CN211788914U - Soft focusing ionizer with shielding net electrode - Google Patents
Soft focusing ionizer with shielding net electrode Download PDFInfo
- Publication number
- CN211788914U CN211788914U CN202020682022.1U CN202020682022U CN211788914U CN 211788914 U CN211788914 U CN 211788914U CN 202020682022 U CN202020682022 U CN 202020682022U CN 211788914 U CN211788914 U CN 211788914U
- Authority
- CN
- China
- Prior art keywords
- electrode
- ionizer
- ion
- shielding mesh
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
- 150000002500 ions Chemical class 0.000 claims abstract description 91
- 230000005684 electric field Effects 0.000 claims abstract description 13
- 238000007789 sealing Methods 0.000 claims abstract description 4
- 238000000605 extraction Methods 0.000 claims description 6
- 238000002955 isolation Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 6
- 230000007423 decrease Effects 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 238000001184 proton transfer reaction mass spectrometry Methods 0.000 description 10
- 230000035945 sensitivity Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 8
- 239000012855 volatile organic compound Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 230000005686 electrostatic field Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000004949 mass spectrometry Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000000132 electrospray ionisation Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000011896 sensitive detection Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004252 FT/ICR mass spectrometry Methods 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000000451 chemical ionisation Methods 0.000 description 1
- 238000000262 chemical ionisation mass spectrometry Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000534 ion trap mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000005173 quadrupole mass spectroscopy Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001269 time-of-flight mass spectrometry Methods 0.000 description 1
Images
Landscapes
- Elimination Of Static Electricity (AREA)
Abstract
本实用新型涉及一种屏蔽网电极的软聚焦离子化器,包括电离源、入口电极、多片圆环电极、多片屏蔽网电极、离子出口电极和直流电源;所述的屏蔽网电极中心有开孔,开孔左侧面被导电网封闭,右侧敞开;所述的多片屏蔽网电极右侧敞开口径从大逐渐缩小,形成漏斗状;所述的入口电极、多片圆环电极、多片屏蔽网电极、离子出口电极之间采用绝缘密封垫片隔开,形成中空的离子化器腔;本实用新型的离子聚焦方法是通过在一种屏蔽网电极的软聚焦离子化器内形成逐步软聚焦引导电场,产物离子可被高效聚焦引导并保持低电场软电离效果,具有很高的离子透过效率和软电离效果,不需要额外射频电源,在体积、功率、重量、成本等方面更有优势。
The utility model relates to a soft focusing ionizer for shielding mesh electrodes, which comprises an ionization source, an inlet electrode, a plurality of ring electrodes, a plurality of shielding mesh electrodes, an ion exit electrode and a DC power supply; The left side of the opening is closed by the conductive mesh, and the right side is open; the opening diameter of the right side of the multi-piece shielding mesh electrode gradually decreases from large to large, forming a funnel shape; the inlet electrode, the multi-piece ring electrode, The plurality of shielding mesh electrodes and the ion outlet electrodes are separated by insulating sealing gaskets to form a hollow ionizer cavity; the ion focusing method of the utility model is formed in a soft focusing ionizer of a shielding mesh electrode. The electric field is gradually guided by soft focusing, and the product ions can be efficiently focused and guided and maintain the soft ionization effect of the low electric field. It has high ion transmission efficiency and soft ionization effect, and no additional RF power supply is required. In terms of volume, power, weight, cost, etc. have more advantages.
Description
技术领域technical field
本实用新型属于分析检测领域,具体涉及一种屏蔽网电极的软聚焦离子化器。The utility model belongs to the field of analysis and detection, in particular to a soft focus ionizer for shielding mesh electrodes.
