chip (or the area far from the second electrode 20) are far from the second electrode, resulting in uneven display due to excessive resistance between the light-emitting units in the central area of the micro LED array chip and the second electrode when current is conducted between the second electrode and the light-emitting units in the central area through the first semiconductor layer.
应当理解的是,本实用新型的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本实用新型所附权利要求的保护范围。It should be understood that the application of the present invention is not limited to the above examples. For ordinary technicians in this field, improvements or changes can be made according to the above description. All these improvements and changes should fall within the scope of protection of the claims attached to the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202322965151.8U CN221150016U (en) | 2023-11-02 | 2023-11-02 | Micro-LED array chip and display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202322965151.8U CN221150016U (en) | 2023-11-02 | 2023-11-02 | Micro-LED array chip and display device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN221150016U true CN221150016U (en) | 2024-06-14 |
Family
ID=91422907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202322965151.8U Active CN221150016U (en) | 2023-11-02 | 2023-11-02 | Micro-LED array chip and display device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN221150016U (en) |
-
2023
- 2023-11-02 CN CN202322965151.8U patent/CN221150016U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1935038B1 (en) | Light emitting device having vertically stacked light emitting diodes | |
US7221044B2 (en) | Heterogeneous integrated high voltage DC/AC light emitter | |
US8785958B2 (en) | Light emitting element | |
US10862013B2 (en) | Light emitting diode device having electrode with low illumination side and high illumination side | |
CN100487932C (en) | Light emitting device with multiple light emitting units and package for mounting the same light emitting device | |
CN111201620B (en) | Light emitting device and manufacturing method thereof | |
CN103151447B (en) | A kind of double-side diode structure and preparation method thereof | |
US20060006524A1 (en) | Light emitting diode having an adhesive layer formed with heat paths | |
CN100365834C (en) | Light emitting diode with thermal channel bonding layer and light emitting diode array | |
US20240322082A1 (en) | Light-Emitting Diode Chip, Display Substrate And Manufacturing Method Thereof | |
CN221150016U (en) | Micro-LED array chip and display device | |
CN101540314A (en) | Light emitting diode element and method of forming the same | |
CN1750277B (en) | Light-emitting diode crystal grain structure with alternating current loop | |
CN220553447U (en) | micro-LED array chip and display device | |
CN115425127B (en) | Inverted Micro-LED chip and preparation method thereof | |
CN105742418A (en) | Light-emitting diode chip and preparation method thereof | |
CN102693970B (en) | LED device | |
CN112823427B (en) | A semiconductor light emitting element | |
CN115799413A (en) | Micro light-emitting diode and light-emitting device | |
KR20140028288A (en) | Light emitting device | |
CN222515496U (en) | Light-emitting element and light-emitting device | |
CN209183575U (en) | High power LED lamp panel | |
TW202347816A (en) | Micro led structure and micro display panel | |
CN113540302A (en) | Light-emitting micro-element and display device | |
CN2821867Y (en) | White light LED |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |