CN217331450U - Microbubble probe and pressure sensing system - Google Patents
Microbubble probe and pressure sensing system Download PDFInfo
- Publication number
- CN217331450U CN217331450U CN202220893875.9U CN202220893875U CN217331450U CN 217331450 U CN217331450 U CN 217331450U CN 202220893875 U CN202220893875 U CN 202220893875U CN 217331450 U CN217331450 U CN 217331450U
- Authority
- CN
- China
- Prior art keywords
- microbubble
- cavity
- optical fiber
- probe
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000523 sample Substances 0.000 title claims abstract description 52
- 239000013307 optical fiber Substances 0.000 claims abstract description 63
- 238000005253 cladding Methods 0.000 claims description 10
- 239000010453 quartz Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 239000000835 fiber Substances 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 4
- 238000009530 blood pressure measurement Methods 0.000 abstract description 8
- 238000001228 spectrum Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011326 mechanical measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
Images
Landscapes
- Measuring Fluid Pressure (AREA)
Abstract
本实用新型公开了一种微泡探针,包括光纤、微泡腔和压力探针,所述微泡腔设置于所述光纤的一端面上,所述压力探针设置于所述微泡腔的外侧上;所述微泡腔的腔壁上具有末端区域和环绕区域,所述环绕区域受力可形变,其所在平面垂直于所述光纤的轴向;所述压力探针位于所述末端区域上,其轴向平行于所述光纤的轴向;所述光纤中朝向所述微泡腔的端面与所述微泡腔的末端之间构成法布里‑珀罗腔。该微泡探针可提高压力测量的上限值,同时实现对被测物上单个点的压力测量。本实用新型还公开了一种压力感测系统,包括上述微泡探针。
The utility model discloses a microbubble probe, comprising an optical fiber, a microbubble cavity and a pressure probe, the microbubble cavity is arranged on one end face of the optical fiber, and the pressure probe is arranged on the microbubble cavity On the outer side of the microbubble cavity; the cavity wall of the microbubble cavity has an end region and a surrounding region, the surrounding region can be deformed by force, and its plane is perpendicular to the axial direction of the optical fiber; the pressure probe is located at the end In the region, its axial direction is parallel to the axial direction of the optical fiber; a Fabry-Perot cavity is formed between the end face of the optical fiber facing the microbubble cavity and the end of the microbubble cavity. The microbubble probe can improve the upper limit of pressure measurement, and at the same time realize the pressure measurement of a single point on the measured object. The utility model also discloses a pressure sensing system, which comprises the above-mentioned microbubble probe.
Description
技术领域technical field
本实用新型涉及传感技术,尤其涉及一种微泡探针及压力感测系统。The utility model relates to sensing technology, in particular to a microbubble probe and a pressure sensing system.
背景技术Background technique
在微型系统、微流控系统以及类似系统中,常常需要对施加在微小部件上的力进行传感,在制备、加工、组装这些系统时,实时的力学信息能够帮助操作者采取合理方式完成作业。以往使用的力学传感器大多基于微机电系统,即微机电力学传感器(MEMSForceSensors)。经过数十年的发展,微机电力学传感器已经较为成熟,在工程中有着广泛的应用,然而,其较大的尺寸和电学本质限制了其的应用,使得其无法在微小尺度下、各类液体环境、高温和超低温环境、强腐蚀性环境中工作,且会受到电磁干扰。In microsystems, microfluidic systems, and similar systems, it is often necessary to sense the forces exerted on tiny components. When fabricating, processing, and assembling these systems, real-time mechanical information can help operators perform tasks in a reasonable manner. . Most of the mechanical sensors used in the past are based on micro-electromechanical systems, namely MEMS Force Sensors. After decades of development, MEMS sensors have been relatively mature and have been widely used in engineering. However, their large size and electrical nature limit their applications, making them unable to operate in microscale and various liquids. Environment, high temperature and ultra-low temperature environment, strong corrosive environment, and will be subject to electromagnetic interference.
由于光纤本身的材料及光学特性,光纤传感器能够免受电磁干扰的影响,且能够耐受高温和超低温,在各种液体和气体环境中都能稳定工作。基于光纤的力学传感器成为了力学测量的新解决方案。Due to the material and optical properties of the optical fiber itself, the optical fiber sensor is immune to electromagnetic interference, and can withstand high and ultra-low temperatures, and can work stably in various liquid and gas environments. Optical fiber-based mechanical sensors have become a new solution for mechanical measurement.
专利号为CN201410173102.3的中国专利中公开了一种基于光纤FP干涉仪的压力传感器,包括光纤;所述光纤端部具有一FP腔;所述FP腔的靠近光纤端部的气泡壁的厚度在被所述光纤轴芯穿过的位置处最薄,由该位置向其外围逐渐增厚。如图1-3所示,该压力传感器的FP腔801中靠近光纤端部的气泡壁(图1中虚线所示区域)就是该压力传感器的压力敏感区域,进行压力检测时,将光纤的FP腔801所在端部置于待检测压力的环境中,另一端连接光谱仪等光谱分析仪器。光纤的FP腔801所在端部处于压力环境中时,环境对FP腔801施加的压力如图2箭头所示。如图3所示,L为FP腔801未受到环境压力时,其沿光纤轴向的腔长。当FP腔801受到一个环境压力P时,其压力敏感区域因受到环境压力会向内凹,从而导致FP腔801沿光纤轴向的腔长缩短相应的长度ΔL。通过实验发现,ΔL与P之间具有对应关系,而FP腔801沿光纤轴向的腔长与经FP腔801反射回的激光光谱的自由谱宽之间也存在对应关系,因此,通过检测经FP腔801反射回的激光光谱的自由谱宽可检测出FP腔801沿光纤轴向的腔长,从而检测出ΔL,进而检测出环境压力P。The Chinese patent with the patent number CN201410173102.3 discloses a pressure sensor based on an optical fiber FP interferometer, including an optical fiber; the end of the optical fiber has an FP cavity; the thickness of the bubble wall of the FP cavity close to the end of the optical fiber It is thinnest at the position where the fiber core passes through, and gradually thickens from this position toward its periphery. As shown in Figure 1-3, the bubble wall near the end of the optical fiber in the
上述压力传感器的FP腔的气泡壁最薄处既是该压力传感器的压力敏感区域,用于在环境压力下产生形变,也是该压力传感器的压力承受区域,用于直接承受环境压力的作用。最薄处的气泡壁由于太薄且直接受力,若环境压力太大的话,会直接出现破碎、破裂的情况,故该压力传感器无法用于测量较大的环境压力;同时,该压力传感器的压力敏感区域是一个可形变的球面,与被测物之间仅能够面接触,而无法点接触,故仅能够用于气压、液压等大范围的环境压力的测量,而无法用于接触式按压所产生的压力、位移、目标杨氏模量等单个点的压力测量。The thinnest part of the bubble wall of the FP cavity of the above pressure sensor is not only the pressure sensitive area of the pressure sensor, which is used to generate deformation under the ambient pressure, but also the pressure bearing area of the pressure sensor, which is used to directly bear the effect of the environmental pressure. Because the bubble wall at the thinnest part is too thin and is directly stressed, if the environmental pressure is too high, it will directly break and rupture, so the pressure sensor cannot be used to measure the large environmental pressure; at the same time, the pressure sensor has The pressure sensitive area is a deformable spherical surface, which can only be in surface contact with the measured object, but not in point contact, so it can only be used for the measurement of a wide range of environmental pressures such as air pressure and hydraulic pressure, but cannot be used for contact pressing. Single point pressure measurement of generated pressure, displacement, target Young's modulus, etc.
实用新型内容Utility model content
为了解决上述现有技术的不足,本实用新型提供一种微泡探针,可提高压力测量的上限值,同时实现对被测物上单个点的压力测量。In order to solve the above-mentioned deficiencies of the prior art, the present invention provides a microbubble probe, which can increase the upper limit of pressure measurement and simultaneously realize the pressure measurement of a single point on the measured object.
本实用新型还提供一种压力感测系统,包括上述微泡探针。The utility model also provides a pressure sensing system, which includes the above-mentioned microbubble probe.