背景技术Background technique
由于挥发性有机物(Volatile organic compounds,VOCs)标准检测方法仍然是速度较慢的色谱类技术或者嗅辨师嗅探,因为时效性差、主观性等问题,环境保护部门急需高效、客观、灵敏、可现场排查的VOCs污染源监测技术和方法甚至仪器。质子转移反应质谱(Proton transfer reaction mass spectrometry,PTR-MS)技术因响应快、探测下限低、自定量测量和软电离等特色,特别适合低浓度气体的快速高灵敏检测。因此,发明人团队研发了基于PTR-MS 原理的大气VOCs车载走航监测质谱仪(Mobile proton transfer reactionmass spectrometry, M-PTR-MS),该质谱仪功率小、体积小、重量轻,可以方便地安装在环境监测车上“边走边测”,开展城市VOCs污染源的快速排查,已被全国多个省市环保部门和环保企业采用。但前期根据车载走航需要,M-PTR-MS优先考虑了体积和功率,而小型化、低功率设计的 M-PTR-MS灵敏度有限,适合ppbv级VOCs的秒级走航监测,对人鼻敏感的pptv级VOCs 监测则需要十秒以上。因此,进一步提高走航质谱M-PTR-MS灵敏度,可提高走航速度,能在更短时间内获取城市区域pptv级低浓度VOCs分布特征。Since the standard detection method of volatile organic compounds (VOCs) is still a slow chromatography technique or olfactory sniffer, due to problems such as poor timeliness and subjectivity, environmental protection departments are in urgent need of efficient, objective, sensitive, and feasible On-site investigation of VOCs pollution source monitoring technologies and methods and even instruments. Proton transfer reaction mass spectrometry (PTR-MS) technology is especially suitable for fast and highly sensitive detection of low-concentration gases due to its fast response, low detection limit, self-quantitative measurement and soft ionization. Therefore, the inventor team developed a mobile proton transfer reaction mass spectrometry (M-PTR-MS) based on the principle of PTR-MS. The mass spectrometer has low power, small size and light weight, and can be easily It is installed on the environmental monitoring vehicle to "test while walking" to carry out rapid investigation of urban VOCs pollution sources. It has been adopted by environmental protection departments and environmental protection enterprises in many provinces and cities across the country. However, in the early stage, according to the needs of vehicle navigation, M-PTR-MS gave priority to volume and power, while the M-PTR-MS with a miniaturized and low-power design had limited sensitivity and was suitable for second-level navigation monitoring of ppbv-level VOCs. Sensitive pptv level VOCs monitoring requires more than ten seconds. Therefore, further improving the sensitivity of M-PTR-MS mass spectrometry can increase the speed of navigation, and can obtain the distribution characteristics of pptv-level low-concentration VOCs in urban areas in a shorter time.
经典的PTR-MS离子化器是施加直流电压获得均匀电场引导离子的,但是均匀电场条件下离子碰撞扩散导致离子无法通过真空差分的小孔,限制了PTR-MS灵敏度的提升。近年来,研究者一直在尝试发展PTR-MS离子化器的离子聚焦技术方法,已取得了一定的效果,但诸如离子漏斗、四极杆引导等技术因增加射频电源、增加仪器体积、功率和成本等,不适合用于小型化、低功率设计的M-PTR-MS中。The classic PTR-MS ionizer uses a DC voltage to obtain a uniform electric field to guide the ions. However, under the condition of uniform electric field, the ions cannot pass through the small holes of the vacuum differential due to the collision and diffusion of ions, which limits the improvement of the sensitivity of PTR-MS. In recent years, researchers have been trying to develop ion focusing techniques for PTR-MS ionizers, and have achieved certain results. Cost, etc., are not suitable for use in M-PTR-MS designed for miniaturization and low power.
实用新型内容Utility model content
本实用新型的技术解决问题:针对M-PTR-MS灵敏度有限,提供一种屏蔽网电极的软聚焦离子化器。这种离子化器由内径逐渐缩小的屏蔽网电极单元组成,蔽网电极单元中心开孔左侧是屏蔽网,右侧敞口,多片屏蔽网敞口向右逐渐缩小,呈漏斗状,离子可在这种离子化器的静电场作用下,向离子出口电极的中心小孔软聚焦并引出。在减少离子损失的同时避免了碎片离子产生,从而实现质谱检测器对有机物的高灵敏检测。The technology of the utility model solves the problem: aiming at the limited sensitivity of M-PTR-MS, a soft focus ionizer for shielding mesh electrodes is provided. This ionizer is composed of a shielding mesh electrode unit with a gradually decreasing inner diameter. The shielding mesh is on the left side of the central opening of the shielding mesh electrode unit, and the right side is open. Under the action of the electrostatic field of this ionizer, the ion can be softly focused and extracted to the central small hole of the ion exit electrode. The generation of fragment ions is avoided while reducing the ion loss, thereby realizing the highly sensitive detection of organic compounds by the mass spectrometer.
本实用新型技术解决方案为:一种屏蔽网电极的软聚焦离子化器,包括电离源、入口电极、多片圆环电极、多片屏蔽网电极、离子出口电极和直流电源;所述的电离源、入口电极、多片圆环电极、多片屏蔽网电极、离子出口电极从左向右同轴心装配;The technical solution of the utility model is as follows: a soft focusing ionizer for shielding mesh electrodes, comprising an ionization source, an inlet electrode, a plurality of circular electrodes, a plurality of shielding mesh electrodes, an ion exit electrode and a DC power supply; The source, inlet electrode, multi-piece ring electrode, multi-piece shielding mesh electrode, and ion outlet electrode are assembled concentrically from left to right;
所述的直流电源的两极分别连接到入口电极和离子出口电极两端;The two poles of the DC power supply are respectively connected to both ends of the inlet electrode and the ion outlet electrode;
所述的入口电极、多片圆环电极、多片屏蔽网电极、离子出口电极之间依次用电阻相连;The inlet electrodes, the multi-piece ring electrodes, the multi-piece shielding mesh electrodes, and the ion outlet electrodes are sequentially connected by resistors;
所述的屏蔽网电极中心有开孔,开孔左侧面设置有导电网,用来屏蔽隔离导电网前后的电场,右侧敞开;所述的多片屏蔽网电极的右侧敞口孔径从大逐渐缩小,组合形成漏斗状的开口;The shielding mesh electrode has an opening in the center, a conductive mesh is arranged on the left side of the opening to shield the electric field before and after the isolation conductive mesh, and the right side is open; Large and gradually reduced, combined to form a funnel-shaped opening;
所述入口电极中心设有第一孔,所述离子出口电极中心设有离子引出的第二孔;所述的入口电极、多片圆环电极、多片屏蔽网电极、离子出口电极之间采用绝缘密封垫片隔开,形成中空的离子化器腔,或通过整体放入另一密封腔体内形成离子化器腔。The center of the entrance electrode is provided with a first hole, and the center of the ion exit electrode is provided with a second hole for ion extraction. The insulating sealing gaskets are separated to form a hollow ionizer cavity, or the ionizer cavity is formed by being integrated into another sealed cavity.
进一步的,所述的直流电源的两极分别连接到入口电极和出口电极两端,具体为:Further, the two poles of the DC power supply are respectively connected to both ends of the inlet electrode and the outlet electrode, specifically:
用于正离子时,所述的直流电源正极与入口电极相连,负极和离子出口电极相连;或者,用于负离子时,所述的直流电源负极与入口电极相连,正极和离子出口电极相连。When used for positive ions, the positive electrode of the DC power supply is connected to the inlet electrode, and the negative electrode is connected to the ion outlet electrode; or, when used for negative ions, the negative electrode of the DC power supply is connected to the inlet electrode, and the positive electrode is connected to the ion outlet electrode.
进一步的,所述的屏蔽网电极中心的开孔为圆柱形孔、锥柱形孔、球形孔或方形孔。Further, the hole in the center of the shielding mesh electrode is a cylindrical hole, a cone-shaped hole, a spherical hole or a square hole.
进一步的,所述的离子出口电极中心的离子引出第二孔直径为0.1mm~5mm。Further, the diameter of the second ion extraction hole in the center of the ion outlet electrode is 0.1 mm˜5 mm.
进一步的,所述的入口电极中心第一孔直径为0.1mm~25mm。Further, the diameter of the first hole in the center of the inlet electrode is 0.1 mm to 25 mm.
进一步的,所述的电离源为是放电离子源、光电离源、电子轰击电离源或电喷雾离子源。Further, the ionization source is a discharge ion source, a photoionization source, an electron bombardment ionization source or an electrospray ionization source.