本实用新型所要解决的技术问题通过以下技术方案予以实现:The technical problem to be solved by this utility model is realized through the following technical solutions:
一种微泡探针,包括光纤、微泡腔和压力探针,所述微泡腔设置于所述光纤的一端面上,所述压力探针设置于所述微泡腔的外侧上,所述光纤中朝向所述微泡腔的端面与所述微泡腔的末端之间构成法布里-珀罗腔;所述微泡腔的腔壁上具有末端区域和环绕区域,所述环绕区域受力可形变,其所在平面垂直于所述光纤的轴向;所述压力探针位于所述末端区域上,其轴向平行于所述光纤的轴向。A microbubble probe comprising an optical fiber, a microbubble cavity and a pressure probe, the microbubble cavity is arranged on one end face of the optical fiber, the pressure probe is arranged on the outer side of the microbubble cavity, and the A Fabry-Perot cavity is formed between the end face of the optical fiber facing the microbubble cavity and the end of the microbubble cavity; the cavity wall of the microbubble cavity has an end region and a surrounding region, and the surrounding region The force can be deformed, and its plane is perpendicular to the axial direction of the optical fiber; the pressure probe is located on the end region, and its axial direction is parallel to the axial direction of the optical fiber.
进一步地,所述环绕区域的壁厚小于所述末端区域的壁厚。Further, the wall thickness of the surrounding area is smaller than the wall thickness of the end area.
进一步地,所述微泡腔的腔壁在所述环绕区域处壁厚最小。Further, the cavity wall of the microbubble cavity has the smallest wall thickness at the surrounding area.
进一步地,所述光纤包括纤芯和包层。Further, the optical fiber includes a core and a cladding.
进一步地,所述包层与所述微泡腔的腔壁相连接,所述纤芯与所述微泡腔的气腔相连接。Further, the cladding layer is connected with the cavity wall of the microbubble cavity, and the fiber core is connected with the air cavity of the microbubble cavity.
进一步地,还包括石英管椎部,所述石英管椎部连接于所述光纤和微泡腔之间。Further, a vertebral portion of a quartz tube is also included, and the vertebral portion of the quartz tube is connected between the optical fiber and the microbubble cavity.
进一步地,所述光纤为单模光纤或多模光纤。Further, the optical fiber is a single-mode optical fiber or a multi-mode optical fiber.
一种压力感测系统,包括宽带光源、3dB耦合器、光谱仪以及上述的微泡探针,所述宽带光源和光谱仪通过所述3db耦合器连接至所述微泡探针中光纤的另一端面。A pressure sensing system, comprising a broadband light source, a 3dB coupler, a spectrometer, and the above-mentioned microbubble probe, wherein the broadband light source and the spectrometer are connected to the other end face of an optical fiber in the microbubble probe through the 3db coupler .
进一步地,还包括计算控制装置,所述计算控制装置与所述信号解调装置通讯连接。Further, a computing control device is also included, and the computing control device is connected in communication with the signal demodulation device.
进一步地,所述计算控制装置为个人电脑Further, the computing control device is a personal computer
本实用新型具有如下有益效果:该微泡探针将所述微泡腔上的末端区域和环绕区域分离,所述末端区域直接与压力接触,受力时沿压力方向发生平移,所述环绕区域不直接与压力接触,而是在所述末端区域的平移挤压下发生形变,进而引起所述微泡腔的腔长变化,由于所述环绕区域不直接与压力接触,所述末端区域将所受的压力从所述微泡腔的末端传递到所述微泡腔的赤道面上,相当于增大了压力的作用面,降低了所述环绕区域所受到的压强大小,可避免所述环绕区域出现破碎、破裂的情况,提高了压力的测量上限;同时通过增设的压力探针与被测物上的单个点进行接触受力,可实现接触式按压所产生的压力、位移、目标杨氏模量等单个点的压力测量。The utility model has the following beneficial effects: the microbubble probe separates the end region and the surrounding region on the microbubble cavity, the end region is directly in contact with the pressure, and translates along the pressure direction when being stressed, and the surrounding region Not in direct contact with the pressure, but deformed under the translational extrusion of the end region, thereby causing the cavity length of the microbubble cavity to change. Since the surrounding region is not in direct contact with the pressure, the end region will The pressure received is transmitted from the end of the microbubble cavity to the equatorial plane of the microbubble cavity, which is equivalent to increasing the working surface of the pressure, reducing the pressure on the surrounding area, and avoiding the surrounding area. The area is broken and ruptured, which increases the upper limit of pressure measurement; at the same time, the pressure, displacement, target Young's pressure generated by contact pressing can be realized by contacting a single point on the measured object through the additional pressure probe. Single point pressure measurement such as modulus.