进一步的,所述的离子化器腔内气压为10Pa~1000Pa。Further, the air pressure in the ionizer chamber is 10Pa-1000Pa.
本实用新型与现有技术相比的区别和优点在于:The difference and advantage of the present utility model compared with the prior art are:
(1)常规质子转移反应质谱中,离子化器中是均匀电场引导离子,而离子碰撞扩散会导致离子无法通过真空差分的小孔,限制了PTR-MS灵敏度的提升。现有技术中离子化器仪器体积较大、功率和成本都很高,且需要复杂的电极结构和额外配备的射频电源,让技术方法实现较为复杂、成本高,增加射频电源不仅增加了耗电功率,体积重量也会增加,不适用于小型化、低功率设计的M-PTR-MS。本实用新型采用屏蔽网电极的软聚焦离子化器,实现离子的高效软聚焦,提高检测灵敏度,实现类似质子转移反应质谱的化学电离质谱和光电离质谱的高灵敏检测。本实用新型主要包括电离源、入口电极、多片圆环电极、多片屏蔽网电极、离子出口电极和直流电源。屏蔽网电极中心有开孔,开孔左侧面被导电网封闭,右侧敞开,多片屏蔽网电极右侧敞开口径从大逐渐缩小,形成漏斗状。入口电极、多片圆环电极、多片屏蔽网电极、离子出口电极之间依次用电阻相连。这种屏蔽网电极的软聚焦离子化器的连接方式与现有技术不同。(1) In conventional proton transfer reaction mass spectrometry, the ions are guided by a uniform electric field in the ionizer, and the collision and diffusion of ions will cause the ions to fail to pass through the small holes of vacuum differential, which limits the improvement of the sensitivity of PTR-MS. In the prior art, the ionizer instrument is large in size, high in power and cost, and requires a complex electrode structure and an additional radio frequency power supply, which makes the implementation of the technical method more complicated and high cost. Adding radio frequency power not only increases power consumption Power, volume and weight will also increase, which is not suitable for M-PTR-MS with miniaturized, low-power design. The utility model adopts a soft-focusing ionizer with a shielded mesh electrode, which realizes high-efficiency soft-focusing of ions, improves detection sensitivity, and realizes high-sensitivity detection of chemical ionization mass spectrometry and photoionization mass spectrometry similar to proton transfer reaction mass spectrometry. The utility model mainly includes an ionization source, an inlet electrode, a multi-piece ring electrode, a multi-piece shielding mesh electrode, an ion outlet electrode and a DC power supply. There is an opening in the center of the shielding mesh electrode, the left side of the opening is closed by the conductive mesh, and the right side is open. The inlet electrode, the multi-piece annular electrode, the multi-piece shielding mesh electrode and the ion outlet electrode are connected in turn by resistors. The connection mode of the soft-focusing ionizer with the shielded mesh electrode is different from that in the prior art.
(2)本实用新型的创新之处在于:通过一种新型屏蔽网电极单元组合成离子聚焦部件,这种新型屏蔽网电极中心有开孔,开孔左侧面被导电网封闭,右侧敞开,多片屏蔽网电极右侧敞开口径从大逐渐缩小,形成漏斗状。入口电极、多片圆环电极、多片屏蔽网电极、离子出口电极之间依次用电阻相连。在常规直流电源静电场条件下,形成多级聚焦电场,实现逐步软聚焦,避免离子碰壁损失,将更多的离子引出离子出口电极。相比现有的常规直流电压离子化器而言,本实用新型具有更高的离子透过效率和相同的软电离效果;相比离子漏斗和四极杆引导技术的离子化器而言,本实用新型不需要射频电源,在体积、功率、重量、成本等方面更有优势。本实用新型最大的优点在于聚焦效果好、不破坏软电离、成本低、不增加仪器体积、功率和重量,可应用于车载走航监测质谱仪M-PTR-MS中,提高灵敏度和走航效率。(2) The innovation of the present utility model lies in that an ion focusing component is formed by combining a new type of shielding mesh electrode unit. This new type of shielding mesh electrode has an opening in the center, the left side of the opening is closed by the conductive mesh, and the right side is open. , the opening diameter on the right side of the multi-piece shielding mesh electrode gradually decreases from large to form a funnel shape. The inlet electrode, the multi-piece annular electrode, the multi-piece shielding mesh electrode and the ion outlet electrode are connected in turn by resistors. Under the condition of conventional DC power electrostatic field, a multi-level focusing electric field is formed to achieve gradual soft focusing, avoiding the loss of ions hitting the wall, and pulling more ions out of the ion exit electrode. Compared with the existing conventional DC voltage ionizer, the utility model has higher ion transmission efficiency and the same soft ionization effect; The utility model does not require a radio frequency power supply, and has advantages in terms of volume, power, weight, and cost. The biggest advantage of the utility model is that the focusing effect is good, the soft ionization is not destroyed, the cost is low, and the volume, power and weight of the instrument are not increased. .
附图说明Description of drawings
图1为本实用新型的一种屏蔽网电极的软聚焦离子化器示意图;1 is a schematic diagram of a soft-focusing ionizer of a shielded mesh electrode of the present invention;
图2为本实用新型的一种屏蔽网电极的软聚焦离子化器初步试验比对结果。FIG. 2 is a preliminary test comparison result of a soft-focusing ionizer with a shielded mesh electrode of the present invention.
具体实施方式Detailed ways
下面将结合本实用新型实施例中附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本实用新型实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本实用新型的实施例的详细描述并非旨在限制要求保护的本实用新型的范围,而是仅仅表示本实用新型的选定实施例。基于本实用新型的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本实用新型保护的范围。The technical solutions in the embodiments of the present utility model will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present utility model. Obviously, the described embodiments are only a part of the embodiments of the present utility model, rather than all the embodiments. . The components of the embodiments of the invention generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations. Accordingly, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative work fall within the protection scope of the present invention.
如图1所示,本实用新型实施例的一种屏蔽网电极的软聚焦离子化器,包括电离源1、入口电极2、多片圆环电极3、多片屏蔽网电极4、离子出口电极5和直流电源6;所述的电离源1、入口电极2、多片圆环电极3、多片屏蔽网电极4、离子出口电极5从左向右同轴心装配;用于正离子时,所述的直流电源6正极与入口电极2相连,负极和离子出口电极5相连;或者,用于负离子时,所述的直流电源6负极与入口电极2相连,正极和离子出口电极 5相连;所述的入口电极2、多片圆环电极3、多片屏蔽网电极4、离子出口电极5之间依次用电阻相连;所述的屏蔽网电极4中心有开孔,开孔左侧面设置有导电网,用来屏蔽隔离导电网前后的电场,右侧敞开;所述的屏蔽网电极4的右侧敞口为球形孔,多片球形孔径从大逐渐缩小的屏蔽网电极4组合形成漏斗状的开口;所述入口电极2中心设有第一孔,所述离子出口电极5中心设有离子引出的第二孔;所述的入口电极2、多片圆环电极3、多片屏蔽网电极4、离子出口电极5之间采用绝缘密封垫片隔开,形成中空的离子化器腔7,或通过整体放入密封大腔体内形成离子化器腔7;所述的构成离子化器腔7的相邻电极间距可在 0.5mm~10mm之间,屏蔽网电极4的数量根据反应管长度和聚焦效果需要确定;As shown in FIG. 1 , a soft focusing ionizer with a shielded mesh electrode according to an embodiment of the present invention includes an ionization source 1, an
根据本实用新型的优选实施例,可在在离子化器7末端选用1到若干片屏蔽网电极4,也可以全部使用屏蔽网电极4,不用圆环电极3。According to the preferred embodiment of the present invention, one to several pieces of shielding mesh electrodes 4 may be selected at the end of the
本实用新型的屏蔽网电极的软聚焦离子化软聚焦方法,具体步骤为:The soft-focusing ionization soft-focusing method of the shielding mesh electrode of the utility model comprises the following specific steps:
直流电源6在入口电极2和离子出口电极5上施加直流电压,电阻将电压分到多片圆环电极3和多片屏蔽网电极4上,在电极之间形成静电场,其中多片圆环电极3形成均匀静电场,多片屏蔽网电极4形成聚焦静电场;如果电离源1是放电离子源,母离子通过入口电极2的中心第一孔进入离子化器腔7内,通过离子分子反应原理,将待测物离子化;如果电离源1是光电离源,光子通过入口电极2的中心第一孔进入离子化器腔7内,通过光电离原理将待测物质离子化;离子化器腔7内的离子束先被多片圆环电极3之间的均匀电场引导,与载气碰撞,离子扩散,束径变大,之后被多片屏蔽网电极4之间的聚焦电场逐步聚焦引导,离子束径逐步缩小,最终引导出离子出口电极3的第二孔,从而实现离子的高效聚焦引导。The