附图说明Description of drawings
图1为现有的压力传感器的结构示意图;1 is a schematic structural diagram of an existing pressure sensor;
图2为现有的压力传感器的FP腔受到环境压力示意图;FIG. 2 is a schematic diagram of the FP cavity of the existing pressure sensor being subjected to environmental pressure;
图3为现有的压力传感器的FP腔受到环境压力时,其沿光纤轴向的腔长变化示意图;FIG. 3 is a schematic diagram of the change of the cavity length along the axis of the optical fiber when the FP cavity of the existing pressure sensor is subjected to ambient pressure;
图4为本实用新型提供的微泡探针的结构示意图;4 is a schematic structural diagram of a microbubble probe provided by the present invention;
图5为本实用新型提供的微泡探针的受力示意图;5 is a schematic diagram of the force of the microbubble probe provided by the present invention;
图6为本实用新型提供的另一微泡探针的结构示意图;6 is a schematic structural diagram of another microbubble probe provided by the present invention;
图7为本实用新型提供的压力感测系统的原理示意图。FIG. 7 is a schematic diagram of the principle of the pressure sensing system provided by the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本实用新型进行详细的说明,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本实用新型,而不能理解为对本实用新型的限制。The present invention will be described in detail below with reference to the accompanying drawings and embodiments, examples of which are shown in the accompanying drawings, wherein the same or similar reference numerals represent the same or similar elements or elements with the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, and are intended to be used to explain the present invention, but should not be construed as a limitation of the present invention.
在本实用新型的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。In the description of the present invention, it should be understood that the terms "length", "width", "upper", "lower", "front", "rear", "left", "right", "vertical" , "horizontal", "top", "bottom", "inside", "outside" and other indications of orientation or positional relationship are based on the orientation or positional relationship shown in the accompanying drawings, only for the convenience of describing the present utility model and simplifying the description , rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as a limitation on the present invention.
此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者多个该特征。在本实用新型的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first", "second" and "third" are used for descriptive purposes only, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first", "second", "third" may expressly or implicitly include one or more of that feature. In the description of the present invention, "plurality" means two or more, unless otherwise expressly and specifically defined.
在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。In the present utility model, unless otherwise expressly specified and limited, terms such as "installation", "connection", "connection", "fixation", "arrangement" and the like should be understood in a broad sense, for example, it may be a fixed connection, or It can be a detachable connection or an integrated body; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can also be the internal communication of two elements or the interaction of the two elements relation. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
实施例一Example 1
如图4所示,一种微泡探针,包括光纤1,所述光纤1的一端面上设置有微泡腔2,所述微泡腔2的外侧上设置有压力探针23,所述光纤1中朝向所述微泡腔2的端面与所述微泡腔2的末端之间构成法布里-珀罗腔;所述微泡腔2的腔壁上具有末端区域21和环绕区域22,所述环绕区域22受力可形变,其所在平面垂直于所述光纤1的轴向;所述压力探针23位于所述末端区域21上,其轴向平行于所述光纤1的轴向。As shown in FIG. 4 , a microbubble probe includes an