所述的直流电源极性与被引导离子的极性要求相关,如果引导正离子向离子出口电极5 方向迁移,则直流电源正极应该与入口电极2相连,负极与离子出口电极5相连;如果引导负离子向离子出口电极5方向迁移,则直流电源负极应该与入口电极2相连,正极与离子出口电极5相连。即本实用新型方法对正离子和负离子聚焦引导均可使用。The polarity of the DC power supply is related to the polarity requirements of the guided ions. If the positive ions are guided to migrate toward the
为了获得化学电离或光电离高灵敏聚焦检测效果,所述的屏蔽网电极4中心的开孔可以是圆柱形孔、锥柱形孔、球形孔、方形孔等;所述的离子化器腔7内气压为10Pa~1000Pa;所述的离子出口电极5中心的离子引出第二孔直径为0.1mm~5mm;所述的入口电极2中心第一孔直径为0.1mm~25mm;离子化器7内形成的有效电场范围应在10V/cm~700V/cm范围内;所述的入口电极2或者离子出口电极5上开有进样口,可将待测物引入离子化器7内。In order to obtain chemical ionization or photoionization highly sensitive focusing detection effect, the hole in the center of the shielding mesh electrode 4 can be a cylindrical hole, a cone-shaped hole, a spherical hole, a square hole, etc.; the
所述的电离源1可以是放电离子源、光电离源、电子轰击电离源或电喷雾离子源等。The ionization source 1 can be a discharge ion source, a photoionization source, an electron bombardment ionization source, or an electrospray ionization source.
具体实施时,所述的电离源1可以是产生母离子的放电离子源,也可以是光电离源或电喷雾离子源等,也可以是可单独开关控制选择任意一种使用的集合电离源;当电离源1是光电离源时,在离子化器腔7内待测物将被直接电离成产物离子,产物离子在离子化器腔7内电场作用下聚焦前行,最终被引出离子出口电极5;如果是集合电离源,则可以针对不同性质分子进行选择性电离,可检测的物种更多;根据离子检测需要,该离子化器可以与四极杆质谱、飞行时间质谱、离子阱质谱、傅里叶变换离子回旋共振质谱或磁质谱等探测器相连,构成高灵敏质谱检测系统。During specific implementation, the ionization source 1 can be a discharge ion source for generating parent ions, a photoionization source or an electrospray ion source, etc., or a collective ionization source that can be individually switched and controlled to select any one of them; When the ionization source 1 is a photoionization source, the object to be tested will be directly ionized into product ions in the
图2所示为本实用新型的一种屏蔽网电极的软聚焦离子化器初步试验比对结果,实线是传统的圆环电极离子化器实验结果,虚线为本实用新型的屏蔽网电极离子化器初步试验结果,弯折线表示灵敏度提高倍数,初步结果表明,本方法至少可以提高灵敏度三到五倍,进一步对结构和实验参数进行优化,有可能提高十倍以上。Fig. 2 shows the preliminary test comparison result of a soft-focusing ionizer of a shielded mesh electrode of the present invention, the solid line is the experimental result of the traditional annular electrode ionizer, and the dotted line is the shielded mesh electrode ionizer of the present invention. According to the preliminary test results of the chemist, the bending line indicates the increase in sensitivity. The preliminary results show that this method can increase the sensitivity by at least three to five times. Further optimization of the structure and experimental parameters may increase the sensitivity by more than ten times.
本实用新型说明书未详细阐述部分属于本领域公知技术。The part that is not described in detail in the description of the present utility model belongs to the well-known technology in the art.