该微泡探针的光纤1中朝向所述微泡腔2的端面与所述微泡腔2的末端之间构成法布里-珀罗腔,入射至所述光纤1内的光信号在所述光纤1朝向所述微泡腔2的端面上产生第一反射光,在所述微泡腔2的末端上产生第二反射光,所述第一反射光与第二反射光之间形成干涉,其干涉频谱与所述微泡腔2的腔长有关,如图5所示,当所述微泡腔2受力形变而导致腔长变化时,所述干涉频谱会出现漂移,漂移量与所述微泡腔2的腔长变化量△L相关,而所述微泡腔2的腔长变化量又与其所受压力F的大小相关,故可通过所述干涉频谱的漂移量推算出所述微泡腔2所受压力F的大小。A Fabry-Perot cavity is formed between the end face of the
该微泡探针将所述微泡腔2上的末端区域21和环绕区域22分离,所述末端区域21直接与压力F接触,受力时沿压力F方向发生平移,所述环绕区域22不直接与压力F接触,而是在所述末端区域21的平移挤压下发生形变,进而引起所述微泡腔2的腔长变化,由于所述环绕区域22不直接与压力F接触,所述末端区域21将所受的压力F从所述微泡腔2的末端传递到所述环绕区域22所在的平面上,相当于增大了压力F的作用面,降低了所述环绕区域22所受到的压强大小,可避免所述环绕区域22出现破碎、破裂的情况,提高了压力F的测量上限;同时通过增设的压力探针23与被测物上的单个点进行接触受力,可实现接触式按压所产生的压力F、位移、目标杨氏模量等单个点的压力测量。The microbubble probe separates the
优选地,所述环绕区域22环绕在所述微泡腔2的赤道面上。Preferably, the surrounding
所述微泡腔2在赤道面上的截面最大,将所述环绕区域22设置在所述微泡腔2的赤道面上,可最大程度地降低了所述环绕区域22所受到的压强大小,以及最大程度地提高压力F的测量上限。The cross section of the
所述末端区域21受力也会发生一定量的形变,或不发生形变,视所述末端区域21的壁厚而定,所述末端区域21的壁厚越大,其受力形变的量越小;当所述压力探针23与压力相作用时,部分压力引起所述末端区域21的形变,剩余部分被传导至所述环绕区域22上,引起所述环绕区域22的形变,所述末端区域21的形变量要比所述环绕区域22的形变量小很多,故可忽略不计,而进而认为所述环绕区域22承受了所有压力。The
所述环绕区域22的壁厚小于所述末端区域21的壁厚,以使当所述压力探针23受到被测物按压时,所述末端区域21在受力时发生的形变尽量小或不形变,并沿受力方向向所述环绕区域22平移,而所述环绕区域22受所述末端区域21的平移挤压而产生形变。The wall thickness of the surrounding
优选地,所述微泡腔2的腔壁在所述环绕区域22处壁厚最小。Preferably, the wall thickness of the
所述光纤1包括纤芯11和包层12,所述包层12包覆在所述纤芯11的外周壁上,所述纤芯11与所述包层12之间具有不同的折射率,以使所述光纤1内的光信号可在所述纤芯11与所述包层12之间界面处发生全反射,而在所述纤芯11内向前传播;所述包层12与所述微泡腔2的腔壁相连接,所述纤芯11与所述微泡腔2的气腔相连接,以使所述纤芯11内的光信号可从所述纤芯11的端面入射至所述微泡腔2内。The
所述光纤1可以但不限于为单模光纤或多模光纤。The
实施例二
作为实施例一的另一具体实施方式,如图6所示,本实施例的微泡探针还包括石英管椎部3,所述石英管椎部3连接于所述光纤1和微泡腔2之间。As another specific implementation of the first embodiment, as shown in FIG. 6 , the microbubble probe of this embodiment further includes a
所述石英管椎部3的管壁呈喇叭形,其径向较大的一侧与所述光纤1连接,其径向较小的一侧与所述微泡腔2连接,所述光纤1的包层12通过所述石英管椎部3的管壁连接至所述微泡腔2的腔壁,所述光纤1的纤芯11通过所述石英管椎部3的管腔连接于所述微泡腔2的气腔。The tube wall of the
所述石英管椎部3的管壁也大于所述环绕区域22的腔壁,以使在测量压力F时,所述石英管椎部3不形变,或者形变量尽量小,可忽略不计。The tube wall of the
实施例三
如图7所示,一种压力感测系统,包括宽带光源、3dB耦合器、光谱仪以及实施例一或实施例二所述的微泡探针,所述宽带光源和光谱仪通过所述3db耦合器连接至所述微泡探针中光纤1的另一端面。As shown in FIG. 7 , a pressure sensing system includes a broadband light source, a 3dB coupler, a spectrometer, and the microbubble probe described in
所述宽带光源用于发射光信号,所述光谱仪用于接收所述微泡探针的光纤1中反射回来的光信号,并得到所述干涉频谱,所述3db耦合器用于将所述宽带光源发射的光信号耦合进所述微泡探针的光纤1中,以及将所述微泡探针的光纤1中反射回来的第一反射光和第二反射光耦合进所述光谱仪中。The broadband light source is used to emit light signals, the spectrometer is used to receive the light signals reflected from the
在测量压力F时,所述宽带光源先向所述微泡探针的光纤1内发射光信号,入射至所述光纤1内的光信号在所述光纤1朝向所述微泡腔2的端面上产生第一反射光,在所述微泡腔2的末端上产生第二反射光,所述第一反射光与第二反射光之间形成干涉,所述光谱仪接收反射回来的第一反射光和第二反射光并得到所述干涉频谱;将所述微泡探针上的压力探针23与标准物体上的多个点进行接触按压,引起所述微泡腔2不同程度的腔长变化,得到具有不同偏移量的多张干涉频谱,计算出所述干涉频谱的漂移量与压力F大小的关系曲线;将所述微泡探针上的压力探针23与被测物上的单个点进行接触按压,得到被测物该点上的干涉频谱,根据该点上的干涉频谱的漂移量,以及所述干涉频谱的漂移量与压力F大小的关系曲线,最终计算出被测物上该点的压力F大小。When measuring the pressure F, the broadband light source first emits an optical signal into the
该压力感测系统还包括计算控制装置,所述计算控制装置与所述宽带光源和光谱仪分别通讯连接,用于对所述宽带光源和光谱仪进行控制,具体为控制所述宽带光源和光谱仪的开启与关闭,同时对所述光谱仪所得到的干涉频谱进行分析计算。The pressure sensing system further includes a computing control device, which is connected in communication with the broadband light source and the spectrometer, respectively, for controlling the broadband light source and the spectrometer, specifically controlling the opening of the broadband light source and the spectrometer. On and off, the interference spectrum obtained by the spectrometer is analyzed and calculated at the same time.