以上所述,仅为本实用新型部分具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本领域的人员在本实用新型揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本实用新型的保护范围内。The above is only a part of the specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person familiar with the art can easily think of changes or substitutions within the technical scope disclosed by the present invention. , should be covered within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020682022.1U CN211788914U (en) | 2020-04-29 | 2020-04-29 | Soft focusing ionizer with shielding net electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020682022.1U CN211788914U (en) | 2020-04-29 | 2020-04-29 | Soft focusing ionizer with shielding net electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211788914U true CN211788914U (en) | 2020-10-27 |
Family
ID=72958284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020682022.1U Withdrawn - After Issue CN211788914U (en) | 2020-04-29 | 2020-04-29 | Soft focusing ionizer with shielding net electrode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211788914U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111430215A (en) * | 2020-04-29 | 2020-07-17 | 中国科学院合肥物质科学研究院 | Soft-focusing ionizer and soft-focusing method for shielded mesh electrode |
-
2020
- 2020-04-29 CN CN202020682022.1U patent/CN211788914U/en not_active Withdrawn - After Issue
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111430215A (en) * | 2020-04-29 | 2020-07-17 | 中国科学院合肥物质科学研究院 | Soft-focusing ionizer and soft-focusing method for shielded mesh electrode |
CN111430215B (en) * | 2020-04-29 | 2024-06-21 | 中国科学院合肥物质科学研究院 | Soft focusing ionizer of shielding net electrode and soft focusing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111430215A (en) | Soft-focusing ionizer and soft-focusing method for shielded mesh electrode | |
CN101281165B (en) | Method and apparatus for ionizing mass spectrographic analysis sample | |
CN108091544B (en) | A Mass Spectrometry Chemical Ionization Source Based on Differential Mobility Spectrometry Ion Screening | |
CN104576287B (en) | Ion source system and mass spectrometer for atmospheric pressure interface | |
CN104716008A (en) | Radio-frequency discharge VUV composite ionization source used for mass spectrometry | |
CN108321072A (en) | A kind of chemi-ionization and the mass spectrographic volatile organic compound detection device of photo-ionisation multiple source and detection method | |
CN105632877A (en) | Double-ion-source quadrupole mass spectrometer based on single-photon ionization and electron bombardment ionization | |
CN109904056B (en) | A chemical ionization-vacuum ultraviolet single-photon ionization composite ionization source device based on air discharge | |
CN102479662A (en) | Vacuum ultraviolet light ionization source for high-flux gas sample analysis | |
CN110648897A (en) | An ion molecule reaction tube with a quadrupole funnel structure and its ion focusing method | |
CN111477533A (en) | Apparatus for ion generation, transmission and mass spectrometry in low vacuum systems | |
CN111640646A (en) | High-sensitivity proton transfer time-of-flight mass spectrometer and method for measuring ion time-of-flight by using same | |
CN211670173U (en) | Device for ion generation, transmission and mass spectrum combination of low vacuum system | |
CN105655226B (en) | A kind of vacuum ultraviolet ionized and chemi-ionization composite ionization source | |
CN211788914U (en) | Soft focusing ionizer with shielding net electrode | |
CN202948899U (en) | Electrostatic lens device based on vacuum ultra violet (VUV) lamp ionization source | |
CN114166927A (en) | Mass spectrum device detection method for detecting multi-component sample | |
CN106206239B (en) | A high-efficiency combined atmospheric pressure ionization source | |
CN111199862B (en) | A capillary micro-area ionization source | |
CN209843660U (en) | Compound ion source and mass spectrometer | |
CN111199864B (en) | A radio frequency enhanced reactive photochemical ionization source | |
CN202167455U (en) | A Proton Transfer Ion Source Device Based on Ion Funnel | |
CN210722952U (en) | Composite ionization source device for mass spectrometry | |
CN212517113U (en) | Ion Source for Dichloromethane-Induced Proton Transfer Reaction Excited by Radio Frequency Discharge | |
CN210429734U (en) | Ion molecule reaction tube with quadrupole funnel structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20201027 Effective date of abandoning: 20240621 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20201027 Effective date of abandoning: 20240621 |