本实施例中,所述计算控制装置为个人电脑。In this embodiment, the computing control device is a personal computer.
最后需要说明的是,以上实施例仅用以说明本实用新型实施例的技术方案而非对其进行限制,尽管参照较佳实施例对本实用新型实施例进行了详细的说明,本领域的普通技术人员应当理解依然可以对本实用新型实施例的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本实用新型实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the embodiments of the present utility model rather than limit them. Although the embodiments of the present utility model have been described in detail with reference to the preferred Personnel should understand that the technical solutions of the embodiments of the present invention can still be modified or equivalently replaced, and these modifications or equivalent replacements cannot make the modified technical solutions depart from the scope of the technical solutions of the embodiments of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220893875.9U CN217331450U (en) | 2022-04-18 | 2022-04-18 | Microbubble probe and pressure sensing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220893875.9U CN217331450U (en) | 2022-04-18 | 2022-04-18 | Microbubble probe and pressure sensing system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN217331450U true CN217331450U (en) | 2022-08-30 |
Family
ID=82946195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202220893875.9U Active CN217331450U (en) | 2022-04-18 | 2022-04-18 | Microbubble probe and pressure sensing system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN217331450U (en) |
-
2022
- 2022-04-18 CN CN202220893875.9U patent/CN217331450U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6671055B1 (en) | Interferometric sensors utilizing bulk sensing mediums extrinsic to the input/output optical fiber | |
US4942767A (en) | Pressure transducer apparatus | |
US5052228A (en) | Shear stress measuring device | |
US8578786B2 (en) | Measuring arrangement with an optical sensor | |
CN101308054B (en) | Pressure transmitter for detection of a variable relative to a process fluid | |
CN206627147U (en) | A kind of structure of temperature/pressure sensor and the measuring system of temperature and pressure | |
US11624756B2 (en) | Optical fiber flow velocity measuring apparatus and method integrating high and low ranges | |
CN110823121B (en) | A F-P cavity type high temperature and large strain optical fiber sensor | |
CN101398336A (en) | Pressure sensor | |
CN108775981B (en) | High-precision differential diaphragm optical fiber pressure sensing system | |
Vaddadi et al. | Design and fabrication of liquid pressure sensor using FBG sensor through seesaw hinge mechanism | |
CN100523754C (en) | Optical fibre pressure intensity sensor based on beam of constant strength | |
CN217331450U (en) | Microbubble probe and pressure sensing system | |
CN107351102B (en) | Fiber Bragg grating force tactile sensor, robot and its manipulator fingertip | |
CN114935417B (en) | A method for preparing a microbubble probe by carbon dioxide laser, a microbubble probe and a pressure detection system | |
WO2019222932A1 (en) | Fiber flex sensor and manufacturing method for fiber flex sensor | |
CN108814689B (en) | Differential diaphragm optical fiber pressure sensing system | |
Xiao-qi et al. | An optical fibre MEMS pressure sensor using dual-wavelength interrogation | |
CN113865773B (en) | High-sensitivity optical fiber surface plasmon air pressure detector | |
CN108426632B (en) | A MEMS-based sound pressure and airflow sensor | |
Lai et al. | Study on optical fiber pressure sensors with temperature-insensitivity based on Fabry-Pérot interferometry | |
CN217276600U (en) | A whispering gallery mode microbubble probe resonator and pressure sensing system | |
CN221945418U (en) | An ultrafast MOEMS pressure sensor | |
RU2741276C1 (en) | Fibre-optic sensor of liquid and air flow parameters | |
CN113686367B (en) | Sensing structure based on optical fiber coupling induction transparency, manufacturing process and sensing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |